This paper presents an embedded system for a ballbot robotic platform, which is a balanced omnidirectional mobile robot that moves on a sphere. It provides a higher degree of maneuverability compared to the wheeled mobile robots. The robot balances it on a ball and gives to the system only one contact point with the ground. This allows to reduce the friction and the space needed by the system to turn around a point. This is a major feature for a mobile vehicle, considering that most of them rotate their whole body to obtain a change in direction. The proposed platform is self-contained with on-board sensing and computation, it uses only off-the-shelf components and is designed to perform maneuvers when operating in tight spaces as in the human environments. The proposed embedded system is based on a general pourpose embedded board equipped with a 32bit microcontroller which is able to manage all the basic tasks of this robotic platform: sensing, actuation, control and communication. The proposed system is described and initial experimental results are introduced, furthermore the challenges faced are presented.

Embedded system for a Ballbot robot / Bonci, Andrea; Pirani, Massimiliano; Rossi, Massimiliano; Gabbanini, Enrico Maria. - STAMPA. - 1:(2015), pp. 157-161. (Intervento presentato al convegno WISES 2015, Proceeedings of 12th Workshop on Intelligent Solutions in Embedded Systems tenutosi a Ancona, Italy nel October 29-30 2015).

Embedded system for a Ballbot robot

BONCI, Andrea;PIRANI, MASSIMILIANO;
2015-01-01

Abstract

This paper presents an embedded system for a ballbot robotic platform, which is a balanced omnidirectional mobile robot that moves on a sphere. It provides a higher degree of maneuverability compared to the wheeled mobile robots. The robot balances it on a ball and gives to the system only one contact point with the ground. This allows to reduce the friction and the space needed by the system to turn around a point. This is a major feature for a mobile vehicle, considering that most of them rotate their whole body to obtain a change in direction. The proposed platform is self-contained with on-board sensing and computation, it uses only off-the-shelf components and is designed to perform maneuvers when operating in tight spaces as in the human environments. The proposed embedded system is based on a general pourpose embedded board equipped with a 32bit microcontroller which is able to manage all the basic tasks of this robotic platform: sensing, actuation, control and communication. The proposed system is described and initial experimental results are introduced, furthermore the challenges faced are presented.
2015
WISES 2015, Proceeedings of 2015 12th Workshop on Intelligent Solutions in Embedded Systems
978-88-87548-06-8
978-88-87548-07-5
978-88-87548-08-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/229822
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact