In sound reproduction systems the audio crossover plays a fundamental role. Nowadays, digital crossover based on IIR filters are commonly employed, of which non-linear phase is a relevant topic. For this reason, solutions aiming to IIR filters approximating a linear phase behavior have been recently proposed. One of the latest exploits Fractional Derivative theory and uses Evolutionary Algorithms to explore the solution space in order to perform the IIR filter design: the IIR filter phase error is minimized to achieve a quasi-linear phase response. Nonetheless, this approach is not suitable for a crossover design, since the single filter transition band behavior is not predictable. This shoved the authors to propose a modified design technique including suitable constraints, as the amplitude response cut-off frequency, in the ad-hoc Particle Swarm Optimization algorithm exploring the space of IIR filter solutions. Simulations show that not only more performing filters can be obtained but also fully flat response crossovers achieved.

Designing Quasi-Linear Phase IIR Filters for Audio Crossover Systems by Using Swarm Intelligence / Foresi, Ferdinando; Vecchiotti, Paolo; Zallocco, Diego; Squartini, Stefano. - ELETTRONICO. - (2018). (Intervento presentato al convegno Audio Engineering Society Convention 144 tenutosi a Milan, Italy nel May 2018).

Designing Quasi-Linear Phase IIR Filters for Audio Crossover Systems by Using Swarm Intelligence

Vecchiotti, Paolo;Squartini, Stefano
2018-01-01

Abstract

In sound reproduction systems the audio crossover plays a fundamental role. Nowadays, digital crossover based on IIR filters are commonly employed, of which non-linear phase is a relevant topic. For this reason, solutions aiming to IIR filters approximating a linear phase behavior have been recently proposed. One of the latest exploits Fractional Derivative theory and uses Evolutionary Algorithms to explore the solution space in order to perform the IIR filter design: the IIR filter phase error is minimized to achieve a quasi-linear phase response. Nonetheless, this approach is not suitable for a crossover design, since the single filter transition band behavior is not predictable. This shoved the authors to propose a modified design technique including suitable constraints, as the amplitude response cut-off frequency, in the ad-hoc Particle Swarm Optimization algorithm exploring the space of IIR filter solutions. Simulations show that not only more performing filters can be obtained but also fully flat response crossovers achieved.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/258787
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact