Lithium-ion battery pack performance and longevity can be severely affected by cell-to-cell variations. Statistical modeling is an important tool for optimization of performance and safety of battery packs. This work presents uncertainty quantification of Lithium-ion battery performance, in particular sensitivity analysis. This analysis is based on calculation of Sobol' indices from a surrogate model, based on Polynomial Chaos Expansion. Performance is compared with Monte Carlo simulations.

Uncertainty Quantification of Lithium-Ion Batteries with Polynomial Chaos / Orcioni, Simone; Conti, Massimo. - ELETTRONICO. - (2020), pp. 1-5. (Intervento presentato al convegno 2020 IEEE International Symposium on Circuits and Systems (ISCAS) nel 10-21 Oct. 2020) [10.1109/ISCAS45731.2020.9180515].

Uncertainty Quantification of Lithium-Ion Batteries with Polynomial Chaos

Orcioni, Simone;Conti, Massimo
2020-01-01

Abstract

Lithium-ion battery pack performance and longevity can be severely affected by cell-to-cell variations. Statistical modeling is an important tool for optimization of performance and safety of battery packs. This work presents uncertainty quantification of Lithium-ion battery performance, in particular sensitivity analysis. This analysis is based on calculation of Sobol' indices from a surrogate model, based on Polynomial Chaos Expansion. Performance is compared with Monte Carlo simulations.
2020
978-1-7281-3320-1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/284421
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact