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Abstract: The skin is constantly exposed to exogenous and endogenous sources of reactive oxygen
species (ROS). An adequate balance between ROS levels and antioxidant defenses is necessary for
the optimal cell and tissue functions, especially for the skin, since it must face additional ROS
sources that do not affect other tissues, including UV radiation. Melanocytes are more exposed to
oxidative stress than other cells, also due to the melanin production process, which itself contributes
to generating ROS. There is an increasing amount of evidence that oxidative stress may play a role in
many skin diseases, including melanoma, being the primary cause or being a cofactor that aggravates
the primary condition. Indeed, oxidative stress is emerging as another major force involved in all
the phases of melanoma development, not only in the arising of the malignancy but also in the
progression toward the metastatic phenotype. Furthermore, oxidative stress seems to play a role
also in chemoresistance and thus has become a target for therapy. In this review, we discuss the
existing knowledge on oxidative stress in the skin, examining sources and defenses, giving particular
consideration to melanocytes. Therefore, we focus on the significance of oxidative stress in melanoma,
thus analyzing the possibility to exploit the induction of oxidative stress as a therapeutic strategy to
improve the effectiveness of therapeutic management of melanoma.

Keywords: oxidative stress; ROS; skin cancer; melanoma

1. Introduction

The skin is the largest organ of the human body and represents the primary protection
barrier against the external environment. Due to its role, the skin is constantly exposed to
oxidative stress from exogenous origins. Among the exogenous sources, the most important
are air pollution agents, harmful natural gases such as ozone, exposure to ionizing and
non-ionizing radiation, infections from viruses and bacteria, exogenous chemicals, drugs,
cosmetics, and toxins [1]. Nonetheless, the skin must also face oxidative stress arising
from several endogenous sources, including the classical cell metabolism, the activity of
enzymes that can indirectly produce reactive oxygen species (ROS), or the ROS production
generated by the neutrophil cells. On the one hand, controlled ROS production is required
by the human body, including skin, since ROS function as regulators of the homeostasis in a
number of key processes, including epidermal keratinocyte proliferation. On the other hand,
ROS are responsible or can worsen skin aging and inflammation, are responsible for DNA,
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protein, and lipid damage, and thus their toxic activity may lead eventually to skin diseases,
including skin cancer [2]. Indeed, in the last decades, numerous systemic pathologies were
identified as a consequence of oxidative stress, including cardiovascular disease, cancer,
diabetes, rheumatoid arthritis, and neurodegenerative disorders, and consequently, for
some of them, it was proposed the use of exogenous antioxidants for prevention or as
a treatment strategy [3–8]. Therefore, given the dual face of the ROS activity, it appears
evident that maintaining a fine balance is crucial for the health, even more for the skin, due
to its peculiar higher exposure to oxidative stress sources, such as UV, which does not affect
other organs of the body. Despite the fact that the skin owns a large armamentarium of
antioxidant defense mechanisms that counteract oxidative stress to prevent its detrimental
effects, excessive ROS production cannot always be neutralized. A number of investigations
identified variations in the metabolites of ROS or ROS generators and antioxidants in
skin diseases, suggesting that an anomalous ROS generation could play a role in their
pathogenesis. Pathological conditions in which an involvement of ROS was demonstrated
include contact dermatitis [9], urticaria [10], atopic dermatitis [11], psoriasis vulgaris [12],
acne vulgaris [13], alopecia areata [14], vitiligo [15] and, above all, skin cancers [16,17].
A particular interest has been raised in elucidating the impact of ROS on melanoma
development and progression. Indeed, oxidative stress has emerged as an important
player in all stages of melanoma, from genesis to progression until the development of
the metastatic disease and chemoresistance, thus being a promising pathway for targeted
therapy [18,19]. For instance, a model of redox adaptation has been recently suggested as
responsible for developing BRAF inhibitors resistance [20]. Indeed, the use of the BRAF
inhibitor vemurafenib for a long period induces the positive selection of resistant melanoma
cells that display an augmented ROS production as a consequence of a shift toward a
mitochondrial respiration phenotype, together with an increased redox response [20].

Despite the recent efforts focused on this subject, the exact mechanism by which
ROS may contribute to melanoma arising progression of aggressiveness are still far to be
fully elucidated, and more studies are needed to comprehend the intricate mechanisms by
which ROS can exert detrimental effects on normal cell functions in order to elucidate the
physiopathology of several skin diseases including, and above all, melanoma [17–20].

In this review, we have discussed the concept of oxidative stress applied to the skin,
summarizing the available literature regarding the interplay between oxidative stress and
physiopathology of the skin. Subsequently, we focused on the role of oxidative stress in
skin cancers, with particular attention to melanoma, the most aggressive variant of skin
cancer, and the perspective of using the double-edged sword of oxidative stress to enhance
the efficacy of therapeutics routinely used for the management of skin malignancies.

2. Oxidative Stress

The continuous ROS production is sustained by enzymatic activities, including the
mitochondrial electron transport chain, nicotinamide adenine dinucleotide phosphate
(NADPH), oxidases (NOXs), cyclooxygenases, and xanthine oxidases. However, ROS
production can also occur during non-enzymatic reactions, such as the Fenton and Haber–
Weiss reactions [21].

The expression “oxidative stress” identifies a condition of imbalance in the tissue
between the production of ROS or reactive nitrogen species (RNS) and the capability of the
biological system to promptly detoxify these reactive intermediates and/or to repair the
following damage. ROS include the free radicals superoxide anion (O2

•−) and hydroxyl
radical (•OH), and non-radicals as hydrogen peroxide (H2O2), singlet oxygen (1O2) and
hypochlorous acid (HOCl), while RNS include nitric oxide (NO•), nitrogen dioxide (•NO2),
and peroxynitrite (ONOO−) (Table 1) [22].
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Table 1. Main ROS/RNS radicals and non-radicals present intracellularly.

ROS Radicals ROS Non-Radicals RNS Radicals RNS Non-Radicals

Superoxide anion (O2
•−) Hydrogen peroxide (H2O2) Nitric oxide (NO•) Peroxynitrite (ONOO−)

Hydroxyl radical (•OH) Singlet oxygen (1O2) Nitrogen dioxide (•NO2)
Hypochlorous acid (HOCl)

Both ROS and RNS are continuously produced in living systems, and they are funda-
mental for the proper functionality of cells and tissues. Indeed, at the cellular level, ROS
and RNS are implicated in many processes, which include cell signaling, cellular growth,
and apoptosis, whereas at the systemic level participate in complicated functions regulated
by the interaction of many factors, such as blood pressure adaptation, cognitive functions
and immune response [23]. For instance, during inflammation, the organism generates
higher levels of ROS since they exert toxic effects on the pathogens, and in the central
nervous system, RNS modulates cerebral blood flow and memory and exerts an important
role in sustaining the immune system and the production of cytokines [24,25].

While ROS are mostly produced as a consequence of the normal metabolism of O2,
RNS arises from the combination of nitric oxide (NO•) and ROS. Indeed, while NO• is a
relatively inactive free radical, it can react with superoxide anion yielding peroxynitrite
(ONOO−), a highly RNS, which is responsible for the major part of detrimental cellular
effects of RNS [26].

Although accumulation of oxidative injury results in organism death, numerous
longevity-promoting mediators enhance ROS generation, which is responsible for activat-
ing stress responses that are beneficial for the organism and also prolong the lifespan [27,28].
During an oxidative stress condition, ROS and RNS overproduction overcome the cellular
protective mechanisms, turning ROS into detrimental molecules able to damage DNA, pro-
teins, and lipids. ROS and RNS may damage DNA by oxidizing the bases or even triggering
single-strand breaks (SSBs) and double-strand breaks (DSBs); all these conditions are highly
dangerous since, if DNA is not repaired, it can induce mutagenesis or inhibit replication.
These events result in an aberrant gene expression that promotes the transformation toward
malignancy [29,30]. Furthermore, ROS can oxidize the lateral chains of amino acids as
well as the protein backbone and may induce the formation of disulfide bridges. All these
modifications of the classical structure of the protein can result in the impairment of the
active sites of the enzymes or in the alteration of the protein’s three-dimensional structure,
followed by the degradation of the unfolded or badly folded proteins by the proteasome
systems [31]. Finally, in lipid membranes, ROS induce lipid peroxidation, a process char-
acterized by polyunsaturated fatty acid (PUFA) oxidative degradations that result in the
formation of lipid radicals and highly reactive aldehydes, which further intensify the toxic
impact of free radicals [32]. Similar to ROS, RNS are able to induce damage to proteins,
lipids, and DNA, thus exerting detrimental effects on cellular function, which eventually
can lead to cellular death. One of the major consequences of elevated RNS levels is PUFA
oxidative degradation [33].

The maintaining of a balanced amount of ROS/RNS levels relies on the activity of
several enzymes and molecules present in the tissues, which exert a protective effect
from oxidative stress damage neutralizing the free radicals, thus called antioxidants. The
antioxidant enzymes include the glutathione peroxidases, the superoxide dismutases, the
glutathione S-transferases, the catalases, the thioredoxins and thioredoxin peroxidases,
peroxiredoxins and heme oxygenase-1, while the antioxidant molecules are represented by
glutathione (GSH), several proteins (such as albumin, ferritin, transferrin, ceruloplasmin),
scavengers (uric acid, coenzyme Q, and lipoic acid) as well as vitamins (vitamin C, E, and
A) [34]. The transcription factor Nrf2 is one of the major players in the modulation of
the antioxidant response since it regulates the transcription of several cytoprotective and
antioxidant key genes [35]. Indeed, in a condition of oxidative stress, Nrf2 translocates into
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the nucleus promoting the transcription of the genes encoding for the antioxidant enzymes
HO-1, PRDXs, TXN, as well as genes implicated in GSH synthesis [36].

3. UV Exposure and Skin Damage

Human skin is constantly exposed to several environmental agents, which are physical
or chemical inductors of oxidative stress. Ultraviolet radiation consequent to sun exposure
is the most harmful physical factor, being able to damage DNA directly and indirectly. In-
deed, UV radiation directly injured DNA, causing the formation of a significant amount of
cyclobutane pyrimidine dimers (CPDs), pyrimidine-(6–4)-pyrimidone photoproducts [37].
UVB radiation (280–320 nm) is a major cause of DNA damage in skin cells. Indeed, UVB not
only induces the formation of cyclobutane pyrimidine dimers and pyrimidine-pyrimidone
(6–4) products but, more importantly, can trigger the formation of SSBs and DSBs on DNA.
All these events prevent the transcription and the replication of the DNA, thus impairing
the cell functions, and if the damage is not repaired promptly, the inflammation process
may occur at the tissue level and even cell death. Nonetheless, errors in DNA repairing
can result in the accumulation of mutations, the first step associated with the development
of various diseases and skin cancer [38]. On the contrary, small amounts of UVA light
(320–400 nm) are beneficial for humans since UVA light is a signal for several photoreg-
ulatory proteins involved in restarting circadian rhythms, which themselves modulate
numerous different processes in the human body. Nevertheless, if UVA irradiation occurs
in high doses, it may weaken the immune system and can induce the formation of ROS
through photosensitization reactions [39,40]. This ROS overproduction can damage DNA,
inducing the formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-OHdG) that impairs
the normal cell functioning and also enhance the expression of matrix metalloproteinases
responsible for the degradation of collagen fibers, resulting in wrinkles onset and acceler-
ating skin aging [41,42]. Indeed, although mature melanin displays a specific geometric
configuration that exerts a protective function in keratinocytes, it may exert a pro-oxidant
effect in melanocytes exposed to UV radiation when it is only partially polymerized. This
occurring was suggested to be the possible explanation for the increased risk of melanoma
detected in the users of tanning lamps UVA-based [43].

It is widely known that UV irradiation is the main risk factor for all forms of skin can-
cers, which include melanoma and non-melanoma skin cancers. However, the individual
risk of developing a form of skin cancer depends on the ability to promptly repair the DNA,
which is negatively correlated with the extension of the damage. Given the protective
role of melanin, the sensitivity of skin cells to the serious effects of UV radiation depends
largely on the intensity of skin pigmentation. However, the biosynthesis of melanin can be
impaired if exposed to several environmental factors, such as UV, and this process has been
associated with several dermatological pathologies, including Halo nevi, vitiligo, Vogt-
Koyanagi-Harada disease, and malignancy-induced hypopigmentation (from melanoma
and mycosis fungoides) [44–48].

4. Oxidative Stress in Melanocytes

Melanocytes are cells deriving from the neural crest located in the deepest layer of
the epidermis, which exert a key role in protecting the skin from ultraviolet light but
recently have been found to play a role also in the immune system. Indeed, one of the
fundamental activities of melanocytes is to produce eumelanin and pheomelanin (which
are often grouped with the word “melanin”), pigmented molecules that influence skin
tone, hair, and eye color [49]. However, several additional activities to photo-protection
have been attributed to melanin, such as thermoregulation, antibiotic, cation chelator, free
radical sink, and by-product of the scavenging of O2

•− in the skin [50].
There is increasing evidence that oxidative stress and ROS formation may promote

the melanoma genesis since epidermal melanocytes, from which melanoma arises, are
constantly exposed to the ROS production occurring during melanin biosynthesis and to
the UVA radiation in addition to all the other sources of ROS production typical of other



Antioxidants 2022, 11, 612 5 of 17

cells. Analogously to other cancer cells, ROS production is boosted in melanoma cells as a
consequence of the activation of numerous recognized oncogenes, inactivation of tumor
suppressors [51,52], intratumor hypoxia [50,52], impaired integrin signaling [53], and repro-
grammed metabolism [50,54]. Noteworthy, melanoma cells must also face the ROS insult
resulting from the process of melanin biosynthesis. Indeed, the process of melanin biosyn-
thesis requires oxidation reactions during which there is a production of O2

•− and H2O2
that subjects melanocytes to oxidative stress [55,56]. However, since melanin biosynthesis
occurs in the confined cellular compartments named melanosomes, there is some grade of
protection of the cellular components from oxidative damage. In the melanin biosynthesis,
the enzyme tyrosinase oxidizes tyrosine to L-dopa, which is itself subsequently oxidized to
dopaquinone, a reactive molecule toward nucleophilic compounds (e.g., thiols or amino
groups), and during these steps, there is the production of O2

•− [57]. Afterward, a redox
exchange converts the dopaquinone into dopachrome, which, after a decarboxylation,
which occurs spontaneously, yields dihydroxyindole further oxidized into indole quinone
or produces dihydroxyindole carboxylic acid after tautomerization by tyrosinase-related
protein 2 (TRP-2), and dihydroxyindole carboxylic acid is next transformed in the related
quinone (Figure 1). The TRP-2 exerts a protective effect against oxidative stress since it
reduces the harmful effects of quinones and DNA damage induced by free radicals and
contextually increases glutathione levels [58]. The process that converts indoles to quinones
implicates an important ROS generation [59]. Finally, the polymerization of the quinones
results in the formation of black-brown eumelanin. The pheomelanin, which displays a
typical red-yellow color, differs from the eumelanin for having a higher ratio of sulfur to
quinones, and its biogenesis process has as intermediate the generation of cysteinyl-dopa
instead of L-dopa, which is then switched in benzothiazine derivatives. These variations
are responsible for the higher pro-oxidant effects caused by the sunlight of pheomelanin
with respect to eumelanin.
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5. Implications of Oxidative Stress in Melanoma

Skin cancers are the most frequent neoplasm diagnosed in the white populations,
and their incidence is gradually increasing in the last decade [60]. Skin cancers include
malignant melanoma and non-melanoma skin cancers (NMSCs) [61]. Despite the fact
that melanoma and NMSCs are different types of malignancies for origin, evolution, and
prognosis, they share the two main risk factors, UV exposure and aging [62]. However,
among all skin cancers, malignant melanoma is the most aggressive and, although repre-
senting only 1% of all skin cancers, it is responsible for the majority of skin cancer-related
deaths. It is widely recognized that sunlight induces ROS formation in the skin, impairs the
natural antioxidant defenses, and is a major contributor to skin cancer development [63].
Nonetheless, it is noteworthy that aging, another important risk factor for melanoma devel-
opment, is strictly linked to the accumulation of ROS-induced damages. Thus, the use of
antioxidants has been proposed with a chemopreventive aim [64–67].

Accumulating evidence shows that melanoma displays an anomalous redox state. It
has been reported that melanocytes isolated from melanoma patients are characterized
by a higher sensitivity to oxidizing molecules that is correlated to an intrinsic antioxidant
imbalance, displaying increased intracellular levels of O2

•− and aberrant activation of the
transcription factors AP-1 and NF-κB [68–71]. It is noteworthy that it was suggested that the
redox capacity of melanoma could be reported as a continuum starting from low capacity
(typical of normal skin), moderate capacity (a feature of drug-sensitive melanomas), and
high capacity (found in drug-insensitive melanomas) [20].

A study that examined which group of genes display an aberrant expression in
metastatic melanoma cells revealed that 19 genes involved in the antioxidant response
were downregulated, resulting in higher intracellular ROS levels causing dedifferentiation
and malignant metastatic progression. Interestingly, in non-metastatic melanoma cells,
10 of these genes were upregulated, suggesting that melanoma late-stage progression is
associated with an increased ability of cells to counteract oxidative stress [72].

Few studies demonstrated that melanoma cells display increased levels of enzymes
involved in oxidative stress defense, including CAT, SOD, and GSH. In particular, high
GSH levels in melanoma cells promote survival to oxidative stress [16,73,74].

Meyskens et al. reported that some transcriptional factors contribute to protecting
melanoma cells from oxidative stress damage. Melanoma cells exposed to ROS displayed
an augmented activation of AP-1 and NF-kB pathways. Furthermore, superoxide anion
levels were found to be upregulated in melanoma compared to melanocytes and were
directly correlated with AP-1 expression. Interestingly, the levels of hydrogen peroxide
were diminished in melanoma cells and were correlated with NF-kB. Nonetheless, the re-
cruitment of these transcriptional factors did not guarantee control of apoptosis, suggesting
a general mechanism by which melanoma cells could escape harmful injury [71].

Yang et al. demonstrated that melanoma cells are characterized by a high expression
of neuronal nitric oxide synthase, whose activity produces an abnormal amount of nitric
oxide, which was found to be associated with the disease stage. Moreover, the use of
selective inhibitors of neuronal nitric oxide synthase induced suppression of melanoma
cell proliferation and metastatic capacity [75]. As previously described, melanin synthe-
sis subjects melanocytes to oxidative stress, and therefore, many research efforts were
performed in this direction, examining the possibility to establish a connection between
melanin biosynthesis, oxidative stress, and melanoma development. Studies focused on
dysplastic nevi, which are considered an intermediate between common acquired nevi
and melanoma, have demonstrated that they display high ROS, pheomelanin, sulfur, and
iron levels, as well as high DNA damage [76–79]. In hepatocyte growth factor/scatter
factor transgenic mice, a model of ultraviolet-induced melanoma, it was demonstrated that
frequency of UVA-induced melanoma intensifies with skin pigmentation via an oxidative
process involving melanin photo-reactivity whereas, in the same model, tumor initiation is
repressed by the antioxidant N-acetylcysteine [66,80]. However, UVA-induced pigmenta-
tion does not confer photo-protection, and indoor tanning is correlated with melanoma and
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non-melanoma skin cancer with a strong association if the first exposure occurred before
age 35 year, thus confirming that the use of tanning beds cannot be considered safe and
should be avoided [81,82]. Interestingly, it was reported that recessive yellow mice, co-
expressing loss-of-function MC1R and activating BRAFv600E mutation are characterized by
a significantly higher risk to develop a more invasive melanoma compared to albino ones.
Furthermore, pheomelanin synthesis can cause a DNA damage consequent to oxidative
stress; therefore, it has been hypothesized that DNA damage resulting from pheomelanin
biosynthesis plays a pivotal role in melanoma formation autonomously with respect to
UV exposure [82]. However, human melanocytes synthesize eumelanin in addition to
pheomelanin, and the balance between the two molecules should influence the impact of
UV radiation on the redox state since eumelanin is a ROS scavenger, and its diminution,
as occurs in subjects with fair skin, increases the vulnerability of melanocytes to oxidative
stress and thus the risk to develop a melanoma [83].

Van der Kemp et al. demonstrated that melanocytes irradiated by UV generate H2O2
in a dose-dependent fashion coupled with a reduced catalase and HO-1 activity and that
UVB irradiation is able to inactivate the OGG1 protein, a key element of the base excision
repair (BER) system [84–86]. The observation that oxidative stress contributes to the gene-
sis of melanoma is reinforced by the discoveries that mutations in melanoma-associated
genes are a consequence of oxidative stress or contribute to worsening the oxidative stress
condition. It has been reported that melanocytes are more sensitive to p16 depletion than
keratinocytes or fibroblasts, and this depletion can significantly increase ROS levels, thus
possibly explaining the association of p16 mutations with melanoma [87]. Furthermore,
the loss of PTEN was found to be associated with melanoma progression, apparently
due to boosted superoxide anion production consequential to the constant activation of
Akt, and the loss of function for the alleles of the gene encoding for the protein MC1R is
correlated with an increased risk to develop melanoma due to increased oxidative stress
in melanocytes resulting from the failure to respond to α-MSH [88,89]. It was suggested
that even the activating V600EBRAF mutation, a somatic mutation frequently expressed in
nevi and melanoma, could be the result of a sustained oxidative stress process [90]. Null
polymorphisms of two genes belonging to the glutathione S-transferase family of antioxi-
dant genes, GSTM1 and GSTT1, have been correlated with an increased risk to develop
melanoma, specifically in subjects with sunburns that occurred in childhood [91]. Further-
more, one single nucleotide polymorphism of the glutathione S-transferase gene GSTP1
that diminishes the enzyme activity has been correlated with melanoma predisposition,
with a synergic effect when co-present with alternative alleles of MC1R [92].

Therefore, taken together, these findings indicate that oxidative stress may be consid-
ered as a cofactor able to promote the genesis of melanoma (Figure 2) [65]. Interestingly,
high intracellular ROS levels promote not only melanoma genesis and progress but also
have been found involved in chemoresistance [93]. The harmful effects of increased intracel-
lular ROS levels are counteracted by melanoma cells through the activity of several redox
modulators, which support the antioxidant competence of the cells, including metabolic
pathways such as pentose phosphate pathway, lipogenesis, serines biosynthesis, 1-carbon
metabolism, and mitochondrial activity.
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Figure 2. Schematic representation of malignant conversion of melanocytes in melanoma cells
following oxidative stress and DNA damage, and therapeutical implications. Melanocytes constantly
face oxidative stress due to ultraviolet exposure and melanin biogenesis process, which trigger
ROS production. Black arrows indicate the consequential steps following ROS generation; red
arrows indicate therapeutical intervention impacts. ROS generation can damage DNA, inducing
an aberrant gene expression, eventually triggering malignant transformation. The use of specific
molecules (chemotherapeutics and/or compounds that reduce the antioxidant defenses) enhances
the detrimental effect of ROS, highly damaging DNA and inducing cell death.

6. Targeting Oxidative Stress Pathways: Therapeutical Implications for
Melanoma Management

Due to the higher ROS levels and oxidative stress characterizing cancer cells, it has
been hypothesized that the further induction of oxidative stress may lead to killing the
cancer cells preferentially. Indeed, despite cancer cells adapting to this condition by de-
veloping strong antioxidant mechanisms, they maintain higher ROS levels compared to
normal cells [94]. Furthermore, in comparison with other solid tumors, ROS are particularly
elevated in melanomas [95]. Therefore, this observation suggests an attractive therapeutic
opportunity since neoplastic cells might be more sensitive to drugs that trigger further
accumulation of ROS. Currently, a number of chemotherapeutic drugs routinely used
are able to induce high levels of oxidative stress. Vinca alkaloids (vincristine, vinblas-
tine, vindesine, and vinorelbine), taxanes (paclitaxel and docetaxel), and antimetabolites
(5-Fluorouracil) stimulate the release of cytochrome c from the mitochondria, which itself
can induce cell death, and also impair the normal electron transport chain promoting the
generation of superoxide anions [96]. However, among the chemotherapeutic drugs, the
highest generators of ROS are platinum derivatives (cisplatin, carboplatin, and oxaliplatin)
and anthracyclines (adriamycin/doxorubicin, daunorubicin, epirubicin) [97]. The exact
mechanism by which these drugs induce ROS is different. For instance, doxorubicin dif-
fuses into the inner membrane of the mitochondria of the myocardium, competing with
the coenzyme Q10 in the electron transport chain, thus resulting in a boosted generation of
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superoxide anions, which is the reason for the cardiotoxicity of this molecule [98]. Instead,
the antimetabolite 5-fluorouracil induces the generation of mitochondrial ROS through a
p53-dependent pathway [99].

There is increasing evidence that a promising strategy for melanoma treatment might
be reducing the antioxidant defenses, such as GSH levels, which are responsible for
chemoresistance toward alkylating agents (Table 2). Promising results have been reported
coupling chemotherapy with the buthionine sulfoximine (BSO) (Figure 2). BSO is a sul-
foximine derivative that reduces levels of GSH by inhibiting the gamma-glutamylcysteine
synthetase, the enzyme required in the first step of glutathione synthesis. Indeed, the drug
was able to generate a 2.46-fold increase in melphalan cytotoxicity in SK-MEL 28 melanoma
cells [100]. Analogously, the use of the drug disulfiram, a potent inhibitor of the enzyme
copper-zinc superoxide dismutase, has been reported to enhance the chemosensitivity of
melanoma cells to the treatment with oxaliplatin [101–103].

Since Nrf2 plays a key role in response to oxidative stress, several compounds that
are able to inhibit its activity have been tested. Few studies reported that ailanthone, a
vegetable-derived Nrf2 inhibitor, is able to induce oxidative stress and displays antineoplas-
tic effects in several models of chemoresistant tumor cells, including melanoma [104,105].
Brusatol, another Nrf2 inhibitor of vegetable origin, coupled with UVA radiation, repressed
melanoma proliferation and significantly augmented intracellular ROS and apoptosis,
both in vitro (A375 melanoma cells) and in vivo (heterotopic mouse) models [106]. An-
other study reported that the Nrf2 inhibitor luteolin can induce glutathione exhaustion in
SK-MEL-28 melanoma cells by impairing glutathione S-transferase activity [107].

A promising enzyme that could serve as a therapeutical target in melanoma is the
paraoxonase-2 (PON2). PON2 displays anti-oxidative properties following its capability to
diminish ROS production, thus counteracting intracellular oxidative stress. Indeed, in mito-
chondria, the enzyme binds with high affinity to coenzyme Q10 within the inner membrane,
thus significantly decreasing the amount of superoxide anion released through the electron
transport chain [108]. It was reported that PON2 expression levels are correlated with
tumor aggressiveness of several malignancies, including basal cell carcinoma, squamous
cell carcinoma, and melanoma [109,110]. Subsequent studies demonstrated that the gene si-
lencing of the enzyme on A375 melanoma cells triggered enhanced chemosensitivity to the
cisplatin, and similar results were also obtained in other malignancies, thus suggesting that
the enzyme could be an effective target to be coupled with classic chemotherapy [108,111].

Interestingly, cisplatin is not only a chemotherapeutic drug able to induce massive
intracellular ROS production, but it also behaves as an inhibitor of the thioredoxin sys-
tem [112,113]. Indeed, another strategy explored by researchers focused on inhibitors of the
thioredoxin system. Thioredoxin cooperates with thioredoxin reductase, thioredoxin perox-
idase, and NADPH to detoxify ROS due to its activity to reduce disulfide bonds in proteins
owing to the presence of a couple of cysteines located into the active site [114]. It has been
reported that the inactivation of thioredoxin triggers oxidative stress, inhibits cell prolif-
eration, and induces cascade signaling impacting kinases that modulate apoptosis [115].
Therefore, several drugs were tested for their inhibitory activity toward the thioredoxin
system, including motexafin gadolinium, flavonoids (quercetin), and curcumin [116,117].
Motexafin gadolinium, a porphyrin-like synthetic macrocycle capable of forming highly
stable complexes with large metal cations, demonstrated to be able to boost ROS production
to toxic levels, with consequent induction of apoptosis through oxidation of thioredoxin,
via ASK1-mediated cell death. Additional redox-dependent pathways were also compro-
mised due to the inhibition of the thioredoxin system as a disulfide reductase [113]. The
flavonoids myricetin and quercetin were also demonstrated to exert a potent inhibition of
thioredoxin reductase [118].

Another approach that provided encouraging results focused on the use of resveratrol,
a type of natural phenol that is well known to exert antiproliferative effects. It was demon-
strated that resveratrol boosts the radiosensitivity of melanoma cells by inhibiting prolifera-
tion and stimulating apoptosis, thus suggesting the use of this molecule as a radiosensitizer
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for melanoma treatment through radiotherapy [118,119]. Nonetheless, resveratrol showed
promising results also when coupled with dacarbazine, a DNA alkylating agent that also
stimulates high ROS generation [120,121]. Indeed, Yang et al. demonstrated that resveratrol
is able to dock into a druggable pocket of Ref-1 protein, inhibiting its function. Ref-1 is
a multifunctional protein involved in DNA base excision repair and redox regulation of
many transcription factors, and thus its inhibition by resveratrol significantly enhanced the
sensitivity of melanoma cells dacarbazine treatment [120].

Curcumin is a natural molecule whose use was largely investigated in several patholog-
ical conditions due to its anti-proliferative, anti-inflammatory, and antioxidant effects [122].
In particular, there is growing evidence that demonstrated that curcumin may promote
apoptosis and suppress proliferation in neoplastic cells, including melanoma [123–125]. Ko-
cyigit et al. were the first to hypothesize that ROS could play a key role in curcumin-induced
DNA damage, apoptosis, and cell death, and thus they examined the effect of curcumin
on mouse melanoma cancer cells (B16-F10) and fibroblastic normal cells (L-929). Results
obtained demonstrated that curcumin decreased cell viability and mitochondria membrane
potential but increased DNA damage and apoptosis at a higher grade in melanoma cells
compared to fibroblastic normal cells. Furthermore, all these effects were associated with
curcumin-induced elevated ROS production in a dose-dependent fashion [126].

In line with these findings, a subsequent study performed on A375 human melanoma
cells has been reported that curcumin administration determined a boosted ROS production,
a reduction in glutathione levels, and also disrupted the mitochondria membrane potential
with consequent release of cytochrome c from mitochondria to the cytosol triggering the
apoptosis cancer cells. Thus, these findings demonstrate that curcumin administration
can induce oxidative stress-dependent apoptosis of human melanoma A375 cells, thus
suggesting that the pro-oxidant activity of curcumin could be exploited for melanoma
treatment [127].

Another interesting study demonstrated that curcumin coupled with tamoxifen, both
at low doses, triggered a synergistic stimulation of apoptosis in chemoresistant melanoma
cells, an effect that was associated with mitochondria depolarization and ROS generation.
Moreover, non-cancerous cells were not affected by the combination of these molecules,
thus suggesting a selective cytotoxic effect against melanoma cells [128].

Notably, a study performed by Piskounova et al. reported extraordinary and un-
expected conclusions. In this work, it was examined the oxidative stress condition of
numerous melanoma disseminating cells and their capacity to induce the formation of
metastasis when xenografted into NOD-SCID-Il2rg(-/-) mice. A higher condition of oxida-
tive stress in circulating melanoma cells exerted an inhibitory effect on the formation of
distant metastasis. However, contrary to what was expected, if mice were injected with the
antioxidant N-acetyl-cysteine, it was detected a significant increase in metastasis formation,
while the growth of established sub-cutaneous tumors was not affected, thus generating
important questions regarding the use of antioxidants for cancer treatment [129].

In the light of the above-mentioned studies, enhancing the intracellular ROS produc-
tion by using active biomolecules and/or by targeting enzymes involved in the manage-
ment of oxidative stress appears to be a promising strategy to potentiate the response of
patients to melanoma therapies.
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Table 2. Summary of studies targeting the oxidative stress pathways in melanoma models.

Molecule Model Effect References

Buthionine sulfoximine SK-MEL 28 cells ↑Melphalan cytotoxicity [101]
Disulfiram A375, c81-61 cells ↑ Oxaliplatin cytotoxicity [101]
Disulfiram A375, c81-46a, c81-61 cells ↓ Proliferation ↑ apoptosis [102]
Disulfiram M-14, WM-278, WM-1552c cells ↑ ROS, ↑ apoptosis [103]
Ailanthone B16 cells ↑ ROS, ↑ apoptosis [105]

Brusatol A375 cells, mouse ↓ Proliferation ↑ ROS,
apoptosis [106]

Luteolin SK-MEL-28 cells ↓ GSH ↑ ROS [107]
shRNA PON2 A375 cells ↑ cisplatin cytotoxicity [108]

Motexafin gadolinium Recombinant enzyme ↑ ROS, ↑ apoptosis [116]

Myricetin
Recombinant rat

Thioredoxin reductase
and cells

↓ Proliferation ↑ ROS [118]

Quercetin
Recombinant rat

Thioredoxin reductase
and cells

↓ Proliferation ↑ ROS [118]

Resveratrol SK-Mel-5, HTB-65 cells ↑ Radiosensitivity [119]
Resveratrol c81-46A, c83-2c cells ↑ Dacarbazine cytotoxicity [120]
Curcumin B16, L-929 cells ↓ Proliferation ↑ apoptosis [126]
Curcumin A375 cells ↑ ROS, ↑ apoptosis [127]
Curcumin A375, G361 cells ↑ Tamoxifen cytotoxicity [128]

7. Conclusions and Remarks

The regulation of ROS and RNS generation has shown involvement in the develop-
ment of various skin diseases, especially melanoma. To date, the knowledge about the
exact mechanism by which ROS and RNS are generated in various conditions, as well as
all the machineries implicated in the management of oxidative stress and its impact on
melanoma, is far to be fully elucidated. Nevertheless, a number of studies demonstrate that
oxidative stress plays a crucial role in melanoma, as a driver of malignant transformation,
or as a booster for malignancy progression. This occurring is corroborated by the fact
that, in comparison with other solid tumors, ROS are particularly elevated in melanomas.
This condition also upregulates RNS, in particular the peroxynitrite, which arises from the
combination of anion superoxide and nitric oxide, thus amplifying the detrimental effect
of ROS. It is clear that excessive oxidative stress should be avoided in order to reduce the
risk of melanoma formation, thus justifying the use of antioxidants as chemopreventive
drugs. Indeed, it would be crucial to elucidate the mechanisms underlying the neoplas-
tic transformation in order to be able to design proper strategies to avoid the thorough
cell transformation in the neoplastic sense. Nonetheless, oxidative stress could also be
considered a powerful tool alley that could be exploited for enhancing the cytotoxicity
of therapeutic approaches used for melanoma management. Further studies should be
performed to deepen our molecular knowledge of the complex crosstalking pathways
involved in the oxidative stress response, in order to design novel specific therapeutic
agents that could be used alone or in combination with classic therapies to improve the
clinical outcome of melanoma patients.
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