

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Ancient genomes reveal early Andean farmers selected common beans while preserving diversity

This is the peer reviewd version of the followng article:

Original
Ancient genomes reveal early Andean farmers selected common beans while preserving diversity / Trucchi, Emiliano; Benazzo, Andrea; Lari, Martina; Iob, Alice; Vai, Stefania; Nanni, Laura; Bellucci, Elisa; Bitocchi, Elena; Raffini, Francesca; Xu, Chunming; Jackson, Scott; Lema, Veronica; Babot, Pilar; Oliszewski, Nurit; Gil, Adolfo; Neme, Gustavo; Michieli, Catalina; De Lorenzi, Monica; Calcagnile, Lucio; Caramelli, David; Star, Bastiaan; de Boer, Hugo; Boessenkool, Sanne; Papa, Roberto; Bertorelle, Giorgio. - In: AATURE PLANTS. - ISSN 2055-0278. - 7:2(2021), pp. 123-128. [10.1038/s41477-021-00848-7] Availability:
This version is available at: 11566/287291 since: 2024-03-25T10:38:51Z

Publisher:

Published
DOI:10.1038/s41477-021-00848-7

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.
note finali coverpage

LETTER

Ancient genomes reveal early Andean farmers selected common beans while preserving diversity

Trucchi Emiliano(1,2)*\#, Benazzo Andrea(2)*, Lari Martina(3)*, lob Alice(2), Vai Stefania(3), Nanni Laura(4), Bellucci Elisa(4), Bitocchi Elena(4), Francesca Raffini(2), Xu Chunming(5), Jackson A Scott(5), Lema Verónica $(6,7)$, Babot Pilar(7,8), Oliszewski Nurit(7), Gil Adolfo(9,10), Neme Gustavo(9,10), Michieli Catalina
Teresa(11), De Lorenzi Monica(12), Calcagnile Lucio(13), Caramelli David(3), Star Bastiaan(14), de Boer Hugo(15), Boessenkool Sanne(14)\$, Papa Roberto(4)\$, Bertorelle Giorgio(2)\$\#.
(1) Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
(2) Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
(3) Department of Biology, University of Firenze, Firenze, Italy
(4) Department of Agricultural, Food, and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
(5) Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
(6) Universidad Nacional de Córdoba, Córdoba, Argentina
(7) Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
(8) Instituto de Arqueología y Museo, Universidad Nacional de Tucumán, Tucumán, Argentina
(9) Instituto de Evolución, Ecología Histórica y Ambiente (CONICET \& UTN FRSR), San Rafael, Argentina
(10) Museo de Historia Natural de San Rafael, Argentina
(11) Instituto de Investigaciones Arqueológicas y Museo "Prof. Mariano Gambier" - UNSJ, San Juan, Argentina
(12) Museo Arqueológico de Cachi, Cachi, Argentina
(13) Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Italy
(14) Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
(15) Natural History Museum, University of Oslo, Norway

* Contribution equally
\$ Contribution equally
\# Corresponding authors: ggb@unife.it; e.trucchi@staff.univpm.it

Keywords

Ancient DNA, domestication, genetic erosion, plant genomics, selection scan, sustainable agriculture

Introductory paragraph

All crops are the product of a domestication process that started less than 12,000 years ago from one or more wild populations [1, 2]. Farmers selected desirable phenotypic traits, such as improved energy accumulation, palatability of seeds and reduced natural shattering [3], while leading domesticated populations through several more or less gradual demographic contractions [2, 4]. As a consequence, erosion of wild genetic variation [5] is typical of modern cultivars making them highly susceptible to pathogens, pests and environmental change [6,7]. The loss of genetic diversity hampers further crop improvement programs to increase food production in a changing world, posing serious threats to food security [8,9]. Using both ancient and modern seeds, we analyzed the temporal dynamic of genetic variation and selection during the domestication process of the common bean (Phaseolus vulgaris) that occurred in the southern Andes. Here we show that most domestic traits were selected for prior to 2,500 years ago, with no or only minor loss of whole-genome heterozygosity. In fact, i) the majority of changes at coding genes and linked regions that differentiate wild and domestic genomes are already present in the ancient genomes analyzed here; ii) all ancient domestic genomes dated between 600 and 2,500 years ago are highly variable - at least as variable as modern genomes from the wild, and single seeds from modern cultivars show reduced variation when compared to ancient seeds, indicating that intensive selection within cultivars in the last centuries likely partitioned ancestral variation within different genetically homogenous cultivars. When cultivars from different Andean regions are pooled, genomic variation of the pool is higher than that observed in the pool of ancient seeds from north and central western Argentina. Considering that most desirable phenotypic traits are likely controlled by multiple polymorphic genes [10], a plausible explanation of this decoupling of selection and genetic erosion is that early farmers applied a relatively weak selection pressure [2] by using many phenotypically similar but genetically diverse individuals as parents. Our results imply that selection strategies during the last few centuries, as compared to earlier times, more intensively reduced genetic variation within cultivars, and produced further improvements focusing on few plants carrying the traits of interest at the cost of marked genetic erosion within Andean landraces.

Main text

The onset of domestication by early farmers has been suggested as the period during which the most intense genetic bottleneck affecting genome-wide diversity occurred [4,11]. Yet, artificial selection, possibly at different rates in different times, was likely a continuous process that produced both landraces and, more recently under modern breeding programs, high-yielding and more resistant elite cultivars $[2,12,13]$. Understanding when the majority of genetic diversity was lost, and how such loss is related with the intensity of the selection process, is not only relevant from an evolutionary perspective but it will also help planning more sustainable breeding options to revert or mitigate crop genetic erosion [14,15]. We directly address these questions by analyzing both modern and ancient genomes of common bean from South America.

Common bean constitutes one of the major sources of vegetable proteins worldwide. The wild progenitor of common bean originated in Mesoamerica and colonized South America along the Andes $[16,17]$. This natural colonization process, dated by whole genome analysis between 146,000 and 184,000 years ago [17], was accompanied by an intense and long bottleneck, as supported by the higher genetic diversity observed in the Mesoamerican as compared to the Andean gene pool [18]. Domestication of common bean occurred independently more or less simultaneously in both Mesoamerica and the Andes ca. 8,000 years ago, followed by divergence into distinct landraces due to drift, local selection, and adaptation [16].

We here obtained the first whole genome shotgun data from 30 ancient common bean seeds representing nine archaeological sites in north and central western Argentina (Supplementary Information S1-2,4, Supplementary Figure S1, Supplementary Table S1). All 30 seeds were dated between 2500 and 600 years before present (yrs BP) by AMS radiocarbon dating (Supplementary Information S3). Initial screening showed remarkable DNA preservation, with on average 44\% (SD = 12%) endogenous DNA mapped to the common bean reference genome [17] (Supplementary Table S1). Unimodal length distributions with short fragment lengths (average $=65, S D=22 \mathrm{bp}$) and purines enrichment upstream of break points were consistent with those expected for degraded DNA (Supplementary Table S1, Supplementary Figures S3 an S4). The presence of deamination patterns at the end of the reads varied from 0.76% to $32.75 \% \mathrm{C}$ to T and G to A misincorporations, with half of the seeds showing percentages below 10% (Supplementary Table S1, Supplementary Figure S5). Damage patterns were partially explained by the location of the archaeological sites: all seeds from sites at >2,500 meters above sea level showed less than 10% base misincorporations (with many lower than 5\%), whereas the majority of seeds from lower altitude exhibited levels above 15% (Supplementary Figure S6). The observed pattern shows that both favorable environmental conditions and the structure of the seed (e.g., presence of an external cuticle) likely resulted in good DNA preservation, as previously suggested for quinoa seeds from the same sites [19]. A subset of the specimens (Figure 1a,b) was selected for further sequencing based on DNA preservation and representation of age and locations, resulting in a final dataset of 15 ancient bean genomes with coverage from 4.2 X to 23.2 X in the non-repeated regions (Supplementary Table S1). Whole-genome data from modern common bean accessions (domesticated landraces/cultivars: 9 Andean, 3 Mesoamerican; wild: 1 Andean, 1 Mesoamerican) and a closely related species (P. hintonii, 1 accession) were also included in the analyses (Supplementary Information S6; Supplementary Table S3). All statistical analyses (excluding the selection test where only mutations observed in all ancient seeds are considered) were performed on transversions to avoid the bias introduced by post-mortem deamination [e.g., 20].

Individual heterozygosity (probabilistically estimated as the variation parameter θ every thousand nucleotides; Supplementary Information S7) is higher in all ancient seeds than in each of nine modern landraces/cultivars from the Andean gene pool (Figure 1c, Supplementary Table S4), and the average heterozygosity is more than ten times higher in ancient than in modern seeds (0.144 vs. $0.013 \theta / \mathrm{kbp}$, respectively, Mann-Whitney U, $P<0.001$). This difference remains high (0.110 vs. $0.013 \theta / \mathrm{kbp}$) and highly significant when the ancient seeds with the lowest coverage are excluded (see Supplementary Information 7). The effect of decreased heterozygosity due to the selfing procedure applied to modern accessions in seed banks was tested in two ways: by pooling pairs of modern seeds and estimating θ / kbp in different seeds pairs, and by increasing the heterozygosity values in modern seeds as a function of the number of selfing cycles to which they were subjected (Supplementary Information S8). As expected, variation in modern pairs increased compared to single seeds, but it is on average still significantly smaller (at least 2.5 times) than that observed in ancient seeds (Mann-Whitney U test, $P<0.005$, Supplementary Figure S9; Supplementary Table S5). It is possible that our pairing strategy did not entirely recover the heterozygosity just before the implementation of the seed bank protocol. A more exact estimate cannot be obtained since the detailed protocols applied to each modern Andean cultivar in seed banks are not known, and some level of outcrossing during this procedure cannot be excluded. Furthermore, the average θ / kbp is likely increased in modern seed pairs because our paired seeds belong to different landraces (i.e., the increase in the seed pairs is inflated by the genetic structure among landraces). When single seed heterozygosity was conservatively doubled or quadrupled in modern seeds subjected to one or two cycles of selfing, respectively, average variation remained significantly higher in the ancient
seeds (see Supplementary Information S8). We therefore conclude that single modern seeds representative of modern landraces have lower genetic variation than single ancient seeds.

The modern genome available from a wild Andean seed [21], and two publicly released but unpublished genomes from wild Argentinean seeds (Supplementary Information S7), have a lower heterozygosity than the wild Mesoamerican seed in our dataset but comparable to that observed in the ancient Argentinean seeds (Figure 1c, Supplementary Figure S7). This result is a) consistent with the bottleneck that occurred during the natural colonization of the Andes from Mesoamerica [18], b) it indirectly supports the finding that modern Andean domestic seeds have lower diversity than ancient domestic seeds, because otherwise we should exclude any decrease of heterozygosity throughout the whole domestication process up to the modern cultivars, and c) it appears compatible with a minor effect of the initial Andean domestication on bean genetic diversity. With the current dataset, it cannot be excluded that heterozygosity was initially reduced following domestication, but subsequently restored by mutation. Such an effect would, however, require a ten times higher mutation rate than that estimated on the basis of the divergence time between P. vulgaris and P. hintonii (Supplementary Information S10. These findings challenge the conventional view of the domestication bottleneck resulting in severe genetic erosion [3] and is consistent with recent observations in maize, sorghum and barley [22].

The lack of a temporal trend across ancient seeds of different age (Figure 1c) indicates that genome-wide diversity was largely maintained between 2,500 and 600 years ago by agricultural practices of Andean societies. Therefore, loss of diversity within each cultivar occurred more recently, certainly less than 600 years ago and likely in the last century [13]. A similar loss of diversity characterizes the recent domestication history of horses [20]. The absence of data on seeds from the last 600 years currently hinders a direct reconstruction of the temporal dynamic of genomic diversity during the last six centuries.

Figure 1. Diversity in ancient and modern common bean. A) Pictures of the 15 common bean seeds sequenced for whole-genome analyses: sample ID with two letters referring to the archaeological site of origin as shown in panel B is reported in the top-left corner of the pictures (see Supplementary Information S1); AMS radiocarbon age in yrs BP is reported in the bottom-right corner. B) Map
showing the locations of the archaeological sites where the seeds were retrieved (red) and the country of origin of the modern domesticated cultivars from South and Central America (blue and green, respectively) and the wild specimens (pale blue, pale green). Modern seed locations are only indicative of the country of origin \mathbf{C}) Whole-genome diversity estimated as $\theta \mathrm{kbp}^{-1}$ in individual seeds (solid circles), average of individual estimates per group (solid line), and in groups of seeds (dashed line) using only transversions in callable regions (see Supplementary Information S5 for details); only domesticated cultivars are included in the group estimates. D) Neighbor-Joining tree based on genetic distances and Admixture analysis both based on transversions only (one SNPs every 50 kb was used in the Admixture analysis) in callable regions; note that modern seeds from Chile cluster together with the ancient seeds.

When estimating genetic variation in groups of modern Andean ($0.294 \theta / \mathrm{kbp}$) or Mesoamerican seeds ($0.860 \theta / \mathrm{kbp}$), we observe a substantial increase compared to the average individual estimates (Figure 1c), indicating that modern genomic diversity is highly structured in different, highly homogeneous, cultivars. The abandonment and extinction of any modern cultivar would therefore result in the significant loss of its private fraction of the whole crop diversity [8,23]. On the contrary, the estimate of genetic diversity obtained by pooling all ancient individuals is very similar to the average of the 15 individual estimates ($0.134 \theta / \mathrm{kbp}$; Figure 1 c), implying that these ancient genomes represent a single genomic pool. Ancient seeds, as a group, do not reach the level of variation observed in the pooled modern cultivars. This is not unexpected considering that a) the latter have a long, complex and partially independent history of recent landrace establishment, and b) the former (the ancient domestic seeds) were used during the Holocene by human populations with shared subsistence practices, which included the use of wild beans [24]. A large fraction of the ancient seeds could individually recover most of the ancient crop diversity in that area, while modern seeds never reach individual heterozygosity values close to the pooled group from Chile, Bolivia, Argentina and Peru, or the groups obtained by separately pooling the Chilean ($0.045 \theta / \mathrm{kbp}$), the Bolivian ($0.102 \theta / \mathrm{kbp}$), or the Argentinean ($0.198 \theta / \mathrm{kbp}$) landraces. A more widespread sample of ancient beans might also reveal that ancient populations harbored more genetic diversity than pooled cultivars.

Three main genetic groups were revealed by different clustering methods (Supplementary Information S9) and a whole-genome NJ tree (Figure 1b; Supplementary Figures S10-S11). The largest divergence is observed between Mesoamerican and Andean genomes, while the Andean seeds are further partitioned into two less differentiated groups. All ancient seeds belong to the same genomic clade, indicating that the same or similar ancient landraces were in use in Argentina for about 2,000 years. - This clade also includes modern landraces used today on the other side of the Andes, in Chile. The so-called Chilean race [25] therefore appears to be the direct descendants of the seeds used in Argentina before the Incaic conquest of the area occurred at the end of the $15^{\text {th }}$ century [26]. We interpret this result as a consequence of the trade of goods, including crop, between the eastern (in Argentina) and western (in Chile) slopes of the Andes, with early farmers relying on Llama caravans for regular-long distance exchanges [27]. Modern Argentinian cultivars, instead, do not trace their ancestry back to the local ancient cultivar but were likely introduced in the area some time during the last 600 years.

A gene-by-gene selection scan (Figure 2a) was performed to discriminate early (>2,500 years ago) from late (<600 years ago) selection targets, by taking into account the different levels of genetic drift expected in the two time periods of different length (Supplementary Information S11). We found that: i) a selection signature is present in 443 out of 27,000 genes tested (FDR<0.001); ii) selection affected many more genes (ca. 4.2 times more) in the early compared to the late phase (Fig. 2b), suggesting that recent improvement of cultivars strongly affected few genes, but the main genomic turnover occurred several thousand years ago; if adjacent genes are merged in "sweep blocks", thus considering that genes under selection may produce selection signals also in adjacent genes, the ratio between ancient and recent sweeps remains larger than 3 (see Supplementary Information S11); iii) genes selected in the early phase belong to functional clusters
mainly related to glycerol metabolism, carbohydrate and sugar transport and metabolism, intracellular transport (endosome membrane), regulatory elements (nucleotide binding), modification of proteins and glycosylation, whereas recent selection primarily targeted traits involved in immunity and defense, regulatory elements and transmembrane transport (Figure 2c; Supplementary Table S7). Evidence for selection on sugar biosynthesis genes at the early stages of domestication has also been found in ancient maize from 2,000 and 750 years ago [28]. One of the functional clusters identified in the early selected genes includes the MYB-domain genes that are important regulatory elements of development, metabolism and responses to biotic and abiotic stresses [29], and have been suggested as causative of different phenotypic changes associated to the shattering trait in common bean [30], maize and rice [4,31].

Genomic studies of ancient DNA are much less numerous in plants compared to animals remains [32-33], but have already provided fundamental insights into the process of domestication [28,3438]. Our results show that common bean seeds, and likely legume seeds in general, can be an excellent source of high quality ancient DNA, especially if seeds are preserved in favorable climatic conditions (i.e., cold and dry environments). The dynamic of domestication is still debated [22], but, as recently summarized [2], the consensus is that domestication was slow and gradual, with selected traits emerging in association with population decline and loss of genetic variation. Here, we contribute to this debate with the first study on ancient bean genomics, and provide an alternative example in which selection and loss of variation are decoupled during the process of domestication. Our data reveals that in common bean early agriculture in the Andes genomic diversity was preserved within single seeds, whereas more recent breeding practices produced structured landraces that are internally more homogenous. At the same time, however, assuming that the genetic changes we infer correspond at least in part to phenotypic changes, early agriculture was also very efficient in selecting most of the desirable traits now typical of this crop. We hypothesize that these patterns are the result of the larger number of seeds used by early farmers as founders in each generation, all likely displaying the selected trait(s) but heterogeneous in the rest of the genome. Initial improvement of the common bean was therefore based on serial soft sweeps, as has also been suggested for the domestication of maize [10]. Encompassing several thousand years, and likely assisted by cultivar exchanges and hybridization with wild plants [2,25,39-40], such breeding practice allowed many traits to be selected for, without the significant loss of genomic variation that has likely occurred in more recent times within landraces and cultivars.

