In recent years the technological development has encouraged several applications based on node to node communications without any fixed infrastructure. This paper presents preliminary evaluation of popular estimating techniques to populate active nodes in the neighborhood using De Bruijn sequences. They have much higher cardinality compared to any other family of binary sequences at a parity of length. This characteristic of De Bruijn sequences can be exploited to identify the presence of an active node in a dense surrounding, to assist the primary node in making intelligent decisions in a blind or foggy environment. The simulation model in this paper evaluates the use of eigenvalue estimation to estimate the spreading sequence among noisy signals, based on eigenvalues analysis techniques. The received signal is divided into windows, from which a covariance matrix is computed; the sequence can be reconstructed from the two first eigenvectors of this matrix, and that useful information, such as the desynchronization time, can be extracted from the eigenvalues.

Counting surrounding nodes using DS-SS signals and De Bruijn sequences in blind environment / Warty, C.; Secer, G.; Yu, R. W.; Spinsante, Susanna. - ELETTRONICO. - (2013). (Intervento presentato al convegno IEEE Aerospace Conference 2013 tenutosi a Big Sky, MT, USA nel 2-9 March 2013) [10.1109/AERO.2013.6497423].

Counting surrounding nodes using DS-SS signals and De Bruijn sequences in blind environment

SPINSANTE, Susanna
2013-01-01

Abstract

In recent years the technological development has encouraged several applications based on node to node communications without any fixed infrastructure. This paper presents preliminary evaluation of popular estimating techniques to populate active nodes in the neighborhood using De Bruijn sequences. They have much higher cardinality compared to any other family of binary sequences at a parity of length. This characteristic of De Bruijn sequences can be exploited to identify the presence of an active node in a dense surrounding, to assist the primary node in making intelligent decisions in a blind or foggy environment. The simulation model in this paper evaluates the use of eigenvalue estimation to estimate the spreading sequence among noisy signals, based on eigenvalues analysis techniques. The received signal is divided into windows, from which a covariance matrix is computed; the sequence can be reconstructed from the two first eigenvectors of this matrix, and that useful information, such as the desynchronization time, can be extracted from the eigenvalues.
2013
9781467318129
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11566/100064
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact