Warm Mix Asphalt (WMA) technologies are becoming popular due to their ability to reduce mixing and compaction temperatures compared to the conventional hot mix asphalts (HMAs), with remarkable advantages of environment and costs. Moreover, WMA is considered as one of the most promising technology for increasing the re-use of Reclaimed Asphalt (RA) within the mixture although its effectiveness in recycling issues require more dedicated research activities. This paper describes a laboratory investigation aimed at optimizing a dense graded asphalt mixture for wearing course, produced with WMA technology and including up to 30% of RA. WMA mixtures were prepared by using two contents of a plain bitumen, two contents of RA and one chemical additive. A recycled HMA containing lower RA content, according to technical specifications currently applied in Italy, was selected as reference mixture. Strength and stiffness properties, water sensitivity, rutting and cracking resistance were investigated on shear gyratory compacted specimens. The result analysis on stiffness, rutting and fracture properties indicated the possibility to produce suitable WMA mixtures with higher RA contents without penalizing their performance compared to the reference one.
Performance Optimization of Warm Recycled Mixtures / Cardone, F.; Canestrari, F.; Jiang, X.; Ferrotti, G.. - 76:(2020), pp. 221-230. (Intervento presentato al convegno 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9 tenutosi a Zurich nel 1-3 luglio 2020) [10.1007/978-3-030-48679-2_22].
Performance Optimization of Warm Recycled Mixtures
Cardone F.
;Canestrari F.;Jiang X.;Ferrotti G.
2020-01-01
Abstract
Warm Mix Asphalt (WMA) technologies are becoming popular due to their ability to reduce mixing and compaction temperatures compared to the conventional hot mix asphalts (HMAs), with remarkable advantages of environment and costs. Moreover, WMA is considered as one of the most promising technology for increasing the re-use of Reclaimed Asphalt (RA) within the mixture although its effectiveness in recycling issues require more dedicated research activities. This paper describes a laboratory investigation aimed at optimizing a dense graded asphalt mixture for wearing course, produced with WMA technology and including up to 30% of RA. WMA mixtures were prepared by using two contents of a plain bitumen, two contents of RA and one chemical additive. A recycled HMA containing lower RA content, according to technical specifications currently applied in Italy, was selected as reference mixture. Strength and stiffness properties, water sensitivity, rutting and cracking resistance were investigated on shear gyratory compacted specimens. The result analysis on stiffness, rutting and fracture properties indicated the possibility to produce suitable WMA mixtures with higher RA contents without penalizing their performance compared to the reference one.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.