We consider a class of second order Hamiltonian systems $\ddot q=q-V'(t,q)$ where $V(t,q)$ is asymptotic at infinity to a time periodic and superquadratic function $V_+(t,q)$. We prove the existence of a class of multibump solutions whose $\omega$-limit is a suitable homoclinic orbit of the system at infinity $\ddot q=q-V'_+(t,q)$
Asymptotic behaviour for a class of multibump solutions to Duffing-like systems / Caldiroli, P.; Montecchiari, P.; Nolasco, Margherita. - (1995), pp. 137-145. (Intervento presentato al convegno Variational and local methods in the study of Hamiltonian systems tenutosi a Trieste nel 1994 october 24-28).
Asymptotic behaviour for a class of multibump solutions to Duffing-like systems
Montecchiari P.
;NOLASCO, MARGHERITA
1995-01-01
Abstract
We consider a class of second order Hamiltonian systems $\ddot q=q-V'(t,q)$ where $V(t,q)$ is asymptotic at infinity to a time periodic and superquadratic function $V_+(t,q)$. We prove the existence of a class of multibump solutions whose $\omega$-limit is a suitable homoclinic orbit of the system at infinity $\ddot q=q-V'_+(t,q)$File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.