The authors have investigated a novel processing technique, which allows to measure possibly relevant features in the ECG (Electrocardiogram) signal according to the morphology of its waveform. The aim of this work is to prove its efficacy in the assessment of the subject’s Heart Rate (HR) and to broaden its use to signals coming from different biomedical sensors (based on optical, acoustical and mechanical principles) for the computation of HR. The analysis technique proposed for the identification of the main feature (R-peak) in ECG signal provides results that are comparable to those obtained with traditional approaches. The approach has also been applied to other signals related to blood flow, such as PCG (Phonocardiography), PPG (Photoplethysmography) and VCG (Vibrocardiography), where standard algorithms (i.e. Pan & Tompkins) could not be widely applied. HR results from a measurement campaign on 8 healthy subjects have shown, respect to ECG, a deviation (calculated as 2 ) of ±3.3 bpm, ±2.3 bpm and ±1.5 bpm for PCG, PPG and VCG. Future work will involve the extraction of additional features from the previous signals, with the aim of a deeper characterization of them to better describe the subject’s health status.

A novel approach for features extraction in physiological signals

COSOLI, GLORIA;CASACANDITELLA, LUIGI;PIETRONI, FILIPPO;CALVARESI, ANDREA;REVEL, Gian Marco;SCALISE, Lorenzo
2015-01-01

Abstract

The authors have investigated a novel processing technique, which allows to measure possibly relevant features in the ECG (Electrocardiogram) signal according to the morphology of its waveform. The aim of this work is to prove its efficacy in the assessment of the subject’s Heart Rate (HR) and to broaden its use to signals coming from different biomedical sensors (based on optical, acoustical and mechanical principles) for the computation of HR. The analysis technique proposed for the identification of the main feature (R-peak) in ECG signal provides results that are comparable to those obtained with traditional approaches. The approach has also been applied to other signals related to blood flow, such as PCG (Phonocardiography), PPG (Photoplethysmography) and VCG (Vibrocardiography), where standard algorithms (i.e. Pan & Tompkins) could not be widely applied. HR results from a measurement campaign on 8 healthy subjects have shown, respect to ECG, a deviation (calculated as 2 ) of ±3.3 bpm, ±2.3 bpm and ±1.5 bpm for PCG, PPG and VCG. Future work will involve the extraction of additional features from the previous signals, with the aim of a deeper characterization of them to better describe the subject’s health status.
Proceedings of the 2015 IEEE International Symposium on Medical Measurements and Applications (MEMEA 2015)
978-1-4799-6476-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/226169
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 17
social impact