Although smart grids are regarded as the technology to overcome the limits of nowadays power distribution grids, the transition will require much time. Dynamic pricing, a straightforward implementation of demand response, may provide the means to manipulate the grid load thus extending the life expectancy of current technology. However, to integrate a dynamic pricing scheme in the crowded pool of technologies, available at demand side, a proper energy manager with the support of a pricing profile forecaster is mandatory. Although energy management and price forecasting are recurrent topics, in literature they have been addressed separately. On the other hand, in this work, the aim is to investigate how well an energy manager is able to perform in presence of data uncertainty originating from the forecasting process. On purpose, an energy and resource manager has been revised and extended in the current manuscript. Finally, it has been complemented with a price forecasting technique, based on the Extreme Learning Machine paradigm. The proposed forecaster has proven to be better performing and more robust, with respect to the most common forecasting approaches. The energy manager, as well, has proven that the energy efficiency of the residential environment can be improved significantly. Nonetheless, to achieve the theoretical optimum, forecasting techniques tailored for that purpose may be required.

Energy management with the support of dynamic pricing strategies in real micro-grid scenarios / Severini, Marco; Squartini, Stefano; Fagiani, Marco; Piazza, Francesco. - Volume 2015:(2015). (Intervento presentato al convegno International Joint Conference on Neural Networks, IJCNN 2015 tenutosi a Killarney; Ireland nel 12 July 2015 through 17 July 2015) [10.1109/IJCNN.2015.7280621].

Energy management with the support of dynamic pricing strategies in real micro-grid scenarios

SEVERINI, Marco;SQUARTINI, Stefano;FAGIANI, MARCO;PIAZZA, Francesco
2015-01-01

Abstract

Although smart grids are regarded as the technology to overcome the limits of nowadays power distribution grids, the transition will require much time. Dynamic pricing, a straightforward implementation of demand response, may provide the means to manipulate the grid load thus extending the life expectancy of current technology. However, to integrate a dynamic pricing scheme in the crowded pool of technologies, available at demand side, a proper energy manager with the support of a pricing profile forecaster is mandatory. Although energy management and price forecasting are recurrent topics, in literature they have been addressed separately. On the other hand, in this work, the aim is to investigate how well an energy manager is able to perform in presence of data uncertainty originating from the forecasting process. On purpose, an energy and resource manager has been revised and extended in the current manuscript. Finally, it has been complemented with a price forecasting technique, based on the Extreme Learning Machine paradigm. The proposed forecaster has proven to be better performing and more robust, with respect to the most common forecasting approaches. The energy manager, as well, has proven that the energy efficiency of the residential environment can be improved significantly. Nonetheless, to achieve the theoretical optimum, forecasting techniques tailored for that purpose may be required.
2015
978-147991960-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/230586
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 0
social impact