In case of a disaster, the individuals’ safety depends on interactions between buildings vulnerability, related post-event damages and environmental conditions, human reaction to hazardous situations. Such interferences are critical in historical scenarios, because of particular environment features (e.g.: high buildings vulnerabilities; urban layout which is not designed to face actual emergency; individuals’ familiarity with architectural spaces, especially for tourists). Current risk assessment methods are limited to define exposure in terms of population’s presence in the scenario, but analysis should consider human behaviors in emergency, and especially during the evacuation process. Simulation models for evaluating evacuation motion have been recently developed to this aim, and so to evaluate the effectiveness of risk-reduction strategies. Nevertheless, models development and validation should be supported by experimental data to effectively represent the “human factor” in critical conditions. Hence, this paper combines previous literature results and real-life emergency analyses (performed on videotapes database from all over the World), by focusing on three main natural disasters recurrent for historical scenarios: fires, earthquakes and flood. Behavioral analyses try to define significant man-environment interactions from a qualitative and quantitative point of view. Results show how noticed behaviors can be distinguished in common ones and peculiar ones (referring to a specific disaster). Quantitative analyses referring to motion quantities evidence differences between the considered emergencies and underline the importance to adopt specific model inputs for each simulated disaster

Investigating Exposure in Historical Scenarios: How People Behave in Fires, Earthquakes and Floods / Bernardini, G.; Quagliarini, E.; D'Orazio, M.. - ELETTRONICO. - 18:(2019), pp. 1138-1151. [10.1007/978-3-319-99441-3_123]

Investigating Exposure in Historical Scenarios: How People Behave in Fires, Earthquakes and Floods

Bernardini G.;Quagliarini E.;D'Orazio M.
2019-01-01

Abstract

In case of a disaster, the individuals’ safety depends on interactions between buildings vulnerability, related post-event damages and environmental conditions, human reaction to hazardous situations. Such interferences are critical in historical scenarios, because of particular environment features (e.g.: high buildings vulnerabilities; urban layout which is not designed to face actual emergency; individuals’ familiarity with architectural spaces, especially for tourists). Current risk assessment methods are limited to define exposure in terms of population’s presence in the scenario, but analysis should consider human behaviors in emergency, and especially during the evacuation process. Simulation models for evaluating evacuation motion have been recently developed to this aim, and so to evaluate the effectiveness of risk-reduction strategies. Nevertheless, models development and validation should be supported by experimental data to effectively represent the “human factor” in critical conditions. Hence, this paper combines previous literature results and real-life emergency analyses (performed on videotapes database from all over the World), by focusing on three main natural disasters recurrent for historical scenarios: fires, earthquakes and flood. Behavioral analyses try to define significant man-environment interactions from a qualitative and quantitative point of view. Results show how noticed behaviors can be distinguished in common ones and peculiar ones (referring to a specific disaster). Quantitative analyses referring to motion quantities evidence differences between the considered emergencies and underline the importance to adopt specific model inputs for each simulated disaster
2019
RILEM Bookseries
978-3-319-99440-6
978-3-319-99441-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/268476
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact