Building management systems monitor and control building performances in real-time. Most control systems, which have been developed in the last decade, achieve the required performances relying on a centralised and hierarchical framework. In the regular operation phase, these systems are usually able to efficiently reach their goals, whereas they often fail to stick to pre-determined targets in the presence of unforeseen disturbances. As a matter of fact, traditional control systems suffer complex unforeseen scenarios that cannot be modelled by the analytics and knowledge integrated in these systems, because hierarchical systems strive to keep full control at any level. As an alternative, holonic management systems, which have been successfully applied in the manufacturing field, can tackle this type of drawbacks. The flexibility of their elementary units, the holons, makes it possible to avoid the rigid structure of hierarchical systems so as to respond quickly to disturbances and dynamically re-arrange their structure. In this paper, a first holonic computing structure is developed for indoor comfort management in an office room. The structure developed can drive both the operation management phase and the medium- and long-term measurement of performances. The former is implemented by means of a sequence of specific minimum cost actions which is based on the overall throughput effectiveness (OTE) metrics. The latter exploits the same OTE metrics to suggest corrective and improvement actions. Finally, OTE diagnoses are re-directed to a BIM model to support decision making for long-term improvement actions on the building facility.

Holonic Management Systems for Resilient Operation of Buildings / Pirani, Massimiliano; Messi, Leonardo; Carbonari, Alessandro; Bonci, Andrea; Vaccarini, Massimo. - ELETTRONICO. - (2018). (Intervento presentato al convegno (ISARC 2018) tenutosi a Berlin, Germany nel July 20-25, 2018) [10.22260/ISARC2018/0059].

Holonic Management Systems for Resilient Operation of Buildings

Massimiliano Pirani;Leonardo Messi;Alessandro Carbonari
;
Andrea Bonci;Massimo Vaccarini
2018-01-01

Abstract

Building management systems monitor and control building performances in real-time. Most control systems, which have been developed in the last decade, achieve the required performances relying on a centralised and hierarchical framework. In the regular operation phase, these systems are usually able to efficiently reach their goals, whereas they often fail to stick to pre-determined targets in the presence of unforeseen disturbances. As a matter of fact, traditional control systems suffer complex unforeseen scenarios that cannot be modelled by the analytics and knowledge integrated in these systems, because hierarchical systems strive to keep full control at any level. As an alternative, holonic management systems, which have been successfully applied in the manufacturing field, can tackle this type of drawbacks. The flexibility of their elementary units, the holons, makes it possible to avoid the rigid structure of hierarchical systems so as to respond quickly to disturbances and dynamically re-arrange their structure. In this paper, a first holonic computing structure is developed for indoor comfort management in an office room. The structure developed can drive both the operation management phase and the medium- and long-term measurement of performances. The former is implemented by means of a sequence of specific minimum cost actions which is based on the overall throughput effectiveness (OTE) metrics. The latter exploits the same OTE metrics to suggest corrective and improvement actions. Finally, OTE diagnoses are re-directed to a BIM model to support decision making for long-term improvement actions on the building facility.
2018
9781510869028
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/263450
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact