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Abstract 

 

 

Different algorithms used in ICT are described in this dissertation regarding 

artificial intelligence, deep learning, and genetic algorithms to process signals 

in communication technologies with the purpose of increasing system 

performance. 

 

Advances in microwave and millimeter-wave systems have enabled remote 

sensing techniques previously utilized in long-range applications to be 

utilized in relatively close-range applications such as detection and 

categorization of human presence and measurement of human attributes thank 

to the huge bandwidth and the short time of signal transmission. The design 

of a WSN homogeneous network with hierarchical structure is demonstrated 

with the priority of covering an environment with minimal cost, high 

connection, and maximum longevity. 

 

In the first part will be presented different techniques to process the micro-

Doppler signals coming from automotive radars regarding classification and 

tracking of the objective gained from the information of the target. The 

second part will present the comparison between machine learning and deep 

learning algorithm used for human activity classification purpose and getting 

the best results in terms of performance, accuracy etc. The last part is the 

demonstration of an enhanced genetic algorithm for improving performance 

in customizable hierarchical wireless sensor networks choosing weight 

combination to generate the most performable topology conceivable.      
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Chapter 1 

 

Introduction of FMCW radar, ML & DL 

networks 

 
1.1 Introduction 

 

Advanced Driver Assistance Systems (ADAS) is one of the primary 

research aims in automotive technology, which has resulted in more 

sophisticated sensors, one of which is Frequency Modulated Continuous 

Wave (FMCW) Radars. To perform good measurements and support 

assistance systems, Radars need huge bandwidth and small Chirp Repetition 

Time (CRT) but these features can be powerful also to extract micro-Doppler 

(mD) signals. To classify this signals Modern Machine Learning (ML) 

algorithms provide a highly strong tool where exists various techniques to 

extract features and classify signals with varying performances and 

computational costs. 

 

 

1.2 MIMO-FMCW radar principle 
 

The key principles underpinning the MIMO-FMCW principle, which 

is at the heart of the processing chain presented in this study, are briefly 

described in this section. MIMO radar is based on the homonym idea from 

communications, in which a collection of M transmitters and N receivers 

provides M x N separate propagation channels [1]. The main advantage is that 

M + N physical components may be used to produce M x N virtual channels. 
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In radar, there is a contraposition between distributed and colocated MIMO. 

The radar cross-section (RCS) of the target for each propagation path in the 

former may be treated as independent random variables, allowing for 

improved detection performance and the extraction of additional geometrical 

information due to spatial variety. In the colocated instance, waveform 

diversity can be used to improve spatial resolution with large virtual 

apertures, or array signal processing methods can be used to boost SNR. When 

compared to the standard phased array, which corresponds to the single-input 

multiple-output (SIMO) scenario, a MIMO radar may boost the degrees of 

freedom up to M times by employing orthogonal waveforms. Multiplexing 

the signals in time, frequency, or coding can achieve orthogonality. 

 

1.3 Machine learning and deep learning 
 

The major characteristics of deep learning algorithms are reviewed 

and compared to standard machine learning approaches in this part, 

introducing the most significant ideas and techniques with an emphasis on 

CNN-based image classification structures and their principles. Finally, the 

applications of such approaches in radar signal processing are discussed. 

Machine learning is a branch of research that is commonly included in the 

broader idea of artificial intelligence, which includes computers capable of 

addressing issues traditionally associated with human intellect. Machine 

learning, as opposed to rule-based systems, in which a set of instructions is 

programmed to produce a particular output given a specific input, is a family 

of algorithms capable of learning general rules to generate predictions or 

choices from incoming data without being explicitly programmed. 
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Regression, classification, density estimation, anomaly detection, machine 

translation, and many more tasks are among them. Significant progress has 

been made in recent decades, driven by the need for automation of processes 

and decision making without human interaction across a wide range of 

applications. Machine learning is frequently divided into two categories: 

supervised learning and unsupervised learning. In the supervised pattern, the 

algorithm is trained using samples of an input vector x and an associated label 

y, and it learns to predict the value y from the input x, often by estimating 

p(y|x). Classification tasks are an example of an application that supervised 

algorithms may do. Unsupervised learning approaches, on the other hand, aim 

to learn the hidden structure from unlabeled data: with an input vector x of 

data, the algorithm attempts to learn the probability distribution p(x) or certain 

distribution attributes. This method is commonly used for problems like as 

density estimation and clustering. 

The distinction between these groups is not officially defined, as the 

borders are occasionally blurred, and certain techniques, such as 

reinforcement learning or semi-supervised learning, do not fit well into any 

of them. In any event, all machine learning algorithms and approaches are 

based on the premise that machines can learn from data in order to better at a 

specific job, and they typically comprise three components: representation, 

evaluation, and optimization. The first idea relates to the work of describing 

the input data in a formal language that the computer can understand, i.e. a 

collection of characteristics that reflect the input data. The other two concepts 

deal with how to map the input data represented by a set of features to a 

desired output: evaluation establishes a loss or scoring function that 
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objectively defines the model's performance (mean squared error, likelihood), 

and optimization includes the strategy to achieve the best possible score in 

the defined objective function (gradient descent, linear programming). In 

traditional machine learning methodologies, the representation of the input 

data is generally accomplished by a human in order to give the machine with 

some type of structure in the data, and the computer then learns from that 

preprocessed data automatically (Fig. 1). Previous research on both sides, 

data representation and learning process automation (assessment and 

optimization), has resulted in machine learning's extraordinary success in a 

wide range of applications. The representation of the data is therefore an 

important aspect of the machine learning pipeline, because alternative ways 

of expressing the input information can have a significant impact on the 

algorithm's performance for a specific job. In voice recognition, for example, 

numerous algorithms for feature extraction (and combinations of such 

features) have been presented during the last decades, some of which are 

better suited for certain tasks (chroma vector, spectral rolloff, etc) [2]. The 

similar problem occurs in computer vision, where a number of feature 

extraction approaches (histogram of directed gradients, scale-invariant 

feature transform, etc.) [3] are commonly used for natural picture 

categorization. In this vein, the process of selecting and/or designing the 

features that best represent or model the input data for a specific application 

(representation) is a task that necessitates extensive specific-domain 

knowledge, not only in a specific field of study (e.g., audio signal processing), 

but also in very specific applications (e.g. text-independent speaker 

recognition, unstructured audio classification for environment recognition 
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etc.). Furthermore, when working with complicated data, underlying 

correlations or interactions between variables within the data are not always 

obvious, and human feature engineering is frequently done by trial and error. 

As a result, it is a time-consuming procedure that is frequently far from 

optimal. 

 

 

 

Figure 1. Approaches in AI systems. Blue boxes indicate 

components that learn from data. 

 

In this context, deep learning, a subset of machine learning 

techniques, entails teaching the computer not only the mapping between the 

feature space and the output, but also how to represent the input data as a set 

of features. In this manner, the algorithm seeks the best representation of the 

input data in order to obtain the optimum performance for a certain 

application or job. The learned features are optimum in the sense that they 

strive to minimize an objective function for a specific application by 

including the representation step into the optimization problem. As a result, 
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these algorithms are especially well suited for unstructured data, such as 

photos, audio, or text, where there are a large number of sources of variation, 

making it challenging to automatically extract high-level abstract 

characteristics that appropriately describe the data. Deep learning is believed 

to be scalable across domains as compared to other techniques focused on 

feature design since, in theory, no substantial specific-domain expertise is 

required. 

The competence required in a specific area to create a good model is 

replaced by the requirement of a large enough data collection to extract 

generic characteristics from raw input data. In this sense, there is a paradigm 

shift from model-driven to data-driven techniques, where highly complicated 

characteristics may be learnt automatically given enough data. One of the 

important aspects of deep learning approaches is how they learn how to 

represent complicated notions. The technique is founded on the concept of a 

hierarchical representation, in which complicated properties are described in 

terms of simpler ones. Higher layers in the hierarchy reflect higher degrees of 

abstraction. Learning may be viewed as an inductive process in which a group 

of specific instances is examined in order to construct a general representation 

by extracting successive features of increasing complexity at different levels 

of abstraction. Deep architectures may represent more complicated concepts 

because they can integrate numerous intermediary characteristics 

hierarchically through different degrees of abstraction, as indicated by the 

number of these intermediate representations or layers. Tasks connected to 

visual perception, such as recognizing or categorizing items in a picture, are 

typical instances of these notions. A picture contains a wealth of information 
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in the form of color, textures, and spatial relationships between neighboring 

regions, but the input data is displayed in 2-D as a collection of raw pixels. 

Lower layers of a CNN may train to recognize fundamental patterns based on 

geometrical primitives and basic features such as edges, blobs, or color 

information, while intermediate layers combine these elements to generate 

more sophisticated patterns such as corners, contours, or textures. As input 

flows to higher layers, the network learns more abstract representations, such 

as object components with distinguishing characteristics. In the case of 

recognizing a car in an image, the network would learn to represent the wheels 

or the contour of the chassis by combining the intermediate representations, 

until the upper layers decide that the detected parts of the image are consistent 

with the idea of a car, based on previous experience gained by observing a 

number of images of cars during training. The ability to acquire big abstract 

concepts hierarchically from smaller components is a fundamental aspect of 

the human brain's learning process and one of the reasons for such algorithms' 

strong capacity for dealing with complicated representations. As a result, deep 

learning has been effectively implemented in a wide range of applications 

with extremely favorable outcomes, beating earlier techniques in machine 

learning in many situations. Deep learning has gotten a lot of attention from 

researchers in recent years, which has resulted in a wide range of solutions 

based on various architectures and techniques. In this section, we will go 

through the fundamental concepts of artificial neural networks and a similar 

design, a convolutional neural network, which will be used in the context of 

this study to classify radar mD images.  
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1.3.1 Artificial Neural Networks 
 

Artificial neural networks (ANN’s) are computing systems build with  

a set of interconnected nodes that process information responding in a 

dinamic way to external inputs. In these systems, information can flow from 

the input to the output with connections just in one way, or the nodes might 

have feedback connections or loops between them. The former are known as 

feedforward networks, while the latter are known as recurrent neural 

networks and will not be investigated further in this work since they are 

suitable for temporal series and other applications that are outside the scope 

of this research. The goal of feedforward networks is to estimate a function g 

in order to obtain the required response y from a collection of inputs x, such 

that y = g (x). This is accomplished by merging a number of fundamental 

units known as perceptrons, which execute simple operations. The perceptron 

is sometimes viewed as a simplified model of a neuron that, in essence, 

creates a binary output from an input vector x and a set of learning parameters, 

notably weights w and bias b, as follows: 

 

 = 0   + ≤ 01   + > 0 
(1) 

   

Because the perceptron's operation is linear, a nonlinear activation function 

f(z) is added at the output to mimic complex functions. The logistic function, 

hyperbolic tangent, and rectified linear units are examples of activation 

functions (ReLU). Non-linear functions can therefore be approximated by 

merging many neurons in various layers. Indeed, multilayer feedforward 

networks are referred to as universal approximators because they may 
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approximate any function of any complexity [4], [5]. This is a significant 

observation since it demonstrates the strength of neural network 

representation. The origins of ANNs are claimed to be biological neural 

networks. Although biological and modern artificial neural networks have 

considerable inherent differences, there are certain commonalities that might 

be exploited to build specific comparisons between the two ideas. For 

example, in terms of the dynamics of individual neurons, a certain parallelism 

(synapses and weights, axons and element outputs, etc.) may be established 

between the elements, as can similarities in the network structure in terms of 

neural connection. However, there are significant distinctions between 

biological and artificial neural networks that necessitate a rigorous 

comparison. In any event, the concept of a biologically inspired artificial 

neural network was first established in 1943, when Warren McCulloch, a 

neurophysiologist, and Walter Pitts, a mathematician, built a rudimentary 

neural network using electrical circuits while researching the functioning of 

neurons in the brain. 

 

 

 

Figure 2. Schematic representation of a neural network 
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The output of the j-th neuron at the layer l is the function f (activation 

function) of the outputs of the layer l – 1 and the weights and bias of the layer 

l. The layer l has j hidden units, while layer l -1 has i hidden units. The notion 

of a perceptron and its training was presented in the 1950s, followed by the 

first successful attempts at applying neural networks to real engineering 

issues, which drew significant attention and financing [6]. However, 

development in AI came to a halt at the end of the 1960’s when the perceptron 

technique was challenged for being incapable of scaling to multilayer neural 

networks. The notion of using backpropagation to train multilayer neural 

networks rekindled interest in neural networks in the 1980’s, among other 

things. The first allusions to the notion of CNN’s may be found in a work by 

Fukuhsima [7] from that time period, in which an architecture for visual 

pattern recognition was presented with comparable properties to 

contemporary deep CNNs. The so-called second wave of neural network 

research lasted until the 1990s, when it was supplanted by interest in other 

more effective approaches such as support vector machines [8]. However, 

significant advances were made during this time, such as the use of stochastic 

gradient descent and backpropagation to train deep networks, as described in 

a paper by Yann LeCun et al. Around 2006, Hinton proposed the concept of 

deep belief networks and unsupervised pre-training, ushering in the third 

wave of neural network research [9]. Around that time, the idea of deep 

learning was established to stress the relevance of depth in neural networks. 

The design developed by Krizhevsky et al. [10], which won the Imagenet 

Large Scale Visual Recognition Challenge in 2012, was the turning point that 
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finally drew significant attention to neural networks and deep learning. The 

suggested design made use of graphic processing units (GPU’s) to train the 

model, as well as two approaches that are standard building elements in 

contemporary CNN architectures, namely dropout and ReLU’s. Deep 

learning approaches have subsequently gained popularity and are the subject 

of extensive study in a wide range of applications such as computer vision, 

natural language processing, and so on. The causes for the current 

proliferation of these approaches are most likely due to the abundance of data 

in the form of high-quality labelled datasets, as well as access to a massive 

amount of unlabeled data from various sources. Parallel to this, the rise in 

processing capacity, particularly the ability to parallelize computing with 

GPU’s, has resulted in deeper and more complicated architectures that can be 

trained with very large data sets. Furthermore, the popularity of deep learning 

has garnered significant attention and resources from academic and industry 

sectors, resulting in a large community of researchers, software platforms, 

and constant algorithm and technique innovation. 

 

1.3.2 Convolutional Neural Networks 
 

Convolutional neural networks are a type of neural network that has 

one or more convolutional layers to exploit the 2-D structure (or greater 

dimensionality) of the input data, such as pictures, audio signals, and so on. 

Because of their ability to recognize patterns and express complex ideas, these 

architectures have received a lot of attention in the field of computer vision. 

CNN-based architectures are regarded state-of-the-art in applications such as 

image classification [10], [11], semantic segmentation [12], object detection 
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[13], and so on. Another major area of research is the application in natural 

language processing tasks such as machine translation [14], speech 

recognition [15], and many others. Other fields have also taken use of the 

possibilities of these algorithms for various objectives such as drug discovery 

[16], recommender systems [17], market prediction [18], and so on. CNN’s 

are inspired by the mammalian visual cortex, where specific cells are sensitive 

to partly overlapping sub-regions that compose the vision field. While simpler 

cells operate as filters to identify specific patterns in such places, more 

sophisticated cells provide higher order responses, resulting in the visual 

perception [19]. In contrast to CNN’s, the input data of a fully connected 

neural network is provided as a vector that is converted through a succession 

of layers, each of which has a collection of components that are connected to 

the output of the preceding layers. In the case of a picture as input, each pixel 

has a weight, and the succeeding levels of the architecture are linked to all of 

the preceding layer's parameters. When dealing with 2-D data, such as 

pictures, the fully connected technique has the drawback that the number of 

parameters scales quadratically with the size of the input and it ignores the 

property of local spatial correlation of images. As a result, it is impossible to 

train such structures with several hidden layers. 

Convolutional neural networks, on the other hand, are founded on two 

fundamental concepts: local connection and shared parameters. 

Convolutional layers are created by combining feature maps that cover a 

certain receptive field. The spatial correlation within a particular region may 

be used by establishing locally linked layers, so that the input of a neuron in 

a given layer is derived from a subset of units with contiguous receptive fields 
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from the preceding layer. As a result, neighboring areas that produce separate 

patterns can be identified. 

 

 

 

Figure 3. Schematic representation of a CNN with convolution, 

pooling and fully connected layers (activation functions are omitted in the 

representation) 

 

The parameters of the convolutional layers, on the other hand, are 

shared over the full visual field, based on the assumption of stationarity, i.e. 

the picture statistics are location-invariant. That is, the convolutional layers 

learnt kernels can recognize patterns that exist at various places in the picture. 

These qualities allow for a significant reduction in the number of network 

parameters as compared to a fully connected neural network, enhancing 

learning efficiency and improving generalization as the number of degrees of 

freedom is lowered. For example, a neural network with 40K hidden units and 

an input picture of 200 x 200 pixels would have roughly 2 billion parameters, 

but a convolutional neural network with feature maps of 10 x 10 would only 

need 4 million parameters for the same input. 
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1.3.3 Architecture of a CNN 
 

CNNs are extremely adaptable designs that can exhibit a variety of 

topologies based on a variety of parameters like as the application, the nature 

of the input data, and many more. Furthermore, as the field progresses, new 

designs and methodologies are presented on a regular basis, with further 

variants. The next section reviews the fundamentals of a standard CNN 

architecture for image classification, which is the application that will be 

explored in this study. A typical CNN design has the shape seen in Fig. 3 and 

is often built of numerous construction components, which we will briefly 

introduce: 

 

- Convolutional layers: 

 

Convolutional filters are the foundation of CNN’s. The goal is to 

recognize certain patterns using a collection of learnable kernels. The filters 

cover a certain region (receptive field) and span into a third dimension known 

as depth. A bank of filters is employed in a convolutional layer to identify as 

many features as the number of kernels. The filter bank is therefore a 4-D 

tensor of size S x S x D x , that is, a bank of  filters of kernel size S x S 

and depth D. The depth dimension must be the same as the preceding 

convolutional layer's number of features, . When working with a color 

picture (RGB) as input data, for example, the first convolutional layer has a 

depth of three to correspond to the number of color channels. The size O of 

the output map on each picture dimension may be described in terms of the 

convolution's  and stride  as, where P is the input dimension 

size. 
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 0 = − + 2 + 1 
(2) 

   

If the convolution parameters are set so that the output is the same size as the 

input map P x Q, the output value of the feature map of a particular feature  

at position p, q in the − ℎ layer may be written as : 

 

 , =   , , , +   

(3) 

   

where ,  represent the weights of the kernel and   is the bias. 

Convolutional layers with common parameters exhibit translation 

equivariance, which means that translating the input features results in an 

equivalent translation of the output. 

 

- Non-linear activation function: 

 

In order to describe non-linear functions in a neural network, a non-linear 

activation function is applied at the output of the neurons. Because the 

convolution is a linear operator, the same logic applies, and an activation 

function f(ּ ) is applied to the convolution's output:  

 

 , = ,  (4) 

   

In order to estimate the gradient of the cost function via backpropagation, the 

activation function must be differentiable. Different activation functions can 
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be employed in neural networks and CNN’s. Two activation functions that 

will be utilized are: the sigmoid function 

 

 = 11 + −  
(5) 

   

And the Rectified Linear Unit (ReLU) 

 

 = 0,  (6) 

   

ReLU is presently the default suggestion in deep learning architectures owing 

to its enhanced convergence outcomes and lower processing cost when 

compared to other functions such as sigmoid or hyperbolic tangent [10]. 

 

- Pooling layers: 

 

Pooling layers are added after the activation functions to lower the spatial size 

of the activation maps (i.e., the feature maps after non-linear activation). A 

pooling layer of size  separates the activation maps into  x  areas and 

extracts a specific statistic from each. Such statistics include average pooling, 

L-2 norm pooling, and simply choosing the highest value (max-pooling). As 

a result, the number of parameters in the following layer is decreased by a 

factor of about , resulting in a significant reduction in computing effort. As 

the picture proceeds through successive convolutional layers and pooling 

processes, semantic information is retrieved at the price of spatial 

information, i.e. the spatial resolution of the activation maps is reduced. This 

is a useful quality in classification jobs, as it ensures that the absolute location 
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of the features in an image does not affect the classification's result. When 

recognizing an automobile in a picture, for example, the classifier should be 

able to recognize it whether it is in the center or a corner of the image. In this 

sense, pooling layers make the feature representation insensitive to tiny 

translations, because the result of the pooling operation is the same as long as 

the detected feature is within the pooling region. 

 

- Fully connected layers: 

 

According to the concept depicted in Fig. 1, the convolutional and 

pooling layers of a CNN for classification tasks may be viewed as feature 

extractors, whereas the top layers conduct the mapping from the feature space 

to the output scores. Although any classifier, such as an SVM [20], can be 

utilized, a multilayer perceptron is frequently employed since it integrates 

nicely with a CNN for end-to-end training with many classes.  It is commonly 

referred to as a Fully Connected (FC) layer in this context. The high level 

information retrieved in the convolutional layers in the form of an input 

volume are translated into a vector of features that is utilized to conduct 

classification in FC layers. This is accomplished by linking all of the 

activations in the preceding layers with the nodes in the FC layer in one or 

more intermediary stages, so that the number of nodes at the output equals the 

number of classes in the classification. The high level features are thus 

mapped to the output classes via a set of learnable weights in the multilayer 

perceptron. The softmax function (also known as multinomial logistic 

regression) generalizes the logistic function to K classes and maps input data 

to output values within a range of [0 ; 1], thus the softmax regression scores, 
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or equivalently, the output scores for each class, may be understood as 

probabilities: 

 

 

⎝⎜
⎛ = 1| ;...= | ; ⎠⎟

⎞ = 1∑ exp ⎝⎜
⎛exp ...exp ⎠⎟

⎞
 

 

(7) 

   

The cross-entropy loss is the loss function associated with the softmax 

function: 

 

 = − 1  ==  
 

(8) 

   

where M is the number of samples and ( == k) equals 1 if the m-th training 

sample belongs to class k and 0 otherwise. 

 

- Training a CNN: 

 

The supervised neural network training concept consists of changing the 

network's parameters w to minimize the cost function  given a training 

data set with M labelled samples   , …  , where  represents 

the input features of dimension N of the m-th sample, and 1,2, … ,  the 

labels. This concept extends to CNN’s with no loss of generality. The kernels 

of the convolutional layers and the weights of the fully connected layers are 

the learnable parameters in a CNN. The standard technique for locating local 

minima of the cost function is based on gradient methods [21], in which the 
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gradient of the cost function   with respect to the network parameters 

is computed, and then these parameters are updated in the opposite direction. 

There are several methods for estimating the gradient of the cost function. On 

the one hand, batch gradient descent estimates the gradient using the entire 

training set, whereas stochastic gradient descent approximates it iteratively 

with each individual training set. While the former requires enough memory 

to retain the data set and can be quite sluggish depending on the size of the 

set, the latter is faster but the objective function fluctuates significantly due 

to frequent updates. As a result, an intermediate solution, in which the 

gradient is approximated using a tiny batch of training data (hence the name 

minibatch gradient descent), is usually selected. Because the variation in the 

parameter update is decreased, this strategy becomes more efficient by 

employing matrix multiplication and produces more steady convergence. The 

parameters of mini-batch gradient descent are updated as follows: 

 

 = − ; : , :  (9) 

   

It is necessary to define two hyperparameters: the batch size  and the 

learning rate . The batch size is determined by the application and 

architecture. Batch sizes are typically between 32 and 256. Because it defines 

the magnitude of the step in the direction of the negative gradient, the learning 

rate is an important hyperparameter. A high learning rate might cause missed 

local minima and failure to attain convergence, whereas a low number 

increases the runtime until convergence. The momentum approach is 

typically used to accelerate convergence and eliminate oscillations around a 

local minimum, quickening convergence by adding a portion of the value 
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from the previous step to the update vector [22]. Two sets of parameters, the 

weights and the bias, must be learned in a neural network. In the l-th layer the 

weights are represented by a matrix  and the bias . Updated parameters 

will be : 

 

 , = , − , ,  ;  : , :  
(10) 

   

 = − ,  ;  : , :  
(11) 

   

- Stochastic gradient descent 

 

The gradients in equations (10) and (11) must be approximated in order to 

update the parameters. Backpropagation, an efficient approach for computing 

the gradient of the cost function with respect to the network parameters, is 

generally used in a neural network [23]. The procedure is divided into two 

steps: first, the cost function is evaluated in a forward pass of the input values 

through the network with randomly set parameters (the initialization of the 

weights might affect training convergence). The gradient is calculated in the 

second step by propagating the mistake from the output layer backwards. 

Using the chain rule, the goal is to analyze each node in the network's 

contribution to the final mistake. The intermediate values corresponding to 

each node's activations are saved during the forward pass. The activation of 

the j-th node in the l-th layer is provided by : 
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 = = +  (12) 

   

The cost function is evaluated after a complete forward pass, and the 

contribution to the error created by the output nodes (layer L) is determined. 

This may be written as the ratio of the change in the cost function as a function 

of the output activations: 

 

 = ,  
(13) 

   

or equivalently: 

 

 = ⊙  (14) 

   

Where ⊙ signifies the Hadamard product or element-by-element 

multiplication. Similarly, the contribution to the error created in layer L-1 is 

calculated using  and the weights in that layer. In general, the error at the 

layer l is represented as a function of the error determined in the next layer (l 

+ 1) and its weights: 

 

 = ⊙  (15) 

   

As a result, the partial derivatives of the cost function with respect to the 

parameters in any layer l can be defined in terms of the activations in layer l 

- 1 and the previously computed error  : 
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 , ; , =  
(16) 

   

As a result, the error in the layer l is a function of the errors in the layers l+1, 

l+2, ... L, which are assessed in turn using the chain rule by combining the 

equations (15) and (16). After executing backpropagation with the training 

samples of one batch, mini-batch stochastic gradient descent estimates the 

gradient and updates the network parameters. The batches are created by 

splitting the dataset at random. An epoch of training is defined as a full pass 

of all the samples in the training set, separated into batches. The network is 

trained for as many epochs as necessary to achieve convergence. 

 

1.3.4 CNN in radar signal processing 

 
 

Due to the requirement of analyzing incoming radar echoes to extract 

useful information, the fields of machine learning and radar processing have 

a significant overlap. Machine learning applications in remote sensing have 

already been the subject of much study [24]. Statistical signal processing is a 

clear illustration of how some of the techniques available in the machine 

learning framework may be used. For example, detecting radar targets in 

clutter is a well-known challenge in the field, in which specific statistics from 

an otherwise unknown distribution (e.g., marine clutter) are extracted to 

produce an acceptable false alarm rate. In this regard, machine learning offers 

relevant techniques for learning the statistical distribution from data [25], 

[26]. In general, the theoretical foundation of machine learning in its 

traditional meaning has been applied to a variety of subdisciplines and 



 23

applications in the radar field, including cognitive radar [27], automated 

target identification [28], parameter estimation [29], and many more. As a 

result of the recent success of deep learning techniques, advancement in this 

area is also infiltrating the radar field, with an increasing variety of 

applications and approaches. To provide a brief overview of recent 

development in this field, we split the challenges in radar signal processing 

that employ deep learning algorithms into three categories, as stated in [30]: 

sensing, processing, and recognition. We concentrate on the most recent 

group because it is the topic of this work and constitutes the vast bulk of 

research at the intersection of deep learning [44] and radar. Sensing refers to 

the techniques utilized to obtain data at a fundamental level, and deep learning 

is employed to optimize this process. Although the use of machine learning 

or deep learning models in this context is not easy, certain techniques in the 

area of waveform design and cognitive radar have been presented [31], [32]. 

The second category includes issues involving parameter estimates, 

detection, and nonlinear modeling. Due to practical constraints, several 

detection and estimation issues in radar are frequently tackled as optimization 

problems under the assumption of a linear forward model. Because neural 

networks are universal approximators, they are a good solution for handling 

non-linear and inverse issues. Problems with SAR imaging [30], modeling 

multipath effects or interference [33], and clutter [26] are some instances in 

this category. However, the primary use of deep learning techniques in radar 

is centered on detection and classification challenges. As previously said, one 

of the main notions of deep learning [45] is its capacity to automatically 

extract characteristics from data, which is a significant benefit in the context 



 24

of radar. For feature engineering, traditional machine learning algorithms rely 

on domain expertise. In the context of feature extraction from natural photos, 

for example, manual feature engineering necessitates prior knowledge and 

skill in order to select the image attributes that contain the most discriminative 

features. With sufficient prior training, a human operator can naturally 

interpret these photos and impose some prior knowledge based on human 

vision and extract discriminative features. However, manual feature 

extraction is particularly difficult in the classification of radar pictures in 

particular, or signals in general, because the data format is difficult to grasp 

or counter-intuitive. As a result, automatic feature extraction with the added 

benefit of hierarchical representation is an appropriate strategy for dealing 

with data provided in a manner that may be difficult for a person to 

comprehend. Deep learning for automated recognition in SAR imaging is one 

of the most obvious but intriguing applications. 

In [34], a CNN trained on the MSTAR dataset (Moving and stationary 

target acquisition and identification) achieves a 99 percent average accuracy 

in the classification of objects on SAR pictures. [35] describes a natural 

extension based on polarimetric SAR. A deep learning strategy for ISAR 

picture classification has also been proposed, similar to the work published in 

[36], which employs an unsupervised approach based on autoencoders to 

extract features. Another application that has received a lot of interest is the 

use of deep learning to classify micro-Doppler (mD) signatures. Additional 

Doppler shifts caused by vibration, rotation, or movement of non-rigid parts 

have been shown to convey relevant information for automatic target 

recognition [37]. Given the difficulty of obtaining features from the mD 
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spectrogram, deep learning offers an intriguing approach. Several human 

activities, for example, are classified in [38] by training a CNN with the 

relevant mD characteristics. In addition, the authors of [39] provide a CNN 

pre-trained with an unsupervised technique to differentiate distinct patterns 

of human gait that are hardly visible in mD spectrograms. Other CNN-based 

applications include mD signature classification of hand movements in a 

human-machine interaction [69], classification of UAVs from spinning 

propeller mD signatures [70], [71], and signature extraction using deep 

learning-based segmentation [63]. Automotive radar is one area that is 

projected to benefit from deep learning, because to the desire in better driver 

aid systems (ADAS). Radar technology, in addition to laser and optical 

sensors, is regarded as a significant component of these systems. Aside from 

range and velocity, deep learning algorithms can extract more sophisticated 

information in order to generate a semantic picture of the vehicle's 

surroundings. For example, CNN’s may be used to classify static items on the 

street using gridmap representations [64], recurrent neural networks can be 

used to distinguish between stationary and moving targets [65], and fully 

connected networks can be used to identify ghost targets [66]. Detection and 

classification of people, cyclists, and animals that may occur in the vehicle's 

vicinity has also been proposed utilizing CNN’s and autoencoders [67]. The 

scarcity of labelled data to train deep models is a fundamental restriction in 

the implementation of deep learning methods in radar. Data-driven techniques 

need a large collection of training data in order to avoid overfitting (learning 

specific properties of the training set) and generalize appropriately to new test 

data. For example, in the field of computer vision, a massive quantity of 
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labeled data is accessible in the form of standardized datasets for various 

applications such as classification, semantic segmentation, and so on. In 

radar, however, there is no such thing, and in order to train somewhat 

complicated models, a large enough amount of labelled training data for a 

specific application is required, which is frequently expensive in terms of time 

and labor. As a result, the models employed in radar image classification are 

not as sophisticated as those used in other fields in terms of network 

complexity and depth. Despite these constraints, there are various ways for 

reducing the effect of overfitting when there is a scarcity of data. In [48], for 

example, an unsupervised pre-training method based on convolutional 

autoencoders is presented in the context of classification of human gait using 

mD signals. They employ a limited dataset to initialize the network 

parameters, resulting in higher convergence. In [49], the authors apply 

transfer learning to consider mD signatures by pre-training a model using a 

huge database of natural photos and fine-tuning the parameters with a smaller 

collection of mD images. When the training set is small, it is demonstrated 

that such an initiation produces better results than starting from scratch. 

Another approach for providing regularization is data augmentation, which 

involves enriching the training set artificially by executing transformations 

on the input data that are compatible with hypothetical transformations 

present in the test data. In [68], for example, the authors guarantee translation 

invariance in the model by inserting translations on the MSTAR dataset 

training data for SAR image classification. While an effort is required to 

develop standardized data sets in the context of radar, its feasibility is 

restricted due to the wide range of hardware and preprocessing methodologies 
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available depending on the application. As a result, when training complex 

deep learning models for radar applications, the effort should be focused not 

only on the data, but also on the algorithm side, in order to establish a 

framework that allows for the creation of complex but still general models 

that can be applied in the radar field. Although integrating deep learning 

techniques from other fields such as computer vision is a good starting point, 

further study is needed to adapt these models to the nature of radar data. In 

this vein, incorporating strong priors into the model can help to simplify the 

optimization process and decrease the need for labelled training data. By 

incorporating domain-specific and application-specific bias, such priors may 

be included on two separate planes. The former relates to information gained 

from a particular field, in this example, the qualities of radar signals. 
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Chapter 2 

Artificial Intelligence in radiofrequency 

signals 

 
 In Chapter 1, we learnt that the mD is an effect that is independent of 

radar technology and that it may be extracted using a variety of signal 

processing techniques. [40, 41, 42, 43] provide examples of how mD may be 

utilized with Ultra-Wide Band (UWB) and CW radars. The mD in mm Wave 

FMCW radars may be extracted in two methods, which will be explored in 

this chapter. Modern Machine Learning (ML) techniques provide a highly 

strong tool for a classification issue; there are various approaches to extract 

features and categorize signals with varying performances and computational 

costs. 

This chapter will show several pipelines that have been developed and will 

evaluate their effectiveness and performance in various cases. 

 

2.1 Pre-processing FMCW signals 

 
 

In Chapter 1, we discussed MIMO-FMCW radar princliple and how the 

radar system transmits this data to a computer. Because the sensor has four 

receivers, the beat signals are limited to four and are referenced to the device's 

MIMO arrangement. Only one beat signal can be utilized to analyze and 

identify the mD, but by adding the four-receiver lines, we can enhance the 

signal-to-noise ratio and get better results. Following that, the samples are 

rearranged into a complicated matrix, with samples of a single chirp stored 
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along the rows and samples of distinct chirps saved along the columns. The 

obtained matrix comprises the global acquisition samples. 

 

 

 

Figure 4. Pipeline used to obtain the initial complex matrix 

 

Two types of matrices are used to store the original mD information. In 

the first the information is compressed along the time wich is called range-

Doppler map and the other along the range where we extract the information 

with a Short Time Fourier Transform (STFT) and is stored in a Doppler-time 

map. We can use both of them for classification problems. A bi-dimensional 

FFT is used to calculate the range-Doppler map. This process is shown in the 

image below:  

 

 



 30

 

Figure 5. Calculation process of the range-Doppler map 

 

The equation of the mathematical model is: 

 

 =   , ∗ − 2   

 

(17) 

   

where r[m,n] are the elements of the data matrix, m and k are the indexes in 

range from 0 to M – 1 and n and l indexes from 0 to N -1, being M the number 

of fast time elements, while N is the number of slow time elements. The 

technique is slightly different in the second map, but the beginning complex 

matrix is the same. To obtain the Doppler-time map, the fast-time axis must 

be along the columns and the slow-time axis must be along the rows, and the 

first step is to execute a FFT along the fast-time. This technique generates a 

range-time map, and an example is shown in Fig. 6. From this map, a STFT, 

the most popular time-frequency representation [64], may be calculated along 

the slow-time. The equation given for the STFT is: 

 

 , = −  − 2 / , = 0, 1, . . . . , − 1 
(18) 

   

where n represents a discrete index of time, w[·] is a window function and k 

the discrete index of frequency. In reality, the STFT is the Fourier transform 

of a signal amplified by a sliding window over time. A trade-off between time 

and frequency resolution must be determined, and overlapping the windows 

can help as this procedure attempts to lengthen the duration to increase 
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frequency resolution [65]. Fig. 7 depicts the procedure for obtaining this 

second sort of map. The STFT is done in each row of the range-time map, and 

the resulting matrix represents the gathered mD at each distance. We derive 

the Doppler-time map of the global acquisition by adding the acquired 

matrices. Both range-Doppler and Doppler-time maps are constructed of 

complex numbers, and we must compute the module to produce a "image" 

from which we may extract features. Each categorization process will be 

carried out in figures that simply display module information. Fig. 8a and 8b 

show some examples of these outcomes for an awake individual. We may 

now describe how to categorize mD signals based on this starting point. 

 

 

 

Figure 6: Example of range-time map for a walking person 
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Figure 7: Calculation process of the Doppler-time map 

 

2.2 Classification Framework 
 

In this section, we discuss the initial pipeline that was developed, 

which is based on dimension reduction techniques, as well as the 

classification algorithms that were utilized to discriminate between the 

acquisitions under consideration. In terms of feature extraction, we use two 

alternative approaches to minimize data dimensionality: Principal 

Component Analysis (PCA) and t-distributed Stochastic Neighbor 

Embedding (t-SNE). Both maps created from radar signal processing will be 

referred to as amplitude images. We get a vector by using dimensionality 

reduction algorithms to these pictures, that is, the principal components 

derived from PCA and the major dimensions supplied by the-SNE will serve 

as features vectors. 
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(a)                                                            (b)    

 

Figure 8: Example of (a) range-Doppler map and (b) Doppler-time map 

 

For example, suppose we have a collection of N photos.  of dimension [l x 

m], with n = 1...,N, are initially vectorized row-wise and grouped to generate 

a training set X = [ ,..., , where T is the transposition operator; rows 

of X correspond to observations and columns to variables. Each row's j-th 

element is then normalized using the following equation: 

 

 ̅ = − = − 1
 

(19) 

   

2.2.1 Principal Component Analysis (PCA) 
 

Principal component analysis (PCA) [46, 47] is a multivariate 

approach that examines a data table in which occurrences are represented by 

numerous quantitative dependent variables that are inter-correlated. Its 

purpose is to extract the significant information from statistical data and 

express it as a set of new orthogonal variables called principal components, 

as well as to display the pattern of similarity between observations and 
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variables as spots on spot maps. PCA is mathematically based on the eigen-

decomposition of positive semi-definite matrices and the singular value 

decomposition (SVD) of rectangular matrices. Eigenvectors and eigenvalues 

determine it.  Eigenvectors and eigenvalues are integers and vectors that are 

related with square matrices, respectively. They form the eigen-

decomposition of a matrix, which examines its structure, such as correlation, 

covariance, or cross-product matrices. 

In practice, doing PCA is pretty straightforward. Create a m x n matrix 

from a data collection, where m is the number of measurement kinds and n is 

the number of trials. Subtract the mean from each measurement type, or row 

. Calculate the SVD or the covariance eigenvectors. It was discovered that 

there were numerous fascinating applications of PCA, among which 

multivariate data analysis and picture compression are utilized alternately in 

everyday life, deliberately or unwittingly.  

 

2.2.2  Description of the principal components method 
 

The primary goal of the principal component analysis is to reduce the 

size of the observation space in which provided items are analyzed. The 

reduction is achieved by generating new linear combinations of variables that 

characterize the items under consideration. These combinations, known as 

primary components, must meet specific mathematical and statistical 

requirements. The principal components technique begins with an 

observation matrix X, in which column vectors indicate observations that 

characterize an item in relation to random variables  , , . . . . , . 
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 =  … …    ……… ……  

 

(20) 

   

Each column vector represents a p-dimensional location in space. Because 

the observation matrix X is compiled for a subset of the entire population 

(numbers p and n are finite), the variance-covariance matrix S derived from 

random variable observations is an estimator of the general variance-

covariance matrix, whereas the vector of mean values I is an estimator of the 

general vector U. As previously stated, the aim of the principle components 

approach is to find linear combinations with the lowest variance. Thus, the 

task simply consists of replacing the initial set of variables with their linear 

combinations, i.e. new variables with particular attributes. These new 

variables are known as principle components and are denoted as follows: 

 

 =  (21) 

   

where V - new matrix of the new variables, A is a matrix of orthonormal 

eigenvectors of matrix S and X is the observation matrix. After solving 

determinantal equation (22) from transformation of (21) is achievable: 

 

 | − | = 0 (22) 

   

where S is a variance-covariance matrix of order (p x p), l is the determinantal 

equation's characteristic root, and I is a unit matrix of order (p x p). Equation 
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(22) is a polynomial of degree p with respect to an unknown l, hence it has p 

roots that may be sorted in the following way: 

 

 ≥ ≥ ≥ ⋯ ≥ ≥ 0 (23) 

   

Because each root  has an orthonormal column eigenvector , the variable 

 produced from equation (22) has the largest value  (maximum variance) 

and is referred to as the first main component. Because the sum +  +⋯ +  =   and equals the sum of the variances of matrix S (i.e  + + ⋯ +  , ,  , … ,  denotes the proportion of variability of certain 

main components in the overall variance of matrix S. When we look at the 

quotients, we can see that : 

 

 100, 100, . . . , 100, (24) 

   

we obtain the percent share of each component in matrix S's variance. The 

technique for calculating main components is designed in such a way that this 

is a diminishing sequence, indicating that ∕ 100 is the greatest quantity. 

Quantity  relates to variable ,  and is hence referred to as the second major 

component. There are clearly as many primary components as there are initial 

variables. Each root  corresponds to a column vector , such that 

 

 −  = 0         =   (25) 

 

Because vectors , , … . ,  are orthonormal, that is  
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 = 1, = 0   ≠ , (26) 

 

And they satisfy equations (22) and (25) we have : 

 

 = , = 0  ≠ , (27) 

   

 =   + . . . +  
 (28) 

   

and 

 =    +    + . . . +   
 (29) 

   

A spectral decomposition of a matrix S is what expression (29) is. The 

essential attribute of the new variables (in contrast to the previous variables) 

is their lack of correlation. The ℎ component’s variance is  , or : 

 

 =   (30) 

where 

 , =  0   ≠  (31) 

   

Because the major goal of principle components analysis is to reduce the 

dimensions of the observation space, it is vital to select at some point how 

many additional variables should be taken into account for future 

investigation. The ratio of distinctive roots to the trace of the matrix is thought 

to aid in decision making. For example, if the equation ∕ 100 has a large 

value (e.g., 90%), the set of initial variables is substituted with the first 

component . When the ratio is not too high, the following components are 
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considered. Naturally, the exclusion of some components from further 

analysis cannot be based entirely on the researcher's subjective appraisal of 

the ∕ 100 quotient, but must be the outcome of component testing. The 

interpretation of the components is an essential topic in Principal Components 

Analysis since it helps discover which initial variables have the biggest shares 

in the variance of certain principal components after the observation space 

has been reduced. This information may be acquired by applying the 

coefficients of determination that have been established between the 

components and the beginning variables. It should be noted that the 

components' meaning varies somewhat depending on whether S or R is 

employed. Principal components generated from the variance-covariance 

matrix S are interpreted. The following equation defines the coefficient of 

correlation between the i’th component and the j’th starting variable: 

 

 =  
(32) 

   

As a result, the coefficient of determination has the following form: 

 

 =  , (33) 

   

where  is the square of the eigenvector element  represents the i’th 

component and the j’th starting variable,  represents the variance of the i’th 

component, and  represents the variance of variable j. On the basis of (29) 

and (30), and using the variances and eigenvectors of all the primary 
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components, the variance-covariance matrix S may be reconstructed. 

Naturally, the product  has the most influence on this reconstruction. 

Furthermore, in matrix , for example, the components on the main 

diagonal represent estimates (provided by the first component) of the variance 

of the j’th starting variable, which may be derived using a generic expression: 

 

 =   (34) 

   

The following parts of the spectral decomposition are estimates of covariance, 

with the last element of  (matrix) bringing the estimated variance and 

covariance up to real values. Given (34) may be expressed in the following 

way : 

 = =   
(35) 

   

The coefficient of determination between component i and variable j is clearly 

defined as a ratio of variable j's estimated variance to its true variance. If we 

examine any (i’th) matrix from the spectral decomposition, we may calculate 

the major diagonal by adding the components on the main diagonal. 

 

 =        (36) 

 =        (37) 

Get : 
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 =   

(38) 

   

Thus, we can calculate the variance of the i’th component by adding up the 

estimated variances of specific variables. This connection can serve as a 

theoretical foundation for component interpretation. (24) can also be written 

using (38), as : 

    100 

 

(39) 

   

Although expression (39) assumes the biggest value for the first component, 

this metric should be utilized with caution. According to (38), practically the 

whole variance of the i'th component is made up of the estimated variance of 

a single variable, such as one with a large absolute value in comparison to the 

other ones, i.e. one with a high variance. As a result of the need for a skilled 

construction of the observation matrix, the variables of which should be of a 

comparable order of measure (39), the following dependency is 

recommended for use in component interpretation : 

 

 = 100 

(40) 

   

where p is the number of observation matrix variables and  is the coefficient 

of dependence between the i’th component and the j’th starting variable. 
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equation (40) displays the percentage of variation accounted for by the i’th 

component for all variables. The findings of measure (40) applied to 

components obtained from the covariance matrix are often lower than those 

of measure (39), since in practice, one component (e.g., the first) seldom 

accounts for more than 50% of the variance of all variables included in the 

observation matrix. When a variable in the observation matrix outperforms 

all others in terms of value, expression (39) returns a high value for the first 

component and expression (40) returns a low value. This is because the 

variance of the component in this case is determined by a single variable, 

which may or may not be the most significant one (its importance is 

determined purely by the units of measurement used). As can be seen, 

expression (40) depicts the real contribution of the i’th component to the 

variance of all variables. It is worth noting that the numerator of (40) is simple 

to compute since the following equation is true: 

 

 =    

 

(41) 

   

The component accounts for the variance of all the starting variables if and 

only if: 
 =   =  

 

(42) 
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Interpretation of principal components derived from the correlation matrix R. 

Disagreements between assessments of main components generated using 

equations (39) and (40) do not exist if they are derived from a correlation 

matrix (i.e. using normalized beginning variables). This is because, as a result 

of an adequate adjustment of the covariance matrix, the following 

dependencies hold: 

 =  (43) 

 =   (44) 

 

, = ,  

(45) 

 

, =   

 

(46) 

Or 

 100 = , 100 

 

(47) 

   

As a result, when using the correlation matrix, it is feasible to use either 

measure (39) or measure (40) to determine what proportion of the variation 

of all the initial variables is accounted for (in percent) by the i’th component 

(40). In the case of the variance-covariance matrix, such flexibility does not 

exist. 
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2.2.3 t-distributed Stochastic Neighbor Embedding 

 

t-SNE is and unsupervised machine learning algorithm for 

vizualization developed by Laurens van der Maaten and Geoffrey Hinton 

[97]. Uses a non-linear dimensionality reduction strategy that focuses on 

keeping highly similar data points close together in lower-dimensional space. 

t-SNE computes the similarity between two points in a low-dimensional space 

using a heavy-tailed Student t-distribution rather than a Gaussian distribution 

which helps to handle crowding and optimization issues. Outliers have no 

effect on the t-SNE. The high-dimensional Euclidean distances between 

datapoints  and  are converted into conditional probabilities P(j|i) through 

t-SNE. Based on the fraction of its probability density under a Gaussian 

centered at point ,  would choose  as its neighbor.  denotes the 

Gaussian variance centered on datapoint . A pair of points' probability 

density is proportional to their similarity. p(j|i) will be quite high for local 

data points and microscopic for distant data points. To obtain the final 

similarities in high dimension space we should symetrize the conditional 

probabilities in high dimension space. As seen below, conditional 

probabilities are symmetrized by averaging the two probabilities. 

 

 = | + |2  
(48) 

   

Based on the pairwise similarity of points in high dimensional space, 

we can map each point in high dimensional space to a low dimensional map. 

The two-dimensional or three-dimensional map will be used for the low-

dimensional map. 
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Figure 9 : Data in low dimensional space 

 

 = 1 + −∑ 1 + ‖ − ‖  

 

(49) 

   

The low-dimensional datapoints  and  correspond to the high-dimensional 

datapoints   and   . Computing the conditional probability q(j|i), which is 

comparable to P(j]i), centered under a Gaussian centered at point , and then 

symmetrize the probability. Then using gradient descent and Kullback-

Leibler divergence [98], it is found a low-dimensional data representation that 

minimizes the mismatch between Pij and qij (KL Divergence) 

 

  || =   | ||  
(50) 
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 depicts the conditional probability distribution for point  over all other 

data points. Given map point  ,  represents the conditional probability 

distribution across all other map points. t-SNE uses gradient descent [99] to 

optimize points in lower dimensional space. The reason why we should use 

the KL divergence [98] is that when we reduce the KL divergence,  

becomes physically equal to , and the data structure in high dimensional 

space is equivalent to the data structure in low dimensional space. If  is 

big, then we require a large value for  to represent local points with more 

similarity, according to the KL divergence equation. If  is tiny, we require 

a lower value for  to represent distant local locations.  

 

2.2.4 Machine Learning Classification algorithms 

 

In terms of classification, we propose using k-Nearest Neighbor (k-

NN) and Support Vector Machines (SVM), which are both supervised and 

non parametric techniques. k-NN [50, 51] is an instance-based approach, 

which means it does not learn a model directly. It instead chooses to 

memorize the training examples, which are then employed as "knowledge" 

during the forecasting phase. In practice, this implies that the algorithm will 

only utilize the training examples to deliver a response when a query is 

performed in the database (i.e., when requested to supply a label with an 

input). As a disadvantage, this algorithm incurs both a storage cost during the 

training phase, due to the need to store a potentially massive dataset, and a 

computational cost during the prediction phase, because the classification of 

a given observation necessitates the vision and/or analysis of the entire 

dataset. The k-NN is a classification algorithm. In the context of 
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classification, the k-NN method effectively determines a majority vote among 

the k-nearest neighbors to a given unknown instance. A distance metric, often 

the Euclidean distance, between two data points defines their closeness. SVM 

[70] method classifies data by establishing a linear or non-linear decision 

boundary to distinguish various groups. It projects the data through a non-

linear function to a higher dimension space, elevating them from their original 

space to a future place with an indefinite dimension. SVM employs kernels 

to carry out this procedure, the most common of which is the Gaussian kernel. 

Fig. 10a and 10b show a graphical illustration of these two classifications. 

 

 

 

Figure 10: Two class classification example (a) SVM (b) kNN, in this case 

d1 and d2 are the distances metrics 
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2.2.5 SVM Support Vector Machine 

 

The support vector machine algorithm's goal is to find a hyperplane 

in an N-dimensional space (N is the number of characteristics) that clearly 

classifies the data points. 

 

 

 

Figure 11: Possible Hyperplanes 

 

There are several hyperplanes that might be used to split the two groups of 

data points. Our goal is to discover a plane with the greatest margin, i.e. the 

greatest distance between data points from both classes. Maximizing the 

margin distance gives some reinforcement, allowing subsequent data points 

to be categorized with more certainty. 
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(a)                                                  (b) 

 

Figure 12: Hyperplane in 2D and 3D feature space. (a) A hyperplane in  

is a line, (b) A hyperplane in  is a plane 

 

Hyperplanes are decision boundaries that aid in the classification of data 

items. Different classifications can be assigned to data points that lie on either 

side of the hyperplane. Furthermore, the size of the hyperplane is determined 

by the number of features. When the number of input features is two, the 

hyperplane is just a line. When the number of input characteristics reaches 

three, the hyperplane transforms into a two-dimensional plane. When the 

number of characteristics exceeds three, it becomes impossible to imagine. 
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Figure 13: Support Vectors 

 

Support vectors are data points that are closer to the hyperplane and impact 

the hyperplane's location and direction. Using these support vectors, we 

optimize the classifier's margin. The location of the hyperplane will vary if 

the support vectors are removed. These are the points that will assist us in 

developing our SVM. In SVM, we take the output of the linear function and 

identify it with one class if it is larger than 1, and another class if it is less 

than 1. Because the threshold values in SVM are modified to 1 and -1, we get 

this reinforcing range of values ([-1,1]) that works as margin. 

 

2.2.6 KNN K-Nearest Neighbors Algorithm 

 

The k-nearest neighbors (KNN) technique is a straight-forward 

supervised machine learning approach that may be used to address 

classification and regression issues. The KNN algorithm presumes that 

comparable objects exist nearby. Classifies data points based on their 

similarities. It makes a "informed judgment" on what an unclassified point 
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should be classed as based on test results. KNN is a non-parametric method 

that is also an example of lazy learning. It is non-parametric because it makes 

no assumptions. Rather than assuming a conventional structure, the model is 

built solely from the data provided to it. The term "lazy learning" refers to the 

algorithm's inability to make generalizations. This implies that applying this 

strategy requires little training. As a result, when employing KNN, all of the 

training data is also used in testing. Simple to use. Calculation time is short. 

Makes no assumptions about the data. The accuracy is determined on the 

quality of the data. It is necessary to determine the best k value (number of 

nearest neighbors). Poor at categorizing data points that are on a border that 

may be labeled one way or the other. 

 

 

 

Figure 14: k-NN classification principle 

 

The initial step in developing kNN is to convert data points into feature 

vectors, or their mathematical value. The method then determines the 

mathematical distance between these points mathematical values. The 
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Euclidean distance, as demonstrated below, is the most often used method for 

calculating this distance. 

 

 , = , = − + − + ⋯ + −
=  −  

 

(51) 

   

kNN uses this formula to calculate the distance between each data point and 

the test data. It then calculates the chance that these points are similar to the 

test data and classifies them depending on which points have the highest 

probabilities. To summarize kNN works by calculating the distances between 

a query and all of the instances in the data, then picking the number of 

examples (K) closest to the query and voting for the most frequent label (in 

the case of classification) or averaging the labels (in the case of regression). 

 

2.3 Experimental Implementation Test 

 

Four classification pipelines may be created by combining the 

previously outlined approaches. To assess their performance, we need to 

create a dataset of mD signals, and for these tests, we select to identify 

different types of walking [62] activities. The dataset, which can be accessed 

in [71], comprises of six distinct types of activities carried out by 29 people 

who repeat each activity numerous times. The subjects walk sans shoes. The 

participants walk without any limitation or pattern, and each subject was 

simply instructed to walk in a "slow" or "rapid" manner, without defining the 

number of steps or the time necessary to finish the exercise, in order to obtain 



 52

data as realistic as possible. In addition, acquisitions from participants of 

various heights and weights were gathered to give a collection that 

encompassed a wide range of attributes. The acquisitions are carried out in 

our department's corridor, with the subjects walking in front of the radar 

system, which is mounted on tripods. Fig. 15 depicts the test region. 

 

 

 

Figure 15: Hallway used for the acquisitions 

 

In each acquisition, the subject performs the action by moving [52] 

away from the radar and then returning, always in front of the radar system. 

The activities under consideration are as follows: 

 Walking slow; 

 Walking slow with hands in pockets; 

 Walking fast; 

 Walking with hiding a metallic bottle; 
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 Limping; 

 Walking slowly and swinging hands. 

We chose to employ only the first three tasks in the work reported in [63] and 

[100]. This subset of the dataset is made up of nineteen people who repeated 

each task three times for a total of 168 distinct acquisitions. The difference in 

walking speed is slight and relies on the individual being tested, who 

interprets it subjectively. In general, the average speed measured for a brisk 

walk is approximately 2 m/s, whereas the average speed measured for a 

sluggish walk with both free hands or hands in pockets is around 1.2 m/s. The 

maps used in the classification procedure are created as previously stated; for 

the Doppler-time map, the STFT function utilizes windows of 512 samples, 

with an overlap of 98 percent when a Hann window is employed. The radar 

configuration utilized for these experiments is detailed in Tab. 1. 

 

Table 1: Radar parameters 

 

Parameter Value 

 77 GHz 

Slope 60.012 MHz /  

 100  

ADC Valid Start Time 6  

 10 Msps 

 60  

 512 

 400 

No. of chirp per frame 128 

Periodicity 40 ms 

Used Radar Bandwidth 3.6 GHz 
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A preliminary analysis was performed on the backdrop without a person, as 

shown in Fig. 16a and 16b. Because the test area is the same for all 

individuals, just one measurement was taken. This investigation shows that 

the backdrop has no effect on the data, thus we can ignore it in the movement 

classification. 

 

 

(a) (b) 

 

Figure 16: Analysis on the background in absence of subjects using (a) 

RangeDoppler map and (b) Doppler-Time map. 

 

In Fig. 17, we present an example of a person walking in various directions, 

exhibiting both range-Doppler maps (on the left) and Doppler-time maps (on 

the right). It is feasible to see that slow and quick walks are plainly 

distinguishable on the maps. Maps associated with a leisurely walk with 

hands in pockets show a little less obvious Doppler effect as compared to free 

hands, as predicted, although this effect is hardly discernible. 
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(a)                                                      (b) 

 

(c)                                                        (d) 

 

                              (e)                                                         (f) 

 

Figure 17: Example of a person walking fast ((a) and (b)), slowly with 

hands in pockets ((c) and (d)) and slowly ((e) and (f)) 
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Images are created using the data collected after the radar signal has been 

processed. Because their original dimensions are too large to manage, all 

matrices have been reshaped to the same dimension [195 x 119], with the 

result acquired by applying a mean between neighboring pixels of the image. 

To further reduce dimensionality and extract characteristics from pictures, the 

PCA [57] and t-SNE algorithms were applied to the data individually. The 

matrices are vectorized, resulting in a matrix with each row representing a 

range-Doppler map or a Doppler-time map [56]. Figures 18a and 18b 

illustrate the classification accuracy obtained by utilizing a different number 

of main components with the a k-NNclassifier and a SVM algorithm. We used 

a Gaussian kernel  for the SVM. The value of k for the k-NN and the kernel 

for SVM were set using a leave-one-out cross-validation approach that tries 

to minimize validation error. Each sample of the dataset is alternately chosen 

as a validation set, with the remaining portion being the training set. As a 

result, each sample is only utilized once for training and once for validation. 

The algorithm's results for odd values of k between 1 and 49 are presented in 

Fig. 19, where k equal to 1 results in an inaccuracy of roughly 2.4 percent. In 

Tab. 2, the validation error achieved by different kernels is provided in 

percentage, pointing the option to the usage of linear kernel in our case. 

 

Table 2: Results of the leave-one-out cross validation for support vector 

machine (SVM) with different kernels. 

 
Kernel Linear Gaussian  Polynomial 

Error Validation (%) 4.46 17.26 33.33 
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We define the measures that will be used to assess the performance of the 

suggested approaches here. They are based on the so-called confusion matrix, 

which has columns that reflect expected values for each class and rows that 

represent actual values. The most often used metric is accuracy, which is 

defined as : 

 = ++ + +  
(52) 

   

Where  and  represent true positives and true negatives, respectively, 

and  and  represent false positives and false negatives. It reflects the 

proportion of photos that have been classified to the right category. Another 

helpful statistic is accuracy (also known as positive predictive value), which 

is the ratio of successfully predicted positive observations to total expected 

positive observations, or : 

 

 = ∕ +  (53) 

   

Recall (also called as sensitivity) is the ratio of accurately predicted positive 

observations to all observations in the actual class. 

 

 = ∕ +  (54) 

 

The F1 score is the harmonic mean of accuracy and recall, with 1 being the 

best number (perfect precision and recall). As a result, this score considers 

both false positives and false negatives, as shown below. 
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 1 = 2 ∕ +  (55) 

   

Sixty percent of purchases are utilized for training, with the remaining for 

testing. The findings were averaged across 100 classification results obtained 

by randomly selecting training and test sets. We only examine two groups 

here, which correspond to the slow and rapid stroll. Interestingly, the number 

of main components (or dimension in the case of t-SNE), which corresponds 

to the number of features in this scenario, has a minor influence on 

classification performance. The use of the PCA or t-SNE algorithms to extract 

features from pictures yields relatively similar results, despite the fact that t-

SNE was initially meant to reduce data to two or three dimensions and 

becomes very sluggish for greater values. Furthermore, we get the same 

findings with both range-Doppler and Doppler-time maps. 

 

 

(a) (b) 

 

Figure 18: Comparison of classification accuracy achieved by SVM and 

kNN considering 2 and 3 classes, applying (a) Principal Component 



 59

Analysis (PCA) and (b) t-distributed stochastic neighbor embedding (t-

SNE) 

 

In Tables 3 and 4, we exhibit the classification results in terms of confusion 

matrices produced by applying classification to two and three different 

classes, respectively. In the first table, measures of slow walk and slow walk 

with hands in pockets have been combined into a single class, however in the 

second table, they have been separated into two distinct groups. 

 

 

 

Figure 19: Results of the leave-one-out cross-validation for the k-Nearest 

Neighbor (kNN) 

 

As expected, differentiating free hands from hands in pockets is a far 

more difficult challenge than identifying different walking styles. In the first 

case, the best accuracy obtained is approximately 72 percent, and red boxes 

indicate the presence of a number of misclassified examples, despite the fact 

that the fast walk is recognized from the other activities with a high precision 

(87.5 percent); SVM methods appear to achieve better performance than 
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KNN algorithms. Instead, in the latter situation, we have a great accuracy of 

more than 93 percent. In Tabs. 3 and 4, we highlighted a high number of 

accurate detections in green, whereas a large number of misclassified samples 

is emphasized in red. 

 

Table 3: Confusion matrix obtained applying SVM and kNN(into 

parentheses) on two classes, considering 5 principal components, acc = 93.5 

%. 

 

True / Predicted S F 

Slow Walk (S) 110 (109) 2 (3) 

Fast Walk (F) 9 (8) 47 (48) 

 

Table 4: Confusion matrix obtained applying SVM and kNN (into 

parentheses) on three different classes, considering 9 principal components, = 72% , = 66.7%. 

 
True / Predicted S F SH 

Slow Walk (S) 33 (32) 2 (1) 21 (23) 

Fast Walk (F) 4 (5) 49 (48) 3 (3) 

Slow Walk with Hands in Pockets (SH) 16 (22) 1 (2) 39 (32) 

 

In Tab. 5, we present an overview of the findings acquired by various research 

focusing on the classification of walking activities using radar data, 

highlighting the greatest accuracies obtained. The symbol [*] signifies the 

current work. Reference [64] considers 7 types of activities, namely walking 

backwards, limping, depressed, elderly, excited, holding the arm, and walking 

in a zigzag, and the radar used is an UltraWide Band; Reference [65] 

considers a FMCW radar, and the activities examined are crawl, creep on 
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hands and knees, walk, jog, and run. Although the distinction between 

walking slowly and swiftly is less obvious than in the other activities, we 

demonstrate that our method can obtain higher accuracy. Furthermore, we 

take into account a greater number of individuals who move differently from 

one another, proving the applicability of our strategy in a practical situation. 

With a specific accuracy of 42.42 percent, the action of holding the arm while 

walking [64], which is similar to our instance of walking slowly with hands 

in pockets, could not be distinguished from the others. 

 

Table 5: Comparison of different radar based methods for human walking 

classification. 

 
 Radar 

Type 

Nr. of 

activities 

Dataset 

dimension 

 

Algorithm 

Best 

accuracy 

[*] FMCW 

mmWave 

2 19 subjects, 168 

acquisitions 

PCA/t-SNE + k-NN/SVM 93.5% 

[*] FMCW 

mmWave 

3 19 subjects, 168 

acquisitions 

PCA/t-SNE + k-NN/SVM 72% 

[64] Ultra 

Wide 

Band 

 

7 

8 subjects, 280 

acquisitions 

PCA + SVM  

89.1% 

[65] FMCW 

mmWave 

5 3 subjects, 95 

acquisitions 

CV/TV + SVM 91% 

 

The subjectivity and personal speed interpretation of the completed tests is 

the primary cause of mistake in our categorization model. A consistent 

duration or number of steps during the experiment would almost certainly 

increase system performance, but this is not a practical circumstance. The 

similar method may be used to the other portion of the dataset where the other 

activities are more varied. This work may be found in [66], and it will be 
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reported and debated throughout the rest of this section. Only PCA and k-NN 

are studied in this scenario because the other pipelines produce comparable 

findings. Four distinct activities, divided into four classes, were investigated: 

• Slow walk with non-swinging hands [NS] (55 samples); 

• Limping [L] (20 samples); 

• Slow walk with swinging hands [S] (20 samples); 

• Fast walk [F] (36 samples). 

In terms of the limping exercise, individuals were instructed to walk with a 

limp. This led in numerous distinct styles of walking, as each subject carried 

out the request in their own unique way. In order to get data that was as 

realistic as feasible, no instructions were given on the other type of walk. 

Doppler-time maps for four activities done by the same person are presented 

in Fig. 20. The variations between the several types of walks analyzed may 

be seen on these maps, due to the great sensitivity of the radar employed. 

Swinging hands (Fig. 20b), for example, provide a more noticeable effect on 

Doppler than the non-swinging case (Fig. 20a), but limping (Fig. 20c) 

produces a considerably different map. The results produced with the range-

Doppler map are discussed further below. 

 

 

(a)                                                        (b) 
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(c)                                                      (d) 

 

Figure 20: Doppler-time maps of a person walking slowly with non 

swinging hands (a), slowly with swinging hands (b), limping (c) and rapidly 

(d) 

 

As stated in the last test, data received from radar signal processing [55] are 

considered as pictures, and all matrices are first reshaped to the same size 

[180 x 71], then their dimension is further decreased using PCA. As 

previously, the value of k was determined using a leave-one-out cross-

validation procedure, with a sample of the dataset serving as a validation set 

and the remainder serving as a training set. As a result, each sample is only 

utilized once for training and once for validation. The algorithm's results for 

odd values of k between 1 and 49 are presented in Fig. 21, where a value of k 

equal to 1 leads to the lowest error, amounting to 1.33 percent. 
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Figure 21: Results of the leave-one-out cross-validation for the k-NN for the 

second dataset 

 

During the classification process, 70% of the acquisitions are utilized for 

training, while the remaining 30% are used for testing. To lessen the reliance 

of the findings on the training set selection, the results were averaged over 50 

classification results obtained by selecting training and test sets at random. 

The confusion matrix derived by evaluating 9 major components and then 

applying k-NN is shown in Tab. 6. We achieve an average accuracy of 96.1 

percent, with exceptional precision, particularly in recognizing the slow walk 

with non-swinging hands and the quick walk. 

 

Table 6: Confusion matrix obtained applying k-NN on four activities, 

considering 9 principal components. Accuracy 96.1%. 

 
True/Predicted NS L S F 

NS 98.91% 0 0 1.09% 

L 3.67% 91.33% 0 5% 
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S 0 4.33% 95.67% 0 

F 1.5% 0 0 98.5% 

 

This second component of the dataset yields results comparable to the first. It 

is feasible to differentiate two separate actions performed by a person with 

high performance, but this lowers when we try to distinguish comparable 

activities such as walking slowly and slowly with hands in pockets. The 

experimental evaluation confirms the effectiveness of the constructed 

pipelines, but also highlights the key disadvantage. To boost data correlation 

with an overhead in data processing, the feature extraction approach must be 

performed to all datasets. As a result, in the next part, we investigate several 

methods for extracting features from maps, including ad hoc creation as well 

as a Deep Learning [54] technique. 

 

2.4 Different classification approaches 

 

This section will examine several methods for classifying mD signals. 

This study will be based on the previously stated dataset and will employ just 

three activities: rapid walking, slow walking, and slow walking with hands in 

pockets. Figure 22 depicts the various pipelines.  
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Figure 22: Flowchart of the different pipelines compared 

 

The goal of this research is to determine whether it is possible to attain 

comparable classification results using reduced compute complexity 

strategies. As a result, we compare three distinct sorts of approaches: 

 PCA + k-NN or SVM; 

 ad-hoc feature extraction + k-NN or SVM; 

 Deep Learning (VGG16). 

All comparisons will be based on range-Doppler maps, as we demonstrate 

how this and Doppler-time maps provide similar results. To enhance the 

dimension of the dataset, the range-Doppler map is divided into two halves, 

yielding two maps of dimension [256 x 25600] from each acquisition (for the 

remainder of the chapter, we refer to this matrix as "map"). 
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2.5 PCA complexity analysis 

 

The result of PCA is a Y-dimensional matrix of main components. The 

initial components of each vector y in the resultant matrix Y include the 

highest potential variability of the original variables, allowing for the 

selection of a limited number of variables that convey the most information. 

The classification algorithm can then utilize Matrix Y as input.  In terms of 

PCA computing cost, we examine a dataset made up of L samples (or photos 

in our instance). Before entering the PCA, each picture is vectorized and has 

a dimension of [M x N]. As a result, the dataset dimension is [L x MN].  The 

construction of the covariance matrix, which takes in the order of  O ⋅ , is the major computing expense of PCA. This covariance matrix 

is then used to compute eigen values and eigen vectors, which has a 

complexity on the order of O . PCA's overall complexity is thus on the 

order of + .  

 

2.6 Parameters extraction from range-Doppler maps 

 

PCA use often necessitates a significant computing cost. Furthermore, 

in order to acquire the greatest possible correlation between samples, the 

algorithm must be applied to the complete dataset, and whenever a new 

sample is examined, the procedure must be restarted. An alternate approach 

for feature extraction from range-Doppler maps can be offered for this 

purpose. On each map, we may compute several characteristics that can be 

utilized as features. The parameters computed from the range-Doppler maps 

are as follows:  
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1. Maximum Doppler value: the parameter  is derived by taking 

the maximum intensity value for each row of the Range-Doppler map 

and dividing it by the number of rows. 

 

 =  (56) 

   

where i is the row index and  is the chosen row. The rows, in 

reality, include information about the target's velocity, and the maximum 

specifies the Doppler value for each evaluated distance. Figure 23 depicts an 

example of the computation method. All of the  items at the end can 

be collected into a vector named  .  
2. Mean Doppler value: The mean values of the Doppler are assessed for 

each row of the Range-Doppler matrix, using a procedure similar to 

that used to compute the maximum. These numbers are added together 

to form a vector called , and each element is computed as 

 

 = ∑ ⋅ ,  ∑  ,  
(57) 

   

where i is the row number used in the calculation and m is the column index 

of the single element. Figure 24 shows an example of    for various types 

of acquisition. 

3. Doppler values variance: Because of the dispersion of Doppler values 

within the map, the technique used to assess this parameter changes 

slightly from the preceding ones. Figure 25 shows an example of a 

normalized distribution of values within the same range distance. 



 69

 

 

 

Figure 23: Extraction process of the Maximum Doppler value  

 

 

 

Figure 24: Comparison between the calculated values  for different 

acquisitions 

 

The highest Doppler intensity values within the map are clustered near 

the zero-Doppler, both for the positive and negative parts. This effect is 

caused by sensor parameter calibration, which allows for detection of a 
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higher velocity than the desired effective value. On the computation of 

the , this impact creates imbalanced results that are not centered on 

the mean values; as a result, the following procedure is applied to the 

distribution of values: 

 The greatest amplitude value is retrieved for each row of RD, for 

the first 10000 Doppler bins in the event of negative Doppler 

values and the final 10000 in the case of positive Doppler values. 

 By setting the values to zero, any amplitude values below the 

determined threshold are ignored. 

The outcome of the previously mentioned technique is depicted in Fig. 26. 

Only at this stage can we calculate the variance  as below:  

 

  = ⋅ ,  ∑  , −  

(58) 

   

 

 

Figure 25: Doppler distribution for three different activities at the 

same distance. The values are re-scaled for a better comparison. 
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Figure 26: Effect of the applied threshold 

 

The vectors obtained can be treated as signals, and each sample is 

calculated on a slow-time row within the Range-Doppler map. As a result, the 

sampling frequency and chirp time are related. Finally, a Butterworth filter is 

used to these vectors to soften the signal's rapid changes. Figure 27 shows an 

example of calculating the Maximum Doppler value before and after filtering 

for the dataset's fast and slow walk activities. Looking at equations (56), (57), 

and (58), we can see how much it costs to extract each parameter, that can be 

simply calculated as follows: 

1. Maximum Doppler value: O(L · N); 

2. Mean Doppler value: O(L · N · 2M); 

3. Variance of Doppler values: O(L · N · 2M). 
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Figure 27: Effect of the Butterworth filter on the computation of the 

Maximum Doppler value for the fast walk and the slow walk activities. 

 

When the sum of these costs is compared to the PCA complexity, it is clear 

that the second way is computationally less expensive. 

 

2.7 VGG16 neural network classification 

 

VGG16 proved to be a defining moment in humanity's attempt to make 

computers "see" the world. For decades, a lot of work has been invested into 

enhancing this capacity under the discipline of Computer Vision (CV). 

VGG16 is one of the important inventions that laid the way for a number of 

subsequent advances in this sector. The model's concept was presented in 

2013, while the actual model was submitted in 2014 during the ILSVRC 

ImageNet Challenge. The ImageNet Wide Scale Visual Recognition 

Challenge (ILSVRC) was an annual competition that assessed picture 

classification (and object identification) methods on a large scale. In contrast 

to the enormous receptive fields in the first convolutional layer, this model 

recommended using a relatively modest 3 x 3 receptive field (filters) 
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throughout the whole network with a stride of 1 pixel. The notion of applying 

3 x 3 filters consistently is something that distinguishes the VGG. Two 

successive 3 x 3 filters yield a 5 x 5 effective receptive field. Similarly, three 

3 x 3 filters yield a 7 x 7 receptive area. As a result, the decision functions 

become more discriminative. Second, it greatly decreases the number of 

weight parameters in the model. If the input and output of a three-layer 3 x 3 

convolutional stack comprise C channels, the total number of weight 

parameters is 3 * 32 C2 = 27 C2. When compared to a 7 × 7 convolutional 

layer, 72 C2 = 49 C2 is required, which is nearly double the number of 3 x 3 

layers. This may also be viewed as a regularization of the 7 x 7 convolutional 

filters, forcing them to decompose through the 3 x 3 filters, with non-linearity 

introduced in-between by way of ReLU activations. This would lessen the 

network's proclivity to over-fit throughout the training process. The network's 

persistent use of 3 x 3 convolutions makes it incredibly simple, beautiful, and 

easy to deal with. 

 

2.7.1 VGG16 Architecture and Uses 

 

On the ImageNet dataset, VGG16 was shown to be the top performing 

model. 
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Figure 28: VGG16 Architecture 

 

Any of the network settings considers the input to be a 224 by 224 picture 

with three channels R, G, and B. The only pre-processing performed is to 

normalize the RGB values for each pixel. This is accomplished by removing 

the average value from each pixel. Following ReLU activations, the image is 

sent through the first stack of two convolution layers with a very tiny 

receptive area of 3 x 3. These two layers each include 64 filters. The 

convolution stride is set at 1 pixel, and the padding is also set to 1 pixel. The 

spatial resolution is preserved in this setup, and the size of the output 

activation map is the same as the dimensions of the input picture. The 

activation maps are then pooled spatially over a 2 x 2-pixel window with a 

stride of 2 pixels. This reduces the size of the activations by half. As a result, 

the activations at the bottom of the first stack are 112 x 112 x 64. 
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Figure 29: VGG16 Architecture model layers 

 

The activations are then routed via a second stack that is identical to the 

first but with 128 filters instead of 64. As a result, the final size is 56 x 56 x 

128 after the second stack. The third stack consists of three convolutional 

layers and a maximum pool layer. The stack's output size is 28 x 28 x 256 due 

to the 256 filters used. Following that are two stacks of three convolutional 

layers, each with 512 filters. Both of these stacks will produce 7 x 7 x 512 as 

their output. The stacks of convolutional layers are followed by three fully 

linked layers with a flattening layer in between. The first two layers have 4096 

neurons apiece, while the last fully connected layer acts as the output layer, 

with 1000 neurons matching to the ImageNet dataset's 1000 potential 

classifications. The output layer is followed by the Softmax activation layer, 

which is utilized for categorical categorization. Despite the fact that this is a 

very basic, attractive, and simple to use approach, it does have certain 

limitations. This model has over 138 million parameters and is over 500MB 

in size [72]. As a result, the model's use is severely limited, particularly in 
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edge computing, where the inference time is longer. Second, no precise metric 

exists to address the issue of disappearing or ballooning gradients. This issue 

was solved in GoogLeNet by employing inception modules, and in ResNet 

by using skip connections. Despite the introduction of many new and 

improved scoring models since VGG was first suggested, VGG16 [73] 

continues to pique the curiosity of data scientists and researchers worldwide. 

A few examples of practical applications for VGG16:  

 Image Recognition or Classification – VGG16 can be used to 

diagnose diseases using medical imaging such as x-rays or MRI. 

It may also be used to recognize street signs while driving. 

 Image Detection and Localization —It can perform admirably in 

image detection use cases. In fact, it was the 2014 ImageNet 

detection competition winner (where it ended up as first runner up 

for classification challenge) 

 Image Embedding Vectors — After removing the top output layer, 

the model may be trained to generate image embedding vectors 

that can be utilized for problems such as face verification using 

VGG16 inside a Siamese network. 

 

2.7.2 VGG16 in transfer learning 

 

In this situation, we will propose using the VGG16 network [58, 59] to 

construct a model that categorizes actions based on the classes in the dataset.  

Transfer learning [69] can be used to avoid training the model from beginning 

when working with a dataset with a small dimension. Although neural 

networks require a large dataset for training, it is feasible to use a smaller 
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dataset by applying transfer learning [69]. Transfer learning is very beneficial 

when working with minimal amounts of data since it allows you to extract 

network weights from pre-trained models and transfer them to other 

networks, which saves money on training new neural networks. Range-

Doppler maps are used as training input, and the model built on the ImageNet 

Large Visual Recognition Challenge dataset [70] is then retrained on the 

specified dataset using the approach outlined in [69]. The computational cost 

of a convolutional network for a single picture is , where each 

input feature map is of size ⋅ , spatial two-dimensional kernels are of 

size ⋅ , and ,  are the input and output channels within a layer, 

respectively [71]. 

 

2.8  Machine learning Classification 

 

Following feature selection, classification is carried out using the k-

NN and the SVM, which have distinct computing costs. As previously stated, 

the parameters for both methods were optimized using a leave-one-out 

crossvalidation procedure, with the purpose of minimizing the validation 

error.  As a result of this evaluation, k is set to one and a linear SVM is chosen. 

Following is a complexity analysis of the k-NN algorithm:  

In general, a k-NN [60] has a computational cost in the order of + , assuming that k is determined previously. The training set's 

cardinality is represented by L, while the dimension of each sample is 

represented by y. y might be the PCA result or the vector that contains the 

extracted parameters.  
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The overall cost of NN algorithms may be simply calculated by following the 

steps below:  

 Distance computation: computes the distance of a new observation 

from each sample of the training set. The cost required for each 

computation is in the order of O(y).  

 Label assignment: by looping through the full training set, the k 

samples with the smallest distance value are chosen. The label applied 

to the new observation is the same as that of the majority of the k 

samples chosen. By looping through the training set observations, 

each iteration of the second step incurs a cost in the order of O(L), 

resulting in an overall step cost in the order of O(k L). 

SVM computational complexity: Because linear SVM is essentially a single 

inner product, its complexity is equal to O(L). Kernel SVM’s often have a 

greater cost, which is determined by the kernel used and the number of 

supporting vectors . The cost is  for most kernels [61], including 

polynomial and Gaussian. There is an approximation for SVM’s with a 

Gaussian kernel that decreases the complexity to . As a result, linear 

SVM has a lower cost than k-NN, although kernel SVM may have a larger 

complexity. The cost of categorization must then be added to the cost of the 

feature selection technique under consideration. 

 

2.9  Deep neural networks results 

 

The dataset is splited into three parts: 80% for training, 10% for 

validation, and 10% for testing. In Fig. 30a and 30b, we illustrate the training 

and validation loss for the three independent classes and when a slow walk 
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and a slow walk with hands in pockets are combined, respectively, based on 

100 training steps, or epochs. The training loss represents how well the model 

fits the training data, whereas the validation loss represents how well the 

model fits new data. Cross-validation is used to assess them. In Fig. 30, values 

less than 0.75 are seen after 80 epochs, and tests with more than 100 epochs 

tend to overfit. When just two activities are examined, the performance 

improves and the validation loss takes values between 0.2 and 0.3 on average 

for a limited number of epochs. Table 7 displays some additional 

classification metrics for our model for each evaluated class, namely 

accuracy, recall, and F1-score. It is feasible to see that both the slow and fast 

walk groups attain good accuracy but low recall, whereas the slow pocket 

class exhibits the reverse trend. 

 

 

(a)                                                        (b) 

 

Figure 30: Training and validation loss of VGG16 neural network for a) 

three and b) two classes. 
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2.10  Comparison of several techniques 

 

As previously stated, we extract three parameter vectors from the range-

Doppler maps, reflecting the maximum, mean, and variance of the Doppler 

values. After getting these vectors for all acquisitions in the dataset, they are 

averaged to yield three features, or six if the positive and negative halves of 

the range-Doppler maps are considered. Because the participants do the same 

action when moving away from and returning to the radar, we may divide the 

acquisition into two parts and increase the number of features. 

 

Table 7: VGG16 results for the three activities 

 
 Precision Recall F1-score 

Fast 1 0.57 0.73 

Slow 1 0.43 0.60 

SlowPocket 0.6 0.86 0.71 

 

There are 171 rows and 3 (or 6 obtaining negative part) columns in the 

resultant matrix. When doing the classification job, we may utilize less 

resources because the matrix has been decreased. In the categorization based 

on these characteristics, 60% of the acquisitions are utilized for training, 

while the remaining 40% are used for testing. The findings were averaged 

across 50 classification results obtained by randomly selecting training and 

test sets. Tables 8 and 9 show the classification accuracy attained by the 

various methodology described in the preceding sections, while Table 10 

shows a summary of the processing expenses for each of the proposed 
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strategies. It is vital to remember that the VGG16 cost applies to a single 

picture, not a set of images.  

 

Table 8: Accuracy achieved by the proposed methods for two activities 

 
Method Classification Algorithm Accuracy 

PCA SVM 93.50% 

PCA kNN 93.50% 

Ad-hoc Features Extraction SVM 84.20% 

Ad-hoc Features Extraction kNN 86.18% 

Ad-hoc Features Extraction + filtering SVM 94.20% 

Ad-hoc Features Extraction + filtering kNN 94.20% 

Deep Learning VGG16 93.75% 

 

Table 9: Accuracy achieved by the proposed methods for three activities 

 
Method Classification Algorithm Accuracy 

PCA SVM 72% 

PCA kNN 66.70% 

Ad-hoc Features Extraction SVM 63.70% 

Ad-hoc Features Extraction kNN 66.10% 

Ad-hoc Features Extraction + filtering SVM 73.70% 

Ad-hoc Features Extraction + filtering kNN 73.70% 

Deep Learning VGG16 66.67% 

 

Table 10: Computational costs of the considered methodologies for 

feature selection.  ∗Note that the cost for the VGG16 refers to a single image. 

 
Method Computational cost 

PCA +  

Ad-hoc Features Extraction 1 + 4  

VGG16  ∗ 

 

Looking at the table, it is clear how parameter extraction combined with 

filtering produces better results than other approaches while also requiring the 

least processing cost. Surprisingly, the use of filtering has a significant 
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influence on the results, assisting in the improvement of performance. Deep 

learning [53] enhances the accuracy of the PCA plus classification technique 

for both two and three activities, but it is surpassed by parameter extraction 

with filtering. This can be attributed to the short dimension of the dataset 

under consideration, since the VGG16 network performs better in the 

presence of a big training set. 

 

2.11  Conclusion 

 

In this chapter, we demonstrate how an automobile radar may be utilized 

to categorize targets by utilizing their mD features. These devices, when 

combined with appropriate signal processing and a classification pipeline, can 

yield good results. We also demonstrate how alternative feature extraction 

algorithms may be employed and compare the outcomes and computational 

costs. We also use a more complicated neural network to improve the 

comparison. Based on the results, we show how an ad hoc feature extraction 

strategy achieves the same classification results but at a reduced 

computational cost. Of course, this methodology can only be utilized in a 

specific instance (classifying different walking patterns), whereas the other 

ways are more generic. 
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Chapter 3 

 

Genetic algorithms in WSN 

 
3.1 Introduction 

 

LEACH [91] is one of the most common adaptive clustering routing 

systems. A Wireless Sensor Network (WSN) is made up of many sensor 

nodes that are grouped in a network in a given region with the primary goal 

of autonomously performing certain activities such as event detection, 

physical parameter measurements, and target object tracking. Technological 

improvement in electronics-related fields, particularly advancements in 

embedded systems, has made it feasible to raise the dependability, 

capabilities, and efficiency of sensor nodes while decreasing their size and 

cost [74]. The use of WSN benefits such as dynamic self-organizing 

characteristics and decentralized functioning via wireless communication has 

drastically enhanced the use of WSNs in many various fields. Commercial 

applications [75], safety systems [76], healthcare detection systems [77], 

wearable sensor health monitoring [78], and environmental monitoring 

systems [79] are the main groupings. A large range of applications with even 

broader performance requirements has led in the creation of a wide range of 

protocols with multiple changeable parameters [80]. WSN varies from 

standard wireless networks in several aspects, including restricted capacity 

nodes, severe energy limits, and application-specific features. When 

hierarchical architectures are considered, numerous research for different 
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clustering approaches are created. These techniques strive to deliver more 

accurate clustering by minimizing the number of clustering stages. As a 

result, Nazari et al. [81] proposed a novel bottom-up hierarchical clustering 

technique that use the intersection point as a linking criterion. This method 

produces more accurate clustering results since none of a data point's nearest 

neighbours are overlooked. WSN topology design is critical prior to network 

deployment because of the influence of network organization on overall 

system performance. Sensor nodes are typically installed in deterministic or 

heuristic contexts such as residences, industries, residential buildings, or 

hospitals. Alternatively, they are deployed at random in uncontrolled 

environments, such as battlefields, poisonous zones, and disaster-affected 

areas. As a result, some research has focused on multi-level clustering 

algorithms as strategies for optimizing data gathering. To optimize packet 

transmission and decrease latency, they employ Ant Colony Optimization 

(ACO) [82] or multiple Traveling Salesman Problem (mTSP) [83]. The 

heuristic WSN design technique in our work is based on Genetic Algorithms 

(GA), which is an optimization tool that mimics natural selection and 

genetics. GA is often used to find a global maximum or minimum in a search 

region containing several local maximums or minimums. Nonlinear 

optimization methods, including the GA, have already been used to optimize 

application-specific network deployment [84], as well as numerous 

hierarchical routing protocols comparable to LEACH [85]. Although there 

are various tools for constructing a WSN, most of them do not consider the 

chosen communication protocol or simply neglect network organization. The 

various solutions proposed do not consider the performance of a WSN. 
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Tinker, SensDep, and ANDES are three of the most researched deterministic 

and deductive WSN design tools. Tinker [86] is a high-level design tool for 

sensor networks that uses simulated data streams based on real sensor 

network models to decide which data processing algorithms to apply. It does 

not need (or enable) users to define details like routing algorithms or 

retransmission rules, allowing system designers to swiftly iterate between 

different broad concepts before fleshing out the details of the one that appears 

to be the most promising. SensDep [87] includes many solution 

methodologies to maximize sensor network cost and coverage as a software 

design tool. It employs a deductive technique to build a list of relevant 

network models that match the application environment as well as the 

specifications of the accessible sensor nodes and gateway.  This program also 

takes into consideration the effects of the environment on network traffic 

generation. Designing a WSN is difficult due to energy limitations, specific 

properties based on the field, and the aim of the application. The optimum 

design of the WSN prior to implementation in the environment is crucial and 

frequently necessitates compromises between opposing objectives. Another 

new technique is provided in [88], which proposes a Dynamic Load Balance 

Clustering Mechanism (DLBCM) that not only analyses the CM loading, but 

also monitors the energy usage of the CM in each cluster. To maintain the 

overall network architecture more stable and efficient, CM re-election and 

cluster reconfiguration are avoided on a regular basis. The lifespan of WSN 

will thereafter be extended. There are further four weights to consider: 

residual energy, CPU usage, node communication bandwidth, and distance to 

the cluster's centre. Their values alter depending on the relevance of each item 
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in various specialized applications, and in some circumstances, these weights 

can be adjusted to zero. We analyse the challenges raised above and offer a 

WSN-based design method based on GA that can assist WSN designers in 

configuring parameters to achieve the desired performance prior to system 

deployment. As a result, a deductive design tool based on GA is proposed for 

the topology of WSNs with hierarchical structure. In our application, GA 

functions as a WSN topology design tool, autonomously producing a 

hierarchical cluster-based network organization based on each node's position 

in the distribution region, operation status, and cluster structure of the active 

nodes. The functioning of the GA-based design tool is limited by application-

specific design requirements as well as network parameters like as network 

coverage, connectivity, energy consumption efficiency, and network 

longevity. The main purpose of this work is to present the technique used to 

generate the topology of a WSN based on the design criteria, as well as to 

evaluate the performance of the network produced in relation to the 

application needs. Thus, it is meant to build the topology and establish the 

function of nodes among hundreds or thousands of methods of assembling 

the network to maximize the specific design parameters. 

 

3.2 Related Works 

 

Clustering is often a very efficient approach [89],[90], in which sensor 

nodes are combined to create a cluster that is administered by the Cluster 

Head (CH). The CH collects the data, compresses it, and transfers it to the 

sink. As a result, the nodes communicate less than when data is transmitted 

straight to the sink. Although most cluster-routing protocols seek to evenly 
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balance the load between sensor nodes, by using a probabilistic model to 

select the CH node each round, they fail to ensure that the chosen node is the 

best available. There is still much space for development. Although there are 

numerous clustered-based protocols accessible in the present literature, just a 

few well-known LEACH-based protocols are covered here due to the interest 

of our study. 

 

3.3 Cluster-based routing protocols 

 

LEACH's functioning, like that of other hierarchical protocols, is 

divided into two phases: setup and steady data transmission. During the setup 

phase, the CH is chosen from among the available sensor nodes using a 

probabilistic model, and many clusters are built dynamically. During the 

continuous data transmission phase, sensor nodes in each cluster send data to 

the specialized CH, which compresses it and transfers it to the target sink 

node. The LEACH protocol elects the CH nodes and re-establishes the 

clusters on a regular basis, ensuring that the energy dissipation of each node 

in the network is reasonably consistent. Despite the fact that the LEACH 

methodology spreads the load evenly across each CH, there are certain 

disadvantages. For starters, there is no assurance that the chosen CH is the 

best option. For example, if the chosen CH is located near the network's 

boundary, other nodes may use more energy sending the message to CH. It is 

also impossible to predict the number of CH’s who will be elected in each 

round. Several protocols and approaches based on LEACH have been 

suggested throughout time, generally with a significant improvement in 

network lifespan [92]. Cluster-based routing algorithms normally focus on 



 88

maximizing network energy efficiency, however when WSN’s are utilized for 

a specific application, there may be several QoS requirements. 

 

3.4 Genetic algorithm based routing protocols 

 

The majority of GA applications in WSN’s are concerned with 

optimizing lifetime and energy usage. The enhancement is accomplished by 

using a GA-based algorithm in practically every operational step of WSN’s, 

including node distribution, network coverage, clustering, and data 

aggregation, in order to provide a satisfying set of performance parameters 

for various WSN’s organizations. LEACH-GA [93] was one of the first GA-

based adaptive clustering methods described. The goal of this protocol is to 

optimize the CH selection probability model in order to achieve significant 

network lifespan improvement. The suggested GA-based protocol is based on 

LEACH and functions substantially identically to the existing LEACH 

protocol. It essentially contains a set-up and a steady-state phase for each 

cycle in the protocol, which function identically as stated at LEACH, but it 

varies in that this protocol incorporates an extra preparation phase in its 

operation. This is done only once before the first round's setup process. 

In the preparation phase, before the first round of network operation, 

all nodes undertake CH selection based on a random model. As a result, each 

sensor node creates a random number from the interval [0, 1], and the 

produced value, along with the node ID and geographical position, is 

transmitted to the Base Station (BS). Only sensor nodes with values greater 

than a particular threshold are considered CH candidates. As the BS receives 

signals from all nodes, it employs a GA-based searching method to determine 
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the best likelihood of nodes becoming CH. The selection probability for each 

node is determined by reducing the overall energy consumption necessary to 

complete one loop. At the completion of the preparation phase, BS sends an 

advertisement message to all nodes with the optimal produced probability 

values in order to build clusters in the next set-up phase. The methods of 

following set-up and steady-state stages in each round are the same as in 

LEACH. In other words, the preparation phase creates the probability values 

for the set-up phase's CH selection, resulting in lowest energy use. The 

proposed GA-based adaptive clustering technique achieves optimal energy 

usage, hence extending network lifetime. Other LEACH-based clustering 

techniques include Genetic Algorithm Based Energy Efficient Clusters 

(GABEEC) [94], enhanced LEACH [95], and C-LEACH [96]. All of the 

presented strategies are aimed at enhancing the CH selection procedure in 

order to optimize the distribution of energy resources. 

 

3.5 Enhanced Algorithm 

 

There are four major phases to applying the GA to a problem. The 

initial step is to code the problem, and throughout this process, the structure 

of a potential solution is formed in the genome. The genome is a collection of 

binary or alphanumeric characters that the GA must alter in order to create 

candidate solutions that are more optimum. The second stage is to construct 

the fitness function, which has a direct influence on both the quality of the 

produced solutions and the complexity of the GA. In our scenario, the fitness 

function is made up of a collection of algorithms whose objective is to 

estimate the parameters of the candidate's topologies.  Finally, the fourth stage 
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is to identify the genetic operations that influence variety, the quality of 

created solutions, and the convergence of the group of candidate solutions 

toward the global or local maximum or minimum. Recombination and 

mutation are two genetic pathways. GA’s are deductive procedures based on 

random search, which implies that the algorithm searches a field of probable 

solutions for a global maximum or minimum. For a number of causes, the GA 

may prematurely converge to a local maximum in many circumstances. This 

can result from selecting the incorrect genetic procedures. Another 

explanation is how the problem is integrated into the fitness function, which 

is the mechanism that steers the algorithm toward optimum local or global 

solutions. As a result, before applying GA to an issue, it is critical to first 

assess and deconstruct the problem in such a way that it can be integrated into 

a fitness function. To use the GA in topology construction, the parameters of 

the network to be optimized should be specified as fitness function variables.  

 

3.5.1 WSN model 

 

We consider a homogeneous WSN with nodes structured in a 

hierarchical cluster-based network paradigm. Each node can function as a CH 

node or a sensor node. CH’s in a WSN collect data from sensor nodes and 

transfer the aggregated data to a BS at regular intervals known as operation 

rounds. Because CH’s have a high energy consumption due to their complex 

and demanding activities, choosing optimal CH’s to improve network 

lifespan is a fundamental difficulty in WSN topology design in order to 

increase network longevity. The nodes of the WSN will be deployed across a 

two-dimensional square network, X x X units represented on Fig. 31. The 
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region is split into grids by a preset Euclidian distance, and nodes are put at 

the intersections of the grids. The detection range of CH’s (green circles) is 2 ∕ 2 units, while their transmission range is 2√2 units. As shown in Fig 

31, the following nodes are active: Low Range Node (LRN-cyan circles) and 

High Range Node (HRN-blue circles). The detecting and transmission range 

of LRN’s is 2 ∕ 2 units, and the total operation energy per round is the 

lowest of all conceivable states. The HRN has a transmission and sensing 

range of  √2 units, which is twice that of the LRN, and its total operation 

energy each round is more than in the previous condition. Inactive Nodes (IN-

nodes, X) do not conduct any processes at all, hence their energy consumption 

is zero. Active sensor nodes in the LRN and HRN are separated for energy 

optimization, coverage, and overlap reduction. To save energy, nodes near 

congested areas and CH prefer to switch to low range mode. 

 

 

 

Figure 31: Network model layout 
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Nodes located in an uncovered region or away from the CH, on the 

other hand, tend to function in the HRN mode to provide coverage and 

preserve connections with the CH. Active nodes outside of the service region, 

known as Out of Range Nodes (ORN), are unable to interact with the CH. 

They simply need energy for operation, and because the values measured 

cannot be transferred to the CH, it is more economical to pass them in sleep 

mode. 

 

3.5.2 WSN design parameters 

 

As previously stated, the goal of the WSN topology design tool is to 

simultaneously optimize several application specific network performance 

parameters such as area coverage, connectivity, energy efficiency, and 

lifetime through cluster formation and changing the operation state and 

position of the nodes in the monitoring area. The effectiveness of network 

distribution is measured by area coverage. It is critical in practically every 

WSN design to obtain total coverage of the region at the lowest possible 

implementation cost. As a result, the design tool will favour topologies with 

fewer sensor nodes and greater area coverage. The total uncovered surface 

parameter , is used to assess and evaluate area coverage. The total 

uncovered surface is calculated as 

 

 = ∑⋅  
(59) 

   

where  is a region with an inactive node present but uncovered by any 

nearby node, and X is the complete network deployment area's height and 
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width parameters. The GA method employs a deductive technique to find the 

best topology for the application at hand by selecting and continuously 

combining the best performing topologies from randomly generated groups. 

The fitness function assesses the quality of generated or selected topologies 

by assessing network parameters such as coverage, number of sensor nodes 

per CH, total average energy of the system, minimum and maximum energy 

for nodes, residual energy, number of nodes out of coverage, number of 

overlaps, and total network lifetime. The fitness function is applied to each 

person, i.e., topology, of a population of a specific generation, and a fitness 

value is assigned based on the results of the corresponding parameters and 

weights. In this scenario, the GA acts as the function of minimizing the fitness 

function, which implies that topologies with lower fitness values will be 

favored by the selection function to be picked in order to recombine them to 

produce young individuals from the following population. The 

implementation of the global optimization toolbox via Matlab's genetic 

algorithms consists of three main steps: establishing the fitness function, 

identifying genetic operations, and building the sequence of genome 

characteristics depending on the challenge. Binary coding was defined to 

represent all network nodes. The following syntax code line was used to 

enable the GA toolbox: 

 , = @ , _ ,  

 

where "FitnessFunction" is the fitness function that evaluates population 

individuals for each generation. "Individual_Size" specifies an individual's 

genome length, which in our instance is: 
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 = 2  (60) 

   

The method works by using genetic processes to favor the recombination of 

individuals with the lowest fitness value. Topologies with optimum 

performance characteristics for application needs can thus be generated 

through minimizing of the fitness function.  

The functions implemented by the user determine and initialize the variables 

of the fitness function, as well as the methods of their assessment for each 

individual, since they are specific depending on the situation being handled. 

The GA of the global optimization toolbox functions as a minimization 

function for the fitness function in the design application of a WSN 

topology. The toolbox function serves as a minimization function for the 

fitness function. Step 7 presented in appendix A shows how, after forming a 

population, the GA determines the value of fitness for each individual in the 

population using the function of the weighted sum of the network parameters. 

Following that, the algorithm functions through genetic operations, preferring 

the recombination of individuals with the lowest fitness value. Topologies 

with optimum performance characteristics for application needs can thus be 

generated through minimizing of the fitness function. 

 

3.5.3 Performance and application requirements 

 

Priority number one before implementing the current network in the 

environment is a compromise between several WSN criteria such as 

connection, coverage, and energy efficiency. This function is performed 
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independently by the algorithm, which determines the particular position of 

the nodes in the network, their statuses or possible roles, and organizes the 

nodes into clusters. Before using the design tool, we must first examine the 

target network's capabilities and needs, as well as prioritize each of the 

performance characteristics.  The user can allocate priority to each parameter 

in the network design tool based on the weights it assigns to those in the 

fitness function of GA. The user must also define network attributes such as 

node power capacity, communication radius, coverage radius, operational and 

communication energy expenses per round, communication radius, and the 

unit of surface on which the network would monitor for the application in 

question. The implementation of the network design method can begin after 

the performance parameter weights and network characteristics have been 

determined. The algorithm execution circumstances, including genetic 

operations, their configuration, and termination criteria, are determined 

experimentally throughout the algorithm's development.  Table 11 

summarizes the network characteristics for the application in issue.  

 

Table 11: Network design criteria 

 

WSN design criteria Value 

Surface for coverage 10 x 10 unit of surface 

Maximum number of nodes 100 

Energy capacity 1000 unit of energy 

Operational energy for LRN 4 unit of energy 

Operational energy for HRN 8 unit of energy 

Operational energy for CH 16 unit of energy 

Transmission radius for LRN √2 2   unit of length 

Transmission radius for HRN √2       unit of length 

Transmission radius for CH 2√2     unit of length 
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Coverage radius for LRN √2 2    unit of length 

Coverage radius for HRN √2        unit of length 

Coverage radius for CH √2 2    unit of length 

Communication energy per round 0,6 *  (d – distance between two nodes) 

 

Priorities must be established when the capacity of the nodes and the 

features of the network to be created have been determined. As a result, the 

weight coefficients of each parameter in the fitness function must be 

determined. GA is a conventional evolutionary algorithm that is based on 

randomness. As a result, applying it to the simultaneous optimization of a 

number of interconnected performance characteristics yields a diverse set of 

alternative solutions. Selecting the solution set that best matches the 

application is a difficult procedure with no established strategy. For any 

application, there may be a set of weight combinations that can provide 

outcomes that satisfy or do not meet the majority of the criteria. The purpose 

at this stage is to pick parameter weights by testing different combinations of 

variable coefficients on the fitness function in order to discover the best 

performing combination for the specified application. We will use eight 

characteristics to identify the weighting combination that provides the best 

set of answers. However, five of them are particularly essential and will be 

used as criteria for evaluating the performance of produced network 

topologies. The first criterion used is the simulated environment's uncovered 

surface ( ), which is assessed in relation to the entire area of the 

environment. Weight combinations that decrease the uncovered territory will 

be deemed more beneficial. The second criteria is the residual energy ( ) in 

the active nodes after the network fails, which reflects the efficiency of 

employing the active nodes' energy capacity. A low value for this parameter 
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implies that we are efficient in our use of network resources. The third criteria 

is longevity ( ), which is one of the most essential factors for assessing the 

network's energy efficiency. In order to properly execute the defined 

monitoring functions, the network must run in the testing environment for a 

specific amount of time. The final two criteria concern connectivity: the Node 

Degree (ND) once the network is unplugged and the amount of overlaps ( ). 

ND estimates how much the network's connection is affected by the death of 

a CH in the network and how much network recovery is achievable, whereas 

 determines the efficiency of node distribution between clusters. 

 

3.5.4 Results of the network design algorithm 

 

Designing the best topology of a WSN involves a collection of 

performance factors that are connected to one another, and the major goal is 

to find a compromise between these parameters in order to fulfill application 

requirements. Deterministic strategies are ineffective in these applications; 

hence, the use of GA as a deductive method for creating the topology with 

the highest performance was proposed and implemented. The network's 

performance parameters are determined using a model of WSNs with 

hierarchical organization and homogenous nodes. Performance factors are 

incorporated as heavily weighted by fitness function variables, organized by 

influence on coverage, energy efficiency, and connection parameters. Each 

performance characteristic can be allocated a weight based on its significance 

in a specific application. The GA is used to minimize the fitness function in 

order to generate performing solutions. The weights of each parameter in the 

WSN design process are assigned randomly at the start based on the 
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application requirements. Their work is completed by testing and eliminating 

inefficient scenarios for the application. Table 12 displays the performance 

parameter symbols and their expected values from the GA. After simulating 

several topologies with optimal performance, 100 individual tests were done 

for each combination instance, and the mean results are given in Table 13. 

The first test involves all parameters having the same unit weight. Following 

that, necessary actions were made, raising or reducing the weight value based 

on the outcomes of the specified parameters. It is repeated in the following 

scenarios until the combination that produces the best answer is discovered. 

Except for the maximum and lowest energy, which have no effect at the start 

of the simulation, all weight coefficients are units at the start. Because 

coverage is a priority in our application, the value 0.3 of  does not match 

our criterion. As a result, in the second situation,  value is 2, enhancing its 

influence on fitness. There is now better coverage and minor adjustments to 

other metrics, but  is still high and not optimum for our situation, indicating 

that sensor nodes are distributed inefficiently among clusters. As a result,  

is set to 2 to restrict the value of overlaps. The coverage condition is 

somewhat modified based on the results of the next instance, and the overlaps 

criterion is fulfilled in this situation. 

 

Table 12: Performance parameters with their respective weight coefficients 

 
Performance parameter Weight coefficient Objective of GA 

Uncovered surface   Min. 

Sensor nodes density for CH   Max. 

Avarage energy   Min. 

Number of non-connected nodes (SOR)  Min. 

Number of overlaps (   Min. 

Maximum energy   Max. 
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Minimal energy   Min. 

Lifetime   Max. 

 

Table 13: Results of combinations of weights coefficients 

 
No. Weight coefficient Parameters of performance 

              

1 1 1 1 1 1 0 0 1 0.3 43 614 38 0.4 

2 2 1 1 1 1 0 0 1 0 42 621 39 0.6 

3 2 1 1 1 2 0 0 1 0.1 40 631 38 0.1 

4 2 2 1 1 2 0 0 1 0.2 37 662 41 0.5 

5 2 0.5 1 1 2 0 0 1 0.3 41 618 33 0.2 

6 2 0.5 1 1 2 0 0 2 0.5 45 577 33 0.6 

7 2 0.1 1 1 2 0 0 2 1 48 446 19 0.7 

8 2 1 1 1 3 0 0 1 0.2 39 639 37 0 

9 2 1 2 1 2 0 0 1 0.2 40 621 34 0.1 

10 2 0.5 2 1 2 0 0 1 0.5 43 494 18 0.3 

11 2 1.5 1 1 0.5 0 0 1 0 42 631 43 1.1 

12 2 0.5 1 1 1.5 0 0 1 0.1 42 606 34 0.5 

13 2 1.5 0.5 1 1 0 0 1 0 40 641 41 0.4 

14 2 0.5 1.5 1 1 0 0 1 0 46 478 21 1.1 

15 2 1 0.5 1 1.5 0 0 1 0.1 40 635 39 0.2 

16 2 1 1.5 1 0.5 0 0 1 0 43 606 38 1.8 

17 2 1 1 1 2 0 0 1 0.4 44 595 36 0.4 

18 2 1 1 1 2 0 1 1 0.2 40 636 38 0.1 

19 2 1 1 1 2 0.5 0 1 0.2 42 612 36 0.1 

20 2 1 1 1 2 0 0.5 1 0.1 40 632 37 0.2 

 

Changing the weight value of  or the maximum power parameter 

is one way to optimize sensor node dispersion. The algorithm will prefer to 

generate topologies with a uniform distribution and fewer CH. Thus, the 

strategy for selecting the optimal coefficient combination for the network 

under consideration is implemented in this manner. According to the 

simulation, the instance 19 is the combination of weights that offers the most 

effective parameter compromise for obtaining a full-coverage WSN. As can 

be observed, unlike in previous circumstances, it is set to a relatively low 
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value of ; as a result, the number of sensor node connections per CH is 

limited. This weight combination allows for an increase in  and a more 

efficient use of energy resources. The clustering of sensor nodes is 

particularly efficient for full-coverage of the environment, consistent power 

consumption amongst CHs, and avoiding overlaps. Table 14 summarizes all 

of the dimensions and characteristics of ideal case 19, based on an average 

test of 100 cases. 

 

Table 14: The average parameters of the most optimal topology 

 
Network parameter Values 

Number of CH 7 

Number of HRN 18 

Number of LRN 24 

Number of IN 51 

Uncovered surface  0.2 

Sensor nodes density for CH  6 

Number of overlaps  0.19 

Maximum energy  24 

Minimal energy  1 

Lifetime  42 

Average energy remaining after disconnection of the network 611.3 

ND before network disconnection 42 

ND after network disconnection 36 

 

Based on the provided topology findings, it is clear that just 49 active 

sensors out of 100 are required for comprehensive coverage of the 

surroundings. The nodes are distributed around the environment in seven 

clusters, with six sensor nodes each CH. Because there is no overlap, the 

distribution of sensor nodes per CH is fairly consistent and efficient (0.19). 

Furthermore, homogeneous sensor node distribution allows for balanced 

power consumption between CH and nodes with greater power consumption. 



 101

In comparison to other investigated scenarios, the network with the produced 

topology has optimum  since it can function for 42 cycles before being 

disconnected. GA are logical strategies that seek a global maximum or 

minimum in a space with several options. As a result, the greatest answer in 

our instance would be to keep things as simple as possible. To determine 

whether we truly constructed the topology with the best performance for the 

given circumstance, we must examine the algorithm's performance. The 

advancement of the fitness value of the people formed throughout the 

implementation of a deductive algorithm may be used to evaluate its 

performance. This assessment technique may be insufficient to avoid or 

identify premature convergence, and hence monitoring of specific application 

parameters throughout algorithm implementation is required to determine 

whether or not the parameter values converge to appropriate values for the 

application. It is sufficient to assess the advancement or regression of 

performance parameters for the topology of a WSN to establish if the 

employed algorithm is effective in developing a viable solution or not. In 

most circumstances, if the algorithm converges early, we are working with a 

restricted search space. To avoid it, simple actions such as raising the pace or 

modifying the mechanism of mutation, changing the method of 

recombination, choosing individuals for recombination, increasing the 

number of people per population, and executing the algorithm over more 

generations can be taken. Figure 32 depicts the minimizing of the number of 

overlaps ( ), as expected in Table 12. 
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Figure 32: Number of overlaps ( ) 

 

 

 

Figure 33: Average difference of the value of fitness function between 

nodes during the application of GA. 

 

The selection and setup of genetic procedures are carried out experimentally 

using evidence based on performance parameter progress. Figure 32 depicts 

the minimization of the number of overlaps ( ), as anticipated in Table 12, 



 103

during the algorithm's execution using the combination number 19 of the 

weights (Table 13). Fig. 32 results confirm once again the results given in 

Table 14, where the average number of overlaps ( ) is 0.19. We have a 

convergence of population individuals difference for the fitness function 

based on the findings of the GA applied to the design of a WSN, as shown in 

Fig. 33. The value of this difference is very high at the beginning of the 

algorithm, when the first generation is generated randomly, indicating that 

randomly generated solutions are far from the optimal required solution, and 

the average difference in the value of fitness function among individuals in 

the population is quite high. After a few dozen generations, the algorithm 

begins to converge towards more acceptable solutions with lower fitness 

function values. However, even after convergence, the difference between 

individuals in the population remains large, implying that the search space is 

large enough to allow for the production and selection of the best solutions 

by genetic operations. The algorithm has improved over generations until it 

reaches a point when the difference between people in fitness value reduces 

and there is no improvement in the fitness function's value of the best 

individual. At this point, we can declare with certainty that the population has 

converged and we are either very near to or have found the best feasible 

answer. Observing the degree of difference between people and the 

advancement of the average fitness value is a rather good way of judging 

whether or not we have discovered the best feasible answer. However, this 

strategy is frequently insufficient since we lack data on the progress of other 

metrics. As far as we know, fitness value advancement can also result from 

the improvement of a single parameter of the fitness function with a high 
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weight ratio in respect to other parameters, while other parameters may not 

change or may deteriorate. Because network characteristics are directly 

reliant on the application, WSN design is a process that needs consideration 

of both application requirements and wireless sensor network restrictions. 

The distribution of joints in the environment, as well as the status of their 

functioning and cluster structure, has a significant influence on the efficiency 

of communication functions, environmental monitoring, and energy usage. 

The network topology design process has an impact on network performance 

and must be completed before it can be implemented in the environment. Due 

to environmental limits and needs, designing WSN’s is sometimes a difficult 

task that entails striking a balance between opposing performance factors. 

After the 3000’th generation, the average fitness value and network 

performance characteristics in successive populations stalled and stayed 

constant, with very minor variations in some situations. As a result, the 

genetic algorithm is programmed to end after 4000 generations. 

 

3.6 Conclusion 

 

The design of a WSN homogeneous network with hierarchical 

structure is demonstrated in this third chapter, with the priority of covering 

an environment with minimal cost, high connection, and maximum longevity. 

Designing a network necessitates determining the best compromise between 

performance parameters, with the priority of each parameter regulated by the 

weight coefficients in the fitness function. We proved that our system can find 

the most effective weight combination through continuous testing and case 

selection, resulting in a topology with network parameter values that fulfill 
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the application constraints. Finally, the chosen weight combination may be 

used to generate the most performable topology conceivable. The 

optimization of communication between nodes can be simulated in future 

efforts. The design criterion may involve the selection and assessment of 

routing algorithms' efficiency. This is possible by implementing a network 

performance simulation and evaluation function for specific hierarchical 

routing protocols. Another feature that may be included is the simulation of a 

network breakdown and the testing of the performance of several network 

recovery mechanisms in order to pick the best one. 
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Appendix A. 

 

GA Configuring 

 
A.1. Parameters of “options” structure for configuring the GA 

 

- Value (option) – Description 

- PopulationType (bitstring) – The binary row determines the kind of 

genome on which the GA will be applied. 

- Generations (4000) – Determine the maximum number of iterations 

or generations the GA can have before it is terminated. After 4000, the 

algorithm will be terminated. 

- FitnessScalingFcn (fitscalingprop) – Determines the mechanism of 

scaling individuals in the population depending on fitness values. In this 

scenario, the selectivity of the selection is proportional to the fitness value. 

- SelectionFcn (selectionstochunif) – Determine the recombination 

selection function of individuals. The approach of universal stochastic 

selection was used in this circumstance. 

- CrossoverFcn (crossoverscattered) – A genetic recombination 

operation is chosen for the creation of individuals from the following 

population. 

- MutationFcn (mutationgaussian) – Determines the mutation 

approach employed. 

- StallGenLimit (4000) – Terminate the GA if there is no progress in 

the population's average fitness value after a given number of generations, 

4000 in this example. 
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- StallTimeLimit (10000) – Terminate the GA if there is no 

improvement in the population's average fitness value after a particular 

number of seconds, 10000 in this example. 

The pseudo code of the fittness function will be described in the 

following. 

3. A.2. Pseudo code of fitness function 

 

Step 1: Decode the genome of the individual m from the population  

M(t) and construct the matrix  of the structure with the data  of the positions 

and states  of the nodes in the network; 

Step 2: Build the connection matrix depending on the distances of the 

CH from the sensor nodes, based on the structure matrix; 

Step 3: Based on the link matrix  evaluate: 

a) Sensor nodes density for CH, SpC; 

b) Number of non-connected  nodes, SOR; 

c) Overlap number,  Ov; 

d) Communication energy for each node; 

Step 4: Evaluate  the uncovered US  surface, testing  whether  the area 

of inactive and un- connected nodes is covered by adjacent connected nodes; 

Step 5: Build the  power matrix  for each active  node, through  the  

amount  of operating and communication  energy; 

Step 6: Based on the energy matrix  estimate: 

a) Average energy, EmA; 

b) Minimum energy consumed per node, Emin; 

c) Maximum energy consumed per node, Emax; 

d) Full load network life, LT ; 
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Step 7: Calculate  the fitness value F of the individual m through  the 

weighted sum func- 

tion: 

 

 = + − + + ++ − +  + −  

(61) 

   

Step 8: Repeat  the above maps for all individuals’ m of the 

population. 

 

 

 

 

 

 


