Novelty detection is the task of recognising events the differ from a model of normality. This paper proposes an acoustic novelty detector based on neural networks trained with an adversarial training strategy. The proposed approach is composed of a feature extraction stage that calculates Log-Mel spectral features from the input signal. Then, an autoencoder network, trained on a corpus of 'normal' acoustic signals, is employed to detect whether a segment contains an abnormal event or not. A novelty is detected if the Euclidean distance between the input and the output of the autoencoder exceeds a certain threshold. The innovative contribution of the proposed approach resides in the training procedure of the autoencoder network: instead of using the conventional training procedure that minimises only the Minimum Mean Squared Error loss function, here we adopt an adversarial strategy, where a discriminator network is trained to distinguish between the output of the autoencoder and data sampled from the training corpus. The autoencoder, then, is trained also by using the binary cross-entropy loss calculated at the output of the discriminator network. The performance of the algorithm has been assessed on a corpus derived from the PASCAL CHiME dataset. The results showed that the proposed approach provides a relative performance improvement equal to 0.26% compared to the standard autoencoder. The significance of the improvement has been evaluated with a one-tailed z-test and resulted significant with p < 0.001. The presented approach thus showed promising results on this task and it could be extended as a general training strategy for autoencoders if confirmed by additional experiments.

Acoustic novelty detection with adversarial autoencoders / Principi, Emanuele; Vesperini, Fabio; Squartini, Stefano; Piazza, Francesco. - ELETTRONICO. - 2017-:(2017), pp. 3324-3330. (Intervento presentato al convegno 2017 International Joint Conference on Neural Networks, IJCNN 2017 tenutosi a usa nel 2017) [10.1109/IJCNN.2017.7966273].

Acoustic novelty detection with adversarial autoencoders

Principi, Emanuele;Vesperini, Fabio;Squartini, Stefano;Piazza, Francesco
2017-01-01

Abstract

Novelty detection is the task of recognising events the differ from a model of normality. This paper proposes an acoustic novelty detector based on neural networks trained with an adversarial training strategy. The proposed approach is composed of a feature extraction stage that calculates Log-Mel spectral features from the input signal. Then, an autoencoder network, trained on a corpus of 'normal' acoustic signals, is employed to detect whether a segment contains an abnormal event or not. A novelty is detected if the Euclidean distance between the input and the output of the autoencoder exceeds a certain threshold. The innovative contribution of the proposed approach resides in the training procedure of the autoencoder network: instead of using the conventional training procedure that minimises only the Minimum Mean Squared Error loss function, here we adopt an adversarial strategy, where a discriminator network is trained to distinguish between the output of the autoencoder and data sampled from the training corpus. The autoencoder, then, is trained also by using the binary cross-entropy loss calculated at the output of the discriminator network. The performance of the algorithm has been assessed on a corpus derived from the PASCAL CHiME dataset. The results showed that the proposed approach provides a relative performance improvement equal to 0.26% compared to the standard autoencoder. The significance of the improvement has been evaluated with a one-tailed z-test and resulted significant with p < 0.001. The presented approach thus showed promising results on this task and it could be extended as a general training strategy for autoencoders if confirmed by additional experiments.
2017
9781509061815
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/252454
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 36
social impact