

Università Politecnica delle Marche
Ph.D. Course in Information Engineering

Curriculum in Biomedical, Electronics and Telecommunication Engineering

Application of algorithms for system

performance increasing in ICT

Ph.D. Dissertation of:

 DEIVIS DISHA

Thesis Advisor:

 Prof. ENNIO GAMBI

Ph.D. Course Coordinator:

 Prof. FRANCO CHIARALUCE

XXXV edition - new series

Università Politecnica delle Marche

Ph.D. Course in Information Engineering

Facolty of Information Ingineering

Via Brecce Bianche — 60131 - Ancona, Italy

Acknowledgements

To my beautiful wife Blerina, my son Hansel, my Professor Ennio Gambi

and all my Family.

 i

 i

Abstract

Different algorithms used in ICT are described in this dissertation regarding

artificial intelligence, deep learning, and genetic algorithms to process signals

in communication technologies with the purpose of increasing system

performance.

Advances in microwave and millimeter-wave systems have enabled remote

sensing techniques previously utilized in long-range applications to be

utilized in relatively close-range applications such as detection and

categorization of human presence and measurement of human attributes thank

to the huge bandwidth and the short time of signal transmission. The design

of a WSN homogeneous network with hierarchical structure is demonstrated

with the priority of covering an environment with minimal cost, high

connection, and maximum longevity.

In the first part will be presented different techniques to process the micro-

Doppler signals coming from automotive radars regarding classification and

tracking of the objective gained from the information of the target. The

second part will present the comparison between machine learning and deep

learning algorithm used for human activity classification purpose and getting

the best results in terms of performance, accuracy etc. The last part is the

demonstration of an enhanced genetic algorithm for improving performance

in customizable hierarchical wireless sensor networks choosing weight

combination to generate the most performable topology conceivable.

 ii

Contents

1. List of Figures .. III

2. List of Tables ... IV

1. Introduction of FMCW radars, ML & DL networks 1

1.1. Introduction ... 1

1.2. MIMO-FMCW radar principle ... 1

1.3. Machine learning and deep learning ... 2

1.3.1. Artificial Neural Networks .. 8

1.3.2. Convolutional Neural Networks .. 11

1.3.3. Architecture of a CNN .. 14

1.3.4. CNN in radar signal processing ... 22

2. Artificial Intelligence in radiofrequency signals................................ 28

2.1. Pre-processing FMCW signals .. 28

2.2. Classification Framework ... 32

2.2.1. PCA (Principal Component Analysis) 33

2.2.2. Description of the principal component method 34

2.2.3. t-distributed Stochastic Neighbor Embedding 43

2.2.4. Machine Learning Classification Algorithms 45

2.2.5. SVM Support Vector Machine ... 47

2.2.6. KNN k-nearest Neighbors Algorithm 49

2.3. Experimental Implementation Tests ... 51

2.4. Different classification approaches ... 65

2.5. PCA Complexity analysis ... 67

2.6. Parameter extraction from Range-Doppler maps 67

2.7. VGG16 neural network classification ... 72

2.7.1. VGG16 Architecture and Uses ... 73

 iii

2.7.2. VGG16 in tranfer learning ... 76

2.8. Machine learning classification ... 77

2.9. Deep Neural Networks results .. 78

2.10. Comparison of several techniques .. 80

2.11. Conclusion .. 82

3. Genetics algorithm in WSN .. 83

3.1. Introduction ... 83

3.2. Related works .. 86

3.3. Cluster-based routing protocols .. 87

3.4. Genetic algorithm-based routing protocols 88

3.5. Enhanced GA .. 89

3.5.1. WSN model .. 90

3.5.2. WSN design parameters ... 92

3.5.3. Performance and application requirements 94

3.5.4. Results of the network design algorithm 97

3.6. Conclusion ... 104

4. List of Publication .. 106

5. Bibliography .. 108

6. Appendix A ... 117

A. GA configuring ... 117

1. Parameters of “options” structure for configuring the GA . 117

2. Pseudo code of fitness function .. 118

List of Figures

1. Approaches in AI systems. Blue boxes indicate components that learn

from data .. 5

2. Schematic representation of a neural network 9

3. Schematic representation of a CNN with convolution, pooling and

fully connected layers (activation functions are omitted in the

representation) ... 13

4. Pipeline used to obtain the initial complex matrix 29

5. Calculation process of the range-Doppler map 30

6. Example of range time map for a walking person 31

7. Calculation process of the Doppler-time map 32

8. Example of (a) range-Doppler map and (b) Doppler-time map 33

9. Data in low dimensional space .. 44

10. Two class classification example (a) SVM (b) kNN, in the case d1

and d2 are the distances metrics... 46

11. Possible Hyperplanes ... 47

12. Hyperplane in 2D and 3D feature space. (a) A hyperplane in R is a

line, (b) A hyperplane is R is a plane ... 48

13. Support Vectors ... 49

14. k-NN classification principle ... 50

15. Hallway used for the acquisitions .. 52

16. Analysis on the background in absence of subjects using (a) Range

Doppler map and (b) Doppler-Time map .. 54

17. Example of a person walking fast ((a) and (b)), slowly with hands in

pockets ((c) and (d)) and slowly ((e) and (f)) 55

 iii

18. Comparison of classification accuracy achieved by SVM and k-NN

considering 2 and 3 classes, applying (a) Principal Component

Analysis (PCA) and (b) t-distributed stochastic neighbour embedding

(t-SNE) ... 58

19. Results of the leave-one-out cross-validation for the k-Nearest

Neighbour (k-NN) .. 59

20. Doppler-time maps of a person walking slowly with non-swinging

hands (a), slowly with swinging hands (b), limping (c) and rapidly (d)

 ... 63

21. Results of the leave-one-out cross-validation for the k-NN for the

second dataset .. 64

22. Flow chart of the different pipelines compared 66

23. Extraction process of the Maximum Doppler value 69

24. Comparison between the calculated values for different

acquisitions .. 69

25. Doppler distribution for three different activities at the same distance.

The values are re-scaled for a better comparison............................... 70

26. Effect of the applied threshold ... 71

27. Effect of the Butterworth filter on the computation of the Maximum

Doppler value for the fast walk and the slow walk activities 72

28. VGG16 Architecture .. 74

29. VGG16 Architecture model layers .. 75

30. Training and validation loss of VGG16 neural network for a) three

and b) two classes .. 79

31. Network model layout ... 91

32. Number of overlaps .. 102

33. Average difference of the value of fitness function between nodes

during the application of GA ... 102

List of Tables

1. Radar parameters .. 53

2. Results of the leave-one-out cross validation for support vector

machine (SVM) with different kernels ... 56

3. Confusion matrix obtained applying SVM and kNN (into

parentheses) on two classes, considering 5 principal components, acc

= 93.5 % ... 60

4. Confusion matrix obtained applying SVM and kNN (into

parentheses) on three different classes, considering 9 principal

components, acc = 72% , acc = 66.7% 60

5. Comparison of different radar based methods for human walking

classification ... 61

6. Confusion matrix obtained applying k-NN on four activities,

considering 9 principal components. Accuracy 96.1% 64

7. VGG16 results for the three activities .. 80

8. Accuracy achieved by the proposed methods for two activities 81

9. Accuracy achieved by the proposed methods for three activities 81

10. Computational costs of the considered methodologies for feature

selection. *Note that the cost for the VGG16 refers to a single

image .. 81

11. Network design criteria .. 95

12. Performance parameters with their respective weight coefficients .. 98

13. Results of combinations of weights coefficients 99

14. The average parameters of the most optimal topology 100

 1

Chapter 1

Introduction of FMCW radar, ML & DL

networks

1.1 Introduction

Advanced Driver Assistance Systems (ADAS) is one of the primary

research aims in automotive technology, which has resulted in more

sophisticated sensors, one of which is Frequency Modulated Continuous

Wave (FMCW) Radars. To perform good measurements and support

assistance systems, Radars need huge bandwidth and small Chirp Repetition

Time (CRT) but these features can be powerful also to extract micro-Doppler

(mD) signals. To classify this signals Modern Machine Learning (ML)

algorithms provide a highly strong tool where exists various techniques to

extract features and classify signals with varying performances and

computational costs.

1.2 MIMO-FMCW radar principle

The key principles underpinning the MIMO-FMCW principle, which

is at the heart of the processing chain presented in this study, are briefly

described in this section. MIMO radar is based on the homonym idea from

communications, in which a collection of M transmitters and N receivers

provides M x N separate propagation channels [1]. The main advantage is that

M + N physical components may be used to produce M x N virtual channels.

 2

In radar, there is a contraposition between distributed and colocated MIMO.

The radar cross-section (RCS) of the target for each propagation path in the

former may be treated as independent random variables, allowing for

improved detection performance and the extraction of additional geometrical

information due to spatial variety. In the colocated instance, waveform

diversity can be used to improve spatial resolution with large virtual

apertures, or array signal processing methods can be used to boost SNR. When

compared to the standard phased array, which corresponds to the single-input

multiple-output (SIMO) scenario, a MIMO radar may boost the degrees of

freedom up to M times by employing orthogonal waveforms. Multiplexing

the signals in time, frequency, or coding can achieve orthogonality.

1.3 Machine learning and deep learning

The major characteristics of deep learning algorithms are reviewed

and compared to standard machine learning approaches in this part,

introducing the most significant ideas and techniques with an emphasis on

CNN-based image classification structures and their principles. Finally, the

applications of such approaches in radar signal processing are discussed.

Machine learning is a branch of research that is commonly included in the

broader idea of artificial intelligence, which includes computers capable of

addressing issues traditionally associated with human intellect. Machine

learning, as opposed to rule-based systems, in which a set of instructions is

programmed to produce a particular output given a specific input, is a family

of algorithms capable of learning general rules to generate predictions or

choices from incoming data without being explicitly programmed.

 3

Regression, classification, density estimation, anomaly detection, machine

translation, and many more tasks are among them. Significant progress has

been made in recent decades, driven by the need for automation of processes

and decision making without human interaction across a wide range of

applications. Machine learning is frequently divided into two categories:

supervised learning and unsupervised learning. In the supervised pattern, the

algorithm is trained using samples of an input vector x and an associated label

y, and it learns to predict the value y from the input x, often by estimating

p(y|x). Classification tasks are an example of an application that supervised

algorithms may do. Unsupervised learning approaches, on the other hand, aim

to learn the hidden structure from unlabeled data: with an input vector x of

data, the algorithm attempts to learn the probability distribution p(x) or certain

distribution attributes. This method is commonly used for problems like as

density estimation and clustering.

The distinction between these groups is not officially defined, as the

borders are occasionally blurred, and certain techniques, such as

reinforcement learning or semi-supervised learning, do not fit well into any

of them. In any event, all machine learning algorithms and approaches are

based on the premise that machines can learn from data in order to better at a

specific job, and they typically comprise three components: representation,

evaluation, and optimization. The first idea relates to the work of describing

the input data in a formal language that the computer can understand, i.e. a

collection of characteristics that reflect the input data. The other two concepts

deal with how to map the input data represented by a set of features to a

desired output: evaluation establishes a loss or scoring function that

 4

objectively defines the model's performance (mean squared error, likelihood),

and optimization includes the strategy to achieve the best possible score in

the defined objective function (gradient descent, linear programming). In

traditional machine learning methodologies, the representation of the input

data is generally accomplished by a human in order to give the machine with

some type of structure in the data, and the computer then learns from that

preprocessed data automatically (Fig. 1). Previous research on both sides,

data representation and learning process automation (assessment and

optimization), has resulted in machine learning's extraordinary success in a

wide range of applications. The representation of the data is therefore an

important aspect of the machine learning pipeline, because alternative ways

of expressing the input information can have a significant impact on the

algorithm's performance for a specific job. In voice recognition, for example,

numerous algorithms for feature extraction (and combinations of such

features) have been presented during the last decades, some of which are

better suited for certain tasks (chroma vector, spectral rolloff, etc) [2]. The

similar problem occurs in computer vision, where a number of feature

extraction approaches (histogram of directed gradients, scale-invariant

feature transform, etc.) [3] are commonly used for natural picture

categorization. In this vein, the process of selecting and/or designing the

features that best represent or model the input data for a specific application

(representation) is a task that necessitates extensive specific-domain

knowledge, not only in a specific field of study (e.g., audio signal processing),

but also in very specific applications (e.g. text-independent speaker

recognition, unstructured audio classification for environment recognition

 5

etc.). Furthermore, when working with complicated data, underlying

correlations or interactions between variables within the data are not always

obvious, and human feature engineering is frequently done by trial and error.

As a result, it is a time-consuming procedure that is frequently far from

optimal.

Figure 1. Approaches in AI systems. Blue boxes indicate

components that learn from data.

In this context, deep learning, a subset of machine learning

techniques, entails teaching the computer not only the mapping between the

feature space and the output, but also how to represent the input data as a set

of features. In this manner, the algorithm seeks the best representation of the

input data in order to obtain the optimum performance for a certain

application or job. The learned features are optimum in the sense that they

strive to minimize an objective function for a specific application by

including the representation step into the optimization problem. As a result,

 6

these algorithms are especially well suited for unstructured data, such as

photos, audio, or text, where there are a large number of sources of variation,

making it challenging to automatically extract high-level abstract

characteristics that appropriately describe the data. Deep learning is believed

to be scalable across domains as compared to other techniques focused on

feature design since, in theory, no substantial specific-domain expertise is

required.

The competence required in a specific area to create a good model is

replaced by the requirement of a large enough data collection to extract

generic characteristics from raw input data. In this sense, there is a paradigm

shift from model-driven to data-driven techniques, where highly complicated

characteristics may be learnt automatically given enough data. One of the

important aspects of deep learning approaches is how they learn how to

represent complicated notions. The technique is founded on the concept of a

hierarchical representation, in which complicated properties are described in

terms of simpler ones. Higher layers in the hierarchy reflect higher degrees of

abstraction. Learning may be viewed as an inductive process in which a group

of specific instances is examined in order to construct a general representation

by extracting successive features of increasing complexity at different levels

of abstraction. Deep architectures may represent more complicated concepts

because they can integrate numerous intermediary characteristics

hierarchically through different degrees of abstraction, as indicated by the

number of these intermediate representations or layers. Tasks connected to

visual perception, such as recognizing or categorizing items in a picture, are

typical instances of these notions. A picture contains a wealth of information

 7

in the form of color, textures, and spatial relationships between neighboring

regions, but the input data is displayed in 2-D as a collection of raw pixels.

Lower layers of a CNN may train to recognize fundamental patterns based on

geometrical primitives and basic features such as edges, blobs, or color

information, while intermediate layers combine these elements to generate

more sophisticated patterns such as corners, contours, or textures. As input

flows to higher layers, the network learns more abstract representations, such

as object components with distinguishing characteristics. In the case of

recognizing a car in an image, the network would learn to represent the wheels

or the contour of the chassis by combining the intermediate representations,

until the upper layers decide that the detected parts of the image are consistent

with the idea of a car, based on previous experience gained by observing a

number of images of cars during training. The ability to acquire big abstract

concepts hierarchically from smaller components is a fundamental aspect of

the human brain's learning process and one of the reasons for such algorithms'

strong capacity for dealing with complicated representations. As a result, deep

learning has been effectively implemented in a wide range of applications

with extremely favorable outcomes, beating earlier techniques in machine

learning in many situations. Deep learning has gotten a lot of attention from

researchers in recent years, which has resulted in a wide range of solutions

based on various architectures and techniques. In this section, we will go

through the fundamental concepts of artificial neural networks and a similar

design, a convolutional neural network, which will be used in the context of

this study to classify radar mD images.

 8

1.3.1 Artificial Neural Networks

Artificial neural networks (ANN’s) are computing systems build with

a set of interconnected nodes that process information responding in a

dinamic way to external inputs. In these systems, information can flow from

the input to the output with connections just in one way, or the nodes might

have feedback connections or loops between them. The former are known as

feedforward networks, while the latter are known as recurrent neural

networks and will not be investigated further in this work since they are

suitable for temporal series and other applications that are outside the scope

of this research. The goal of feedforward networks is to estimate a function g

in order to obtain the required response y from a collection of inputs x, such

that y = g (x). This is accomplished by merging a number of fundamental

units known as perceptrons, which execute simple operations. The perceptron

is sometimes viewed as a simplified model of a neuron that, in essence,

creates a binary output from an input vector x and a set of learning parameters,

notably weights w and bias b, as follows:

 = 0 + ≤ 01 + > 0
(1)

Because the perceptron's operation is linear, a nonlinear activation function

f(z) is added at the output to mimic complex functions. The logistic function,

hyperbolic tangent, and rectified linear units are examples of activation

functions (ReLU). Non-linear functions can therefore be approximated by

merging many neurons in various layers. Indeed, multilayer feedforward

networks are referred to as universal approximators because they may

 9

approximate any function of any complexity [4], [5]. This is a significant

observation since it demonstrates the strength of neural network

representation. The origins of ANNs are claimed to be biological neural

networks. Although biological and modern artificial neural networks have

considerable inherent differences, there are certain commonalities that might

be exploited to build specific comparisons between the two ideas. For

example, in terms of the dynamics of individual neurons, a certain parallelism

(synapses and weights, axons and element outputs, etc.) may be established

between the elements, as can similarities in the network structure in terms of

neural connection. However, there are significant distinctions between

biological and artificial neural networks that necessitate a rigorous

comparison. In any event, the concept of a biologically inspired artificial

neural network was first established in 1943, when Warren McCulloch, a

neurophysiologist, and Walter Pitts, a mathematician, built a rudimentary

neural network using electrical circuits while researching the functioning of

neurons in the brain.

Figure 2. Schematic representation of a neural network

 10

The output of the j-th neuron at the layer l is the function f (activation

function) of the outputs of the layer l – 1 and the weights and bias of the layer

l. The layer l has j hidden units, while layer l -1 has i hidden units. The notion

of a perceptron and its training was presented in the 1950s, followed by the

first successful attempts at applying neural networks to real engineering

issues, which drew significant attention and financing [6]. However,

development in AI came to a halt at the end of the 1960’s when the perceptron

technique was challenged for being incapable of scaling to multilayer neural

networks. The notion of using backpropagation to train multilayer neural

networks rekindled interest in neural networks in the 1980’s, among other

things. The first allusions to the notion of CNN’s may be found in a work by

Fukuhsima [7] from that time period, in which an architecture for visual

pattern recognition was presented with comparable properties to

contemporary deep CNNs. The so-called second wave of neural network

research lasted until the 1990s, when it was supplanted by interest in other

more effective approaches such as support vector machines [8]. However,

significant advances were made during this time, such as the use of stochastic

gradient descent and backpropagation to train deep networks, as described in

a paper by Yann LeCun et al. Around 2006, Hinton proposed the concept of

deep belief networks and unsupervised pre-training, ushering in the third

wave of neural network research [9]. Around that time, the idea of deep

learning was established to stress the relevance of depth in neural networks.

The design developed by Krizhevsky et al. [10], which won the Imagenet

Large Scale Visual Recognition Challenge in 2012, was the turning point that

 11

finally drew significant attention to neural networks and deep learning. The

suggested design made use of graphic processing units (GPU’s) to train the

model, as well as two approaches that are standard building elements in

contemporary CNN architectures, namely dropout and ReLU’s. Deep

learning approaches have subsequently gained popularity and are the subject

of extensive study in a wide range of applications such as computer vision,

natural language processing, and so on. The causes for the current

proliferation of these approaches are most likely due to the abundance of data

in the form of high-quality labelled datasets, as well as access to a massive

amount of unlabeled data from various sources. Parallel to this, the rise in

processing capacity, particularly the ability to parallelize computing with

GPU’s, has resulted in deeper and more complicated architectures that can be

trained with very large data sets. Furthermore, the popularity of deep learning

has garnered significant attention and resources from academic and industry

sectors, resulting in a large community of researchers, software platforms,

and constant algorithm and technique innovation.

1.3.2 Convolutional Neural Networks

Convolutional neural networks are a type of neural network that has

one or more convolutional layers to exploit the 2-D structure (or greater

dimensionality) of the input data, such as pictures, audio signals, and so on.

Because of their ability to recognize patterns and express complex ideas, these

architectures have received a lot of attention in the field of computer vision.

CNN-based architectures are regarded state-of-the-art in applications such as

image classification [10], [11], semantic segmentation [12], object detection

 12

[13], and so on. Another major area of research is the application in natural

language processing tasks such as machine translation [14], speech

recognition [15], and many others. Other fields have also taken use of the

possibilities of these algorithms for various objectives such as drug discovery

[16], recommender systems [17], market prediction [18], and so on. CNN’s

are inspired by the mammalian visual cortex, where specific cells are sensitive

to partly overlapping sub-regions that compose the vision field. While simpler

cells operate as filters to identify specific patterns in such places, more

sophisticated cells provide higher order responses, resulting in the visual

perception [19]. In contrast to CNN’s, the input data of a fully connected

neural network is provided as a vector that is converted through a succession

of layers, each of which has a collection of components that are connected to

the output of the preceding layers. In the case of a picture as input, each pixel

has a weight, and the succeeding levels of the architecture are linked to all of

the preceding layer's parameters. When dealing with 2-D data, such as

pictures, the fully connected technique has the drawback that the number of

parameters scales quadratically with the size of the input and it ignores the

property of local spatial correlation of images. As a result, it is impossible to

train such structures with several hidden layers.

Convolutional neural networks, on the other hand, are founded on two

fundamental concepts: local connection and shared parameters.

Convolutional layers are created by combining feature maps that cover a

certain receptive field. The spatial correlation within a particular region may

be used by establishing locally linked layers, so that the input of a neuron in

a given layer is derived from a subset of units with contiguous receptive fields

 13

from the preceding layer. As a result, neighboring areas that produce separate

patterns can be identified.

Figure 3. Schematic representation of a CNN with convolution,

pooling and fully connected layers (activation functions are omitted in the

representation)

The parameters of the convolutional layers, on the other hand, are

shared over the full visual field, based on the assumption of stationarity, i.e.

the picture statistics are location-invariant. That is, the convolutional layers

learnt kernels can recognize patterns that exist at various places in the picture.

These qualities allow for a significant reduction in the number of network

parameters as compared to a fully connected neural network, enhancing

learning efficiency and improving generalization as the number of degrees of

freedom is lowered. For example, a neural network with 40K hidden units and

an input picture of 200 x 200 pixels would have roughly 2 billion parameters,

but a convolutional neural network with feature maps of 10 x 10 would only

need 4 million parameters for the same input.

 14

1.3.3 Architecture of a CNN

CNNs are extremely adaptable designs that can exhibit a variety of

topologies based on a variety of parameters like as the application, the nature

of the input data, and many more. Furthermore, as the field progresses, new

designs and methodologies are presented on a regular basis, with further

variants. The next section reviews the fundamentals of a standard CNN

architecture for image classification, which is the application that will be

explored in this study. A typical CNN design has the shape seen in Fig. 3 and

is often built of numerous construction components, which we will briefly

introduce:

- Convolutional layers:

Convolutional filters are the foundation of CNN’s. The goal is to

recognize certain patterns using a collection of learnable kernels. The filters

cover a certain region (receptive field) and span into a third dimension known

as depth. A bank of filters is employed in a convolutional layer to identify as

many features as the number of kernels. The filter bank is therefore a 4-D

tensor of size S x S x D x , that is, a bank of filters of kernel size S x S

and depth D. The depth dimension must be the same as the preceding

convolutional layer's number of features, . When working with a color

picture (RGB) as input data, for example, the first convolutional layer has a

depth of three to correspond to the number of color channels. The size O of

the output map on each picture dimension may be described in terms of the

convolution's and stride as, where P is the input dimension

size.

 15

 0 = − + 2 + 1
(2)

If the convolution parameters are set so that the output is the same size as the

input map P x Q, the output value of the feature map of a particular feature

at position p, q in the − ℎ layer may be written as :

 , = , , , +

(3)

where , represent the weights of the kernel and is the bias.

Convolutional layers with common parameters exhibit translation

equivariance, which means that translating the input features results in an

equivalent translation of the output.

- Non-linear activation function:

In order to describe non-linear functions in a neural network, a non-linear

activation function is applied at the output of the neurons. Because the

convolution is a linear operator, the same logic applies, and an activation

function f(ּ) is applied to the convolution's output:

 , = , (4)

In order to estimate the gradient of the cost function via backpropagation, the

activation function must be differentiable. Different activation functions can

 16

be employed in neural networks and CNN’s. Two activation functions that

will be utilized are: the sigmoid function

 = 11 + −
(5)

And the Rectified Linear Unit (ReLU)

 = 0, (6)

ReLU is presently the default suggestion in deep learning architectures owing

to its enhanced convergence outcomes and lower processing cost when

compared to other functions such as sigmoid or hyperbolic tangent [10].

- Pooling layers:

Pooling layers are added after the activation functions to lower the spatial size

of the activation maps (i.e., the feature maps after non-linear activation). A

pooling layer of size separates the activation maps into x areas and

extracts a specific statistic from each. Such statistics include average pooling,

L-2 norm pooling, and simply choosing the highest value (max-pooling). As

a result, the number of parameters in the following layer is decreased by a

factor of about , resulting in a significant reduction in computing effort. As

the picture proceeds through successive convolutional layers and pooling

processes, semantic information is retrieved at the price of spatial

information, i.e. the spatial resolution of the activation maps is reduced. This

is a useful quality in classification jobs, as it ensures that the absolute location

 17

of the features in an image does not affect the classification's result. When

recognizing an automobile in a picture, for example, the classifier should be

able to recognize it whether it is in the center or a corner of the image. In this

sense, pooling layers make the feature representation insensitive to tiny

translations, because the result of the pooling operation is the same as long as

the detected feature is within the pooling region.

- Fully connected layers:

According to the concept depicted in Fig. 1, the convolutional and

pooling layers of a CNN for classification tasks may be viewed as feature

extractors, whereas the top layers conduct the mapping from the feature space

to the output scores. Although any classifier, such as an SVM [20], can be

utilized, a multilayer perceptron is frequently employed since it integrates

nicely with a CNN for end-to-end training with many classes. It is commonly

referred to as a Fully Connected (FC) layer in this context. The high level

information retrieved in the convolutional layers in the form of an input

volume are translated into a vector of features that is utilized to conduct

classification in FC layers. This is accomplished by linking all of the

activations in the preceding layers with the nodes in the FC layer in one or

more intermediary stages, so that the number of nodes at the output equals the

number of classes in the classification. The high level features are thus

mapped to the output classes via a set of learnable weights in the multilayer

perceptron. The softmax function (also known as multinomial logistic

regression) generalizes the logistic function to K classes and maps input data

to output values within a range of [0 ; 1], thus the softmax regression scores,

 18

or equivalently, the output scores for each class, may be understood as

probabilities:

⎝⎜
⎛ = 1| ;...= | ; ⎠⎟

⎞ = 1∑ exp ⎝⎜
⎛exp ...exp ⎠⎟

⎞

(7)

The cross-entropy loss is the loss function associated with the softmax

function:

 = − 1 ==

(8)

where M is the number of samples and (== k) equals 1 if the m-th training

sample belongs to class k and 0 otherwise.

- Training a CNN:

The supervised neural network training concept consists of changing the

network's parameters w to minimize the cost function given a training

data set with M labelled samples , … , where represents

the input features of dimension N of the m-th sample, and 1,2, … , the

labels. This concept extends to CNN’s with no loss of generality. The kernels

of the convolutional layers and the weights of the fully connected layers are

the learnable parameters in a CNN. The standard technique for locating local

minima of the cost function is based on gradient methods [21], in which the

 19

gradient of the cost function with respect to the network parameters

is computed, and then these parameters are updated in the opposite direction.

There are several methods for estimating the gradient of the cost function. On

the one hand, batch gradient descent estimates the gradient using the entire

training set, whereas stochastic gradient descent approximates it iteratively

with each individual training set. While the former requires enough memory

to retain the data set and can be quite sluggish depending on the size of the

set, the latter is faster but the objective function fluctuates significantly due

to frequent updates. As a result, an intermediate solution, in which the

gradient is approximated using a tiny batch of training data (hence the name

minibatch gradient descent), is usually selected. Because the variation in the

parameter update is decreased, this strategy becomes more efficient by

employing matrix multiplication and produces more steady convergence. The

parameters of mini-batch gradient descent are updated as follows:

 = − ; : , : (9)

It is necessary to define two hyperparameters: the batch size and the

learning rate . The batch size is determined by the application and

architecture. Batch sizes are typically between 32 and 256. Because it defines

the magnitude of the step in the direction of the negative gradient, the learning

rate is an important hyperparameter. A high learning rate might cause missed

local minima and failure to attain convergence, whereas a low number

increases the runtime until convergence. The momentum approach is

typically used to accelerate convergence and eliminate oscillations around a

local minimum, quickening convergence by adding a portion of the value

 20

from the previous step to the update vector [22]. Two sets of parameters, the

weights and the bias, must be learned in a neural network. In the l-th layer the

weights are represented by a matrix and the bias . Updated parameters

will be :

 , = , − , , ; : , :
(10)

 = − , ; : , :
(11)

- Stochastic gradient descent

The gradients in equations (10) and (11) must be approximated in order to

update the parameters. Backpropagation, an efficient approach for computing

the gradient of the cost function with respect to the network parameters, is

generally used in a neural network [23]. The procedure is divided into two

steps: first, the cost function is evaluated in a forward pass of the input values

through the network with randomly set parameters (the initialization of the

weights might affect training convergence). The gradient is calculated in the

second step by propagating the mistake from the output layer backwards.

Using the chain rule, the goal is to analyze each node in the network's

contribution to the final mistake. The intermediate values corresponding to

each node's activations are saved during the forward pass. The activation of

the j-th node in the l-th layer is provided by :

 21

 = = + (12)

The cost function is evaluated after a complete forward pass, and the

contribution to the error created by the output nodes (layer L) is determined.

This may be written as the ratio of the change in the cost function as a function

of the output activations:

 = ,
(13)

or equivalently:

 = ⊙ (14)

Where ⊙ signifies the Hadamard product or element-by-element

multiplication. Similarly, the contribution to the error created in layer L-1 is

calculated using and the weights in that layer. In general, the error at the

layer l is represented as a function of the error determined in the next layer (l

+ 1) and its weights:

 = ⊙ (15)

As a result, the partial derivatives of the cost function with respect to the

parameters in any layer l can be defined in terms of the activations in layer l

- 1 and the previously computed error :

 22

 , ; , =
(16)

As a result, the error in the layer l is a function of the errors in the layers l+1,

l+2, ... L, which are assessed in turn using the chain rule by combining the

equations (15) and (16). After executing backpropagation with the training

samples of one batch, mini-batch stochastic gradient descent estimates the

gradient and updates the network parameters. The batches are created by

splitting the dataset at random. An epoch of training is defined as a full pass

of all the samples in the training set, separated into batches. The network is

trained for as many epochs as necessary to achieve convergence.

1.3.4 CNN in radar signal processing

Due to the requirement of analyzing incoming radar echoes to extract

useful information, the fields of machine learning and radar processing have

a significant overlap. Machine learning applications in remote sensing have

already been the subject of much study [24]. Statistical signal processing is a

clear illustration of how some of the techniques available in the machine

learning framework may be used. For example, detecting radar targets in

clutter is a well-known challenge in the field, in which specific statistics from

an otherwise unknown distribution (e.g., marine clutter) are extracted to

produce an acceptable false alarm rate. In this regard, machine learning offers

relevant techniques for learning the statistical distribution from data [25],

[26]. In general, the theoretical foundation of machine learning in its

traditional meaning has been applied to a variety of subdisciplines and

 23

applications in the radar field, including cognitive radar [27], automated

target identification [28], parameter estimation [29], and many more. As a

result of the recent success of deep learning techniques, advancement in this

area is also infiltrating the radar field, with an increasing variety of

applications and approaches. To provide a brief overview of recent

development in this field, we split the challenges in radar signal processing

that employ deep learning algorithms into three categories, as stated in [30]:

sensing, processing, and recognition. We concentrate on the most recent

group because it is the topic of this work and constitutes the vast bulk of

research at the intersection of deep learning [44] and radar. Sensing refers to

the techniques utilized to obtain data at a fundamental level, and deep learning

is employed to optimize this process. Although the use of machine learning

or deep learning models in this context is not easy, certain techniques in the

area of waveform design and cognitive radar have been presented [31], [32].

The second category includes issues involving parameter estimates,

detection, and nonlinear modeling. Due to practical constraints, several

detection and estimation issues in radar are frequently tackled as optimization

problems under the assumption of a linear forward model. Because neural

networks are universal approximators, they are a good solution for handling

non-linear and inverse issues. Problems with SAR imaging [30], modeling

multipath effects or interference [33], and clutter [26] are some instances in

this category. However, the primary use of deep learning techniques in radar

is centered on detection and classification challenges. As previously said, one

of the main notions of deep learning [45] is its capacity to automatically

extract characteristics from data, which is a significant benefit in the context

 24

of radar. For feature engineering, traditional machine learning algorithms rely

on domain expertise. In the context of feature extraction from natural photos,

for example, manual feature engineering necessitates prior knowledge and

skill in order to select the image attributes that contain the most discriminative

features. With sufficient prior training, a human operator can naturally

interpret these photos and impose some prior knowledge based on human

vision and extract discriminative features. However, manual feature

extraction is particularly difficult in the classification of radar pictures in

particular, or signals in general, because the data format is difficult to grasp

or counter-intuitive. As a result, automatic feature extraction with the added

benefit of hierarchical representation is an appropriate strategy for dealing

with data provided in a manner that may be difficult for a person to

comprehend. Deep learning for automated recognition in SAR imaging is one

of the most obvious but intriguing applications.

In [34], a CNN trained on the MSTAR dataset (Moving and stationary

target acquisition and identification) achieves a 99 percent average accuracy

in the classification of objects on SAR pictures. [35] describes a natural

extension based on polarimetric SAR. A deep learning strategy for ISAR

picture classification has also been proposed, similar to the work published in

[36], which employs an unsupervised approach based on autoencoders to

extract features. Another application that has received a lot of interest is the

use of deep learning to classify micro-Doppler (mD) signatures. Additional

Doppler shifts caused by vibration, rotation, or movement of non-rigid parts

have been shown to convey relevant information for automatic target

recognition [37]. Given the difficulty of obtaining features from the mD

 25

spectrogram, deep learning offers an intriguing approach. Several human

activities, for example, are classified in [38] by training a CNN with the

relevant mD characteristics. In addition, the authors of [39] provide a CNN

pre-trained with an unsupervised technique to differentiate distinct patterns

of human gait that are hardly visible in mD spectrograms. Other CNN-based

applications include mD signature classification of hand movements in a

human-machine interaction [69], classification of UAVs from spinning

propeller mD signatures [70], [71], and signature extraction using deep

learning-based segmentation [63]. Automotive radar is one area that is

projected to benefit from deep learning, because to the desire in better driver

aid systems (ADAS). Radar technology, in addition to laser and optical

sensors, is regarded as a significant component of these systems. Aside from

range and velocity, deep learning algorithms can extract more sophisticated

information in order to generate a semantic picture of the vehicle's

surroundings. For example, CNN’s may be used to classify static items on the

street using gridmap representations [64], recurrent neural networks can be

used to distinguish between stationary and moving targets [65], and fully

connected networks can be used to identify ghost targets [66]. Detection and

classification of people, cyclists, and animals that may occur in the vehicle's

vicinity has also been proposed utilizing CNN’s and autoencoders [67]. The

scarcity of labelled data to train deep models is a fundamental restriction in

the implementation of deep learning methods in radar. Data-driven techniques

need a large collection of training data in order to avoid overfitting (learning

specific properties of the training set) and generalize appropriately to new test

data. For example, in the field of computer vision, a massive quantity of

 26

labeled data is accessible in the form of standardized datasets for various

applications such as classification, semantic segmentation, and so on. In

radar, however, there is no such thing, and in order to train somewhat

complicated models, a large enough amount of labelled training data for a

specific application is required, which is frequently expensive in terms of time

and labor. As a result, the models employed in radar image classification are

not as sophisticated as those used in other fields in terms of network

complexity and depth. Despite these constraints, there are various ways for

reducing the effect of overfitting when there is a scarcity of data. In [48], for

example, an unsupervised pre-training method based on convolutional

autoencoders is presented in the context of classification of human gait using

mD signals. They employ a limited dataset to initialize the network

parameters, resulting in higher convergence. In [49], the authors apply

transfer learning to consider mD signatures by pre-training a model using a

huge database of natural photos and fine-tuning the parameters with a smaller

collection of mD images. When the training set is small, it is demonstrated

that such an initiation produces better results than starting from scratch.

Another approach for providing regularization is data augmentation, which

involves enriching the training set artificially by executing transformations

on the input data that are compatible with hypothetical transformations

present in the test data. In [68], for example, the authors guarantee translation

invariance in the model by inserting translations on the MSTAR dataset

training data for SAR image classification. While an effort is required to

develop standardized data sets in the context of radar, its feasibility is

restricted due to the wide range of hardware and preprocessing methodologies

 27

available depending on the application. As a result, when training complex

deep learning models for radar applications, the effort should be focused not

only on the data, but also on the algorithm side, in order to establish a

framework that allows for the creation of complex but still general models

that can be applied in the radar field. Although integrating deep learning

techniques from other fields such as computer vision is a good starting point,

further study is needed to adapt these models to the nature of radar data. In

this vein, incorporating strong priors into the model can help to simplify the

optimization process and decrease the need for labelled training data. By

incorporating domain-specific and application-specific bias, such priors may

be included on two separate planes. The former relates to information gained

from a particular field, in this example, the qualities of radar signals.

 28

Chapter 2

Artificial Intelligence in radiofrequency

signals

 In Chapter 1, we learnt that the mD is an effect that is independent of

radar technology and that it may be extracted using a variety of signal

processing techniques. [40, 41, 42, 43] provide examples of how mD may be

utilized with Ultra-Wide Band (UWB) and CW radars. The mD in mm Wave

FMCW radars may be extracted in two methods, which will be explored in

this chapter. Modern Machine Learning (ML) techniques provide a highly

strong tool for a classification issue; there are various approaches to extract

features and categorize signals with varying performances and computational

costs.

This chapter will show several pipelines that have been developed and will

evaluate their effectiveness and performance in various cases.

2.1 Pre-processing FMCW signals

In Chapter 1, we discussed MIMO-FMCW radar princliple and how the

radar system transmits this data to a computer. Because the sensor has four

receivers, the beat signals are limited to four and are referenced to the device's

MIMO arrangement. Only one beat signal can be utilized to analyze and

identify the mD, but by adding the four-receiver lines, we can enhance the

signal-to-noise ratio and get better results. Following that, the samples are

rearranged into a complicated matrix, with samples of a single chirp stored

 29

along the rows and samples of distinct chirps saved along the columns. The

obtained matrix comprises the global acquisition samples.

Figure 4. Pipeline used to obtain the initial complex matrix

Two types of matrices are used to store the original mD information. In

the first the information is compressed along the time wich is called range-

Doppler map and the other along the range where we extract the information

with a Short Time Fourier Transform (STFT) and is stored in a Doppler-time

map. We can use both of them for classification problems. A bi-dimensional

FFT is used to calculate the range-Doppler map. This process is shown in the

image below:

 30

Figure 5. Calculation process of the range-Doppler map

The equation of the mathematical model is:

 = , ∗ − 2

(17)

where r[m,n] are the elements of the data matrix, m and k are the indexes in

range from 0 to M – 1 and n and l indexes from 0 to N -1, being M the number

of fast time elements, while N is the number of slow time elements. The

technique is slightly different in the second map, but the beginning complex

matrix is the same. To obtain the Doppler-time map, the fast-time axis must

be along the columns and the slow-time axis must be along the rows, and the

first step is to execute a FFT along the fast-time. This technique generates a

range-time map, and an example is shown in Fig. 6. From this map, a STFT,

the most popular time-frequency representation [64], may be calculated along

the slow-time. The equation given for the STFT is:

 , = − − 2 / , = 0, 1, , − 1
(18)

where n represents a discrete index of time, w[·] is a window function and k

the discrete index of frequency. In reality, the STFT is the Fourier transform

of a signal amplified by a sliding window over time. A trade-off between time

and frequency resolution must be determined, and overlapping the windows

can help as this procedure attempts to lengthen the duration to increase

 31

frequency resolution [65]. Fig. 7 depicts the procedure for obtaining this

second sort of map. The STFT is done in each row of the range-time map, and

the resulting matrix represents the gathered mD at each distance. We derive

the Doppler-time map of the global acquisition by adding the acquired

matrices. Both range-Doppler and Doppler-time maps are constructed of

complex numbers, and we must compute the module to produce a "image"

from which we may extract features. Each categorization process will be

carried out in figures that simply display module information. Fig. 8a and 8b

show some examples of these outcomes for an awake individual. We may

now describe how to categorize mD signals based on this starting point.

Figure 6: Example of range-time map for a walking person

 32

Figure 7: Calculation process of the Doppler-time map

2.2 Classification Framework

In this section, we discuss the initial pipeline that was developed,

which is based on dimension reduction techniques, as well as the

classification algorithms that were utilized to discriminate between the

acquisitions under consideration. In terms of feature extraction, we use two

alternative approaches to minimize data dimensionality: Principal

Component Analysis (PCA) and t-distributed Stochastic Neighbor

Embedding (t-SNE). Both maps created from radar signal processing will be

referred to as amplitude images. We get a vector by using dimensionality

reduction algorithms to these pictures, that is, the principal components

derived from PCA and the major dimensions supplied by the-SNE will serve

as features vectors.

 33

(a) (b)

Figure 8: Example of (a) range-Doppler map and (b) Doppler-time map

For example, suppose we have a collection of N photos. of dimension [l x

m], with n = 1...,N, are initially vectorized row-wise and grouped to generate

a training set X = [,..., , where T is the transposition operator; rows

of X correspond to observations and columns to variables. Each row's j-th

element is then normalized using the following equation:

 ̅ = − = − 1

(19)

2.2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) [46, 47] is a multivariate

approach that examines a data table in which occurrences are represented by

numerous quantitative dependent variables that are inter-correlated. Its

purpose is to extract the significant information from statistical data and

express it as a set of new orthogonal variables called principal components,

as well as to display the pattern of similarity between observations and

 34

variables as spots on spot maps. PCA is mathematically based on the eigen-

decomposition of positive semi-definite matrices and the singular value

decomposition (SVD) of rectangular matrices. Eigenvectors and eigenvalues

determine it. Eigenvectors and eigenvalues are integers and vectors that are

related with square matrices, respectively. They form the eigen-

decomposition of a matrix, which examines its structure, such as correlation,

covariance, or cross-product matrices.

In practice, doing PCA is pretty straightforward. Create a m x n matrix

from a data collection, where m is the number of measurement kinds and n is

the number of trials. Subtract the mean from each measurement type, or row

. Calculate the SVD or the covariance eigenvectors. It was discovered that

there were numerous fascinating applications of PCA, among which

multivariate data analysis and picture compression are utilized alternately in

everyday life, deliberately or unwittingly.

2.2.2 Description of the principal components method

The primary goal of the principal component analysis is to reduce the

size of the observation space in which provided items are analyzed. The

reduction is achieved by generating new linear combinations of variables that

characterize the items under consideration. These combinations, known as

primary components, must meet specific mathematical and statistical

requirements. The principal components technique begins with an

observation matrix X, in which column vectors indicate observations that

characterize an item in relation to random variables , , , .

 35

 = … … ……… ……

(20)

Each column vector represents a p-dimensional location in space. Because

the observation matrix X is compiled for a subset of the entire population

(numbers p and n are finite), the variance-covariance matrix S derived from

random variable observations is an estimator of the general variance-

covariance matrix, whereas the vector of mean values I is an estimator of the

general vector U. As previously stated, the aim of the principle components

approach is to find linear combinations with the lowest variance. Thus, the

task simply consists of replacing the initial set of variables with their linear

combinations, i.e. new variables with particular attributes. These new

variables are known as principle components and are denoted as follows:

 = (21)

where V - new matrix of the new variables, A is a matrix of orthonormal

eigenvectors of matrix S and X is the observation matrix. After solving

determinantal equation (22) from transformation of (21) is achievable:

 | − | = 0 (22)

where S is a variance-covariance matrix of order (p x p), l is the determinantal

equation's characteristic root, and I is a unit matrix of order (p x p). Equation

 36

(22) is a polynomial of degree p with respect to an unknown l, hence it has p

roots that may be sorted in the following way:

 ≥ ≥ ≥ ⋯ ≥ ≥ 0 (23)

Because each root has an orthonormal column eigenvector , the variable

 produced from equation (22) has the largest value (maximum variance)

and is referred to as the first main component. Because the sum + +⋯ + = and equals the sum of the variances of matrix S (i.e + + ⋯ + , , , … , denotes the proportion of variability of certain

main components in the overall variance of matrix S. When we look at the

quotients, we can see that :

 100, 100, . . . , 100, (24)

we obtain the percent share of each component in matrix S's variance. The

technique for calculating main components is designed in such a way that this

is a diminishing sequence, indicating that ∕ 100 is the greatest quantity.

Quantity relates to variable , and is hence referred to as the second major

component. There are clearly as many primary components as there are initial

variables. Each root corresponds to a column vector , such that

 − = 0 = (25)

Because vectors , , … . , are orthonormal, that is

 37

 = 1, = 0 ≠ , (26)

And they satisfy equations (22) and (25) we have :

 = , = 0 ≠ , (27)

 = + . . . +
 (28)

and

 = + + . . . +
 (29)

A spectral decomposition of a matrix S is what expression (29) is. The

essential attribute of the new variables (in contrast to the previous variables)

is their lack of correlation. The ℎ component’s variance is , or :

 = (30)

where

 , = 0 ≠ (31)

Because the major goal of principle components analysis is to reduce the

dimensions of the observation space, it is vital to select at some point how

many additional variables should be taken into account for future

investigation. The ratio of distinctive roots to the trace of the matrix is thought

to aid in decision making. For example, if the equation ∕ 100 has a large

value (e.g., 90%), the set of initial variables is substituted with the first

component . When the ratio is not too high, the following components are

 38

considered. Naturally, the exclusion of some components from further

analysis cannot be based entirely on the researcher's subjective appraisal of

the ∕ 100 quotient, but must be the outcome of component testing. The

interpretation of the components is an essential topic in Principal Components

Analysis since it helps discover which initial variables have the biggest shares

in the variance of certain principal components after the observation space

has been reduced. This information may be acquired by applying the

coefficients of determination that have been established between the

components and the beginning variables. It should be noted that the

components' meaning varies somewhat depending on whether S or R is

employed. Principal components generated from the variance-covariance

matrix S are interpreted. The following equation defines the coefficient of

correlation between the i’th component and the j’th starting variable:

 =
(32)

As a result, the coefficient of determination has the following form:

 = , (33)

where is the square of the eigenvector element represents the i’th

component and the j’th starting variable, represents the variance of the i’th

component, and represents the variance of variable j. On the basis of (29)

and (30), and using the variances and eigenvectors of all the primary

 39

components, the variance-covariance matrix S may be reconstructed.

Naturally, the product has the most influence on this reconstruction.

Furthermore, in matrix , for example, the components on the main

diagonal represent estimates (provided by the first component) of the variance

of the j’th starting variable, which may be derived using a generic expression:

 = (34)

The following parts of the spectral decomposition are estimates of covariance,

with the last element of (matrix) bringing the estimated variance and

covariance up to real values. Given (34) may be expressed in the following

way :

 = =
(35)

The coefficient of determination between component i and variable j is clearly

defined as a ratio of variable j's estimated variance to its true variance. If we

examine any (i’th) matrix from the spectral decomposition, we may calculate

the major diagonal by adding the components on the main diagonal.

 = (36)

 = (37)

Get :

 40

 =

(38)

Thus, we can calculate the variance of the i’th component by adding up the

estimated variances of specific variables. This connection can serve as a

theoretical foundation for component interpretation. (24) can also be written

using (38), as :

 100

(39)

Although expression (39) assumes the biggest value for the first component,

this metric should be utilized with caution. According to (38), practically the

whole variance of the i'th component is made up of the estimated variance of

a single variable, such as one with a large absolute value in comparison to the

other ones, i.e. one with a high variance. As a result of the need for a skilled

construction of the observation matrix, the variables of which should be of a

comparable order of measure (39), the following dependency is

recommended for use in component interpretation :

 = 100

(40)

where p is the number of observation matrix variables and is the coefficient

of dependence between the i’th component and the j’th starting variable.

 41

equation (40) displays the percentage of variation accounted for by the i’th

component for all variables. The findings of measure (40) applied to

components obtained from the covariance matrix are often lower than those

of measure (39), since in practice, one component (e.g., the first) seldom

accounts for more than 50% of the variance of all variables included in the

observation matrix. When a variable in the observation matrix outperforms

all others in terms of value, expression (39) returns a high value for the first

component and expression (40) returns a low value. This is because the

variance of the component in this case is determined by a single variable,

which may or may not be the most significant one (its importance is

determined purely by the units of measurement used). As can be seen,

expression (40) depicts the real contribution of the i’th component to the

variance of all variables. It is worth noting that the numerator of (40) is simple

to compute since the following equation is true:

 =

(41)

The component accounts for the variance of all the starting variables if and

only if:
 = =

(42)

 42

Interpretation of principal components derived from the correlation matrix R.

Disagreements between assessments of main components generated using

equations (39) and (40) do not exist if they are derived from a correlation

matrix (i.e. using normalized beginning variables). This is because, as a result

of an adequate adjustment of the covariance matrix, the following

dependencies hold:

 = (43)

 = (44)

, = ,

(45)

, =

(46)

Or

 100 = , 100

(47)

As a result, when using the correlation matrix, it is feasible to use either

measure (39) or measure (40) to determine what proportion of the variation

of all the initial variables is accounted for (in percent) by the i’th component

(40). In the case of the variance-covariance matrix, such flexibility does not

exist.

 43

2.2.3 t-distributed Stochastic Neighbor Embedding

t-SNE is and unsupervised machine learning algorithm for

vizualization developed by Laurens van der Maaten and Geoffrey Hinton

[97]. Uses a non-linear dimensionality reduction strategy that focuses on

keeping highly similar data points close together in lower-dimensional space.

t-SNE computes the similarity between two points in a low-dimensional space

using a heavy-tailed Student t-distribution rather than a Gaussian distribution

which helps to handle crowding and optimization issues. Outliers have no

effect on the t-SNE. The high-dimensional Euclidean distances between

datapoints and are converted into conditional probabilities P(j|i) through

t-SNE. Based on the fraction of its probability density under a Gaussian

centered at point , would choose as its neighbor. denotes the

Gaussian variance centered on datapoint . A pair of points' probability

density is proportional to their similarity. p(j|i) will be quite high for local

data points and microscopic for distant data points. To obtain the final

similarities in high dimension space we should symetrize the conditional

probabilities in high dimension space. As seen below, conditional

probabilities are symmetrized by averaging the two probabilities.

 = | + |2
(48)

Based on the pairwise similarity of points in high dimensional space,

we can map each point in high dimensional space to a low dimensional map.

The two-dimensional or three-dimensional map will be used for the low-

dimensional map.

 44

Figure 9 : Data in low dimensional space

 = 1 + −∑ 1 + ‖ − ‖

(49)

The low-dimensional datapoints and correspond to the high-dimensional

datapoints and . Computing the conditional probability q(j|i), which is

comparable to P(j]i), centered under a Gaussian centered at point , and then

symmetrize the probability. Then using gradient descent and Kullback-

Leibler divergence [98], it is found a low-dimensional data representation that

minimizes the mismatch between Pij and qij (KL Divergence)

 || = | ||
(50)

 45

 depicts the conditional probability distribution for point over all other

data points. Given map point , represents the conditional probability

distribution across all other map points. t-SNE uses gradient descent [99] to

optimize points in lower dimensional space. The reason why we should use

the KL divergence [98] is that when we reduce the KL divergence,

becomes physically equal to , and the data structure in high dimensional

space is equivalent to the data structure in low dimensional space. If is

big, then we require a large value for to represent local points with more

similarity, according to the KL divergence equation. If is tiny, we require

a lower value for to represent distant local locations.

2.2.4 Machine Learning Classification algorithms

In terms of classification, we propose using k-Nearest Neighbor (k-

NN) and Support Vector Machines (SVM), which are both supervised and

non parametric techniques. k-NN [50, 51] is an instance-based approach,

which means it does not learn a model directly. It instead chooses to

memorize the training examples, which are then employed as "knowledge"

during the forecasting phase. In practice, this implies that the algorithm will

only utilize the training examples to deliver a response when a query is

performed in the database (i.e., when requested to supply a label with an

input). As a disadvantage, this algorithm incurs both a storage cost during the

training phase, due to the need to store a potentially massive dataset, and a

computational cost during the prediction phase, because the classification of

a given observation necessitates the vision and/or analysis of the entire

dataset. The k-NN is a classification algorithm. In the context of

 46

classification, the k-NN method effectively determines a majority vote among

the k-nearest neighbors to a given unknown instance. A distance metric, often

the Euclidean distance, between two data points defines their closeness. SVM

[70] method classifies data by establishing a linear or non-linear decision

boundary to distinguish various groups. It projects the data through a non-

linear function to a higher dimension space, elevating them from their original

space to a future place with an indefinite dimension. SVM employs kernels

to carry out this procedure, the most common of which is the Gaussian kernel.

Fig. 10a and 10b show a graphical illustration of these two classifications.

Figure 10: Two class classification example (a) SVM (b) kNN, in this case

d1 and d2 are the distances metrics

 47

2.2.5 SVM Support Vector Machine

The support vector machine algorithm's goal is to find a hyperplane

in an N-dimensional space (N is the number of characteristics) that clearly

classifies the data points.

Figure 11: Possible Hyperplanes

There are several hyperplanes that might be used to split the two groups of

data points. Our goal is to discover a plane with the greatest margin, i.e. the

greatest distance between data points from both classes. Maximizing the

margin distance gives some reinforcement, allowing subsequent data points

to be categorized with more certainty.

 48

(a) (b)

Figure 12: Hyperplane in 2D and 3D feature space. (a) A hyperplane in

is a line, (b) A hyperplane in is a plane

Hyperplanes are decision boundaries that aid in the classification of data

items. Different classifications can be assigned to data points that lie on either

side of the hyperplane. Furthermore, the size of the hyperplane is determined

by the number of features. When the number of input features is two, the

hyperplane is just a line. When the number of input characteristics reaches

three, the hyperplane transforms into a two-dimensional plane. When the

number of characteristics exceeds three, it becomes impossible to imagine.

 49

Figure 13: Support Vectors

Support vectors are data points that are closer to the hyperplane and impact

the hyperplane's location and direction. Using these support vectors, we

optimize the classifier's margin. The location of the hyperplane will vary if

the support vectors are removed. These are the points that will assist us in

developing our SVM. In SVM, we take the output of the linear function and

identify it with one class if it is larger than 1, and another class if it is less

than 1. Because the threshold values in SVM are modified to 1 and -1, we get

this reinforcing range of values ([-1,1]) that works as margin.

2.2.6 KNN K-Nearest Neighbors Algorithm

The k-nearest neighbors (KNN) technique is a straight-forward

supervised machine learning approach that may be used to address

classification and regression issues. The KNN algorithm presumes that

comparable objects exist nearby. Classifies data points based on their

similarities. It makes a "informed judgment" on what an unclassified point

 50

should be classed as based on test results. KNN is a non-parametric method

that is also an example of lazy learning. It is non-parametric because it makes

no assumptions. Rather than assuming a conventional structure, the model is

built solely from the data provided to it. The term "lazy learning" refers to the

algorithm's inability to make generalizations. This implies that applying this

strategy requires little training. As a result, when employing KNN, all of the

training data is also used in testing. Simple to use. Calculation time is short.

Makes no assumptions about the data. The accuracy is determined on the

quality of the data. It is necessary to determine the best k value (number of

nearest neighbors). Poor at categorizing data points that are on a border that

may be labeled one way or the other.

Figure 14: k-NN classification principle

The initial step in developing kNN is to convert data points into feature

vectors, or their mathematical value. The method then determines the

mathematical distance between these points mathematical values. The

 51

Euclidean distance, as demonstrated below, is the most often used method for

calculating this distance.

 , = , = − + − + ⋯ + −
= −

(51)

kNN uses this formula to calculate the distance between each data point and

the test data. It then calculates the chance that these points are similar to the

test data and classifies them depending on which points have the highest

probabilities. To summarize kNN works by calculating the distances between

a query and all of the instances in the data, then picking the number of

examples (K) closest to the query and voting for the most frequent label (in

the case of classification) or averaging the labels (in the case of regression).

2.3 Experimental Implementation Test

Four classification pipelines may be created by combining the

previously outlined approaches. To assess their performance, we need to

create a dataset of mD signals, and for these tests, we select to identify

different types of walking [62] activities. The dataset, which can be accessed

in [71], comprises of six distinct types of activities carried out by 29 people

who repeat each activity numerous times. The subjects walk sans shoes. The

participants walk without any limitation or pattern, and each subject was

simply instructed to walk in a "slow" or "rapid" manner, without defining the

number of steps or the time necessary to finish the exercise, in order to obtain

 52

data as realistic as possible. In addition, acquisitions from participants of

various heights and weights were gathered to give a collection that

encompassed a wide range of attributes. The acquisitions are carried out in

our department's corridor, with the subjects walking in front of the radar

system, which is mounted on tripods. Fig. 15 depicts the test region.

Figure 15: Hallway used for the acquisitions

In each acquisition, the subject performs the action by moving [52]

away from the radar and then returning, always in front of the radar system.

The activities under consideration are as follows:

 Walking slow;

 Walking slow with hands in pockets;

 Walking fast;

 Walking with hiding a metallic bottle;

 53

 Limping;

 Walking slowly and swinging hands.

We chose to employ only the first three tasks in the work reported in [63] and

[100]. This subset of the dataset is made up of nineteen people who repeated

each task three times for a total of 168 distinct acquisitions. The difference in

walking speed is slight and relies on the individual being tested, who

interprets it subjectively. In general, the average speed measured for a brisk

walk is approximately 2 m/s, whereas the average speed measured for a

sluggish walk with both free hands or hands in pockets is around 1.2 m/s. The

maps used in the classification procedure are created as previously stated; for

the Doppler-time map, the STFT function utilizes windows of 512 samples,

with an overlap of 98 percent when a Hann window is employed. The radar

configuration utilized for these experiments is detailed in Tab. 1.

Table 1: Radar parameters

Parameter Value

 77 GHz

Slope 60.012 MHz /

 100

ADC Valid Start Time 6

 10 Msps

 60

 512

 400

No. of chirp per frame 128

Periodicity 40 ms

Used Radar Bandwidth 3.6 GHz

 54

A preliminary analysis was performed on the backdrop without a person, as

shown in Fig. 16a and 16b. Because the test area is the same for all

individuals, just one measurement was taken. This investigation shows that

the backdrop has no effect on the data, thus we can ignore it in the movement

classification.

(a) (b)

Figure 16: Analysis on the background in absence of subjects using (a)

RangeDoppler map and (b) Doppler-Time map.

In Fig. 17, we present an example of a person walking in various directions,

exhibiting both range-Doppler maps (on the left) and Doppler-time maps (on

the right). It is feasible to see that slow and quick walks are plainly

distinguishable on the maps. Maps associated with a leisurely walk with

hands in pockets show a little less obvious Doppler effect as compared to free

hands, as predicted, although this effect is hardly discernible.

 55

(a) (b)

(c) (d)

 (e) (f)

Figure 17: Example of a person walking fast ((a) and (b)), slowly with

hands in pockets ((c) and (d)) and slowly ((e) and (f))

 56

Images are created using the data collected after the radar signal has been

processed. Because their original dimensions are too large to manage, all

matrices have been reshaped to the same dimension [195 x 119], with the

result acquired by applying a mean between neighboring pixels of the image.

To further reduce dimensionality and extract characteristics from pictures, the

PCA [57] and t-SNE algorithms were applied to the data individually. The

matrices are vectorized, resulting in a matrix with each row representing a

range-Doppler map or a Doppler-time map [56]. Figures 18a and 18b

illustrate the classification accuracy obtained by utilizing a different number

of main components with the a k-NNclassifier and a SVM algorithm. We used

a Gaussian kernel for the SVM. The value of k for the k-NN and the kernel

for SVM were set using a leave-one-out cross-validation approach that tries

to minimize validation error. Each sample of the dataset is alternately chosen

as a validation set, with the remaining portion being the training set. As a

result, each sample is only utilized once for training and once for validation.

The algorithm's results for odd values of k between 1 and 49 are presented in

Fig. 19, where k equal to 1 results in an inaccuracy of roughly 2.4 percent. In

Tab. 2, the validation error achieved by different kernels is provided in

percentage, pointing the option to the usage of linear kernel in our case.

Table 2: Results of the leave-one-out cross validation for support vector

machine (SVM) with different kernels.

Kernel Linear Gaussian Polynomial

Error Validation (%) 4.46 17.26 33.33

 57

We define the measures that will be used to assess the performance of the

suggested approaches here. They are based on the so-called confusion matrix,

which has columns that reflect expected values for each class and rows that

represent actual values. The most often used metric is accuracy, which is

defined as :

 = ++ + +
(52)

Where and represent true positives and true negatives, respectively,

and and represent false positives and false negatives. It reflects the

proportion of photos that have been classified to the right category. Another

helpful statistic is accuracy (also known as positive predictive value), which

is the ratio of successfully predicted positive observations to total expected

positive observations, or :

 = ∕ + (53)

Recall (also called as sensitivity) is the ratio of accurately predicted positive

observations to all observations in the actual class.

 = ∕ + (54)

The F1 score is the harmonic mean of accuracy and recall, with 1 being the

best number (perfect precision and recall). As a result, this score considers

both false positives and false negatives, as shown below.

 58

 1 = 2 ∕ + (55)

Sixty percent of purchases are utilized for training, with the remaining for

testing. The findings were averaged across 100 classification results obtained

by randomly selecting training and test sets. We only examine two groups

here, which correspond to the slow and rapid stroll. Interestingly, the number

of main components (or dimension in the case of t-SNE), which corresponds

to the number of features in this scenario, has a minor influence on

classification performance. The use of the PCA or t-SNE algorithms to extract

features from pictures yields relatively similar results, despite the fact that t-

SNE was initially meant to reduce data to two or three dimensions and

becomes very sluggish for greater values. Furthermore, we get the same

findings with both range-Doppler and Doppler-time maps.

(a) (b)

Figure 18: Comparison of classification accuracy achieved by SVM and

kNN considering 2 and 3 classes, applying (a) Principal Component

 59

Analysis (PCA) and (b) t-distributed stochastic neighbor embedding (t-

SNE)

In Tables 3 and 4, we exhibit the classification results in terms of confusion

matrices produced by applying classification to two and three different

classes, respectively. In the first table, measures of slow walk and slow walk

with hands in pockets have been combined into a single class, however in the

second table, they have been separated into two distinct groups.

Figure 19: Results of the leave-one-out cross-validation for the k-Nearest

Neighbor (kNN)

As expected, differentiating free hands from hands in pockets is a far

more difficult challenge than identifying different walking styles. In the first

case, the best accuracy obtained is approximately 72 percent, and red boxes

indicate the presence of a number of misclassified examples, despite the fact

that the fast walk is recognized from the other activities with a high precision

(87.5 percent); SVM methods appear to achieve better performance than

 60

KNN algorithms. Instead, in the latter situation, we have a great accuracy of

more than 93 percent. In Tabs. 3 and 4, we highlighted a high number of

accurate detections in green, whereas a large number of misclassified samples

is emphasized in red.

Table 3: Confusion matrix obtained applying SVM and kNN(into

parentheses) on two classes, considering 5 principal components, acc = 93.5

%.

True / Predicted S F

Slow Walk (S) 110 (109) 2 (3)

Fast Walk (F) 9 (8) 47 (48)

Table 4: Confusion matrix obtained applying SVM and kNN (into

parentheses) on three different classes, considering 9 principal components, = 72% , = 66.7%.

True / Predicted S F SH

Slow Walk (S) 33 (32) 2 (1) 21 (23)

Fast Walk (F) 4 (5) 49 (48) 3 (3)

Slow Walk with Hands in Pockets (SH) 16 (22) 1 (2) 39 (32)

In Tab. 5, we present an overview of the findings acquired by various research

focusing on the classification of walking activities using radar data,

highlighting the greatest accuracies obtained. The symbol [*] signifies the

current work. Reference [64] considers 7 types of activities, namely walking

backwards, limping, depressed, elderly, excited, holding the arm, and walking

in a zigzag, and the radar used is an UltraWide Band; Reference [65]

considers a FMCW radar, and the activities examined are crawl, creep on

 61

hands and knees, walk, jog, and run. Although the distinction between

walking slowly and swiftly is less obvious than in the other activities, we

demonstrate that our method can obtain higher accuracy. Furthermore, we

take into account a greater number of individuals who move differently from

one another, proving the applicability of our strategy in a practical situation.

With a specific accuracy of 42.42 percent, the action of holding the arm while

walking [64], which is similar to our instance of walking slowly with hands

in pockets, could not be distinguished from the others.

Table 5: Comparison of different radar based methods for human walking

classification.

 Radar

Type

Nr. of

activities

Dataset

dimension

Algorithm

Best

accuracy

[*] FMCW

mmWave

2 19 subjects, 168

acquisitions

PCA/t-SNE + k-NN/SVM 93.5%

[*] FMCW

mmWave

3 19 subjects, 168

acquisitions

PCA/t-SNE + k-NN/SVM 72%

[64] Ultra

Wide

Band

7

8 subjects, 280

acquisitions

PCA + SVM

89.1%

[65] FMCW

mmWave

5 3 subjects, 95

acquisitions

CV/TV + SVM 91%

The subjectivity and personal speed interpretation of the completed tests is

the primary cause of mistake in our categorization model. A consistent

duration or number of steps during the experiment would almost certainly

increase system performance, but this is not a practical circumstance. The

similar method may be used to the other portion of the dataset where the other

activities are more varied. This work may be found in [66], and it will be

 62

reported and debated throughout the rest of this section. Only PCA and k-NN

are studied in this scenario because the other pipelines produce comparable

findings. Four distinct activities, divided into four classes, were investigated:

• Slow walk with non-swinging hands [NS] (55 samples);

• Limping [L] (20 samples);

• Slow walk with swinging hands [S] (20 samples);

• Fast walk [F] (36 samples).

In terms of the limping exercise, individuals were instructed to walk with a

limp. This led in numerous distinct styles of walking, as each subject carried

out the request in their own unique way. In order to get data that was as

realistic as feasible, no instructions were given on the other type of walk.

Doppler-time maps for four activities done by the same person are presented

in Fig. 20. The variations between the several types of walks analyzed may

be seen on these maps, due to the great sensitivity of the radar employed.

Swinging hands (Fig. 20b), for example, provide a more noticeable effect on

Doppler than the non-swinging case (Fig. 20a), but limping (Fig. 20c)

produces a considerably different map. The results produced with the range-

Doppler map are discussed further below.

(a) (b)

 63

(c) (d)

Figure 20: Doppler-time maps of a person walking slowly with non

swinging hands (a), slowly with swinging hands (b), limping (c) and rapidly

(d)

As stated in the last test, data received from radar signal processing [55] are

considered as pictures, and all matrices are first reshaped to the same size

[180 x 71], then their dimension is further decreased using PCA. As

previously, the value of k was determined using a leave-one-out cross-

validation procedure, with a sample of the dataset serving as a validation set

and the remainder serving as a training set. As a result, each sample is only

utilized once for training and once for validation. The algorithm's results for

odd values of k between 1 and 49 are presented in Fig. 21, where a value of k

equal to 1 leads to the lowest error, amounting to 1.33 percent.

 64

Figure 21: Results of the leave-one-out cross-validation for the k-NN for the

second dataset

During the classification process, 70% of the acquisitions are utilized for

training, while the remaining 30% are used for testing. To lessen the reliance

of the findings on the training set selection, the results were averaged over 50

classification results obtained by selecting training and test sets at random.

The confusion matrix derived by evaluating 9 major components and then

applying k-NN is shown in Tab. 6. We achieve an average accuracy of 96.1

percent, with exceptional precision, particularly in recognizing the slow walk

with non-swinging hands and the quick walk.

Table 6: Confusion matrix obtained applying k-NN on four activities,

considering 9 principal components. Accuracy 96.1%.

True/Predicted NS L S F

NS 98.91% 0 0 1.09%

L 3.67% 91.33% 0 5%

 65

S 0 4.33% 95.67% 0

F 1.5% 0 0 98.5%

This second component of the dataset yields results comparable to the first. It

is feasible to differentiate two separate actions performed by a person with

high performance, but this lowers when we try to distinguish comparable

activities such as walking slowly and slowly with hands in pockets. The

experimental evaluation confirms the effectiveness of the constructed

pipelines, but also highlights the key disadvantage. To boost data correlation

with an overhead in data processing, the feature extraction approach must be

performed to all datasets. As a result, in the next part, we investigate several

methods for extracting features from maps, including ad hoc creation as well

as a Deep Learning [54] technique.

2.4 Different classification approaches

This section will examine several methods for classifying mD signals.

This study will be based on the previously stated dataset and will employ just

three activities: rapid walking, slow walking, and slow walking with hands in

pockets. Figure 22 depicts the various pipelines.

 66

Figure 22: Flowchart of the different pipelines compared

The goal of this research is to determine whether it is possible to attain

comparable classification results using reduced compute complexity

strategies. As a result, we compare three distinct sorts of approaches:

 PCA + k-NN or SVM;

 ad-hoc feature extraction + k-NN or SVM;

 Deep Learning (VGG16).

All comparisons will be based on range-Doppler maps, as we demonstrate

how this and Doppler-time maps provide similar results. To enhance the

dimension of the dataset, the range-Doppler map is divided into two halves,

yielding two maps of dimension [256 x 25600] from each acquisition (for the

remainder of the chapter, we refer to this matrix as "map").

 67

2.5 PCA complexity analysis

The result of PCA is a Y-dimensional matrix of main components. The

initial components of each vector y in the resultant matrix Y include the

highest potential variability of the original variables, allowing for the

selection of a limited number of variables that convey the most information.

The classification algorithm can then utilize Matrix Y as input. In terms of

PCA computing cost, we examine a dataset made up of L samples (or photos

in our instance). Before entering the PCA, each picture is vectorized and has

a dimension of [M x N]. As a result, the dataset dimension is [L x MN]. The

construction of the covariance matrix, which takes in the order of O ⋅ , is the major computing expense of PCA. This covariance matrix

is then used to compute eigen values and eigen vectors, which has a

complexity on the order of O . PCA's overall complexity is thus on the

order of + .

2.6 Parameters extraction from range-Doppler maps

PCA use often necessitates a significant computing cost. Furthermore,

in order to acquire the greatest possible correlation between samples, the

algorithm must be applied to the complete dataset, and whenever a new

sample is examined, the procedure must be restarted. An alternate approach

for feature extraction from range-Doppler maps can be offered for this

purpose. On each map, we may compute several characteristics that can be

utilized as features. The parameters computed from the range-Doppler maps

are as follows:

 68

1. Maximum Doppler value: the parameter is derived by taking

the maximum intensity value for each row of the Range-Doppler map

and dividing it by the number of rows.

 = (56)

where i is the row index and is the chosen row. The rows, in

reality, include information about the target's velocity, and the maximum

specifies the Doppler value for each evaluated distance. Figure 23 depicts an

example of the computation method. All of the items at the end can

be collected into a vector named .
2. Mean Doppler value: The mean values of the Doppler are assessed for

each row of the Range-Doppler matrix, using a procedure similar to

that used to compute the maximum. These numbers are added together

to form a vector called , and each element is computed as

 = ∑ ⋅ , ∑ ,
(57)

where i is the row number used in the calculation and m is the column index

of the single element. Figure 24 shows an example of for various types

of acquisition.

3. Doppler values variance: Because of the dispersion of Doppler values

within the map, the technique used to assess this parameter changes

slightly from the preceding ones. Figure 25 shows an example of a

normalized distribution of values within the same range distance.

 69

Figure 23: Extraction process of the Maximum Doppler value

Figure 24: Comparison between the calculated values for different

acquisitions

The highest Doppler intensity values within the map are clustered near

the zero-Doppler, both for the positive and negative parts. This effect is

caused by sensor parameter calibration, which allows for detection of a

 70

higher velocity than the desired effective value. On the computation of

the , this impact creates imbalanced results that are not centered on

the mean values; as a result, the following procedure is applied to the

distribution of values:

 The greatest amplitude value is retrieved for each row of RD, for

the first 10000 Doppler bins in the event of negative Doppler

values and the final 10000 in the case of positive Doppler values.

 By setting the values to zero, any amplitude values below the

determined threshold are ignored.

The outcome of the previously mentioned technique is depicted in Fig. 26.

Only at this stage can we calculate the variance as below:

 = ⋅ , ∑ , −

(58)

Figure 25: Doppler distribution for three different activities at the

same distance. The values are re-scaled for a better comparison.

 71

Figure 26: Effect of the applied threshold

The vectors obtained can be treated as signals, and each sample is

calculated on a slow-time row within the Range-Doppler map. As a result, the

sampling frequency and chirp time are related. Finally, a Butterworth filter is

used to these vectors to soften the signal's rapid changes. Figure 27 shows an

example of calculating the Maximum Doppler value before and after filtering

for the dataset's fast and slow walk activities. Looking at equations (56), (57),

and (58), we can see how much it costs to extract each parameter, that can be

simply calculated as follows:

1. Maximum Doppler value: O(L · N);

2. Mean Doppler value: O(L · N · 2M);

3. Variance of Doppler values: O(L · N · 2M).

 72

Figure 27: Effect of the Butterworth filter on the computation of the

Maximum Doppler value for the fast walk and the slow walk activities.

When the sum of these costs is compared to the PCA complexity, it is clear

that the second way is computationally less expensive.

2.7 VGG16 neural network classification

VGG16 proved to be a defining moment in humanity's attempt to make

computers "see" the world. For decades, a lot of work has been invested into

enhancing this capacity under the discipline of Computer Vision (CV).

VGG16 is one of the important inventions that laid the way for a number of

subsequent advances in this sector. The model's concept was presented in

2013, while the actual model was submitted in 2014 during the ILSVRC

ImageNet Challenge. The ImageNet Wide Scale Visual Recognition

Challenge (ILSVRC) was an annual competition that assessed picture

classification (and object identification) methods on a large scale. In contrast

to the enormous receptive fields in the first convolutional layer, this model

recommended using a relatively modest 3 x 3 receptive field (filters)

 73

throughout the whole network with a stride of 1 pixel. The notion of applying

3 x 3 filters consistently is something that distinguishes the VGG. Two

successive 3 x 3 filters yield a 5 x 5 effective receptive field. Similarly, three

3 x 3 filters yield a 7 x 7 receptive area. As a result, the decision functions

become more discriminative. Second, it greatly decreases the number of

weight parameters in the model. If the input and output of a three-layer 3 x 3

convolutional stack comprise C channels, the total number of weight

parameters is 3 * 32 C2 = 27 C2. When compared to a 7 × 7 convolutional

layer, 72 C2 = 49 C2 is required, which is nearly double the number of 3 x 3

layers. This may also be viewed as a regularization of the 7 x 7 convolutional

filters, forcing them to decompose through the 3 x 3 filters, with non-linearity

introduced in-between by way of ReLU activations. This would lessen the

network's proclivity to over-fit throughout the training process. The network's

persistent use of 3 x 3 convolutions makes it incredibly simple, beautiful, and

easy to deal with.

2.7.1 VGG16 Architecture and Uses

On the ImageNet dataset, VGG16 was shown to be the top performing

model.

 74

Figure 28: VGG16 Architecture

Any of the network settings considers the input to be a 224 by 224 picture

with three channels R, G, and B. The only pre-processing performed is to

normalize the RGB values for each pixel. This is accomplished by removing

the average value from each pixel. Following ReLU activations, the image is

sent through the first stack of two convolution layers with a very tiny

receptive area of 3 x 3. These two layers each include 64 filters. The

convolution stride is set at 1 pixel, and the padding is also set to 1 pixel. The

spatial resolution is preserved in this setup, and the size of the output

activation map is the same as the dimensions of the input picture. The

activation maps are then pooled spatially over a 2 x 2-pixel window with a

stride of 2 pixels. This reduces the size of the activations by half. As a result,

the activations at the bottom of the first stack are 112 x 112 x 64.

 75

Figure 29: VGG16 Architecture model layers

The activations are then routed via a second stack that is identical to the

first but with 128 filters instead of 64. As a result, the final size is 56 x 56 x

128 after the second stack. The third stack consists of three convolutional

layers and a maximum pool layer. The stack's output size is 28 x 28 x 256 due

to the 256 filters used. Following that are two stacks of three convolutional

layers, each with 512 filters. Both of these stacks will produce 7 x 7 x 512 as

their output. The stacks of convolutional layers are followed by three fully

linked layers with a flattening layer in between. The first two layers have 4096

neurons apiece, while the last fully connected layer acts as the output layer,

with 1000 neurons matching to the ImageNet dataset's 1000 potential

classifications. The output layer is followed by the Softmax activation layer,

which is utilized for categorical categorization. Despite the fact that this is a

very basic, attractive, and simple to use approach, it does have certain

limitations. This model has over 138 million parameters and is over 500MB

in size [72]. As a result, the model's use is severely limited, particularly in

 76

edge computing, where the inference time is longer. Second, no precise metric

exists to address the issue of disappearing or ballooning gradients. This issue

was solved in GoogLeNet by employing inception modules, and in ResNet

by using skip connections. Despite the introduction of many new and

improved scoring models since VGG was first suggested, VGG16 [73]

continues to pique the curiosity of data scientists and researchers worldwide.

A few examples of practical applications for VGG16:

 Image Recognition or Classification – VGG16 can be used to

diagnose diseases using medical imaging such as x-rays or MRI.

It may also be used to recognize street signs while driving.

 Image Detection and Localization —It can perform admirably in

image detection use cases. In fact, it was the 2014 ImageNet

detection competition winner (where it ended up as first runner up

for classification challenge)

 Image Embedding Vectors — After removing the top output layer,

the model may be trained to generate image embedding vectors

that can be utilized for problems such as face verification using

VGG16 inside a Siamese network.

2.7.2 VGG16 in transfer learning

In this situation, we will propose using the VGG16 network [58, 59] to

construct a model that categorizes actions based on the classes in the dataset.

Transfer learning [69] can be used to avoid training the model from beginning

when working with a dataset with a small dimension. Although neural

networks require a large dataset for training, it is feasible to use a smaller

 77

dataset by applying transfer learning [69]. Transfer learning is very beneficial

when working with minimal amounts of data since it allows you to extract

network weights from pre-trained models and transfer them to other

networks, which saves money on training new neural networks. Range-

Doppler maps are used as training input, and the model built on the ImageNet

Large Visual Recognition Challenge dataset [70] is then retrained on the

specified dataset using the approach outlined in [69]. The computational cost

of a convolutional network for a single picture is , where each

input feature map is of size ⋅ , spatial two-dimensional kernels are of

size ⋅ , and , are the input and output channels within a layer,

respectively [71].

2.8 Machine learning Classification

Following feature selection, classification is carried out using the k-

NN and the SVM, which have distinct computing costs. As previously stated,

the parameters for both methods were optimized using a leave-one-out

crossvalidation procedure, with the purpose of minimizing the validation

error. As a result of this evaluation, k is set to one and a linear SVM is chosen.

Following is a complexity analysis of the k-NN algorithm:

In general, a k-NN [60] has a computational cost in the order of + , assuming that k is determined previously. The training set's

cardinality is represented by L, while the dimension of each sample is

represented by y. y might be the PCA result or the vector that contains the

extracted parameters.

 78

The overall cost of NN algorithms may be simply calculated by following the

steps below:

 Distance computation: computes the distance of a new observation

from each sample of the training set. The cost required for each

computation is in the order of O(y).

 Label assignment: by looping through the full training set, the k

samples with the smallest distance value are chosen. The label applied

to the new observation is the same as that of the majority of the k

samples chosen. By looping through the training set observations,

each iteration of the second step incurs a cost in the order of O(L),

resulting in an overall step cost in the order of O(k L).

SVM computational complexity: Because linear SVM is essentially a single

inner product, its complexity is equal to O(L). Kernel SVM’s often have a

greater cost, which is determined by the kernel used and the number of

supporting vectors . The cost is for most kernels [61], including

polynomial and Gaussian. There is an approximation for SVM’s with a

Gaussian kernel that decreases the complexity to . As a result, linear

SVM has a lower cost than k-NN, although kernel SVM may have a larger

complexity. The cost of categorization must then be added to the cost of the

feature selection technique under consideration.

2.9 Deep neural networks results

The dataset is splited into three parts: 80% for training, 10% for

validation, and 10% for testing. In Fig. 30a and 30b, we illustrate the training

and validation loss for the three independent classes and when a slow walk

 79

and a slow walk with hands in pockets are combined, respectively, based on

100 training steps, or epochs. The training loss represents how well the model

fits the training data, whereas the validation loss represents how well the

model fits new data. Cross-validation is used to assess them. In Fig. 30, values

less than 0.75 are seen after 80 epochs, and tests with more than 100 epochs

tend to overfit. When just two activities are examined, the performance

improves and the validation loss takes values between 0.2 and 0.3 on average

for a limited number of epochs. Table 7 displays some additional

classification metrics for our model for each evaluated class, namely

accuracy, recall, and F1-score. It is feasible to see that both the slow and fast

walk groups attain good accuracy but low recall, whereas the slow pocket

class exhibits the reverse trend.

(a) (b)

Figure 30: Training and validation loss of VGG16 neural network for a)

three and b) two classes.

 80

2.10 Comparison of several techniques

As previously stated, we extract three parameter vectors from the range-

Doppler maps, reflecting the maximum, mean, and variance of the Doppler

values. After getting these vectors for all acquisitions in the dataset, they are

averaged to yield three features, or six if the positive and negative halves of

the range-Doppler maps are considered. Because the participants do the same

action when moving away from and returning to the radar, we may divide the

acquisition into two parts and increase the number of features.

Table 7: VGG16 results for the three activities

 Precision Recall F1-score

Fast 1 0.57 0.73

Slow 1 0.43 0.60

SlowPocket 0.6 0.86 0.71

There are 171 rows and 3 (or 6 obtaining negative part) columns in the

resultant matrix. When doing the classification job, we may utilize less

resources because the matrix has been decreased. In the categorization based

on these characteristics, 60% of the acquisitions are utilized for training,

while the remaining 40% are used for testing. The findings were averaged

across 50 classification results obtained by randomly selecting training and

test sets. Tables 8 and 9 show the classification accuracy attained by the

various methodology described in the preceding sections, while Table 10

shows a summary of the processing expenses for each of the proposed

 81

strategies. It is vital to remember that the VGG16 cost applies to a single

picture, not a set of images.

Table 8: Accuracy achieved by the proposed methods for two activities

Method Classification Algorithm Accuracy

PCA SVM 93.50%

PCA kNN 93.50%

Ad-hoc Features Extraction SVM 84.20%

Ad-hoc Features Extraction kNN 86.18%

Ad-hoc Features Extraction + filtering SVM 94.20%

Ad-hoc Features Extraction + filtering kNN 94.20%

Deep Learning VGG16 93.75%

Table 9: Accuracy achieved by the proposed methods for three activities

Method Classification Algorithm Accuracy

PCA SVM 72%

PCA kNN 66.70%

Ad-hoc Features Extraction SVM 63.70%

Ad-hoc Features Extraction kNN 66.10%

Ad-hoc Features Extraction + filtering SVM 73.70%

Ad-hoc Features Extraction + filtering kNN 73.70%

Deep Learning VGG16 66.67%

Table 10: Computational costs of the considered methodologies for

feature selection. ∗Note that the cost for the VGG16 refers to a single image.

Method Computational cost

PCA +

Ad-hoc Features Extraction 1 + 4

VGG16 ∗

Looking at the table, it is clear how parameter extraction combined with

filtering produces better results than other approaches while also requiring the

least processing cost. Surprisingly, the use of filtering has a significant

 82

influence on the results, assisting in the improvement of performance. Deep

learning [53] enhances the accuracy of the PCA plus classification technique

for both two and three activities, but it is surpassed by parameter extraction

with filtering. This can be attributed to the short dimension of the dataset

under consideration, since the VGG16 network performs better in the

presence of a big training set.

2.11 Conclusion

In this chapter, we demonstrate how an automobile radar may be utilized

to categorize targets by utilizing their mD features. These devices, when

combined with appropriate signal processing and a classification pipeline, can

yield good results. We also demonstrate how alternative feature extraction

algorithms may be employed and compare the outcomes and computational

costs. We also use a more complicated neural network to improve the

comparison. Based on the results, we show how an ad hoc feature extraction

strategy achieves the same classification results but at a reduced

computational cost. Of course, this methodology can only be utilized in a

specific instance (classifying different walking patterns), whereas the other

ways are more generic.

 83

Chapter 3

Genetic algorithms in WSN

3.1 Introduction

LEACH [91] is one of the most common adaptive clustering routing

systems. A Wireless Sensor Network (WSN) is made up of many sensor

nodes that are grouped in a network in a given region with the primary goal

of autonomously performing certain activities such as event detection,

physical parameter measurements, and target object tracking. Technological

improvement in electronics-related fields, particularly advancements in

embedded systems, has made it feasible to raise the dependability,

capabilities, and efficiency of sensor nodes while decreasing their size and

cost [74]. The use of WSN benefits such as dynamic self-organizing

characteristics and decentralized functioning via wireless communication has

drastically enhanced the use of WSNs in many various fields. Commercial

applications [75], safety systems [76], healthcare detection systems [77],

wearable sensor health monitoring [78], and environmental monitoring

systems [79] are the main groupings. A large range of applications with even

broader performance requirements has led in the creation of a wide range of

protocols with multiple changeable parameters [80]. WSN varies from

standard wireless networks in several aspects, including restricted capacity

nodes, severe energy limits, and application-specific features. When

hierarchical architectures are considered, numerous research for different

 84

clustering approaches are created. These techniques strive to deliver more

accurate clustering by minimizing the number of clustering stages. As a

result, Nazari et al. [81] proposed a novel bottom-up hierarchical clustering

technique that use the intersection point as a linking criterion. This method

produces more accurate clustering results since none of a data point's nearest

neighbours are overlooked. WSN topology design is critical prior to network

deployment because of the influence of network organization on overall

system performance. Sensor nodes are typically installed in deterministic or

heuristic contexts such as residences, industries, residential buildings, or

hospitals. Alternatively, they are deployed at random in uncontrolled

environments, such as battlefields, poisonous zones, and disaster-affected

areas. As a result, some research has focused on multi-level clustering

algorithms as strategies for optimizing data gathering. To optimize packet

transmission and decrease latency, they employ Ant Colony Optimization

(ACO) [82] or multiple Traveling Salesman Problem (mTSP) [83]. The

heuristic WSN design technique in our work is based on Genetic Algorithms

(GA), which is an optimization tool that mimics natural selection and

genetics. GA is often used to find a global maximum or minimum in a search

region containing several local maximums or minimums. Nonlinear

optimization methods, including the GA, have already been used to optimize

application-specific network deployment [84], as well as numerous

hierarchical routing protocols comparable to LEACH [85]. Although there

are various tools for constructing a WSN, most of them do not consider the

chosen communication protocol or simply neglect network organization. The

various solutions proposed do not consider the performance of a WSN.

 85

Tinker, SensDep, and ANDES are three of the most researched deterministic

and deductive WSN design tools. Tinker [86] is a high-level design tool for

sensor networks that uses simulated data streams based on real sensor

network models to decide which data processing algorithms to apply. It does

not need (or enable) users to define details like routing algorithms or

retransmission rules, allowing system designers to swiftly iterate between

different broad concepts before fleshing out the details of the one that appears

to be the most promising. SensDep [87] includes many solution

methodologies to maximize sensor network cost and coverage as a software

design tool. It employs a deductive technique to build a list of relevant

network models that match the application environment as well as the

specifications of the accessible sensor nodes and gateway. This program also

takes into consideration the effects of the environment on network traffic

generation. Designing a WSN is difficult due to energy limitations, specific

properties based on the field, and the aim of the application. The optimum

design of the WSN prior to implementation in the environment is crucial and

frequently necessitates compromises between opposing objectives. Another

new technique is provided in [88], which proposes a Dynamic Load Balance

Clustering Mechanism (DLBCM) that not only analyses the CM loading, but

also monitors the energy usage of the CM in each cluster. To maintain the

overall network architecture more stable and efficient, CM re-election and

cluster reconfiguration are avoided on a regular basis. The lifespan of WSN

will thereafter be extended. There are further four weights to consider:

residual energy, CPU usage, node communication bandwidth, and distance to

the cluster's centre. Their values alter depending on the relevance of each item

 86

in various specialized applications, and in some circumstances, these weights

can be adjusted to zero. We analyse the challenges raised above and offer a

WSN-based design method based on GA that can assist WSN designers in

configuring parameters to achieve the desired performance prior to system

deployment. As a result, a deductive design tool based on GA is proposed for

the topology of WSNs with hierarchical structure. In our application, GA

functions as a WSN topology design tool, autonomously producing a

hierarchical cluster-based network organization based on each node's position

in the distribution region, operation status, and cluster structure of the active

nodes. The functioning of the GA-based design tool is limited by application-

specific design requirements as well as network parameters like as network

coverage, connectivity, energy consumption efficiency, and network

longevity. The main purpose of this work is to present the technique used to

generate the topology of a WSN based on the design criteria, as well as to

evaluate the performance of the network produced in relation to the

application needs. Thus, it is meant to build the topology and establish the

function of nodes among hundreds or thousands of methods of assembling

the network to maximize the specific design parameters.

3.2 Related Works

Clustering is often a very efficient approach [89],[90], in which sensor

nodes are combined to create a cluster that is administered by the Cluster

Head (CH). The CH collects the data, compresses it, and transfers it to the

sink. As a result, the nodes communicate less than when data is transmitted

straight to the sink. Although most cluster-routing protocols seek to evenly

 87

balance the load between sensor nodes, by using a probabilistic model to

select the CH node each round, they fail to ensure that the chosen node is the

best available. There is still much space for development. Although there are

numerous clustered-based protocols accessible in the present literature, just a

few well-known LEACH-based protocols are covered here due to the interest

of our study.

3.3 Cluster-based routing protocols

LEACH's functioning, like that of other hierarchical protocols, is

divided into two phases: setup and steady data transmission. During the setup

phase, the CH is chosen from among the available sensor nodes using a

probabilistic model, and many clusters are built dynamically. During the

continuous data transmission phase, sensor nodes in each cluster send data to

the specialized CH, which compresses it and transfers it to the target sink

node. The LEACH protocol elects the CH nodes and re-establishes the

clusters on a regular basis, ensuring that the energy dissipation of each node

in the network is reasonably consistent. Despite the fact that the LEACH

methodology spreads the load evenly across each CH, there are certain

disadvantages. For starters, there is no assurance that the chosen CH is the

best option. For example, if the chosen CH is located near the network's

boundary, other nodes may use more energy sending the message to CH. It is

also impossible to predict the number of CH’s who will be elected in each

round. Several protocols and approaches based on LEACH have been

suggested throughout time, generally with a significant improvement in

network lifespan [92]. Cluster-based routing algorithms normally focus on

 88

maximizing network energy efficiency, however when WSN’s are utilized for

a specific application, there may be several QoS requirements.

3.4 Genetic algorithm based routing protocols

The majority of GA applications in WSN’s are concerned with

optimizing lifetime and energy usage. The enhancement is accomplished by

using a GA-based algorithm in practically every operational step of WSN’s,

including node distribution, network coverage, clustering, and data

aggregation, in order to provide a satisfying set of performance parameters

for various WSN’s organizations. LEACH-GA [93] was one of the first GA-

based adaptive clustering methods described. The goal of this protocol is to

optimize the CH selection probability model in order to achieve significant

network lifespan improvement. The suggested GA-based protocol is based on

LEACH and functions substantially identically to the existing LEACH

protocol. It essentially contains a set-up and a steady-state phase for each

cycle in the protocol, which function identically as stated at LEACH, but it

varies in that this protocol incorporates an extra preparation phase in its

operation. This is done only once before the first round's setup process.

In the preparation phase, before the first round of network operation,

all nodes undertake CH selection based on a random model. As a result, each

sensor node creates a random number from the interval [0, 1], and the

produced value, along with the node ID and geographical position, is

transmitted to the Base Station (BS). Only sensor nodes with values greater

than a particular threshold are considered CH candidates. As the BS receives

signals from all nodes, it employs a GA-based searching method to determine

 89

the best likelihood of nodes becoming CH. The selection probability for each

node is determined by reducing the overall energy consumption necessary to

complete one loop. At the completion of the preparation phase, BS sends an

advertisement message to all nodes with the optimal produced probability

values in order to build clusters in the next set-up phase. The methods of

following set-up and steady-state stages in each round are the same as in

LEACH. In other words, the preparation phase creates the probability values

for the set-up phase's CH selection, resulting in lowest energy use. The

proposed GA-based adaptive clustering technique achieves optimal energy

usage, hence extending network lifetime. Other LEACH-based clustering

techniques include Genetic Algorithm Based Energy Efficient Clusters

(GABEEC) [94], enhanced LEACH [95], and C-LEACH [96]. All of the

presented strategies are aimed at enhancing the CH selection procedure in

order to optimize the distribution of energy resources.

3.5 Enhanced Algorithm

There are four major phases to applying the GA to a problem. The

initial step is to code the problem, and throughout this process, the structure

of a potential solution is formed in the genome. The genome is a collection of

binary or alphanumeric characters that the GA must alter in order to create

candidate solutions that are more optimum. The second stage is to construct

the fitness function, which has a direct influence on both the quality of the

produced solutions and the complexity of the GA. In our scenario, the fitness

function is made up of a collection of algorithms whose objective is to

estimate the parameters of the candidate's topologies. Finally, the fourth stage

 90

is to identify the genetic operations that influence variety, the quality of

created solutions, and the convergence of the group of candidate solutions

toward the global or local maximum or minimum. Recombination and

mutation are two genetic pathways. GA’s are deductive procedures based on

random search, which implies that the algorithm searches a field of probable

solutions for a global maximum or minimum. For a number of causes, the GA

may prematurely converge to a local maximum in many circumstances. This

can result from selecting the incorrect genetic procedures. Another

explanation is how the problem is integrated into the fitness function, which

is the mechanism that steers the algorithm toward optimum local or global

solutions. As a result, before applying GA to an issue, it is critical to first

assess and deconstruct the problem in such a way that it can be integrated into

a fitness function. To use the GA in topology construction, the parameters of

the network to be optimized should be specified as fitness function variables.

3.5.1 WSN model

We consider a homogeneous WSN with nodes structured in a

hierarchical cluster-based network paradigm. Each node can function as a CH

node or a sensor node. CH’s in a WSN collect data from sensor nodes and

transfer the aggregated data to a BS at regular intervals known as operation

rounds. Because CH’s have a high energy consumption due to their complex

and demanding activities, choosing optimal CH’s to improve network

lifespan is a fundamental difficulty in WSN topology design in order to

increase network longevity. The nodes of the WSN will be deployed across a

two-dimensional square network, X x X units represented on Fig. 31. The

 91

region is split into grids by a preset Euclidian distance, and nodes are put at

the intersections of the grids. The detection range of CH’s (green circles) is 2 ∕ 2 units, while their transmission range is 2√2 units. As shown in Fig

31, the following nodes are active: Low Range Node (LRN-cyan circles) and

High Range Node (HRN-blue circles). The detecting and transmission range

of LRN’s is 2 ∕ 2 units, and the total operation energy per round is the

lowest of all conceivable states. The HRN has a transmission and sensing

range of √2 units, which is twice that of the LRN, and its total operation

energy each round is more than in the previous condition. Inactive Nodes (IN-

nodes, X) do not conduct any processes at all, hence their energy consumption

is zero. Active sensor nodes in the LRN and HRN are separated for energy

optimization, coverage, and overlap reduction. To save energy, nodes near

congested areas and CH prefer to switch to low range mode.

Figure 31: Network model layout

 92

Nodes located in an uncovered region or away from the CH, on the

other hand, tend to function in the HRN mode to provide coverage and

preserve connections with the CH. Active nodes outside of the service region,

known as Out of Range Nodes (ORN), are unable to interact with the CH.

They simply need energy for operation, and because the values measured

cannot be transferred to the CH, it is more economical to pass them in sleep

mode.

3.5.2 WSN design parameters

As previously stated, the goal of the WSN topology design tool is to

simultaneously optimize several application specific network performance

parameters such as area coverage, connectivity, energy efficiency, and

lifetime through cluster formation and changing the operation state and

position of the nodes in the monitoring area. The effectiveness of network

distribution is measured by area coverage. It is critical in practically every

WSN design to obtain total coverage of the region at the lowest possible

implementation cost. As a result, the design tool will favour topologies with

fewer sensor nodes and greater area coverage. The total uncovered surface

parameter , is used to assess and evaluate area coverage. The total

uncovered surface is calculated as

 = ∑⋅
(59)

where is a region with an inactive node present but uncovered by any

nearby node, and X is the complete network deployment area's height and

 93

width parameters. The GA method employs a deductive technique to find the

best topology for the application at hand by selecting and continuously

combining the best performing topologies from randomly generated groups.

The fitness function assesses the quality of generated or selected topologies

by assessing network parameters such as coverage, number of sensor nodes

per CH, total average energy of the system, minimum and maximum energy

for nodes, residual energy, number of nodes out of coverage, number of

overlaps, and total network lifetime. The fitness function is applied to each

person, i.e., topology, of a population of a specific generation, and a fitness

value is assigned based on the results of the corresponding parameters and

weights. In this scenario, the GA acts as the function of minimizing the fitness

function, which implies that topologies with lower fitness values will be

favored by the selection function to be picked in order to recombine them to

produce young individuals from the following population. The

implementation of the global optimization toolbox via Matlab's genetic

algorithms consists of three main steps: establishing the fitness function,

identifying genetic operations, and building the sequence of genome

characteristics depending on the challenge. Binary coding was defined to

represent all network nodes. The following syntax code line was used to

enable the GA toolbox:

 , = @ , _ ,

where "FitnessFunction" is the fitness function that evaluates population

individuals for each generation. "Individual_Size" specifies an individual's

genome length, which in our instance is:

 94

 = 2 (60)

The method works by using genetic processes to favor the recombination of

individuals with the lowest fitness value. Topologies with optimum

performance characteristics for application needs can thus be generated

through minimizing of the fitness function.

The functions implemented by the user determine and initialize the variables

of the fitness function, as well as the methods of their assessment for each

individual, since they are specific depending on the situation being handled.

The GA of the global optimization toolbox functions as a minimization

function for the fitness function in the design application of a WSN

topology. The toolbox function serves as a minimization function for the

fitness function. Step 7 presented in appendix A shows how, after forming a

population, the GA determines the value of fitness for each individual in the

population using the function of the weighted sum of the network parameters.

Following that, the algorithm functions through genetic operations, preferring

the recombination of individuals with the lowest fitness value. Topologies

with optimum performance characteristics for application needs can thus be

generated through minimizing of the fitness function.

3.5.3 Performance and application requirements

Priority number one before implementing the current network in the

environment is a compromise between several WSN criteria such as

connection, coverage, and energy efficiency. This function is performed

 95

independently by the algorithm, which determines the particular position of

the nodes in the network, their statuses or possible roles, and organizes the

nodes into clusters. Before using the design tool, we must first examine the

target network's capabilities and needs, as well as prioritize each of the

performance characteristics. The user can allocate priority to each parameter

in the network design tool based on the weights it assigns to those in the

fitness function of GA. The user must also define network attributes such as

node power capacity, communication radius, coverage radius, operational and

communication energy expenses per round, communication radius, and the

unit of surface on which the network would monitor for the application in

question. The implementation of the network design method can begin after

the performance parameter weights and network characteristics have been

determined. The algorithm execution circumstances, including genetic

operations, their configuration, and termination criteria, are determined

experimentally throughout the algorithm's development. Table 11

summarizes the network characteristics for the application in issue.

Table 11: Network design criteria

WSN design criteria Value

Surface for coverage 10 x 10 unit of surface

Maximum number of nodes 100

Energy capacity 1000 unit of energy

Operational energy for LRN 4 unit of energy

Operational energy for HRN 8 unit of energy

Operational energy for CH 16 unit of energy

Transmission radius for LRN √2 2 unit of length

Transmission radius for HRN √2 unit of length

Transmission radius for CH 2√2 unit of length

 96

Coverage radius for LRN √2 2 unit of length

Coverage radius for HRN √2 unit of length

Coverage radius for CH √2 2 unit of length

Communication energy per round 0,6 * (d – distance between two nodes)

Priorities must be established when the capacity of the nodes and the

features of the network to be created have been determined. As a result, the

weight coefficients of each parameter in the fitness function must be

determined. GA is a conventional evolutionary algorithm that is based on

randomness. As a result, applying it to the simultaneous optimization of a

number of interconnected performance characteristics yields a diverse set of

alternative solutions. Selecting the solution set that best matches the

application is a difficult procedure with no established strategy. For any

application, there may be a set of weight combinations that can provide

outcomes that satisfy or do not meet the majority of the criteria. The purpose

at this stage is to pick parameter weights by testing different combinations of

variable coefficients on the fitness function in order to discover the best

performing combination for the specified application. We will use eight

characteristics to identify the weighting combination that provides the best

set of answers. However, five of them are particularly essential and will be

used as criteria for evaluating the performance of produced network

topologies. The first criterion used is the simulated environment's uncovered

surface (), which is assessed in relation to the entire area of the

environment. Weight combinations that decrease the uncovered territory will

be deemed more beneficial. The second criteria is the residual energy () in

the active nodes after the network fails, which reflects the efficiency of

employing the active nodes' energy capacity. A low value for this parameter

 97

implies that we are efficient in our use of network resources. The third criteria

is longevity (), which is one of the most essential factors for assessing the

network's energy efficiency. In order to properly execute the defined

monitoring functions, the network must run in the testing environment for a

specific amount of time. The final two criteria concern connectivity: the Node

Degree (ND) once the network is unplugged and the amount of overlaps ().

ND estimates how much the network's connection is affected by the death of

a CH in the network and how much network recovery is achievable, whereas

 determines the efficiency of node distribution between clusters.

3.5.4 Results of the network design algorithm

Designing the best topology of a WSN involves a collection of

performance factors that are connected to one another, and the major goal is

to find a compromise between these parameters in order to fulfill application

requirements. Deterministic strategies are ineffective in these applications;

hence, the use of GA as a deductive method for creating the topology with

the highest performance was proposed and implemented. The network's

performance parameters are determined using a model of WSNs with

hierarchical organization and homogenous nodes. Performance factors are

incorporated as heavily weighted by fitness function variables, organized by

influence on coverage, energy efficiency, and connection parameters. Each

performance characteristic can be allocated a weight based on its significance

in a specific application. The GA is used to minimize the fitness function in

order to generate performing solutions. The weights of each parameter in the

WSN design process are assigned randomly at the start based on the

 98

application requirements. Their work is completed by testing and eliminating

inefficient scenarios for the application. Table 12 displays the performance

parameter symbols and their expected values from the GA. After simulating

several topologies with optimal performance, 100 individual tests were done

for each combination instance, and the mean results are given in Table 13.

The first test involves all parameters having the same unit weight. Following

that, necessary actions were made, raising or reducing the weight value based

on the outcomes of the specified parameters. It is repeated in the following

scenarios until the combination that produces the best answer is discovered.

Except for the maximum and lowest energy, which have no effect at the start

of the simulation, all weight coefficients are units at the start. Because

coverage is a priority in our application, the value 0.3 of does not match

our criterion. As a result, in the second situation, value is 2, enhancing its

influence on fitness. There is now better coverage and minor adjustments to

other metrics, but is still high and not optimum for our situation, indicating

that sensor nodes are distributed inefficiently among clusters. As a result,

is set to 2 to restrict the value of overlaps. The coverage condition is

somewhat modified based on the results of the next instance, and the overlaps

criterion is fulfilled in this situation.

Table 12: Performance parameters with their respective weight coefficients

Performance parameter Weight coefficient Objective of GA

Uncovered surface Min.

Sensor nodes density for CH Max.

Avarage energy Min.

Number of non-connected nodes (SOR) Min.

Number of overlaps (Min.

Maximum energy Max.

 99

Minimal energy Min.

Lifetime Max.

Table 13: Results of combinations of weights coefficients

No. Weight coefficient Parameters of performance

1 1 1 1 1 1 0 0 1 0.3 43 614 38 0.4

2 2 1 1 1 1 0 0 1 0 42 621 39 0.6

3 2 1 1 1 2 0 0 1 0.1 40 631 38 0.1

4 2 2 1 1 2 0 0 1 0.2 37 662 41 0.5

5 2 0.5 1 1 2 0 0 1 0.3 41 618 33 0.2

6 2 0.5 1 1 2 0 0 2 0.5 45 577 33 0.6

7 2 0.1 1 1 2 0 0 2 1 48 446 19 0.7

8 2 1 1 1 3 0 0 1 0.2 39 639 37 0

9 2 1 2 1 2 0 0 1 0.2 40 621 34 0.1

10 2 0.5 2 1 2 0 0 1 0.5 43 494 18 0.3

11 2 1.5 1 1 0.5 0 0 1 0 42 631 43 1.1

12 2 0.5 1 1 1.5 0 0 1 0.1 42 606 34 0.5

13 2 1.5 0.5 1 1 0 0 1 0 40 641 41 0.4

14 2 0.5 1.5 1 1 0 0 1 0 46 478 21 1.1

15 2 1 0.5 1 1.5 0 0 1 0.1 40 635 39 0.2

16 2 1 1.5 1 0.5 0 0 1 0 43 606 38 1.8

17 2 1 1 1 2 0 0 1 0.4 44 595 36 0.4

18 2 1 1 1 2 0 1 1 0.2 40 636 38 0.1

19 2 1 1 1 2 0.5 0 1 0.2 42 612 36 0.1

20 2 1 1 1 2 0 0.5 1 0.1 40 632 37 0.2

Changing the weight value of or the maximum power parameter

is one way to optimize sensor node dispersion. The algorithm will prefer to

generate topologies with a uniform distribution and fewer CH. Thus, the

strategy for selecting the optimal coefficient combination for the network

under consideration is implemented in this manner. According to the

simulation, the instance 19 is the combination of weights that offers the most

effective parameter compromise for obtaining a full-coverage WSN. As can

be observed, unlike in previous circumstances, it is set to a relatively low

 100

value of ; as a result, the number of sensor node connections per CH is

limited. This weight combination allows for an increase in and a more

efficient use of energy resources. The clustering of sensor nodes is

particularly efficient for full-coverage of the environment, consistent power

consumption amongst CHs, and avoiding overlaps. Table 14 summarizes all

of the dimensions and characteristics of ideal case 19, based on an average

test of 100 cases.

Table 14: The average parameters of the most optimal topology

Network parameter Values

Number of CH 7

Number of HRN 18

Number of LRN 24

Number of IN 51

Uncovered surface 0.2

Sensor nodes density for CH 6

Number of overlaps 0.19

Maximum energy 24

Minimal energy 1

Lifetime 42

Average energy remaining after disconnection of the network 611.3

ND before network disconnection 42

ND after network disconnection 36

Based on the provided topology findings, it is clear that just 49 active

sensors out of 100 are required for comprehensive coverage of the

surroundings. The nodes are distributed around the environment in seven

clusters, with six sensor nodes each CH. Because there is no overlap, the

distribution of sensor nodes per CH is fairly consistent and efficient (0.19).

Furthermore, homogeneous sensor node distribution allows for balanced

power consumption between CH and nodes with greater power consumption.

 101

In comparison to other investigated scenarios, the network with the produced

topology has optimum since it can function for 42 cycles before being

disconnected. GA are logical strategies that seek a global maximum or

minimum in a space with several options. As a result, the greatest answer in

our instance would be to keep things as simple as possible. To determine

whether we truly constructed the topology with the best performance for the

given circumstance, we must examine the algorithm's performance. The

advancement of the fitness value of the people formed throughout the

implementation of a deductive algorithm may be used to evaluate its

performance. This assessment technique may be insufficient to avoid or

identify premature convergence, and hence monitoring of specific application

parameters throughout algorithm implementation is required to determine

whether or not the parameter values converge to appropriate values for the

application. It is sufficient to assess the advancement or regression of

performance parameters for the topology of a WSN to establish if the

employed algorithm is effective in developing a viable solution or not. In

most circumstances, if the algorithm converges early, we are working with a

restricted search space. To avoid it, simple actions such as raising the pace or

modifying the mechanism of mutation, changing the method of

recombination, choosing individuals for recombination, increasing the

number of people per population, and executing the algorithm over more

generations can be taken. Figure 32 depicts the minimizing of the number of

overlaps (), as expected in Table 12.

 102

Figure 32: Number of overlaps ()

Figure 33: Average difference of the value of fitness function between

nodes during the application of GA.

The selection and setup of genetic procedures are carried out experimentally

using evidence based on performance parameter progress. Figure 32 depicts

the minimization of the number of overlaps (), as anticipated in Table 12,

 103

during the algorithm's execution using the combination number 19 of the

weights (Table 13). Fig. 32 results confirm once again the results given in

Table 14, where the average number of overlaps () is 0.19. We have a

convergence of population individuals difference for the fitness function

based on the findings of the GA applied to the design of a WSN, as shown in

Fig. 33. The value of this difference is very high at the beginning of the

algorithm, when the first generation is generated randomly, indicating that

randomly generated solutions are far from the optimal required solution, and

the average difference in the value of fitness function among individuals in

the population is quite high. After a few dozen generations, the algorithm

begins to converge towards more acceptable solutions with lower fitness

function values. However, even after convergence, the difference between

individuals in the population remains large, implying that the search space is

large enough to allow for the production and selection of the best solutions

by genetic operations. The algorithm has improved over generations until it

reaches a point when the difference between people in fitness value reduces

and there is no improvement in the fitness function's value of the best

individual. At this point, we can declare with certainty that the population has

converged and we are either very near to or have found the best feasible

answer. Observing the degree of difference between people and the

advancement of the average fitness value is a rather good way of judging

whether or not we have discovered the best feasible answer. However, this

strategy is frequently insufficient since we lack data on the progress of other

metrics. As far as we know, fitness value advancement can also result from

the improvement of a single parameter of the fitness function with a high

 104

weight ratio in respect to other parameters, while other parameters may not

change or may deteriorate. Because network characteristics are directly

reliant on the application, WSN design is a process that needs consideration

of both application requirements and wireless sensor network restrictions.

The distribution of joints in the environment, as well as the status of their

functioning and cluster structure, has a significant influence on the efficiency

of communication functions, environmental monitoring, and energy usage.

The network topology design process has an impact on network performance

and must be completed before it can be implemented in the environment. Due

to environmental limits and needs, designing WSN’s is sometimes a difficult

task that entails striking a balance between opposing performance factors.

After the 3000’th generation, the average fitness value and network

performance characteristics in successive populations stalled and stayed

constant, with very minor variations in some situations. As a result, the

genetic algorithm is programmed to end after 4000 generations.

3.6 Conclusion

The design of a WSN homogeneous network with hierarchical

structure is demonstrated in this third chapter, with the priority of covering

an environment with minimal cost, high connection, and maximum longevity.

Designing a network necessitates determining the best compromise between

performance parameters, with the priority of each parameter regulated by the

weight coefficients in the fitness function. We proved that our system can find

the most effective weight combination through continuous testing and case

selection, resulting in a topology with network parameter values that fulfill

 105

the application constraints. Finally, the chosen weight combination may be

used to generate the most performable topology conceivable. The

optimization of communication between nodes can be simulated in future

efforts. The design criterion may involve the selection and assessment of

routing algorithms' efficiency. This is possible by implementing a network

performance simulation and evaluation function for specific hierarchical

routing protocols. Another feature that may be included is the simulation of a

network breakdown and the testing of the performance of several network

recovery mechanisms in order to pick the best one.

 106

List of Publication

1. G. Ciattaglia , A. De Santis , D. Disha , S. Spinsante , P. Castellini ,

E. Gambi. Performance Evaluation of Vibrational Measurements

Through mmWave Radars. 2020 IEEE 7th International Workshop on

Metrology for AeroSpace (MetroAeroSpace). Proceedings, art. no.

9160237, pp. 160-165. DOI:

10.1109/MetroAeroSpace48742.2020.9160237

2. E., Zanaj, E. Gambi, B. Zanaj, D. Disha. Customizable Hierarchical

Wireless Sensor Networks Based on Genetic Algorithm. International

Journal of Innovative Computing, Information and Control, Volume

16, Number 5, October 2020, ICIC International c 2020 ISSN 1349-

4198.

3. E. Zanaj, B. Zanaj, E. Gambi, D. Disha. Simulation of UWSNs

performance evaluation. International Journal of Emerging Trends in

Engineering Research. Volume 8. No. 7, July 2020, ISSN 2347-3983,

https://doi.org/10.30534/ijeter/2020/48872020

4. Zanaj E, Gambi E, Zanaj B, Disha D, Kola N. Underwater Wireless

Sensor Networks: Estimation of Acoustic Channel in Shallow Water.

Applied Sciences. 2020; 10(18):6393.

https://doi.org/10.3390/app10186393

5. E. Zanaj, D. Disha, S. Spinsante and E. Gambi, "A Wearable Fall

Detection System based on LoRa LPWAN Technology," in Journal

of Communications Software and Systems, vol. 16, no. 3, pp. 232-

242, July 2020, doi: 10.24138/jcomss. v16i3.1039

6. G. Ciattaglia, A. De Santis, D. Disha , S. Spinsante , P. Castellini , E.

Gambi. Performance Evaluation of Vibrational Measurements

Through mmWave Radars. 2021 MDPI (Multidisciplinary Digital

Publishing Institute) Remote Sensing, 13 (1), art. no. 98, pp. 1-20.

7. L. Senigagliesi, G. Ciattaglia, D. Disha, E. Gambi. Classification of

Human Activities based on Automotive Radar Spectral Images Using

 107

Machine Learning Techniques: A Case Study. 2022 IEEE Radar

Conference, Doi:10.1109/RadarConf2248738.2022.9764217. pp. 1-6,

(RadarConf22)

8. G. Ciattaglia, A. De Santis, D. Disha, E. Gambi. Patients’ behavior

monitoring inside a hospital garden: comparison between RADAR

and GPS solutions. 8th EAI International Conference, HealthyIoT

2021: IoT Technologies for Health Care pp 139–152,

https://doi.org/10.1007/978-3-030-99197-5_12

9. D. Disha, L. Senigagliesi, E. Gambi. Comparison of deep learning

techniques for human activity classification based on feature

extraction from range-Doppler maps. The 1st International

Conference on Information Technologies and Educational

Engineering (ICITEE21). ISBN: 978-9928-329-52-3

10. Iadarola G., D., Disha, De Santis, A. Spinsante, S., Gambi, E. Global

Positioning System measurements: comparison of IoT wearable

devices. 2022 IEEE 9th International Workshop on Metrology for

AeroSpace (MetroAeroSpace), DOI:

10.1109/MetroAeroSpace54187.2022.9855994

11. Ciattaglia, G., Senigagliesi, L., Disha, D., De Santis, A., Gambi, E.

Experimental Evaluation of Mutual Interference in Automotive

Radars. 2022 IEEE 95th Vehicular Technology Conference:

(VTC2022-Spring), DOI: 10.1109/VTC2022

Spring54318.2022.9861024

 108

Bibliography

[1] J. Hampton, Introduction to MIMO Communications. Cambridge

University Press New York, USA, 2014.

[2] T. Kinnunen and H. Li, “An overview of text-independent speaker

recognition: From features to supervectors,” Speech Communication,

vol. 52, pp. 12–40, 2010.

[3] G. Kumar and P. K. Bhatia, “A detailed review of feature extraction

in image processing systems,” 2014 Fourth International Conference

on Advanced Computing Communication Technologies, pp. 5–12,

February 2014.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal

function,” Mathematics of Control, Signals, and Systems, vol. 2, pp.

303–314, 1989.

[5] K. Hornik and H. Stinchcombe, M.and White, “Multilayer

feedforward networks are universal approximators,” Neural

Networks, vol. 2, pp. 359–366, 1989.

[6] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural networks : the official journal of the International Neural

Network Society, vol. 61, pp. 85–117, 2015.

[7] K. Fukushima, “Neocognitron: A hierarchical neural network

capableof visual pattern recognition,” Neural Networks, vol. 1, pp.

119–130, 1988.

[8] C. Cortes and V. Vapnik, “Support-vector networks,” Machine

Learning, vol. 20, pp. 273–297, 1995.

[9] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for

deep belief nets,” Neural computation, vol. 18, pp. 1527–54, August

2006.

[10] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification

with deep convolutional neural networks,” Advances in Neural

Information Processing Systems, vol. 25, pp. 1097–1105, 2012.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” arXiv: 1409.1556, 2014.

[12] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez,

and J. Garcia-Rodriguez, “A survey on deep learning techniques for

image and video semantic segmentation,” Applied Soft Computing,

vol. 70, 05 2018.

 109

[13] K. Zinal and R. Monali, “A review: Object detection using deep

learning,” International Journal of Computer Applications, vol. 180,

pp. 46–48, 03 2018.

[14] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. Dauphin,

“Convolutional sequence to sequence learning,” International

Conference on Machine Learning, 2017.

[15] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D.

Yu, “Convolutional neural networks for speech recognition,”

IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 22, no. 10, pp. 1533–1545, October 2014.

[16] I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: A deep

convolutional neural network for bioactivity prediction in structure-

based drug discovery,” arXiv: 1510.02855, 2015.

[17] S. Zhang, L. Yao, and A. Sun, “Deep learning based recommender

system: A survey and new perspectives,” arXiv: 1707.07435, 2017.

[18] A. Borovykh, S. Bohte, and C. Oosterlee, “Conditional time series

forecasting with convolutional neural networks,” arXiv: 1703.04691,

2017.

[19] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex,” Journal of

Physiology, vol. 160, 1962.

[20] Y. Tang, “Deep learning using linear support vector machines,” 2013.

[21] L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for

largescale machine learning,” SIAM Review, vol. 60, pp. 223–311,

2018.

[22] N. Qian, “On the momentum term in gradient descent learning

algorithms,” Neural networks : the official journal of the International

Neural Network Society, vol. 12, no. 1, pp. 145–151, 1999.

[23] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations

by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[24] D. J. Lary, A. H. Alavi, A. H. Gandomi, and A. L. Walker, “Machine

learning in geosciences and remote sensing,” Geoscience Frontiers,

vol. 7, no. 1, 2016.

[25] D. Callaghan, J. Burger, and A. K. Mishra, “A machine learning

approach to radar sea clutter suppression,” 2017 IEEE Radar

Conference (RadarConf), pp. 1222–1227, May 2017.

 110

[26] G. Lopez-Risueno, J. Grajal, and R. Diaz-Oliver, “Target detection in

sea clutter using convolutional neural networks,” Proceedings of the

2003 IEEE Radar Conference, pp. 321–328, May 2003.

[27] Metcalf, S. D. Blunt, and B. Himed, “A machine learning approach to

cognitive radar detection,” pp. 1405–1411, May 2015.

[28] Q. Zhao and J. C. Principe, “Support vector machines for sar

automatic target recognition,” IEEE Transactions on Aerospace and

Electronic Systems, vol. 37, no. 2, pp. 643–654, April 2001.

[29] A. Turlapaty and Y. Jin, “Parameter estimation and waveform design

for cognitive radar by minimal free-energy principle,” 2013 IEEE

International Conference on Acoustics, Speech and Signal Processing,

pp. 6244–6248, May 2013.

[30] E. Mason, B. Yonel, and B. Yazici, “Deep learning for radar,” 2017

IEEE Radar Conference (RadarConf), pp. 1703–1708, May 2017.

[31] A. M. Elbir, K. V. Mishra, and Y. C. Eldar, “Cognitive radar antenna

selection via deep learning,” arXiv: 1802.09736, 2018.

[32] F. Seleim, A.and Paisana, J. A. Arokkiam, Y. Zhang, L. Doyle, and

L. A. DaSilva, “Spectrum monitoring for radar bands using deep

convolutional neural networks,” 2017 IEEE Global Communications

Conference, pp. 1–6, 2017.

[33] T. Wheeler, M. Holder, H. Winner, and M. J. Kochenderfer, “Deep

stochastic radar models,” 2017 IEEE Intelligent Vehicles Symposium

(IV), pp. 47–53, 2017.

[34] S. Chen, H. Wang, F. Xu, and Y. Jin, “Target classification using the

deep convolutional networks for sar images,” IEEE Transactions on

Geoscience and Remote Sensing, vol. 54, no. 8, pp. 4806–4817, Aug

2016.

[35] Y. Zhou, H. Wang, F. Xu, and Y. Jin, “Polarimetric sar image

classification using deep convolutional neural networks,” IEEE

Geoscience and Remote Sensing Letters, vol. 13, no. 12, pp. 1935–

1939, Dec 2016.

[36] X. He, N. Tong, and X. Hu, “Automatic recognition of isar images

based on deep learning,” pp. 1–4, Oct 2016.

[37] V. C. Chen, The micro-Doppler effect in radar. Artech House, 2011.

[38] Y. Kim and T. Moon, “Human detection and activity classification

based on micro-Doppler signatures using deep convolutional neural

networks,” IEEE Geoscience and Remote Sensing Letters, vol. 13, no.

1, pp. 8–12, Jan 2016.

 111

[39] M. S. Seyfioglu, A. M. Ozbayoglu, and S. Z. Gurbuz, “Deep

convolutional autoencoder for radar-based classification of similar

aided and unaided human activities,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 54, no. 4, pp. 1709–1723,

August 2018.

[40] Y. Kim and B. Toomajian, “Hand gesture recognition using

microDoppler signatures with convolutional neural network,” IEEE

Access, vol. 4, pp. 7125–7130, 2016.

[41] B. K. Kim, H. Kang, and S. Park, “Drone classification using

convolutional neural networks with merged Doppler images,” IEEE

Geoscience and Remote Sensing Letters, vol. 14, no. 1, pp. 38–42, Jan

2017.

[42] J. Martinez, D. Kopyto, M. Schuetz, and M. Vossiek, “Convolutional

neural network assisted detection and localization of UAVs with a

narrowband multi-site radar,” 2018 IEEE MTT-S International

Conference on Microwaves for Intelligent Mobility (ICMIM), pp. 1–

4, April 2018.

[43] J. Martinez and M. Vossiek, “Deep learning-based segmentation for

the extraction of micro-Doppler signatures,” 2018 European Radar

Conference (EURAD), 09 2018.

[44] J. Lombacher, M. Hahn, J. Dickmann, and C. Wohler, “Potential of

radar for static object classification using deep learning methods,”

2016 IEEE MTT-S International Conference on Microwaves for

Intelligent Mobility, pp. 1–4, 2016.

[45] C. Grimm, T. Breddermann, R. Farhoud, T. Fei, E. Warsitz, and R.

Haeb-Umbach, “Discrimination of stationary from moving targets

with recurrent neural networks in automotive radar,” 2018 IEEE

MTT-S International Conference on Microwaves for Intelligent

Mobility, pp. 1–4, 2018.

[46] J. Martinez, R. Prophet, J. C. Fuentes, R. Ebelt, M. Vossiek, and I.

Weber, “Identification of ghost moving targets in automotive

scenarios with deep learning,” 2019 IEEE MTT-S International

Conference on Microwaves for Intelligent Mobility, pp. 1–4, April

2019.

[47] K. N. Parashar, M. C. Oveneke, M. Rykunov, H. Sahli, and A.

Bourdoux, “Micro-Doppler feature extraction using convolutional

autoencoders for low latency target classification,” 2017 IEEE Radar

Conference (RadarConf), pp. 1739–1744, 2017.

 112

[48] M. S. Seyfioglu and S. Z. Gurbuz, “Deep neural network initialization

methods for md classification with low training sample support,”

IEEE Geoscience and Remote Sensing Letters, vol. 14, pp. 2462–

2466, 2017.

[49] J. Park, J. Rios, T. Moon, and Y. Kim, “Micro-Doppler based

classification of human aquatic activities via transfer learning of

convolutional neural networks,” Sensors, vol. 24, 2016.

[50] J. Ding, B. Chen, H. Liu, and M. Huang, “Convolutional neural

network with data augmentation for sar target recognition,” IEEE

Geoscience and Remote Sensing Letters, vol. 13, no. 3, pp. 364–368,

March 2016.

[51] Y. Wang, Q. Liu, and A. E. Fathy, “Cw and pulse–doppler radar

processing based on fpga for human sensing applications,” IEEE

Transactions on Geoscience and Remote Sensing, vol. 51, no. 5, pp.

3097–3107, 2012.

[52] Y. S. Koo, L. Ren, Y. Wang, and A. E. Fathy, “Uwb microdoppler

radar for human gait analysis, tracking more than one person, and vital

sign detection of moving persons,” in 2013 IEEE MTT-S

International Microwave Symposium Digest (MTT). IEEE, 2013, pp.

1–4.

[53] R. Trommel, R. Harmanny, L. Cifola, and J. Driessen, “Multi-target

human gait classification using deep convolutional neural networks on

micro-doppler spectrograms,” in 2016 European Radar Conference

(EuRAD). IEEE, 2016, pp. 81–84.

[54] H. G. Doherty, R. A. Burgueño, R. P. Trommel, V. Papanastasiou,

and R. I. Harmanny, “Attention-based deep learning networks for

identification of human gait using radar micro-doppler spectrograms,”

International Journal of Microwave and Wireless Technologies, vol.

13, no. 7, pp. 734–739, 2021.

[55] S. K. Mitra and Y. Kuo, Digital signal processing: a computer-based

approach. McGraw-Hill New York, 2006, vol. 2.

[56] L. Cohen, Time-frequency analysis. Prentice hall, 1995, vol. 778.

[57] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review

and recent developments,” Philosophical Transactions of the Royal

Society A: Mathematical, Physical and Engineering Sciences, vol.

374, no. 2065, p. 20150202, 2016.

[58] R. Bro and A. K. Smilde, “Principal component analysis,” Analytical

methods, vol. 6, no. 9, pp. 2812–2831, 2014.

 113

[59] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.

J. McLachlan, A. Ng, B. Liu, S. Y. Philip et al., “Top 10 algorithms

in data mining,” Knowledge and information systems, vol. 14, no. 1,

pp. 1–37, 2008.

[60] J. C. Bezdek, S. K. Chuah, and D. Leep, “Generalized k-nearest

neighbor rules,” Fuzzy Sets and Systems, vol. 18, no. 3, pp. 237–256,

1986.

[61] K.-R. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An

introduction to kernel-based learning algorithms,” IEEE transactions

on neural networks, vol. 12, no. 2, pp. 181–201, 2001.

[62] E. Gambi, G. Ciattaglia, A. De Santis, and L. Senigagliesi,

“Millimeter wave radar data of people walking,” Data in brief, vol.

31, p. 105996, 2020.

[63] L. Senigagliesi, G. Ciattaglia, A. De Santis, and E. Gambi, “People

walking classification using automotive radar,” Electronics, vol. 9, no.

4, p. 588, 2020.

[64] J. Bryan, J. Kwon, N. Lee, and Y. Kim, “Application of ultra-wide

band radar for classification of human activities,” IET Radar, Sonar &

Navigation, vol. 6, no. 3, pp. 172–179, 2012.

[65] S. Björklund, H. Petersson, and G. Hendeby, “Features for micro-

doppler based activity classification,” IET radar, sonar & navigation,

vol. 9, no. 9, pp. 1181–1187, 2015.

[66] L. Senigagliesi, G. Ciattaglia, and E. Gambi, “Contactless walking

recognition based on mmwave radar,” in 2020 IEEE Symposium on

Computers and Communications (ISCC). IEEE, 2020, pp. 1–4.

[67] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for largescale image recognition,” arXiv preprint arXiv:1409.1556,

2014.

[68] M. Mahdianpari, B. Salehi, M. Rezaee, F. Mohammadimanesh, and

Y. Zhang, “Very deep convolutional neural networks for complex

land cover mapping using multispectral remote sensing imagery,”

Remote Sensing, vol. 10, no. 7, p. 1119, 2018.

[69] S. L. Rabano, M. K. Cabatuan, E. Sybingco, E. P. Dadios, and E. J.

Calilung, “Common garbage classification using mobilenet,” in 2018

IEEE 10th International Conference on Humanoid, Nanotechnology,

Information Technology, Communication and Control, Environment

and Management (HNICEM). IEEE, 2018, pp. 1–4.

[70] http://https://www.image-net.org/

 114

[71] P. Maji and R. Mullins, “On the reduction of computational

complexity of deep convolutional neural networks,” Entropy, vol. 20,

no. 4, p. 305, 2018.

[72] K. Simonyan and A. Zisserman. Very deep convolutional networks

for large-scale image recognition. In ICLR, 2015.

[73] Nash, Will & Drummond, Tom & Birbilis, Nick. (2018). A review of

deep learning in the study of materials degradation. npj Materials

Degradation. 2. 10.1038/s41529-018-0058-x.

[74] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, A

survey on sensor networks, IEEE Communications Magazine, 2002.

[75] L. C. Tagliabue, F. R. Cecconi, N. Moretti, S. Rinaldi, P. Bellagente

and A. L. C. Ciribini, Security assessment of urban areas through a

GIS-based analysis of lighting data generated by IoT sensors, Appl.

Sci., vol.10, no.6, DOI: 10.3390/app10062174, 2020.

[76] A. Pedersen and T. F. Brustad, A study on hybrid sensor technology

in winter road assessment, Safety, vol.6, no.1, DOI:

10.3390/safety6010017, 2020.

[77] M. Al-Zubaidie, Z. Zhang and J. Zhang, REISCH: Incorporating

lightweight and reliable algorithms into healthcare applications of

WSNs, Appl. Sci., vol.10, no.6, DOI: 10.3390/app10062007, 2020.

[78] A. Kristoffersson and M. Lind´en, A systematic review on the use of

wearable body sensors for health monitoring: A qualitative synthesis,

Sensors, vol.20, no.5, DOI: 10.3390/s20051502, 2020.

[79] D. M. Doolin and N. Sitar, Wireless sensors for wildfire monitoring,

Proc. of SPIE on Smart Structures & Materials, pp.477-484, 2005.

[80] L. Tang, Z. Lu and B. Fan, Energy effcient and reliable routing

algorithm for wireless sensors networks, Appl. Sci., vol.10, no.5,

DOI: 10.3390/app10051885, 2020

[81] Z. Nazari, M. Nazari and D. Kang, A bottom-up hierarchical

clustering algorithm with intersection points, International Journal of

Innovative Computing, Information and Control, vol.15, no.1,

pp.291-304, 2019.

[82] M. A. Sayeed and R. Shree, Optimizing unmanned aerial vehicle

assisted data collection in cluster based wireless sensor network, ICIC

Express Letters, vol.13, no.5, pp.367-374, 2019.

[83] J. Ma, S. Shi, X. Gu and F. Wang, Heuristic mobile data gathering for

wireless sensor networks via trajectory control, International Journal

 115

of Distributed Sensor Networks, vol.16, no.5, DOI:

10.1177/1550147720907052, 2020.

[84] L. J. G. Villalba, A. L. S. Orozco, A. T. Cabrera and C. J. B. Abbas,

Routing protocols in wireless sensor networks, Sensors, vol.9, no.11,

pp.8399-8421, 2009.

[85] J. D´ıez-Gonz´alez, R.´Alvarez, N. Prieto-Fern´andez and H. Perez,

Local wireless sensor networks positioning reliability under sensor

failure, Sensors, vol.20, no.5, DOI: 10.3390/s20051426, 2020.

[86] J. Elson and A. Parker, Tinker: A tool for designing data-centric

sensor networks, IPSN’06, TN, USA, 2006.

[87] R. Ramadan, K. F. Abdelghany and H. El-Rewin, SensDep: A design

tool for the deployment of heterogeneous sensing devices, The 2nd

IEEE Workshop on Dependability and Security in Sensor Networks

and Systems (DSSNS), 2006.

[88] S.-C. Wang, Y.-L. Lin, M.-L. Chiang and H.-H. Pan, Improve the

stability of the Internet of things using dynamic load balancing

clustering, International Journal of Innovative Computing,

Information and Control, vol.16, no.1, pp.63-76, 2020.

[89] X. Liu, A survey on clustering routing protocols in wireless sensor

networks, Sensors, vol.12, no.8, pp.11113-11153, 2012.

[90] D. Bhattacharyya, T. Kim and S. Pal, A comparative study of wireless

sensor networks and their routing protocols, Sensors, 2010.

[91] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, Energy-

efficient communication protocol for wireless microsensor networks,

Proc. of the 33rd Annual Hawaii International Conference on System

Sciences (HICSS), Big Island, HI, USA, pp.3005-3014, 2000.

[92] E. Kotobelli, E. Zanaj, M. Alinci, E. Bum¸ci and M. Banushi, A

modified clustering algorithm in WSN, International Journal of

Advanced Computer Science and Applications (IJACSA), vol.6,

2015.

[93] J.-L. Liu and C. V. Ravishankar, LEACH-GA: Genetic algorithm-

based energy-efficient adaptive clustering protocol for wireless sensor

networks, International Journal of Machine Learning and Computing

(IJMLC), vol.1, no.1, pp.79-85, 2011. 1638

[94] S. Bayraklı and S. Z. Erdogan, Genetic algorithm based energy

efficient clusters (GABEEC) in wireless sensor networks, Procedia

Computer Science, vol.10, pp.247-254, 2012.

 116

[95] P. Nayak and B. Vathasavai, Genetic algorithm based clustering

approach for wireless sensor network to optimize routing techniques,

The 7th International Conference on Cloud Computing, Data Science

& Engineering – Confluence, 2017.

[96] A. Rahmanian, H. Omranpour, M. Akbari and K. Raahemifar, A novel

genetic algorithm in LEACHC routing protocol for sensor networks,

Proc. of the 24th Canadian Conference on Electrical and Computer

Engineering, Niagara Falls, Ontario, Canada, 2011.

[97] Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data

using t-SNE." Journal of machine learning research 9.11 (2008).

[98] Joyce, J.M. (2011). Kullback-Leibler Divergence. In: Lovric, M. (eds)

International Encyclopedia of Statistical Science. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-04898-2_327

[99] Ruder, Sebastian. "An overview of gradient descent optimization

algorithms." arXiv preprint arXiv:1609.04747 (2016).

[100] L. Senigagliesi, G. Ciattaglia, D. Disha, E. Gambi. Classification of

Human Activities based on Automotive Radar Spectral Images Using

Machine Learning Techniques: A Case Study. 2022 IEEE Radar

Conference, doi:10.1109/RadarConf2248738.2022.9764217. pp. 1-6,

(RadarConf22)

 117

Appendix A.

GA Configuring

A.1. Parameters of “options” structure for configuring the GA

- Value (option) – Description

- PopulationType (bitstring) – The binary row determines the kind of

genome on which the GA will be applied.

- Generations (4000) – Determine the maximum number of iterations

or generations the GA can have before it is terminated. After 4000, the

algorithm will be terminated.

- FitnessScalingFcn (fitscalingprop) – Determines the mechanism of

scaling individuals in the population depending on fitness values. In this

scenario, the selectivity of the selection is proportional to the fitness value.

- SelectionFcn (selectionstochunif) – Determine the recombination

selection function of individuals. The approach of universal stochastic

selection was used in this circumstance.

- CrossoverFcn (crossoverscattered) – A genetic recombination

operation is chosen for the creation of individuals from the following

population.

- MutationFcn (mutationgaussian) – Determines the mutation

approach employed.

- StallGenLimit (4000) – Terminate the GA if there is no progress in

the population's average fitness value after a given number of generations,

4000 in this example.

 118

- StallTimeLimit (10000) – Terminate the GA if there is no

improvement in the population's average fitness value after a particular

number of seconds, 10000 in this example.

The pseudo code of the fittness function will be described in the

following.

3. A.2. Pseudo code of fitness function

Step 1: Decode the genome of the individual m from the population

M(t) and construct the matrix of the structure with the data of the positions

and states of the nodes in the network;

Step 2: Build the connection matrix depending on the distances of the

CH from the sensor nodes, based on the structure matrix;

Step 3: Based on the link matrix evaluate:

a) Sensor nodes density for CH, SpC;

b) Number of non-connected nodes, SOR;

c) Overlap number, Ov;

d) Communication energy for each node;

Step 4: Evaluate the uncovered US surface, testing whether the area

of inactive and un- connected nodes is covered by adjacent connected nodes;

Step 5: Build the power matrix for each active node, through the

amount of operating and communication energy;

Step 6: Based on the energy matrix estimate:

a) Average energy, EmA;

b) Minimum energy consumed per node, Emin;

c) Maximum energy consumed per node, Emax;

d) Full load network life, LT ;

 119

Step 7: Calculate the fitness value F of the individual m through the

weighted sum func-

tion:

 = + − + + ++ − + + −

(61)

Step 8: Repeat the above maps for all individuals’ m of the

population.

