Moving from a recent publication of Fagiani et al. [1], short-term predictions of water and natural gas consumption are performed exploiting state-of-the-art techniques. Specifically, for two datasets, the performance of Support Vector Regression (SVR), Extreme Learning Machine (ELM), Genetic Programming (GP), Artificial Neural Networks (ANNs), Echo State Networks (ESNs), and Deep Belief Networks (DBNs) are compared adopting common evaluation criteria. Concerning the datasets, the Almanac of Minutely Power Dataset (AMPds) is used to compute predictions with domestic consumption, 2 year of recordings, and to perform further evaluations with the available heterogeneous data, such as energy and temperature. Whereas, predictions of building consumption are performed with the datasets recorded at the Department for International Development (DFID). In addition, the results achieved for the previous release of the AMPds, 1 year of recordings, are also reported, in order to evaluate the impact of seasonality in forecasting performance. Finally, the achieved results validate the suitability of ANN, SVR and ELM approaches for prediction applications in small-grid scenario. Specifically, for the domestic consumption the best performance are achieved by SVR and ANN, for natural gas and water, respectively. Whereas, the ANN shows the best results for both water and natural gas forecasting in building scenario.

Short-term Load Forecasting for Smart Water and Gas Grids: a comparative evaluation / Fagiani, Marco; Squartini, Stefano; Bonfigli, Roberto; Piazza, Francesco. - (2015), pp. 1198-1203. (Intervento presentato al convegno 15th IEEE International Conference on Environment and Electrical Engineering, EEEIC 2015 tenutosi a Rome, Italy nel 10 June 2015 through 13 June 2015) [10.1109/EEEIC.2015.7165339].

Short-term Load Forecasting for Smart Water and Gas Grids: a comparative evaluation

FAGIANI, MARCO;SQUARTINI, Stefano;Bonfigli, Roberto;PIAZZA, Francesco
2015-01-01

Abstract

Moving from a recent publication of Fagiani et al. [1], short-term predictions of water and natural gas consumption are performed exploiting state-of-the-art techniques. Specifically, for two datasets, the performance of Support Vector Regression (SVR), Extreme Learning Machine (ELM), Genetic Programming (GP), Artificial Neural Networks (ANNs), Echo State Networks (ESNs), and Deep Belief Networks (DBNs) are compared adopting common evaluation criteria. Concerning the datasets, the Almanac of Minutely Power Dataset (AMPds) is used to compute predictions with domestic consumption, 2 year of recordings, and to perform further evaluations with the available heterogeneous data, such as energy and temperature. Whereas, predictions of building consumption are performed with the datasets recorded at the Department for International Development (DFID). In addition, the results achieved for the previous release of the AMPds, 1 year of recordings, are also reported, in order to evaluate the impact of seasonality in forecasting performance. Finally, the achieved results validate the suitability of ANN, SVR and ELM approaches for prediction applications in small-grid scenario. Specifically, for the domestic consumption the best performance are achieved by SVR and ANN, for natural gas and water, respectively. Whereas, the ANN shows the best results for both water and natural gas forecasting in building scenario.
2015
978-147997993-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/230592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact