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Abstract

According to Italian regulation, the Ministerial Decree of 11 October 2017 about Environmental Criteria, reference

values for acoustic indoor quality descriptors in public buildings are imposed. Regarding school environments, indoor

acoustic quality targets refer to reverberation time, clarity, and speech intelligibility, whose representative acoustic

descriptor is the speech transmission index (STI). This paper presents pyeSTImate, a Python-based tool for speech

transmission index prediction in lecture rooms. The tool returns fully simulated results from the dimensions and material

characteristics of classrooms with parallelepiped geometry and without limitations in size. Extensive experiments have

been conducted with different simulation methods, evaluating the accuracy by comparison with in situ measurements

selected from primary, secondary, and university classrooms in school buildings of the Marche Region in Italy. The

combination of simulated speech transmission indexes with a prediction method based on an artificial neural network

has also been evaluated. The analysis of the performance demonstrates the computational robustness of the tool that

enables its use for the analysis of existing rooms, as well as for the renovation and design of new spaces.

Keywords

Speech intelligibility prediction, objective intelligibility measurement, classroom acoustics, room acoustic simulation and

modeling

Introduction

Speech communication is a complex phenomenon that
involves different modalities of speaker-listener interactions
and conversational environments. The UNI EN ISO 99211

standard defines speech communication as conveying or

exchanging information using speech, speaking, hearing

modalities, and understanding, encompassing the aspects
of speech quality in terms of the amount of audible

distortion of a speech signal, vocal effort, delays related
to reverberant environments, and speech intelligibility. The
purpose of communication requires different levels of speech
intelligibility, defined as the rating of the proportion of

speech that is understood that assumes a key role in
environments where the aim is speech understanding, such
as lecture rooms. For this reason, acoustical standards and
guidelines currently in use are designed to ensure good
speech intelligibility in classrooms by providing acoustical
indicators that take into account the distinct and joint effects
of background noise and reverberation.

Compliance with minimum indoor acoustic comfort val-
ues assumes considerable importance under the environmen-
tal criteria according to the Italian law for the procurement
of design and construction services for new construction,
renovation and maintenance of public buildings2. The Cri-
teri Ambientali Minimi (Ministerial Decree of 11 October
2017)3 are indications aimed at directing public bodies
towards rationalization of consumption and purchases and
underline the importance of integrating environmental crite-
ria in the different phases of the tender procedures (subject
of the contract, technical specifications, related rewarding
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Università Politecnica delle Marche, via Brecce Bianche 12, 60131,
Ancona, Italy
2 Department of Information Engineering, Università Politecnica delle
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technical characteristics the method of awarding the most
economically advantageous tender, conditions for carrying
out the contract). This Decree defines acoustic descrip-
tors that must respect reference values to ensure occupant
comfort and maximize the functional performance of the
environment.

The present study focuses on one of the acoustic
descriptors for school buildings, the speech transmission
index (STI), a physical metric of speech intelligibility
degraded by additive noise and reverberation4. A stand-alone
prediction tool or in combination with an artificial neural
network has been implemented to calculate STI values of
lecture rooms, and the outcomes have been compared with
the findings of measurements performed in classrooms of
different grades, construction types and sizes.

Background

This subsection summarizes some relevant work on the
evaluation of objective and subjective factors affecting
speech intelligibility in lecture rooms.

The theme of acoustic comfort related to ambient
noise, sound insulation, reverberation time, and speech
intelligibility in classrooms has been the focus of research
worldwide5,6. The correlation between the acoustic quality
of a classroom and the development of student’s cognitive
abilities has been analyzed in classrooms of different grades,
showing that speech intelligibility is the first requirement for
a good learning environment in each school-aged group and
is affected by many factors, such as reverberation time (RT)
and signal-to-noise ratio (SNR).

Several studies have addressed the influence of acoustic
conditions on children’s attention and memory during
primary school7–9 as, at the early stage of education,
perceptual speech abilities are still developing, and the
presence of noise and reverberation prevent maximization
of teaching comprehension. In Prodi et al. (2013)10, the
speech perception performance of younger pupils in noisy
classrooms has been investigated through listening tests
in real classrooms and supplementary tests in quiet. The
statistical analysis is based on stochastic ordering and is able
to clarify the class behavior and the different impacts of
noises on performance.

Although the ability to discern noise from speech
increases with age, poor classroom acoustic quality also
causes discomfort and annoyance in secondary school
students11,12, affecting skills such as memory for spoken
lectures13 and reading speed14. In Prodi et al. (2019)15,
the effects of type of noise, age, and gender on children’s
speech intelligibility and sentence comprehension have been

investigated. The study was conducted on children aged 11-
13 in ecologically-valid conditions (collective presentation
in real, reverberating classrooms), showing that performance
is influenced by the sound environment and the listener’s
characteristics.

The same issues are found for young adults in the
case of university classrooms, where background noise
influences attention processes, speech intelligibility and
listening effort16, especially for non-native listeners17. In
Choi18, speech intelligibility tests have been conducted in
university lecture rooms, demonstrating that young adult
listeners could achieve correct speech intelligibility scores
at lower SNR values than younger primary school students.

Some authors addressed the topic of the effects of noise
and reverberation on the listening effort in adults. Picou
et al.19 have shown that speech intelligibility results from
the reduction of background noise more than from acoustic
correction of the environment, in contrast with current
models of listening effort. The degree to which noise
interferes with speech depends on several factors, including
the intensity of noise compared to speech, fluctuations in
noise level over time relative to speech and the spectral
characteristics of the signal. Puglisi et al.20 explored the
mechanisms underlying speech intelligibility for adults in
primary school classrooms, representing real-world and
complex acoustic scenarios in which speech communication
occurs. Moreover, excessive noise, too much reverberation,
or their combined effects impact not only the performance of
listeners but also the speaking effort of the teacher21–23.

While previous work has involved normal-hearing people,
acoustic conditions of spaces assume greater importance
for people with hearing impairments or other disabilities,
for which recent studies have been conducted to assess the
impact of acoustic discomfort in order to design comfortable
and suitable living environments. Bettarello et al.24 have
investigated the combination of the needs of autistic people
with hearing impairment or hypersensitivity to sound using
assistive sensors and indoor acoustic requirements. Caniato
et al.25 have developed an approach to analyze stress induced
on autistic people in uncomfortable domains, including the
acoustic one.

Although the research involves different acoustic contexts,
the findings suggest that factors reducing speech intelligi-
bility, such as background noise and reverberation, must be
constantly checked and mitigated. The requirement to max-
imize acoustic comfort in environments where the speech
message is paramount has increased the interest in devel-
oping effective objective indicators of speech intelligibility
correlated with measured parameters such as reverberation
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time, early decay time, energy ratio, and speech transmission
index. Nowadays, scientists consider the STI the parameter
that best reflects speech intelligibility in a sound transmission
system26, and consequently, its measurement correlates well
with subjective intelligibility scores for stimuli distorted by
linear filtering, reverberation and additive noise.

In Schwerin et al.27, the STI approach has been revisited
to improve its correlation to subjective intelligibility scores.
A modification that processes the modulation envelope
in short time segments has been proposed, requiring
only a quasi-stationarity assumption (rather than the STI
stationarity assumption) of the modulation signal. In Yang
et al.28, subjective speech intelligibility scores and speech
transmission index in secondary school and university
classrooms have been correlated by regression models.
Based on the tests described by Liu et al.29, the relationship
between STI and speech intelligibility in large spaces has
been modified, and a new threshold for the STI assessment
has been proposed. Peters30 studied the potential binaural
effect of reduced reflection and reverberation, finding that
these conditions decrease intelligibility due to echoes and
strong discrete delayed reflections and lead to incorrect STI
evaluation.

Predictive methods have been developed in the literature
to determine the speech transmission index of a room from
reverberation time and signal-to-noise ratio in reverberant
and absorbent environments, comparing the results with
measured STI values31 or simulated using acoustic modeling
software32. Leccese et al.33 compared various experimental
equations for fast estimation of the speech transmission
index as a function of reverberation time with values
obtained from a campaign of STI measurements in university
classrooms. Analysis of various types of classrooms
determined which equation produced the best prediction
accuracy and new equations for fast estimation of STI have
been presented.

Contribution of this work

This work originates from the assessment of speech
intelligibility in 35 classrooms of several grades belonging
to buildings with different structural characteristics and
construction areas located in the Marche Region, Italy.
Sorting the classrooms according to volumetry (small size
with V<200 m3, medium size with 200 m3≤V<350 m3, and
wide size with V≥350 m3), we have a set composed of
primary classrooms (7 small-sized), secondary classrooms
(9 small-sized, 1 medium-sized, and 1 wide-sized), and
university lecture rooms (1 small-sized, 5 medium-sized,
and 11 wide-sized). In the analyzed classrooms, direct

measurements of the RT have been performed by applying
the assessment procedure in UNI 11532-234, and the STI
values have been calculated by the indirect method described
in the IEC 60268-1635 (BS EN 60268-16)36. This standard
specifies objective methods for rating the transmission
quality of speech with respect to intelligibility, and the
UNI 11532-137, providing reference values for descriptors
representing the acoustic quality of an environment in
relation to the destination of use (including schools), refers
to it. In addition, we have assigned each classroom an
intelligibility rating (IR), a discrete qualification according
to a five-point scale of speech comprehension quality (“bad”,
“poor”, “fair”, “good”, “excellent”) dependent on the range
in which the computed STI falls as described in the
UNI 11532-1, Table 1.

Direct reverberation time measurement may be difficult
or even infeasible in some situations, such as for
school buildings outside the region, classrooms during
renovation works or at the design stage. According to
the UNI 11532-1 standard, predictive methods are also
allowed to compute the room impulse response in indoor
environments in order to optimize the acoustic descriptor
under consideration. Expensive simulators of reverberant
rooms handling complex geometries via cad interface and
providing extensive materials libraries are commercially
available for this purpose, but lecture rooms do not always
require sophisticated analyses. In most cases, the geometry
is parallelepipedal, and the acoustic characteristics of the
commonly used materials are tabulated. In light of the
above, we have developed pyeSTImate*, an open-source STI
prediction tool based on the python38 programming language
and representing an extension of the room impulse response
(RIR) simulator included in the pyroomacoustics39 software
package.

The main contributions of this work are summarized as
follows.

1. The speech transmission index of the analyzed
classrooms is calculated using the pyeSTImate tool,
employing three different simulation methods to
compute reverberation times.

2. For each simulation method, we compare STI values
derived from measured and simulated reverberation
times by monitoring the absolute error and absolute
percentage error in single classrooms, lecture rooms
belonging to schools of the same grade, and the entire
set of classrooms.

∗https://github.com/michelacantarini/pyeSTImate
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3. The comparison of intelligibility ratings obtained
through measurements and simulations is also con-
ducted. In this regard, we introduce the intelligibility
rating error (IRE) metrics, corresponding to the nor-
malized absolute error in the range of actual values
adapted to the discrete classification of speech com-
prehension quality.

4. We train an artificial neural network (ANN) with a
synthetic dataset of STIs associated with classrooms
with randomly chosen geometric and material charac-
teristics, employing a significantly reduced number of
input data compared to the full pyeSTImate tool. The
model is then tested with the real dataset of classrooms
by re-assessing the error between measured, simulated
and predicted results.

The analysis of simulation results, compared with measure-
ment findings also in terms of just noticeable difference
(JND) units in STI values40, illustrates in which settings and
environments the tool exhibits greater robustness for its use
in preliminary or design assessments of speech intelligibility
in classrooms.

The paper is organized as follows: Section Materials
and methodspresents the background on room acoustics
metrics, the characteristics of the lecture rooms analyzed,
the measurement equipment of the case studies, the
acoustic assessment of the classrooms, and the simulation
methodologies. The simulation tool is illustrated in detail
in Section PyeSTImate: a Python-based tool for speech
transmission index prediction, while the results of predictive
analyses and discussion are reported in Section Results and
discussion. Finally, Section Conclusions summarizes the
work and comments on possible future extensions.

Materials and methods

This section first introduces the main descriptors that char-
acterize the indoor acoustic quality of school environments,
then illustrates the characteristics of the evaluated class-
rooms and the measurement equipment. The calculation
method of the speech transmission index defined as “statisti-
cal” or “indirect” is explained in detail. Finally, an overview
of the predictive STI methods using the implemented sim-
ulation tool, also in combination with an artificial neural
network, is provided.

Room acoustic metrics

According to standards UNI 11532-1 and UNI 11532-2, the
measurement session includes the reverberation time (RT),
speech transmission index (STI) and clarity (C50).

RT20 and RT30 are the reverberation times estimated
by the slope of the Schroeder backward-integrated decay,
respectively, in the [dB] ranges: [-5, -25] for RT20 and [-5, -
35] for RT30

41.

C50 is the ratio, in dB, between the “useful energy”
received in the first 50 ms of the impulse response to the
energy received in subsequent instants. The term “energy”
represents the square of the instantaneous values of the
pressure impulse response. The C50 is defined in the
ISO 3382-142 through the following Equation (1).

C50 = 10 log

∫ 50ms

0
p2(t) dt∫∞

50ms
p2(t) dt

dB (1)

As mentioned in the introduction, STI is an objective
measure to predict the intelligibility of speech transmitted
from talker to listener by a transmission channel. The STI
method applies a specific test signal to the transmission
channel, and by analyzing the received test signal, the
speech transmission quality of the channel is derived and
expressed in a value between 0 and 1. Subjective and
objective intelligibility indexes are correlated through the
discrete qualification given by the intelligibility rating
(IR), as expressed in UNI EN ISO 99211, Table F.1 and
incorporated by UNI 11532-1 with regard to STI in confined
spaces belonging to several uses, including the educational
destination. In Table 1, the correlation between STI and IR is
shown.

Table 1. Correlation between speech transmission index and
intelligibility rating according to UNI 11532-1

STI values IR

0.00<STI≤0.30 Bad
0.30<STI≤0.45 Poor
0.45<STI≤0.60 Fair
0.60<STI≤0.75 Good
0.75<STI≤1.00 Excellent

For the educational sector, the reference STI and C50

values are indicated in paragraphs 4.3–4.4 of the UNI 11532-
2 standard and refer to a full environment with a maximum of
two people (technicians). The categories of the environment
concerning the destination use are shown in Table 2.

The C50 descriptor applies to categories A1, A2, A3 and
A4 as an alternative to the STI for rooms with a volume
less than 250 m3, while the STI alone is allowed for rooms
with a volume greater than 250 m3. For both descriptors,
the verification methods to be applied are provided in the
standard and supplemented with the specifications needed
for the case.

In paragraph 4.5 of the UNI 11532-2 standard, an optimal
reverberation time RTott corresponding to a conventional

Prepared using sagej.cls
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Table 2. Categories of the environment in relation to the
destination use according to UNI 11532-2

Category Activities in the environment Methods of intervention

A1 Music

Objective achieved with
integrated design of
geometry, furniture,
residual noise control

A2 Spoken/Conference
A3 Lesson/communication as

speech and lecture
A4 Lesson/communication,

special classroom lecture
A5 Sport

A6 Areas and spaces not intended for
learning and libraries

Objective achieved with
sound absorption
and residual noise control

occupation of the environment equal to 80% for categories
A1–A4 and the unoccupied environment for category A5 is
defined.

For categories A1–A4, if the measurement is performed
in a furnished but unoccupied environment, the measured
values must be corrected with Equation (2) to compare them
with the reference limits.

RTinocc =
RTocc

[1−RTocc ∗ ∆Apers

0.16V ]
(2)

where:

• RTocc is the optimal reverberation time for the room
occupied at 80%, in seconds;

• RTinocc is the optimal reverberation time when
the room is not occupied (measurement result), in
seconds;

• V is the volume of the room, in cubic meters;
• ∆Apers is the equivalent additional surface area of

acoustic absorption of people, in square meters.

The reference values of the optimal reverberation time for
A1–A4 categories are reported in Table 3.

Table 3. Categories of the occupied environment in relation to
the destination use according to UNI 11532-2

Category Occupied environment 80%

A1 RTott=(0.45 logV + 0.07) 30 m3 ≤ V < 1000 m3

A2 RTott=(0.37 logV - 0.14) 50 m3 ≤ V < 5000 m3

A3 RTott=(0.32 logV - 0.17) 30 m3 ≤ V < 5000 m3

A4 RTott=(0.26 logV - 0.14) 30 m3 ≤ V < 500 m3

Characteristics of lecture rooms and
measurement equipment

The buildings selected for the measurement campaign
are representative of Italian mild-climate schools. They
comprise a heterogeneous sample of the diversity of school
buildings in the Marche Region in terms of structure
type, year of construction, educational stages, activities

performed, built area, and materials and construction
techniques used. The selected schools have no particular
architectural qualities and pay no attention to bioclimatic
issues and form factors. For each school building, the
collection of design documentation, geometric survey and
visual analysis of finishing materials of the classrooms
have been performed. The main finishing materials in the
classrooms are: stoneware tiles and pvc for floors; painted
plasterboard, gypsumboard, and smooth plaster for walls;
plasterboard, plastic material, wood planking, and smooth
plaster for ceilings. In addition, surfaces with heavy glass
for windows and light glass for the glazed parts of wall
panels, metal material for fire doors, plastic or graphite for
blackboards, wooden or unpadded plastic seats, and wooden
desks and chairs are included. Table 4 summarizes the main
characteristics of the lecture rooms: type of school (school
number and grade), name of the room, year of construction,
location characteristics and main finishing materials.

The list of geometric dimensions of each classroom is
provided in Table 5. The acoustic characterization of the
classrooms has been carried out in compliance with the
UNI 11532-2 standard. Figure 1 illustrates the measurement
positions according to the standard: four positions have been
selected, three along the longitudinal axis of the classroom
and one representative of the most unfavorable condition in
terms of distance from the speaker and proximity to the noise
produced by the indoor plant. Figure 2 and Figure 3 show
plans and photographs of some classrooms selected for the
case studies.

The measurement of RT30 has been performed according
to the ISO 3382-241 standard, which requires measurements
for at least two source positions and three microphone
positions. All investigations have been carried out using the
Dirac room acoustics commercial software, combined with
an Edirol FA-101 external firewire soundcard. In the case
of intelligibility measurements, the sound field is excited
using a directional sound source. We employed the Echo
Speech Source (Type 4720), a small active loudspeaker box
providing calibrated acoustic signals for speech intelligibility
measurements using the Dirac room acoustics software and
is typically placed at a human speaker position (1.50 m from
the floor). The acquisition of impulse responses has been
performed by taking the output signal of a B&K 2250 sound
level meter. The signals contained in the Echo source are
real speech fragments that are used to set the volume to
a “normal” level. The voice signal has a standard level of
60 dB(A) and is measured at a distance of 1 m from the
speaker.

Prepared using sagej.cls
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Table 4. List of classrooms indicating school type (school number and grade), name of the room, year of construction, location, and
main finishing materials

ID Type Name of room Year Location characteristics Floor Walls Ceiling

1 SCH 1 University 140/1 1970 Urban outskirts Artificial stone tiles, PVC Plasterboard Suspended ceiling
2 SCH 1 University 140/2 1970 Urban outskirts Artificial stone tiles, PVC Plasterboard Suspended ceiling
3 SCH 1 University 140/3 1970 Urban outskirts Artificial stone tiles, PVC Plasterboard Suspended ceiling
4 SCH 1 University 155/D1 1970 Urban outskirts PVC Plasterboard Suspended ceiling
5 SCH 1 University 155/D2 1970 Urban outskirts PVC Plasterboard Suspended ceiling
6 SCH 1 University 155/D3 1970 Urban outskirts PVC Plasterboard Suspended ceiling
7 SCH 1 University 155/D4 1970 Urban outskirts PVC Plasterboard Suspended ceiling
8 SCH 1 University 160/1 1970 Urban outskirts Artificial stone tiles, PVC Plasterboard Suspended ceiling
9 SCH 1 University 160/2 1970 Urban outskirts Artificial stone tiles, PVC Plasterboard Suspended ceiling
10 SCH 1 University AT1 1970 Urban outskirts PVC Plasterboard Suspended ceiling
11 SCH 1 University AT2 1970 Urban outskirts PVC Plasterboard Suspended ceiling
12 SCH 1 University AT3 1970 Urban outskirts PVC Plasterboard Suspended ceiling
13 SCH 1 University EN1 1970 Urban outskirts Artificial stone tiles Plasterboard Suspended ceiling
14 SCH 1 University EN3 1970 Urban outskirts Artificial stone tiles Plasterboard Suspended ceiling
15 SCH 1 University S1 1970 Urban outskirts Artificial stone tiles Gypsum board Non-suspended ceiling
16 SCH 1 University S2 1970 Urban outskirts Artificial stone tiles Gypsum board Non-suspended ceiling
17 SCH 1 University S3 1970 Urban outskirts Artificial stone tiles Gypsum board Non-suspended ceiling
18 SCH 2 Primary 1B 2002 Urban center Artificial stone tiles Plaster Non-suspended ceiling
19 SCH 2 Primary 2A 2002 Urban center Artificial stone tiles Plaster Suspended ceiling
20 SCH 2 Primary 3A 2002 Urban center Artificial stone tiles Plaster Suspended ceiling
21 SCH 3 Primary 2C 2014 Rural urban center Artificial stone tiles Plaster Suspended ceiling
22 SCH 3 Primary 3C 2014 Rural urban center Artificial stone tiles Plaster Suspended ceiling
23 SCH 4 Primary 4B 2008 Rural urban center Artificial stone tiles Plaster Suspended ceiling
24 SCH 4 Primary 4A 2008 Rural urban center Artificial stone tiles Plaster Suspended ceiling
25 SCH 5 Secondary 1 2013 Urban center Artificial stone tiles Plaster Non-suspended ceiling
26 SCH 5 Secondary 2 2013 Urban center Artificial stone tiles Plaster Non-suspended ceiling
27 SCH 5 Secondary 3 2013 Urban center Artificial stone tiles Plaster Non-suspended ceiling
28 SCH 6 Secondary 4 2012 Urban center Artificial stone tiles Plaster Non-suspended ceiling
29 SCH 6 Secondary 5 2012 Urban center PVC Plaster Non-suspended ceiling
30 SCH 7 Secondary 6 2012 Urban center PVC Plaster Non-suspended ceiling
31 SCH 7 Secondary 7 2016 Urban center PVC Plaster Non-suspended ceiling
32 SCH 7 Secondary 8 2016 Urban center PVC Plaster Non-suspended ceiling
33 SCH 8 Secondary 9 2016 Urban center PVC Plaster Suspended ceiling
34 SCH 8 Secondary 10 2004 Urban center PVC Plaster Non-suspended ceiling
35 SCH 8 Secondary 11 2004 Urban center PVC Plaster Non-suspended ceiling

Figure 1. Measurement positions in classrooms according to the UNI 11532-2 standard
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Figure 2. Plans and photographs of some classrooms of the
School of Engineering of Università Politecnica delle Marche

Values for the RT and STI parameters for each classroom
are presented in Table 6.

STI calculation using the indirect method

Based on the indirect method, the speech transmission
index is calculated thanks to the modulation transfer
function (MTF) using the method of Houtgast et al.26

STI is based on the measurement of the MTF43,44, which
quantifies the reduction in the modulation index of a test
signal, depending on the modulation frequency. For each
modulation frequency, the MTF is determined by the ratio
between the modulation index of the signal at the listener
(m0) and the modulation index of the test signal (mi). A
family of MTF curves is determined, in which each curve is
relative to each octave band of speech emission and is defined
by the values that the modulation index reduction factor
(m) assumes for each modulation frequency present in the
envelope of natural speech signals. For the STI measurement,
7-octave bands from 125 Hz to 8 kHz, and 14 modulation
frequencies between 0.63 Hz and 12.5 Hz in one-third octave
intervals, are considered. The 98 (7×14) m-values are finally

Figure 3. Plans and photographs of two classrooms of primary
school (a) and secondary school (b)

summarized in a single index, the STI, varying between 0
and 1, representing the effect of the transmission system on
intelligibility with or without sound amplification system.
The modulation transfer function of the transmission path is
quantified by comparing the ratio of the modulation depth at
the output and input of the test signal, which is written as
Equation (3):

m(fm) =
|
∫∞
0

h(t)2e−j2πfmt dt|∫∞
0

h(t)2 dt
[1 + 10−

SNR
10 ]−1 (3)

where:

• m(fm) is the modulation transfer function of the
transmission channel;

• h(t) is the impulse response of the transmission
channel;

• SNR is the signal-to-noise ratio in dB.

Considering a diffuse reverberant field, the impulse
response is written as Equation (4):

h(t) =
Q

r2
δ(t) +

13.8Q

r2c T
e−

13.8 t
T (4)
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Table 5. List of classrooms indicating school type (school
number and grade), name of the room, and geometric
dimensions

ID Type Name of room length width height surface volume

[m] [m] [m] [m2] [m3]

1 SCH 1 University 140/1 18.2 9.0 3.4 163.8 556.9
2 SCH 1 University 140/2 11.9 8.8 3.9 105.2 410.3
3 SCH 1 University 140/3 15.3 8.9 3.9 136.5 537.6
4 SCH 1 University 155/D1 12.3 8.9 3.4 109.4 371.9
5 SCH 1 University 155/D2 12.3 8.9 3.4 109.4 371.9
6 SCH 1 University 155/D3 12.3 8.9 3.4 109.4 371.9
7 SCH 1 University 155/D4 12.3 8.9 3.4 109.4 371.9
8 SCH 1 University 160/1 10.2 8.9 3.4 90.9 309.1
9 SCH 1 University 160/2 10.4 8.9 3.4 93.2 317.0
10 SCH 1 University AT1 13.4 9.3 3.0 125.2 375.7
11 SCH 1 University AT2 13.8 9.3 3.0 128.6 385.9
12 SCH 1 University AT3 17.9 6.3 3.0 113.1 339.4
13 SCH 1 University EN1 11.3 8.9 3.4 100.7 342.3
14 SCH 1 University EN3 11.2 6.4 3.4 71.4 242.7
15 SCH 1 University S1 7.5 7.4 3.0 55.5 166.5
16 SCH 1 University S2 10.4 10.6 3.5 110.2 385.8
17 SCH 1 University S3 14.3 16.2 3.0 231.7 695.0
18 SCH 2 Primary 1B 7.3 6.8 3.3 49.6 163.8
19 SCH 2 Primary 2A 7.8 7.4 3.3 57.7 191.2
20 SCH 2 Primary 3A 6.8 6.1 3.3 41.5 136.9
21 SCH 3 Primary 2C 7.4 6.8 3.0 50.3 151.0
22 SCH 3 Primary 3C 7.8 7.4 3.0 57.3 172.0
23 SCH 4 Primary 4B 7.9 7.5 3.0 59.3 177.8
24 SCH 4 Primary 4A 8.1 7.8 3.0 63.4 190.3
25 SCH 5 Secondary 1 7.9 7.3 3.1 57.3 177.6
26 SCH 5 Secondary 2 7.9 7.5 3.2 59.2 189.3
27 SCH 5 Secondary 3 8.0 7.6 3.1 60.1 186.3
28 SCH 6 Secondary 4 6.8 6.7 3.0 45.2 135.5
29 SCH 6 Secondary 5 7.3 6.4 3.0 46.7 140.0
30 SCH 7 Secondary 6 8.4 6.7 4.4 56.3 247.6
31 SCH 7 Secondary 7 10.7 7.5 6.5 80.3 521.6
32 SCH 7 Secondary 8 7.1 7.3 3.0 51.7 155.1
33 SCH 8 Secondary 9 7.2 6.2 3.0 44.6 133.9
34 SCH 8 Secondary 10 7.8 6.7 3.0 52.3 156.8
35 SCH 8 Secondary 11 6.0 9.0 3.0 53.8 161.3

where:

• Q is the directivity factor for the sound source (talker);
• r is the talker to listener distance;
• T is the reverberation time of the room space.

The impulse response of each classroom is determined
at the four different positions in the room, and the
reverberation time is calculated by the method described in
UNI EN 12354-645, starting from the sound absorption of
the room.

STI prediction using simulation tool

This paper proposes pyeSTImate, a predictive tool of speech
transmission index in room acoustic environments. This
application aims to compute the STI without recourse to
direct measurements of room reverberation times. RIRs can
be simulated with different techniques in the literature, given
the geometry of the room, constituent materials, furniture
and kind of occupants, and source and receivers’ positions.
After calculating reverberation times from the RIRs, STIs
are determined using the indirect method. The extensive
case history of classroom measurements has been used to
fine-tune the simulator settings: comparing the STI values
derived from the measured RTs and the results of different
simulation methods allowed us to assess which settings most

accurately reproduce the actual environment. The result is
a tool for acoustics engineers suitable for the analysis of
existing rooms, as well as for the renovation and design of
new spaces.

Whereas pyeSTImate requires detailed input geometric
data, especially regarding the surfaces to be associated
with each material, in some cases, we only have some of
this information, e.g., floor plans and photos of the room.
To address this issue, we have adapted the algorithm to
generate a synthetic dataset of classrooms characterized by
randomly chosen sizes and materials, and in each of them,
the average speech transmission index over four listening
positions has been calculated. The dataset, composed of
reduced input data compared to the full pyeSTImate tool, has
been employed to train an artificial neural network capable
of predicting STI with good approximation by providing
only classroom size and material characteristics. This further
application estimates the speech transmission index and
speech comprehension quality with very limited details about
the target room, demonstrating its usefulness in preliminary
acoustic analyses.

In the next section, we present all parts of the pyeSTimate

tool, from the required input data to the computational
processes that provide the output STI descriptor. Then we
describe the adaptation of the tool to the generation of a
synthetic dataset of STIs obtained from classrooms with
random geometric features and materials used for training
an artificial neural network for STI prediction with a reduced
number of data.

PyeSTImate: a Python-based tool for speech
transmission index prediction

Overview

The core of the pyeSTImate tool is pyroomacoustics39, a
software package aimed at the rapid development and testing
of audio array processing algorithms, properly adapted and
extended to predict the STI just from dimensional room
data, materials, and source/receiver positions. As illustrated
in Figure 4, pyeSTImate is composed of two main blocks.
The first, based on pyroomacoustics, returns the simulated
room impulse responses and reverberation times in octave
bands that input the second part of the algorithm, designed
for STI computation using the indirect method. Based on the
achieved STI value, the tool also provides the intelligibility
rating, a qualification according to a five-point scale of
speech comprehension quality.
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Table 6. Measured RT30 (125 Hz-8 kHz), average RT30, STI, average STI, and intelligibility rating for classrooms under acoustic
speech intelligibility assessment

ID Type Name of room RT30 [s] STI Intelligibility
Rating125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz avg P1 P2 P3 P4 avg

1 SCH 1 University 140/1 0.90 0.93 0.76 0.71 0.60 0.75 0.72 0.77 0.57 0.52 0.46 0.43 0.50 ± 0.06 fair
2 SCH 1 University 140/2 0.51 0.86 0.97 0.72 0.50 0.77 0.57 0.70 0.52 0.40 0.37 0.34 0.41 ± 0.08 poor
3 SCH 1 University 140/3 0.55 0.57 0.50 0.60 0.69 0.93 0.83 0.67 0.60 0.58 0.35 0.33 0.47 ± 0.14 fair
4 SCH 1 University 155/D1 0.55 0.93 0.87 0.88 0.79 0.37 0.44 0.69 0.63 0.57 0.54 0.52 0.57 ± 0.05 fair
5 SCH 1 University 155/D2 0.53 0.88 0.87 0.86 0.75 0.32 0.37 0.65 0.62 0.57 0.54 0.52 0.56 ± 0.04 fair
6 SCH 1 University 155/D3 0.61 1.02 0.93 0.89 0.78 0.37 0.42 0.72 0.55 0.51 0.53 0.49 0.52 ± 0.03 fair
7 SCH 1 University 155/D4 0.61 0.86 0.88 0.87 0.75 0.35 0.41 0.68 0.60 0.55 0.54 0.52 0.55 ± 0.03 fair
8 SCH 1 University 160/1 0.67 1.19 0.81 0.81 0.71 0.65 0.61 0.78 0.59 0.42 0.51 0.39 0.48 ± 0.09 fair
9 SCH 1 University 160/2 0.62 0.76 0.99 0.99 0.87 0.75 0.61 0.80 0.58 0.50 0.45 0.40 0.48 ± 0.08 fair
10 SCH 1 University AT1 0.42 0.85 0.74 0.72 0.82 0.95 0.26 0.68 0.73 0.61 0.59 0.45 0.60 ± 0.11 fair
11 SCH 1 University AT2 0.55 0.35 0.45 0.74 0.78 0.82 0.21 0.56 0.70 0.60 0.60 0.56 0.62 ± 0.06 good
12 SCH 1 University AT3 0.49 0.57 0.48 0.60 0.88 0.98 0.30 0.61 0.82 0.62 0.54 0.50 0.62 ± 0.14 good
13 SCH 1 University EN1 0.72 1.16 0.85 0.78 0.64 0.71 0.41 0.75 0.61 0.56 0.55 0.41 0.53 ± 0.09 fair
14 SCH 1 University EN3 0.71 0.99 0.88 0.77 0.63 0.68 0.38 0.72 0.56 0.52 0.49 0.43 0.50 ± 0.05 fair
15 SCH 1 University S1 2.40 1.80 1.70 1.93 1.94 1.66 1.24 1.81 0.29 0.25 0.28 0.29 0.28 ± 0.02 bad
16 SCH 1 University S2 2.30 1.90 1.72 1.94 1.87 1.66 1.30 1.81 0.28 0.26 0.28 0.27 0.27 ± 0.01 bad
17 SCH 1 University S3 2.26 1.72 1.75 1.98 1.97 1.68 1.25 1.80 0.25 0.28 0.29 0.30 0.28 ± 0.02 bad
18 SCH 2 Primary 1B 0.63 0.73 0.83 0.88 0.90 0.81 0.71 0.78 0.66 0.64 0.62 0.57 0.62 ± 0.04 good
19 SCH 2 Primary 2A 1.19 1.24 1.33 1.39 1.22 1.13 0.89 1.20 0.54 0.57 0.54 0.53 0.55 ± 0.02 fair
20 SCH 2 Primary 3A 1.01 1.09 1.37 1.50 1.34 1.24 0.88 1.20 0.53 0.56 0.55 0.54 0.55 ± 0.01 fair
21 SCH 3 Primary 2C 0.89 1.22 1.61 1.75 1.71 1.47 1.03 1.38 0.48 0.50 0.52 0.48 0.50 ± 0.02 fair
22 SCH 3 Primary 3C 0.88 1.05 1.14 1.13 1.06 0.93 0.77 0.99 0.54 0.61 0.54 0.47 0.54 ± 0.06 fair
23 SCH 4 Primary 4B 0.70 0.84 0.87 0.93 0.90 0.81 0.68 0.82 0.57 0.62 0.63 0.59 0.60 ± 0.03 fair
24 SCH 4 Primary 4A 1.37 1.51 1.69 1.79 1.60 1.42 1.09 1.50 0.44 0.47 0.41 0.39 0.43 ± 0.04 poor
25 SCH 5 Secondary 1 0.66 0.81 0.94 0.98 0.88 0.84 0.69 0.83 0.62 0.60 0.59 0.54 0.59 ± 0.03 fair
26 SCH 5 Secondary 2 1.02 1.40 1.33 1.30 1.12 1.01 0.83 1.14 0.58 0.55 0.53 0.50 0.54 ± 0.03 fair
27 SCH 5 Secondary 3 0.76 0.89 0.89 0.95 0.89 0.86 0.71 0.85 0.57 0.58 0.57 0.56 0.57 ± 0.01 fair
28 SCH 6 Secondary 4 1.38 1.40 1.33 1.36 1.37 1.36 1.35 1.36 0.54 0.49 0.49 0.43 0.49 ± 0.05 fair
29 SCH 6 Secondary 5 0.81 0.62 0.96 1.07 1.22 1.08 0.99 0.96 0.58 0.56 0.49 0.44 0.52 ± 0.06 fair
30 SCH 7 Secondary 6 0.82 0.69 0.62 0.58 0.58 0.57 0.57 0.63 0.77 0.70 0.70 0.70 0.72 ± 0.04 good
31 SCH 7 Secondary 7 1.13 0.93 0.79 0.76 0.72 0.67 0.67 0.81 0.64 0.49 0.47 0.47 0.52 ± 0.08 fair
32 SCH 7 Secondary 8 1.03 0.70 0.64 0.52 0.56 0.58 0.59 0.66 0.65 0.53 0.51 0.51 0.55 ± 0.07 fair
33 SCH 8 Secondary 9 0.95 0.79 0.58 0.58 0.60 0.61 0.61 0.67 0.54 0.52 0.49 0.55 0.53 ± 0.03 fair
34 SCH 8 Secondary 10 2.43 2.14 2.31 2.46 2.30 1.95 1.49 2.15 0.38 0.31 0.33 0.34 0.34 ± 0.03 poor
35 SCH 8 Secondary 11 2.29 2.42 2.13 1.87 1.90 1.71 1.68 2.00 0.44 0.37 0.38 0.38 0.39 ± 0.03 poor

room geometry

source position

receiver(s) position

room materials

type of simulator

class Room

subclass ShoeBox
RIR(s) (7 octave bands)

room

RT(s) (7 octave bands)

pyroomacoustics indirect method

modulation depth
reduction

factors (mf,F)

modulation transfer
function matrix

(MTF)

modulation transfer
indexes
(MTI)

Speech Transmission
Index
and

Intelligibility Rating

Figure 4. Block diagram of pyeSTImate, the proposed tool for predictive calculation of speech transmission index as an adaptation
and extension of pyroomacoustics

Input data

The code has been implemented to handle input data with
text-based files (e.g., json or csv), with the advantage
of loading and processing multiple rooms simultaneously
through an iterative process. The data required by the tool
are room geometry, location of source and receivers, room
materials, and type of simulator.

Room geometry. It is possible to define rooms with paral-
lelepiped geometry, called shoebox in the pyroomacoustics
package and characterized by arrays composed of ‘length’,
‘width’ and ‘height’ in meters. The advantage of such
geometry is the simplicity of definition and efficiency of

the simulation, without incurring excessive approximations
considering the geometric regularity of classrooms.

Source position. The primary source position (S) of
the speech signal is defined by an array containing the
coordinates in meters, denoted as ‘source coordinates’.

Receiver(s) position. Measurement user positions (P1–P4)
are also defined by arrays containing the coordinates of each
receiver in meters, referred to as ‘receiver 1 coordinates’,
‘receiver 2 coordinates’, ‘receiver 3 coordinates’, and
‘receiver 4 coordinates’, respectively. It is possible to
configure up to four user positions for lecture rooms without
amplification systems, as shown in Table 11 of UNI 11532-2.

Prepared using sagej.cls



10 Journal Title XX(X)

Room materials. In pyroomacoustics, materials
that constitute the shoebox faces, such as
floor, ceiling and walls, are managed by the
pyroomacoustics.parameters.Material object.
A material is defined at least by an absorption coefficient,
representing the ratio of sound energy absorbed by a
wall upon reflection. In addition, one or more scattering
coefficients corresponding to the ratio of energy dispersed
upon reflection can be specified. The coefficients assigned to
materials can be provided as scalars, representing uniform
absorption or scattering at all frequencies, or as lists of
coefficients, each associated with a specific octave band.
Materials are set by directly providing the coefficients or
choosing them from the pyroomacoustics library database.
Different materials are assigned to each face of the shoebox,
specified in a dictionary and named as ‘ceiling’, ‘floor’,
‘east’, ‘west’, ‘north’, and ‘south’.

In pyeSTImate, the definition of materials has been
extended and adapted to school environments. For this
purpose, we have supplemented the pyroomacoustics
dictionary with octave-band absorption coefficients of
materials, furniture and occupants found in Tables C1–C3
of UNI 11532-2. We have created a dictionary for each
table, in which the description of the entries follows the
‘table–item number’ criterion. For example, the material
listed at number 3 of Table C.2 (smooth plaster) is defined
as ‘C.2-3’. In most cases, classrooms are covered with
several finishing materials, such as tile for the floors, plaster
and glass for the walls, plasterboard for the ceiling, and
sometimes even a single surface features more than one
material. Moreover, lecture rooms contain furniture (e.g.,
chairs, desks, blackboards, projector screens, and lockers).
To accurately represent the sound absorption of each k-
surface in the room, we have defined a function that
calculates the average absorption coefficient αk,m, obtained
as:

αk,m =

n∑
i=1

αi,matSi,mat + αi,persSi,pers + αi,objSi,obj

Si
,

(5)
where:

• αi,mat is the absorption coefficient of the i-th material
(Table C.2 UNI 11532-2)

• Si,mat is the area of the i-th material
• αi,pers is the absorption coefficient of the i-th category

of occupant (person) (Table C.1 UNI 11532-2)
• Si,pers is the area of the i-th occupant (person)
• αi,obj is the absorption coefficient of the i-th furniture

(object) (Table C.3 UNI 11532-2)

• Si,obj is the area of the i-th furniture (object)
• Si is the total area of the k-surface

It is possible to define up to five types of materials
(‘floor material’, ‘ceiling material’, ‘wall material’),
occupant categories (‘Apers’), and furniture (‘Aobj’)
and assign them to each parallelepiped surface. The
primary material (No. 1) is automatically associated with
the corresponding surface area; if secondary materials
are present, their surface area (‘area floor material’,
‘area ceiling material’, ‘area south wall material’,
‘area east wall material’, ‘area north wall material’,
‘area west wall material’) must be specified to compute the
average absorption coefficient correctly. The same applies to
surface areas of occupants (‘area Apers’) and objects placed
on the walls (‘area south wall Aobj’, ‘area east wall Aobj’,
‘area north wall Aobj’, ‘area west wall Aobj’).

Unlike absorption coefficients, the UNI 11532-2 standard
does not give examples of scattering coefficients for
materials that constitute or furnish classroom surfaces. At
the same time, the pyroomacoustics library database reports
a small number of scattering coefficients of commercial
products, seating and audience in octave bands. For this
reason, we have taken as reference the recommended
scattering values in some common cases suggested in the
ODEON Room Acoustics Software User’s Manual46, which
are assignable as scalars to each shoebox surface and
considered constant for all octave bands.

Type of simulator. In pyeSTImate, it is necessary to specify
the simulation method to create artificial room impulse
responses (RIRs) between the source and receivers. Taking
advantage of the capabilities of pyroomacoustics, we can set
up two types of simulators described as follows.

The first, based on the image source method (ISM), adopts
Allen’s implementation47, funded on the principle that in
a reflective environment, the reflected sound wave can be
assumed to come from the virtual image of the actual source.
This mechanism also applies to reflections after the first
one, considering the virtual source of the previous reflection
as the actual source. The simulation method assumes the
walls as perfect reflectors and does not consider the effects
of scattering. Moreover, the randomized image method has
been introduced in pyroomacoustics: it adds a small random
shift to the positions of the image sources so that they are
no longer aligned over time, reducing sweeping echoes. In
pyeSTImate, this simulation method is named ‘ISM’ and
requires setting the maximum reflection order in the image
source model (‘max order reflections’).
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The second simulator is based on the ray tracing48,49

theory: sound energy does not propagate on spherical wave
fronts as in the case of virtual sources, but it is fractionated
along rectilinear trajectories. The sound rays propagate from
the source in all directions and gradually lose energy due to
surface absorption, atmospheric attenuation, and scattering.
Pyroomacoustics allows the use of a pure or hybrid ray
tracing method for RIRs generation, in which the early
reflections are simulated by the ISM and the diffuse tail
by the ray tracing model. In pyeSTImate, this simulation
method is set as ‘Hybrid’; if pure ray tracing is to be used,
‘max order reflections’ =−1; otherwise, the combination of
ISM and ray tracing requires ‘max order reflections’≥ 1.

Computational steps

The input data represent the arguments of the Room

class, specifically the ShoeBox(Room) subclass of
pyroomacoustics. According to the simulation method, the
algorithm implements in C++ the image source and ray
tracing models to generate the room impulse responses and
simulate the propagation between sources and receivers. The
output is thus an impulse response computed at the position
of each receiver, with a sampling rate defined at the input
stage and set equal to 16 kHz. The simulated RIRs are filtered
in the 7-octave bands from 125 Hz to 8 kHz, from which
the corresponding RT30 values are computed in order to be
consistent with the measured reverberation times.

At this step, we have all the data for the STI
calculation using the indirect method. First, the function for
computing the modulation depth reduction factors has been
implemented. It is applied to the 14 modulation frequencies
for 7-octave bands and returns a modulation transfer function
matrix of 98 values. For each octave band, the modulation
transfer indexes are computed as the arithmetic mean of the
transfer indexes for the 14 modulation frequencies. Finally,
the STI is obtained from the weighted sum of the modulation
transfer indexes for the 7-octave bands.

We have chosen to export to a textual dataframe the main
results provided by the calculation code. Specifically, for
each classroom, we have computed:

• the RT60 value averaged over all receivers’ positions;
• the STI values for the individual receivers’ positions;
• the average of the individual STI values computed at

the previous step;
• the intelligibility rating (IR).

Since our work aims to develop a fully simulated tool for
STI prediction, we tested its accuracy through comparison
with the results of in situ measurements. In this regard,

we have given as input the outcomes correlated with the
measurements to obtain the error between measured and
simulated scores, indicating the capability of the simulator to
approximate the acoustic characteristics of an actual room.

For this purpose, we have monitored the following
metrics:

• the absolute error (AE), absolute percentage error
(APE) and intelligibility rating error (IRE) between
average STI values from measurements and simula-
tions in each classroom;

• the mean absolute error (MAE), mean absolute
percentage error (MAPE) and mean intelligibility
rating error (MIRE) over classrooms belonging to
schools of the same grade and the entire test set of
classrooms.

If the (mean) absolute error and (mean) absolute
percentage error represent a regression loss between STI
values, the metric (mean) intelligibility rating error quantifies
the error associated with the discrete classification of the
speech comprehension quality. The MIRE values fall in the
range [0,1] and can also be expressed as a percentage. We
assigned the five attributes of the speech comprehension
quality scale (bad, poor, fair, good, excellent) a label from
1 to 5, where 1 indicates bad quality and 5 corresponds
to excellent quality. The ratio of the absolute value of the
difference between the measured and simulated IR labels
and the range of the actual values averaged over the number
of the analyzed classrooms provides the mean intelligibility
rating error, defined in Equation (6) as:

MIRE(l, l̂) =
1

nsamples

nsamples−1∑
i=0

|li − l̂i|
max(l)−min(l)

,

(6)

where:

• li is the true intelligibility label of the i-th sample;
• l̂i is the predicted intelligibility label of the i-th sample;
• max(l)-min(l) represents the range of the actual values;
• nsamples is the number of samples in the test set.

In addition to the previously mentioned metrics, we also
monitored the accuracy of the results in terms of just
noticeable difference, the subjective limen representing the
discernible difference of a room acoustic parameter. The
study associated with the just noticeable difference in STI,
i.e., the variation in STI values for which 50% of subjects
can perceive the difference, determined a STI JND equal
to 0.03 in simulated sound fields, but a STI JND of 0.1 is
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considered more realistic in everyday listening situations40.
For this reason, we have calculated the number of JND units
(STI JNDs) between STI values from measurements and
simulations with both thresholds.

Application to artificial neural network

In this section, we describe the adaptation of pyeSTImate

for generating a synthetic dataset to train an artificial neural
network for speech transmission index prediction using a
reduced number of input data. Then, we present the studies
to yield a deep learning model with a high generalization
capability. The procedures for generating the dataset, the
neural architectures analyzed, the training settings and the
performance metrics monitored are discussed.

Dataset and feature selection. Generally, traditional
supervised deep learning models require large datasets in
the training stage, but collecting a large amount of data
through direct measurements and related labeling operations
is often challenging. This issue can be overcome using
public databases or synthetic data generated via algorithms.
In this work, we have chosen to adapt the pyeSTImate

tool to generate a synthetic dataset of classrooms with
their corresponding average STIs. The code has been set to
randomly define different geometries, source and receivers’
positions, materials, types of occupants, and furniture with
their associated surface areas, from which the average STI
and the intelligibility rating over four listening positions have
been calculated. The characteristics of the lecture rooms that
compose the synthetic dataset are discussed as follows.

• Geometry: we set a range of minimum and
maximum room length (l), depth (d), and height (h).
We have defined 10 m≤l≤30 m, 5 m≤d≤15 m, and
3 m≤h≤6.5 m. Dimensions of each room have been
randomly chosen in the respective ranges, with steps
of 0.1 m for plan dimensions and 0.05 m for the height.

• Source and receivers’ positions: the coordinates of
the speaker and listeners have been placed according
to Figure 1 (UNI 11532-2 standard). We set a
margin of variability to the coordinates of the source
and listening positions on the audience perimeter to
increase the number of possible configurations. The
source location has been assigned between 1–2.5 m
from the west wall at the height of 1–1.7 m to consider
the speaker sitting at the desk or standing. The sitting
audience area is also not fixed, so point P1 has been
allocated in the range of 1–2 m from the source and
points P3–P4 at a distance of 1.5–2.5 m from east and

south walls, respectively. Finally, point P2 has been
placed in the center of the audience.

• Materials, occupants and furniture: we used the dictio-
nary of pyeSTImate to define interior finishes, occu-
pant categories, and classroom furniture. Materials
have been subdivided so that the absorption and
scattering coefficients of the appropriate finishes are
assigned to floors, ceilings, walls, windows and doors.

• Surface areas: based on the characteristics of actual
classrooms and to ensure the variability of simulated
ones, we set up two types of materials (one main and
one secondary with variable surface areas) for floors,
walls and ceilings. Floors consist of the main material
and optionally a secondary one for up to 20% of the
surface area. Window areas have been assigned to two
walls for up to 50% of the surface, while the room
access door and lockers have been allocated on the
remaining walls for up to 10% of the surface. Ceilings,
like floors, consist of the main material and optionally
a secondary one for up to 50% of the surface area. All
lecture rooms have an area designated for the audience
for up to 80% of the main surface area.

To calculate the speech transmission index, we have
employed the hybrid ISM/ray tracing method, which has
provided the best performance in previous experiments
together with the pure ray tracing method. The parameter
‘rooms number’ of the dataset generator code can handle the
number of classrooms and the corresponding STI values to
be computed.

We have generated a dataset of 1000 classrooms, exporting
to a csv file all the parameters required by pyeSTImate

for STI calculation. We have inspected the distribution of
each feature, eliminating the ones with low variance and
others that require accurate knowledge of the room, such
as the surfaces to be attributed to each material, audience
or furniture. Since our goal is to estimate the quality of
speech transmission with basic information about the room
of interest, e.g., with a floor plan and pictures, we kept
as features only the geometry (length, depth, and height)
and interior finishes from which octave-band absorption
coefficients can be extrapolated using the pyeSTImate

dictionary. Ultimately, we keep 73 features (3 dimensions
and 10 finishes for 7 absorption coefficients in octave bands)
and refer to STI as the label.

Deep Learning Model. The work aims to predict the output
of a continuous value between 0 and 1, so we have devised an
ANN based on a multilayer perceptron50 (MLP) algorithm
to solve a regression problem. An MLP is a mathematical
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model that performs non-linear mapping between input and
output and is composed of an input layer that takes in the
features of a set of examples (training set), one or more
hidden layers and an output layer, each consisting of one or
more computational nodes, also called neurons, connected
among them in a network. In our case, the output layer
comprises only one neuron computing the predicted STI
value.

The iterative input-output mapping, or learning process,
depends on the size of the training set and is controlled
by a set of parameters chosen before the training starts,
called network hyperparameters. Some common examples
of hyperparameters are the number of hidden layers, the
number of neurons in each layer, the activation function in
a layer (the function that regulates and limits the output of
each node), the number of iterations (epochs) in the training
phase, train-validation split ratio, the learning rate and type
of optimizer that control the speed of the learning process. To
find the model that has the greatest generalization capability
and provides the best results with data unseen during the
training (test set), we have investigated the performance of
the algorithm by varying the size of the training set, the
number of hidden layers and neurons in each of them through
a grid search51. We performed the experiments with training
sets of 100 and 1000 examples and neural architectures
composed of one, two and three hidden layers whose number
of nodes has been chosen among a range between 8 and
1024.

For training, the entire dataset has been randomly split into
the training and validation sets with a percentage of 80%
and 20% of the total number of samples, respectively. For
testing, we considered the 35 classrooms already investigated
with instrumental measurements and simulations using
pyeSTImate. In previous experiments, we have found a
discrepancy between STIs derived from measured and
simulated reverberation times related to the uncertainty of the
measurements and the computational simulator. Therefore,
we have compared the test results with both the STI values
from simulations and measurements.

Since STI does not allow negative values, we set the
rectified linear unit (ReLU) activation function in the hidden
layers, a piecewise linear function that outputs the input
directly if it is positive; otherwise, it outputs zero. We also set
the learning rate equal to 0.001, Adam52 optimizer, and 5000
epochs with the early stopping, a form of regularization that
stops the training when the monitored metric (in our case, the
validation loss) has stopped improving. We set the MAE as
regression loss and MAPE as monitored metrics.

Experimental setup. In the experiments, we used a NVIDIA
DGX Station A100 with Dual 64-Core AMD EPYC 7742
@3.4 GHz, and 8 NVIDIA A100-SXM4-40 GB GPUs.
The server was running Ubuntu 20.04.3 LTS, and we
implemented the network designs with the Tensorflow53

deep learning framework.

Results and discussion

In this section, we present and comment on experimental
results. First, we use pyeSTImate to calculate the STI
values of the classrooms described in Section Characteristics
of lecture rooms and measurement equipment, providing
the tool with all the required input data and comparing
the outcomes with different impulse response modeling
methods. Next, we illustrate and compare the results of
the best of several deep learning models trained with the
synthetic STI dataset generated by the pyeSTImate tool
adapted for the purpose.

Assessment of speech intelligibility through
pyeSTImate

Tables 7, 8, and 9 illustrate the comparison between the
results predicted with the simulation tool and obtained from
direct measurements of reverberation times calculated for
each classroom with ISM, ray tracing and hybrid ISM/ray
tracing methods, respectively. Specifically, the RT averaged
over the four receiver positions (P1–P4), STI at individual
listening points and the average value, absolute error
(AE) associated with individual and average STI, absolute
percentage error (APE) on the average STI, intelligibility
rating, error on intelligibility rating (IRE), just noticeable
difference units for the average STI with thresholds equal
to 0.03 (STI JNDs(0.03)) and 0.1 (STI JNDs(0.1)) are
presented. Table 10 summarizes the mean absolute error
(MAE), mean absolute percentage error (MAPE), mean
intelligibility rating error (MIRE), and mean just noticeable
difference units with thresholds equal to 0.03 (mean STI
JNDs(0.03)) and 0.1 (mean STI JNDs(0.1)) computed for
classrooms of the same grade and overall the classrooms.

From the exploration of the summary results, we observe
that the best performance are obtained from the RIR
simulation methods of ray tracing and hybrid rather than
the ISM modeling. The main issue of the ISM simulator
is the choice of the maximum order of reflections to be
assigned. This model assumes the walls as perfect reflectors,
so later reflections due to scattering are not considered, and
the activation of the reverberant tail is performed through
a sufficiently large number of reflections handled by the
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Table 7. Simulation results with the ISM method and errors between STI values from measurements and simulations: RT, individual
and average STI values, absolute error (AE), absolute percentage error (APE), Intelligibility Rating, intelligibility rating error (IRE),
and just noticeable difference units with thresholds equal to 0.03 (STI JNDs(0.03)) and 0.1 (STI JNDs(0.1))

ID Type Name of room RT [s] STI AE APE (%) Intelligibility
Rating IRE STI JNDs(0.03) STI JNDs(0.1)

avg P1 P2 P3 P4 avg P1 P2 P3 P4 avg* avg* avg* avg*

1 SCH 1 University 140/1 2.60 0.83 0.28 0.26 0.26 0.41 ± 0.28 0.26 0.24 0.20 0.17 0.09 17.53 poor 0.2 2.9 0.9
2 SCH 1 University 140/2 1.73 0.79 0.41 0.38 0.38 0.49 ± 0.20 0.27 0.01 0.01 0.04 0.08 20.40 fair 0.2 2.8 0.8
3 SCH 1 University 140/3 2.24 0.82 0.33 0.30 0.30 0.44 ± 0.26 0.22 0.25 0.05 0.03 0.03 5.69 poor 0.2 0.9 0.3
4 SCH 1 University 155/D1 1.79 0.71 0.40 0.38 0.38 0.47 ± 0.16 0.08 0.17 0.16 0.14 0.10 17.21 fair 0 3.2 1.0
5 SCH 1 University 155/D2 1.81 0.71 0.40 0.38 0.38 0.47 ± 0.16 0.09 0.17 0.16 0.14 0.10 17.31 fair 0 3.2 1.0
6 SCH 1 University 155/D3 1.80 0.71 0.40 0.38 0.38 0.47 ± 0.16 0.16 0.11 0.15 0.11 0.05 10.43 fair 0 1.8 0.5
7 SCH 1 University 155/D4 1.77 0.71 0.40 0.38 0.38 0.47 ± 0.16 0.11 0.15 0.16 0.14 0.09 15.43 fair 0 2.8 0.9
8 SCH 1 University 160/1 1.49 0.87 0.46 0.44 0.44 0.55 ± 0.21 0.28 0.04 0.07 0.05 0.08 15.93 fair 0 2.5 0.8
9 SCH 1 University 160/2 1.49 0.87 0.46 0.44 0.43 0.55 ± 0.21 0.29 0.04 0.01 0.03 0.07 13.70 fair 0 2.2 0.7
10 SCH 1 University AT1 1.59 0.78 0.41 0.40 0.40 0.50 ± 0.19 0.05 0.20 0.19 0.05 0.10 16.33 fair 0 3.2 1.0
11 SCH 1 University AT2 1.54 0.77 0.42 0.41 0.41 0.50 ± 0.18 0.07 0.18 0.19 0.15 0.11 18.00 fair 0.2 3.7 1.1
12 SCH 1 University AT3 2.13 0.78 0.34 0.33 0.33 0.45 ± 0.22 0.04 0.28 0.21 0.17 0.17 28.21 poor 0.4 5.8 1.7
13 SCH 1 University EN1 1.65 0.76 0.44 0.41 0.41 0.51 ± 0.17 0.15 0.12 0.14 0.00 0.02 4.49 fair 0 0.8 0.2
14 SCH 1 University EN3 1.63 0.55 0.28 0.26 0.26 0.34 ± 0.14 0.01 0.24 0.23 0.17 0.16 32.38 poor 0.2 5.4 1.6
15 SCH 1 University S1 0.93 0.56 0.45 0.44 0.44 0.47 ± 0.06 0.27 0.20 0.16 0.15 0.20 70.44 fair 0.4 6.5 2.0
16 SCH 1 University S2 1.36 0.77 0.48 0.45 0.46 0.54 ± 0.16 0.49 0.22 0.17 0.19 0.27 97.80 fair 0.4 8.9 2.7
17 SCH 1 University S3 2.05 0.84 0.41 0.33 0.32 0.47 ± 0.25 0.59 0.13 0.04 0.02 0.19 69.25 fair 0.4 6.5 1.9
18 SCH 2 Primary 1B 0.86 0.77 0.48 0.47 0.47 0.54 ± 0.15 0.11 0.16 0.15 0.10 0.08 12.53 fair 0.2 2.6 0.8
19 SCH 2 Primary 2A 1.08 0.78 0.41 0.39 0.39 0.49 ± 0.19 0.24 0.16 0.15 0.14 0.05 9.80 fair 0 1.8 0.5
20 SCH 2 Primary 3A 0.92 0.76 0.48 0.47 0.47 0.54 ± 0.14 0.23 0.08 0.08 0.07 0.00 0.11 fair 0 0.0 0.0
21 SCH 3 Primary 2C 1.01 0.76 0.44 0.43 0.43 0.52 ± 0.16 0.28 0.06 0.09 0.05 0.02 4.40 fair 0 0.7 0.2
22 SCH 3 Primary 3C 1.07 0.77 0.41 0.40 0.40 0.50 ± 0.18 0.23 0.20 0.14 0.07 0.04 8.27 fair 0 1.5 0.4
23 SCH 4 Primary 4B 1.10 0.77 0.41 0.40 0.39 0.49 ± 0.19 0.20 0.21 0.23 0.20 0.11 18.13 fair 0 3.6 1.1
24 SCH 4 Primary 4A 1.13 0.78 0.40 0.37 0.37 0.48 ± 0.20 0.34 0.07 0.04 0.02 0.05 12.16 fair 0.2 1.7 0.5
25 SCH 5 Secondary 1 0.94 0.77 0.45 0.44 0.44 0.52 ± 0.17 0.15 0.15 0.15 0.10 0.06 10.74 fair 0 2.1 0.6
26 SCH 5 Secondary 2 0.93 0.78 0.44 0.43 0.43 0.52 ± 0.17 0.20 0.11 0.10 0.07 0.02 3.63 fair 0 0.7 0.2
27 SCH 5 Secondary 3 0.95 0.78 0.44 0.43 0.42 0.52 ± 0.17 0.21 0.14 0.14 0.14 0.05 9.30 fair 0 1.8 0.5
28 SCH 6 Secondary 4 0.82 0.75 0.51 0.50 0.50 0.57 ± 0.13 0.21 0.02 0.01 0.07 0.08 16.23 fair 0 2.6 0.8
29 SCH 6 Secondary 5 0.87 0.76 0.49 0.48 0.48 0.55 ± 0.14 0.18 0.07 0.01 0.04 0.03 6.74 fair 0 1.2 0.3
30 SCH 7 Secondary 6 1.04 0.79 0.43 0.39 0.38 0.50 ± 0.20 0.02 0.27 0.31 0.32 0.22 30.49 fair 0.2 7.3 2.2
31 SCH 7 Secondary 7 1.24 0.94 0.50 0.47 0.47 0.59 ± 0.23 0.30 0.01 0.00 0.00 0.08 14.87 fair 0 2.6 0.8
32 SCH 7 Secondary 8 0.91 0.76 0.47 0.46 0.46 0.54 ± 0.15 0.11 0.06 0.05 0.05 0.01 1.93 fair 0 0.4 0.1
33 SCH 8 Secondary 9 0.93 0.75 0.47 0.47 0.46 0.54 ± 0.14 0.21 0.05 0.02 0.09 0.01 2.31 fair 0 0.4 0.1
34 SCH 8 Secondary 10 0.96 0.58 0.45 0.44 0.44 0.48 ± 0.07 0.20 0.14 0.11 0.10 0.14 40.39 fair 0.2 4.6 1.4
35 SCH 8 Secondary 11 1.14 0.57 0.41 0.39 0.39 0.44 ± 0.08 0.13 0.04 0.01 0.01 0.05 12.18 poor 0 1.6 0.5

* Computed on average STI.

Table 8. Simulation results with the ray tracing method and errors between STI values from measurements and simulations: RT,
individual and average STI values, absolute error (AE), absolute percentage error (APE), Intelligibility Rating, intelligibility rating error
(IRE), and just noticeable difference units with thresholds equal to 0.03 (STI JNDs(0.03)) and 0.1 (STI JNDs(0.1))

ID Type Name of room RT [s] STI AE APE (%) Intelligibility
Rating IRE STI JNDs(0.03) STI JNDs(0.1)

avg P1 P2 P3 P4 avg P1 P2 P3 P4 avg* avg* avg* avg*

1 SCH 1 University 140/1 1.56 0.80 0.38 0.36 0.37 0.48 ± 0.22 0.23 0.14 0.10 0.06 0.02 3.65 fair 0 0.6 0.2
2 SCH 1 University 140/2 2.20 0.79 0.37 0.32 0.29 0.44 ± 0.23 0.27 0.03 0.05 0.05 0.04 9.19 poor 0 1.2 0.4
3 SCH 1 University 140/3 1.45 0.80 0.42 0.38 0.39 0.50 ± 0.20 0.20 0.16 0.03 0.06 0.03 7.02 fair 0 1.1 0.3
4 SCH 1 University 155/D1 1.18 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.08 0.10 0.08 0.05 0.03 6.15 fair 0 1.2 0.3
5 SCH 1 University 155/D2 1.21 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.09 0.10 0.08 0.05 0.03 5.87 fair 0 1.1 0.3
6 SCH 1 University 155/D3 1.21 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.16 0.04 0.07 0.02 0.01 1.44 fair 0 0.3 0.1
7 SCH 1 University 155/D4 1.21 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.11 0.08 0.08 0.05 0.03 4.74 fair 0 0.9 0.3
8 SCH 1 University 160/1 1.35 0.86 0.47 0.43 0.45 0.55 ± 0.20 0.27 0.05 0.08 0.06 0.07 15.50 fair 0 2.5 0.7
9 SCH 1 University 160/2 1.28 0.86 0.47 0.45 0.46 0.56 ± 0.20 0.28 0.03 0.00 0.06 0.08 15.78 fair 0 2.5 0.8
10 SCH 1 University AT1 0.99 0.79 0.54 0.50 0.46 0.57 ± 0.15 0.06 0.07 0.09 0.01 0.02 3.43 fair 0 0.7 0.2
11 SCH 1 University AT2 0.81 0.80 0.60 0.50 0.55 0.61 ± 0.13 0.10 0.00 0.10 0.01 0.00 0.57 good 0 0.1 0.0
12 SCH 1 University AT3 0.75 0.81 0.63 0.55 0.54 0.63 ± 0.12 0.01 0.01 0.01 0.04 0.01 2.30 good 0 0.5 0.1
13 SCH 1 University EN1 1.14 0.76 0.52 0.46 0.47 0.55 ± 0.14 0.15 0.04 0.09 0.06 0.02 3.48 fair 0 0.6 0.2
14 SCH 1 University EN3 1.03 0.59 0.35 0.31 0.37 0.40 ± 0.12 0.03 0.17 0.18 0.06 0.10 19.14 poor 0.2 3.2 1.0
15 SCH 1 University S1 1.90 0.54 0.30 0.24 0.23 0.33 ± 0.15 0.25 0.05 0.04 0.06 0.05 18.02 poor 0.2 1.7 0.5
16 SCH 1 University S2 2.56 0.80 0.39 0.29 0.30 0.44 ± 0.24 0.52 0.13 0.01 0.03 0.17 62.87 poor 0.2 5.7 1.7
17 SCH 1 University S3 3.07 0.85 0.41 0.27 0.25 0.44 ± 0.28 0.60 0.13 0.02 0.05 0.16 58.28 poor 0.2 5.4 1.6
18 SCH 2 Primary 1B 0.51 0.80 0.59 0.56 0.57 0.63 ± 0.11 0.14 0.05 0.06 0.00 0.01 1.18 good 0 0.2 0.1
19 SCH 2 Primary 2A 0.87 0.78 0.42 0.40 0.40 0.50 ± 0.19 0.24 0.15 0.14 0.13 0.04 8.21 fair 0 1.5 0.4
20 SCH 2 Primary 3A 0.74 0.77 0.51 0.48 0.48 0.56 ± 0.14 0.24 0.05 0.07 0.06 0.01 2.14 fair 0 0.4 0.1
21 SCH 3 Primary 2C 0.82 0.77 0.47 0.44 0.44 0.53 ± 0.16 0.29 0.03 0.08 0.04 0.04 7.19 fair 0 1.2 0.4
22 SCH 3 Primary 3C 0.84 0.77 0.44 0.42 0.41 0.51 ± 0.18 0.23 0.17 0.12 0.06 0.03 5.51 fair 0 0.0 0.3
23 SCH 4 Primary 4B 0.84 0.78 0.44 0.41 0.40 0.51 ± 0.18 0.21 0.18 0.22 0.19 0.10 16.00 fair 0 3.2 1.0
24 SCH 4 Primary 4A 1.25 0.78 0.34 0.30 0.29 0.43 ± 0.24 0.34 0.13 0.11 0.10 0.00 0.28 poor 0 0.0 0.0
25 SCH 5 Secondary 1 0.89 0.78 0.43 0.41 0.40 0.50 ± 0.18 0.16 0.17 0.18 0.14 0.08 14.40 fair 0 2.8 0.8
26 SCH 5 Secondary 2 0.89 0.78 0.43 0.40 0.40 0.50 ± 0.19 0.20 0.12 0.13 0.10 0.04 7.34 fair 0 1.3 0.4
27 SCH 5 Secondary 3 0.89 0.78 0.43 0.40 0.40 0.50 ± 0.19 0.21 0.15 0.17 0.16 0.07 12.33 fair 0 2.3 0.7
28 SCH 6 Secondary 4 0.80 0.76 0.49 0.47 0.47 0.55 ± 0.14 0.22 0.00 0.02 0.04 0.06 12.32 fair 0 2.0 0.6
29 SCH 6 Secondary 5 0.81 0.76 0.49 0.46 0.45 0.54 ± 0.15 0.18 0.07 0.03 0.01 0.02 4.33 fair 0 0.7 0.2
30 SCH 7 Secondary 6 0.54 0.81 0.54 0.50 0.50 0.59 ± 0.15 0.04 0.16 0.20 0.20 0.13 18.41 fair 0.2 4.4 1.3
31 SCH 7 Secondary 7 1.06 0.93 0.50 0.47 0.45 0.59 ± 0.23 0.29 0.01 0.00 0.02 0.07 13.35 fair 0 2.3 0.7
32 SCH 7 Secondary 8 0.73 0.77 0.50 0.48 0.48 0.56 ± 0.14 0.12 0.03 0.03 0.03 0.01 1.32 fair 0 0.2 0.1
33 SCH 8 Secondary 9 0.70 0.77 0.51 0.50 0.49 0.57 ± 0.13 0.23 0.01 0.01 0.06 0.04 8.22 fair 0 1.4 0.4
34 SCH 8 Secondary 10 1.28 0.57 0.38 0.35 0.33 0.41 ± 0.11 0.19 0.07 0.02 0.01 0.07 19.44 poor 0 2.2 0.7
35 SCH 8 Secondary 11 1.40 0.57 0.35 0.32 0.31 0.39 ± 0.12 0.13 0.02 0.06 0.07 0.00 1.02 poor 0 0.1 0.0

* Computed on average STI.

‘max order reflections’ parameter. During the experiments,
we observed that an insufficient number of reflections
does not allow the entire reverberant tail to be simulated,
providing underestimated reverberation times and, thus,
better STI values. On the other hand, if this parameter is

too high, the duration of late reflections is overestimated,
and consequently, the results are lower speech transmission
indexes.

The maximum order of reflections can be preliminarily
estimated by calculating the RT value with Sabine’s
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Table 9. Simulation results with the hybrid ISM/ray tracing method and errors between STI values from measurements and
simulations: RT, individual and average STI values, absolute error (AE), absolute percentage error (APE), Intelligibility Rating,
intelligibility rating error (IRE), and just noticeable difference units with thresholds equal to 0.03 (STI JNDs(0.03)) and 0.1 (STI
JNDs(0.1))

ID Type Name of room RT [s] STI AE APE (%) Intelligibility
Rating IRE STI JNDs(0.03) STI JNDs(0.1)

avg P1 P2 P3 P4 avg P1 P2 P3 P4 avg* avg* avg* avg*

1 SCH 1 University 140/1 1.63 0.81 0.37 0.37 0.37 0.48 ± 0.22 0.24 0.15 0.09 0.06 0.02 3.33 fair 0 0.5 0.2
2 SCH 1 University 140/2 2.18 0.80 0.37 0.33 0.29 0.45 ± 0.24 0.28 0.03 0.04 0.05 0.04 9.67 poor 0 1.3 0.4
3 SCH 1 University 140/3 1.48 0.80 0.42 0.38 0.40 0.50 ± 0.20 0.20 0.16 0.03 0.07 0.03 6.99 fair 0 1.1 0.3
4 SCH 1 University 155/D1 1.25 0.71 0.47 0.46 0.48 0.53 ± 0.12 0.08 0.10 0.08 0.04 0.03 6.12 fair 0 1.2 0.3
5 SCH 1 University 155/D2 1.25 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.09 0.10 0.08 0.05 0.03 6.11 fair 0 1.1 0.3
6 SCH 1 University 155/D3 1.25 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.16 0.04 0.07 0.02 0.01 1.36 fair 0 0.2 0.1
7 SCH 1 University 155/D4 1.26 0.71 0.47 0.46 0.47 0.53 ± 0.12 0.11 0.08 0.08 0.05 0.03 4.79 fair 0 0.9 0.3
8 SCH 1 University 160/1 1.45 0.86 0.46 0.43 0.46 0.55 ± 0.21 0.27 0.04 0.08 0.07 0.08 15.91 fair 0 2.5 0.8
9 SCH 1 University 160/2 1.31 0.86 0.47 0.45 0.45 0.56 ± 0.20 0.28 0.03 0.00 0.05 0.08 15.91 fair 0 2.6 0.8
10 SCH 1 University AT1 0.97 0.79 0.54 0.50 0.44 0.57 ± 0.15 0.06 0.07 0.09 0.01 0.03 4.45 fair 0 0.9 0.3
11 SCH 1 University AT2 0.81 0.78 0.60 0.51 0.56 0.61 ± 0.12 0.08 0.00 0.09 0.00 0.00 0.36 good 0 0.1 0.0
12 SCH 1 University AT3 0.75 0.80 0.64 0.57 0.55 0.64 ± 0.12 0.02 0.02 0.03 0.05 0.02 3.19 good 0 0.7 0.2
13 SCH 1 University EN1 1.18 0.76 0.53 0.46 0.46 0.55 ± 0.14 0.15 0.03 0.09 0.05 0.02 3.47 fair 0 0.6 0.2
14 SCH 1 University EN3 1.04 0.58 0.35 0.32 0.37 0.40 ± 0.12 0.02 0.17 0.17 0.06 0.10 19.01 poor 0.2 3.2 1.0
15 SCH 1 University S1 1.92 0.54 0.30 0.24 0.23 0.33 ± 0.14 0.25 0.05 0.04 0.06 0.05 18.17 poor 0.2 1.7 0.5
16 SCH 1 University S2 2.60 0.80 0.39 0.29 0.30 0.45 ± 0.24 0.52 0.13 0.01 0.03 0.17 64.02 poor 0.2 5.8 1.7
17 SCH 1 University S3 3.13 0.85 0.41 0.26 0.24 0.44 ± 0.28 0.60 0.13 0.03 0.06 0.16 57.82 poor 0.2 5.4 1.6
18 SCH 2 Primary 1B 0.53 0.79 0.59 0.57 0.57 0.63 ± 0.11 0.13 0.05 0.05 0.00 0.01 0.84 good 0 0.2 0.1
19 SCH 2 Primary 2A 0.89 0.78 0.43 0.40 0.40 0.50 ± 0.14 0.24 0.14 0.14 0.13 0.04 7.75 fair 0 1.4 0.4
20 SCH 2 Primary 3A 0.76 0.76 0.51 0.48 0.48 0.56 ± 0.18 0.23 0.05 0.07 0.06 0.01 2.14 fair 0 0.4 0.1
21 SCH 3 Primary 2C 0.85 0.77 0.47 0.44 0.44 0.53 ± 0.16 0.29 0.03 0.08 0.04 0.03 7.00 fair 0 1.2 0.3
22 SCH 3 Primary 3C 0.87 0.77 0.44 0.42 0.41 0.51 ± 0.18 0.23 0.17 0.12 0.06 0.03 5.38 fair 0 1.0 0.3
23 SCH 4 Primary 4B 0.87 0.78 0.44 0.41 0.40 0.51 ± 0.18 0.21 0.18 0.22 0.19 0.09 15.73 fair 0 3.2 0.9
24 SCH 4 Primary 4A 1.29 0.78 0.34 0.30 0.29 0.43 ± 0.24 0.34 0.13 0.11 0.10 0.00 0.07 poor 0 0.0 0.0
25 SCH 5 Secondary 1 0.91 0.78 0.43 0.41 0.40 0.50 ± 0.18 0.16 0.17 0.18 0.14 0.08 14.28 fair 0 2.8 0.8
26 SCH 5 Secondary 2 0.92 0.78 0.43 0.40 0.40 0.50 ± 0.18 0.20 0.12 0.13 0.10 0.04 6.93 fair 0 1.2 0.4
27 SCH 5 Secondary 3 0.93 0.78 0.43 0.40 0.40 0.50 ± 0.18 0.21 0.15 0.17 0.16 0.07 12.08 fair 0 2.3 0.7
28 SCH 6 Secondary 4 0.82 0.76 0.49 0.47 0.47 0.55 ± 0.14 0.22 0.00 0.02 0.04 0.06 12.53 fair 0 2.0 0.6
29 SCH 6 Secondary 5 0.84 0.76 0.49 0.46 0.46 0.54 ± 0.15 0.18 0.07 0.03 0.02 0.02 4.59 fair 0 0.8 0.2
30 SCH 7 Secondary 6 0.55 0.80 0.54 0.50 0.50 0.59 ± 0.15 0.03 0.16 0.20 0.20 0.13 18.26 fair 0.2 4.4 1.3
31 SCH 7 Secondary 7 1.07 0.93 0.50 0.47 0.45 0.59 ± 0.23 0.29 0.01 0.00 0.02 0.07 13.51 fair 0 2.3 0.7
32 SCH 7 Secondary 8 0.75 0.77 0.50 0.49 0.48 0.56 ± 0.14 0.12 0.03 0.02 0.03 0.01 1.42 fair 0 0.3 0.1
33 SCH 8 Secondary 9 0.72 0.76 0.51 0.51 0.49 0.57 ± 0.13 0.22 0.01 0.02 0.06 0.04 8.03 fair 0 1.4 0.4
34 SCH 8 Secondary 10 1.30 0.57 0.37 0.35 0.32 0.40 ± 0.11 0.19 0.06 0.02 0.02 0.06 19.02 poor 0 2.2 0.6
35 SCH 8 Secondary 11 1.44 0.57 0.35 0.32 0.31 0.39 ± 0.12 0.13 0.02 0.06 0.07 0.00 0.81 poor 0 0.1 0.0

* Computed on average STI.

Table 10. Comparison of errors between average STIs from measurements and simulations for classrooms of the same grade and
overall the classrooms: mean absolute error (MAE), mean absolute percentage error (MAPE), mean intelligibility rating error (MIRE),
and mean just noticeable difference units with thresholds equal to 0.03 (mean STI JNDs(0.03)) and 0.1 (mean STI JNDs(0.1))

Classrooms MAE MAPE (%) MIRE (%) mean STI JNDs(0.03) mean STI JNDs(0.1)

ISM

University (IDs 1–17) 0.11 27.68 15.29 3.7 1.1
Primary (IDs 18–24) 0.05 9.34 5.71 1.7 0.5
Secondary (IDs 25–35) 0.07 13.53 3.64 2.3 0.7
Overall 0.09 19.56 9.71 2.9 0.9

Ray tracing

University (IDs 1–17) 0.05 13.97 4.71 1.7 0.5
Primary (IDs 18–24) 0.03 5.79 0.00 1.1 0.3
Secondary (IDs 25–35) 0.05 10.23 1.82 1.8 0.5
Overall 0.05 11.16 2.86 1.6 0.5

Hybrid

University (IDs 1–17) 0.05 14.16 4.71 1.7 0.5
Primary (IDs 18–24) 0.03 5.56 0.00 1.0 0.3
Secondary (IDs 25–35) 0.05 10.13 1.82 1.8 0.5
Overall 0.05 11.17 2.86 1.6 0.5

formula54:
RT = 0.161

V

αS
, (7)

where V, S, and α represent the volume, surface area and the
average absorption factor of the room, and then applying the
pyroomacoustics.acoustics.inverse sabine

module. Given the desired reverberation time, the
dimensions of a rectangular room (shoebox), and the
sound speed, it computes the energy absorption coefficient
and maximum image source order needed. However,
Sabine’s theory assumes a perfectly diffuse sound field
even during the transient regime, in which the uniform
energy density in the room decreases exponentially over
time. In the classrooms examined, the assumption of a
perfectly diffuse field fails due to inhomogeneities in

absorption coefficients and furniture distribution, as well as
unbalanced geometric dimensions of some rooms. Sabine’s
approximation produces reverberation times lower than the
measured values, making this procedure inadequate for our
case studies of classrooms. In the experiments, we obtain
the best fit when the linear interpolation of the power decay
approximates the simulated curve. For this purpose, we
have chosen a ‘max order reflections’ parameter equal to
33 that minimizes the mean errors over the entire test set of
classrooms.

With regard to simulations using the pure ray tracing
and the hybrid ISM/ray tracing methods, in the former
case, we set the parameter ‘max order reflections’ equal to
−1, and in the latter case, equal to 3, as recommended in
the pyroomacoustics user’s guide. Specifically, the hybrid
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simulator models direct and early reflections up to the
third order with the ISM and late reflections with the ray
tracing method. Since the ray tracing considers the scattering
of sound from surfaces, the similarity of the performance
yielded with the two simulators demonstrates that the
diffusive components are predominant over the reflective
ones in the analyzed classrooms, as the first reflections
modeled with ISM do not provide appreciable variations
compared with pure ray tracing.

A key aspect of the most accurate modeling of RIRs
performed by ray-tracing-based methods is the contribution
of scattering in the simulation of diffuse reflections. Studies
of sound scattering in computer models show that sound
rays follow a geometric pattern with specular reflections
for surfaces with a scattering coefficient equal to zero,
while a value of 0.2 is already sufficient to achieve
more diffuse modeling55. Other works on the influence of
scattered sound on objective room acoustical parameters
have shown the correlation between the scattering coefficient
and parameters such as early decay time, reverberation
time, clarity, strength and definition56,57, also in relation
to the improvement of the acoustics in classrooms58. In
our case, we observed that scattering coefficients equal to
zero imply an overestimation of reverberation times (and an
underestimation of STIs), while values in the range of the
literature recommendations for the surfaces of interest return
STIs closer to those obtained from measurements. Here, we
have not yet conducted an analytical assessment of the tool’s
sensitivity in predicting RTs (and, consequently, STIs) as the
scattering coefficient varies, but given the importance of the
topic, we reserve further study for future work.

Now, we examine the results for groups of same-grade
classrooms. All three simulation methods report more
accurate STIs for primary classrooms, and in particular,
the hybrid method yields the lowest MAE and MAPE
values of 0.03 and 5.56%, respectively, correct intelligibility
ratings in all classrooms, and mean STI JNDs within both
thresholds. Next, the secondary classrooms also present the
best achievements with the hybrid method, returning MAE
equal to 0.05, MAPE equal to 10.13%, MIRE of 1.82%
(1 incorrect prediction out of 11 classrooms), mean STI
JNDs(0.03) equal to 1.8, and mean STI JNDs(0.1) within
the threshold. Finally, for university classrooms, the ray
tracing method gives MAE of 0.05, MAPE of 13.97%,
MIRE of 4.71% (4 incorrect predictions out of 17), mean
STI JNDs(0.03) of 1.7, and mean STI JNDs(0.1) within the
threshold.

Referring to the ray tracing-based methods that provided
results with the lowest error rates, we observe that the

individual classrooms characterized by low accuracy in STI
prediction, corresponding to the case studies where both
thresholds of STI JNDs are exceeded, are no. 6 for the
secondary, and S2-S3 for university classrooms. The reasons
for the less accurate outcomes can be attributed to the
approximations of the indirect method related to the source
and ambient noise levels reported in UNI EN ISO 9921
that influence the experimental results. We observe that the
no. 6 secondary classroom, as well as the EN3 university
lecture room, are characterized by a volumetry of slightly
less than 250 m3 implying an average source level of 60 dB
instead of 70 dB (UNI 11532-2, Table 11). As a result, in
classrooms with volumes immediately below the regulation
boundary, a decrease in source level of 10 dB penalizes the
speech transmission index with underestimated performance.
The opposite issue is found in university classrooms
160/1 and 160/2, with volumes of 309 m3 and 317 m3,
respectively, where the simulated source level of 70 dB
provides overestimated STIs, despite being within the same
intelligibility rating range obtained from measurements.

In other lecture rooms, such as the S1, S2, and S3
university classrooms, the ambient noise spectrum from
regulations does not adequately represent the noise level
detected during the measurements, so the simulations
provided overestimated STIs. The problem of inaccurate
approximation of ambient noise can also be seen from the
standard deviations on the average STI values calculated
by all three simulation methods that assume higher
values compared to STIs from measurements. Simulations
generally return decreasing STIs as source-receiver distance
increases, while measured reverberation times provide
fairly consistent STI values at individual listening points,
demonstrating that uniform background noise is a penalizing
contribution to speech intelligibility even near the speaker’s
location.

In conclusion, the tool shows good accuracy in predicting
speech transmission indices for small and wide classrooms,
regardless of grade, year of construction, and finishing
materials. The robustness of the simulated results is
confirmed by STI JNDs(0.1) within one unit for 32 out of
35 classrooms, and at the same time, most classrooms report
STI JNDs(0.03) within values slightly above one unit. The
performance of the tool shows lower accuracy in medium-
sized classrooms that are in between the different source
levels specified by the regulations and in conditions of high
ambient noise, which is not always adequately represented
by the spectrum suggested by the standard specifications.
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Assessment of speech intelligibility through
deep learning models

Table 11 presents the performance (MAE, MAPE, MIRE)
of the ANN trained with datasets of different sample sizes
(specifically, 100 and 1000 examples) as the number of
hidden layers (1–3) and corresponding hidden units (8–64)
varies, and tested on the STI values calculated from both
pyeSTImate in the best configuration (hybrid method) and
from measurements over the 35 classrooms.

The first analysis concerns the results in testing as the
size of the dataset varies. In all experiments, the synthetic
dataset consisting of 100 classrooms provides better results
in regression than that including 1000 examples. The
reason can be attributed to the limited variety of materials,
occupants and furniture in the dictionary, which implies low
variability in sound absorption and scattering coefficients in
the case of large datasets. Hence, an undiversified dataset
leads the algorithm to overfit the training data, resulting in
low testing generalization capability.

The second observation is related to the network
hyperparameters because the error in regression on the test
set decreases as the number of layers increases. In an
artificial neural network, the depth, meant as the number
of hidden layers, depends on the correlation between input
and output. If their relationship is linear or approximable by
an analytical function, up to one hidden layer is generally
adequate. In contrast, if an analytical function cannot map
this correlation, adding hidden layers allows for capturing
complex representations. Although there is a functional
link between material room coefficients and the speech
transmission index, features necessary to accurately calculate
the descriptor have been omitted, so a multilayer neural
network allows for a better representation of the output.

The last analysis involves the results in classification,
which sometimes do not follow the trend of errors in
regression. This aspect shows that STI values that fall around
the transition ranges of intelligibility ratings may be affected
by low errors in regression but high errors in classification.

Table 12 compares the average STI predictions achieved
with the ANN in the configuration that provides the best
results (dataset composed of 100 samples, 3 hidden layers
with 8, 64, and 16 hidden units, respectively) with the
findings of pyeSTImate (hybrid method) and the outcomes
of measurements. As in the previous assessment of speech
intelligibility through pyeSTImate, we report in Table 13 the
overall summary of the results calculated for the same grade
and overall classrooms.

Although our goal is to obtain through the neural network
findings as close as possible to those of in situ measurements,
as expected, the lowest STI errors in individual, same-grade
and overall classrooms are found between ANN predictions
and tool outputs. The motivation is related to the dataset we
used to train the ANN because the neural network learned
the relationship between input data and STIs generated by the
simulation tool, so the inaccuracy of the deep learning model
must be added to the one associated with the simulator. In
fact, the comparison with measurements returns in most case
studies amplified errors with respect to the comparison with
pyeSTImate outcomes.

The weaknesses of the synthetic data are confirmed
by similar average STI values in classrooms with
comparable geometric characteristics that result in a
flattening of intelligibility ratings to the “fair” level of
speech comprehension quality. This is an indication that
the features represented by the geometric dimensions
have the most significant weight in determining the STI
and demonstrate that material characteristics have low
variability in terms of absorption and scattering coefficients.
An interesting investigation consists of evaluating the
performance of the deep learning algorithm trained with data
from measurements in real environments to be tested on our
case studies of classrooms. This project involves collecting
a large amount of reverberation time measurements in
classrooms and is a further potential development of the
present work.

In summary, despite the less accuracy of the results
yielded by the ANN, STI JNDs(0.1) values with respect
to STI from measurements are within the threshold in
most of the case studies (26 out of 35 classrooms). For
this reason, the ANN-based algorithm can be considered
a fast method for preliminary assessments of speech
intelligibility in classrooms, but the complete pyeSTImate

tool is recommended for more reliable evaluations.

Conclusions

The topic of this work is the assessment of speech
intelligibility in school environments through the prediction
of the speech transmission index, a descriptor of indoor
acoustic quality according to the Italian regulation for
public buildings. In this regard, we presented pyeSTImate, a
fully simulated tool developed in the Python programming
language for speech transmission index prediction in
lecture rooms with parallelepiped geometry and without
limitations in size. The code has been implemented from
the pyroomacoustics software package adapted to the
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Table 11. Best ANN performance (MAE, MAPE, MIRE) with datasets of different sample sizes (100–1000), hidden layers (1–3), and
hidden units (8–64) tested on the STI values calculated from both the simulated and measured RTs over 35 classrooms

dataset
samples

hidden
layers

hidden
units

trainable
parameters

Testing STIs simulated Testing STIs from measurements

MAE MAPE (%) MIRE (%) MAE MAPE (%) MIRE(%)

100 1 8 601 0.07 13.99 8.57 0.08 20.65 8.00
1000 8 601 0.11 23.78 19.43 0.12 30.06 19.43

100 2 8–64 1233 0.06 13.59 10.28 0.08 19.67 9.71
1000 8–64 1233 0.07 15.54 8.57 0.09 23.34 8.00

100 3 8–64–16 2225 0.06 11.98 8.57 0.08 19.36 8.57
1000 8–64–16 2225 0.07 15.18 8.57 0.09 22.05 8.00

Table 12. ANN results: average STI and IR computed by the deep learning model; absolute error (AE), absolute percentage error
(APE), Intelligibility Rating, intelligibility rating error (IRE), and just noticeable difference units with thresholds equal to 0.03 (STI
JNDs(0.03)) and 0.1 (STI JNDs(0.1)) from comparison with both pyeSTImate and measurements

ID Type Name of room ANN Comparison with pyeSTImate Comparison with measurements

STI avg IR AE APE (%) IRE STI JNDs(0.03) STI JNDs(0.1) AE APE (%) IRE STI JNDs(0.03) STI JNDs(0.1)

1 SCH 1 University 140/1 0.51 fair 0.03 6.58 0 1.0 0.3 0.02 3.03 0 0.5 0.2
2 SCH 1 University 140/2 0.56 fair 0.11 25.31 0.2 3.8 1.1 0.15 37.42 0.2 5.1 1.5
3 SCH 1 University 140/3 0.55 fair 0.05 10.56 0 1.8 0.5 0.09 18.28 0 2.8 0.9
4 SCH 1 University 155/D1 0.54 fair 0.01 1.80 0 0.3 0.1 0.02 4.42 0 0.8 0.2
5 SCH 1 University 155/D2 0.54 fair 0.01 2.25 0 0.4 0.1 0.02 4.00 0 0.7 0.2
6 SCH 1 University 155/D3 0.54 fair 0.01 2.45 0 0.4 0.1 0.02 3.85 0 0.7 0.2
7 SCH 1 University 155/D4 0.54 fair 0.01 2.65 0 0.5 0.1 0.01 2.26 0 0.4 0.1
8 SCH 1 University 160/1 0.55 fair 0.00 0.63 0 0.1 0.0 0.07 15.18 0 2.4 0.7
9 SCH 1 University 160/2 0.55 fair 0.01 1.66 0 0.3 0.1 0.07 13.99 0 2.3 0.7
10 SCH 1 University AT1 0.47 fair 0.10 17.33 0 3.3 1.0 0.13 21.01 0 4.2 1.3
11 SCH 1 University AT2 0.47 fair 0.14 23.30 0.2 4.8 1.4 0.15 23.58 0.2 4.8 1.5
12 SCH 1 University AT3 0.42 poor 0.22 34.35 0.4 7.3 2.2 0.20 32.26 0.4 6.7 2.0
13 SCH 1 University EN1 0.59 fair 0.04 7.08 0 1.3 0.4 0.06 10.80 0 1.9 0.6
14 SCH 1 University EN3 0.53 fair 0.13 30.89 0.2 4.2 1.3 0.03 6.00 0 1.0 0.3
15 SCH 1 University S1 0.52 fair 0.19 58.58 0.2 6.4 1.9 0.24 87.39 0.4 8.1 2.4
16 SCH 1 University S2 0.53 fair 0.08 18.58 0.2 2.8 0.8 0.26 94.50 0.4 8.6 2.6
17 SCH 1 University S3 0.52 fair 0.08 17.67 0.2 2.6 0.8 0.24 85.71 0.4 8.0 2.4
18 SCH 2 Primary 1B 0.52 fair 0.11 17.16 0.2 3.6 1.1 0.10 16.47 0.2 3.4 1.0
19 SCH 2 Primary 2A 0.54 fair 0.04 7.41 0 1.2 0.4 0.00 0.92 0 0.2 0.0
20 SCH 2 Primary 3A 0.54 fair 0.02 2.99 0 0.6 0.2 0.01 0.92 0 0.2 0.1
21 SCH 3 Primary 2C 0.53 fair 0.00 0.07 0 0.0 0.0 0.04 7.07 0 1.2 0.4
22 SCH 3 Primary 3C 0.53 fair 0.02 3.73 0 0.6 0.2 0.01 1.85 0 0.3 0.1
23 SCH 4 Primary 4B 0.53 fair 0.02 4.39 0 0.7 0.2 0.07 12.03 0 2.4 0.7
24 SCH 4 Primary 4A 0.53 fair 0.10 24.06 0.2 3.4 1.0 0.10 23.98 0.2 3.4 1.0
25 SCH 5 Secondary 1 0.51 fair 0.01 1.27 0 0.2 0.1 0.08 13.19 0 2.6 0.8
26 SCH 5 Secondary 2 0.51 fair 0.01 1.48 0 0.2 0.1 0.03 5.56 0 1.0 0.3
27 SCH 5 Secondary 3 0.51 fair 0.01 1.76 0 0.3 0.1 0.06 10.53 0 2.0 0.6
28 SCH 6 Secondary 4 0.51 fair 0.04 7.03 0 1.3 0.4 0.02 4.62 0 0.8 0.2
29 SCH 6 Secondary 5 0.50 fair 0.04 7.62 0 1.4 0.4 0.02 3.38 0 0.6 0.2
30 SCH 7 Secondary 6 0.54 fair 0.05 7.92 0 1.5 0.5 0.18 24.74 0.2 5.9 1.8
31 SCH 7 Secondary 7 0.57 fair 0.02 2.97 0 0.6 0.2 0.05 10.14 0 1.8 0.5
32 SCH 7 Secondary 8 0.51 fair 0.05 8.57 0 1.6 0.5 0.04 7.27 0 1.3 0.4
33 SCH 8 Secondary 9 0.53 fair 0.04 6.55 0 1.2 0.4 0.01 0.95 0 0.2 0.1
34 SCH 8 Secondary 10 0.49 fair 0.09 21.09 0.2 2.8 0.9 0.15 44.12 0.2 5.0 1.5
35 SCH 8 Secondary 11 0.48 fair 0.09 23.29 0.2 3.0 0.9 0.09 22.29 0.2 2.9 0.9

Table 13. Comparison of errors between average STIs from ANN and pyeSTImate, and from ANN and measurements for
classrooms of the same grade and overall the classrooms: mean absolute error (MAE), mean absolute percentage error (MAPE),
mean intelligibility rating error (MIRE), and mean just noticeable difference units with thresholds equal to 0.03 (mean STI JNDs(0.03))
and 0.1 (mean STI JNDs(0.1))

Classrooms MAE MAPE (%) MIRE (%) mean STI JNDs(0.03) mean STI JNDs(0.1)

Comparison with pyeSTImate

University (ID 1–17) 0.07 15.39 9.41 2.4 0.7
Primary (ID 18–24) 0.04 8.54 5.71 1.5 0.4
Secondary (ID 25–35) 0.04 8.14 3.64 1.3 0.4
Overall 0.06 11.74 6.86 1.9 0.6

Comparison with measurements

University (ID 1–17) 0.10 27.28 11.76 3.5 1.0
Primary (ID 18–24) 0.05 9.03 5.71 1.6 0.5
Secondary (ID 25–35) 0.07 13.34 5.45 2.2 0.7
Overall 0.08 19.25 8.57 2.7 0.8

scope; specifically, the data required by the tool are the
room geometry, finishing materials, source and receiver
positions, and the simulation method chosen among image-
source, ray tracing and hybrid. To evaluate the accuracy
of the predictive tool, we compared the results with the
outcomes of speech intelligibility measurements conducted
in 35 classrooms of several grades in the Marche Region

in Italy. From the monitoring of the absolute error,
absolute percentage error, intelligibility rating error, and just
noticeable difference units associated with the average STI
for individual classrooms and their mean values distinct for
primary, secondary, university and overall lecture rooms,
the best results have been achieved with the ray tracing
and hybrid methods. The tool has returned a just noticeable
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difference in STI values within 0.1 for small (V<200 m3)
and wide (V≥350 m3) classrooms, regardless of grade, year
of building construction, and finishing materials. In medium-
sized (200 m3≤V<350 m3) classrooms that are in between
the different source levels specified by the regulations (60 dB
and 70 dB) and in conditions of high ambient noise, the tool
has shown slightly lower accuracy (between 1.3–1.7 STI
JNDs with the threshold of 0.1).

In addition to the pyeSTImate tool, we implemented an
artificial neural network able to yield a deep learning model
with a good generalization capability and optimized for
STI prediction in lecture rooms with a reduced number
of input data. To calculate the speech transmission index,
we generated a synthetic dataset of classrooms and the
associated STI values employing the hybrid method and
exporting a set of parameters considerably reduced with
respect to data required by pyeSTImate. Regarding the
ANN results, similar average STI values can be observed
in classrooms with comparable geometric dimensions. This
results in a flattening of intelligibility ratings to the
“fair” level of speech comprehension quality, showing that
the strong correlation between STI and room geometric
dimensions implies a low variability in terms of absorption
and scattering coefficients. Despite the less accurate results
achieved by the ANN, the just noticeable difference is within
0.1 in most of the case studies.

In conclusion, the present work suggests an important
role of prediction methods in speech intelligibility in the
main acoustic feature dimensions. The results show that
comparably measurements and calculations starting from
real input data are surprisingly informative on the level of
acoustic detail and the degree to which listeners are able
to utilize it for speech comprehension. The predictive tool
has demonstrated computational robustness that enables its
use for preliminary assessments of speech intelligibility, to
design the optimal type of scholar buildings and for sound
amplification systems in classrooms in compliance with the
Italian regulation.

This study represents a starting point for several future
works. Some insights for further research consist of the
sensitivity analysis of the tool results to varying absorption
and scattering coefficients of materials, the implementation
of complex geometries, and the design of an interface for
data entry. The deep learning model can be improved with
a training set obtained from real measurements or with
innovative methods for generating synthetic data, such as
generative adversarial networks.
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