Figure 2. Timing of selection in common bean from South
America. All genes $(27,000)$ in the common bean genome were tested for a significant enrichment of fixed alternative alleles according to the topologies described below, taking into account the different level of drift expected in periods of time of different length (see Supplementary Information S11 for details). A) Alternative topologies for a SNP: on the left (AS: ancient selection) the SNP is fixed for an alternative variant in both the ancient seeds from Argentina (red circles) and the modern cultivars from Chile (blue circles) as compared with the wild Andean P. vulgaris seed (pale blue circle) and the outgroup (Phaseolus hintonii, yellow circle); on the right (RS: recent selection) the SNP is fixed for an alternative variant in the modern cultivars from Chile only as compared with the ancient seeds, the wild Andean and the outgroup; the gray shade represents the temporal fixation of an alternative allele; ancient seeds age as well as the putative divergence time between Andean domesticated and wild P. vulgaris is reported. Using the genome of the wild Mesoamerican P. vulgaris as outgroup instead of P. hintonii produced largely similar results (see Supplementary Table S7). B) Number of genes significantly enriched with SNPs in RS (blue) and/or AS (red) topology (FDR<0.001, top 1\% for the proportion of SNPs within gene $\pm 1 \mathrm{~kb}$, and with an Arabidopsis thaliana ortholog). C) Functional gene clusters (see Supplementary Information S11) in RS (blue) or AS (red) enriched groups (the complete list of genes can be found in Supplementary Table S7). Filled bars: max gene count in the cluster; empty bars: enrichment score of the cluster (only scores >1 are reported).

Acknowledgments

This study was supported by the University of Ferrara, the CUIA (Consorzio Universitario Italiano per l'Argentina, 5^{\wedge} Research Program), the ERA-CAPS project Bean_Adapt, the internal grants from the Marche Polytechnic University and the University of Firenze, the Italian Ministry of Education, University and Research (project "Dipartimenti di Eccellenza 2018-2022"), the Swedish Research Council grant VR-UF E0347601 and the Norwegian Research Council grant 262777. We also thank CONICET (Consejo Nacional de Investigaciones Cientificas y Técnicas) and the Institutions and Museums in Argentina for their support in the fieldwork, and in particular for recovering the archaeo-botanical specimens and studying the archaeological sites.

Data accessibility

Sequenced raw reads from ancient samples are publicly available as NCBI Bioproject (ID: PRJNA574560). Unpublished modern sample genomic data are available with the following NCBI Accession Codes: SRR10161640; SRR10161629; SRR10161767; SRR10161647; SRR10161646; SRR10161645; SRR10161601; SRR10161592; SRR10161584; SRR10161684; SRR10161683; SRR10161697; SRR10161690; SRR10161688.

Competing Interests statement

The authors declare no competing interests.

References

1. Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700-707
(2002).
2. Purugganan, M. D. Evolutionary Insights into the Nature of Plant Domestication. Curr. Biol. 29, 705-714 (2019).

3 Meyer, R. S., \& Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840-852 (2013).
4. Doebley, J. F., Gaut, B. S. \& Smith, B. D. The molecular genetics of crop domestication. Cell 127, 13091321 (2006).
5. Van de Wouw, M., Kik, C., van Hintum, T., van Treuren, R. \& Visser, B. Genetic erosion in crops: concept, research results and challenges. Plant. Genet. Resour. 8, 1-15 (2010).

6 Babiker E. M. et al. Mapping resistance to the Ug99 race group of the stem rust pathogen in a spring wheat landrace. Theor. Appl. Genet. 128, 605-612 (2015).
7. Dale, J. et al. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nat. Comm. 8, 1496 (2017).
8. Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 6, 946 (2005).
9. Gepts, P. Plant genetic resources conservation and utilization. Crop. Sci. 46, 2278-2292 (2006).
10. Beissinger, T. M. et al. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084 (2016).
11. Hyten, D. L. et al. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Nat/ Acad. Sci. USA 103, 16666-16671 (2006).
12. Fuller, D. Q. et al. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Nat/ Acad. Sci. USA 111, 6147-6152 (2014).
13. Khush, G. S. Green revolution: the way forward. Nat. Rev. Genet. 2, 815-822 (2001).
14. Fu, Y. B. Understanding crop genetic diversity under modern plant breeding. Theor. Appl. Genet. 128, 2131-2142 (2015).
15. Bevan, M. W. et al. Genomic innovation for crop improvement. Nature 543, 346-354 (2017).
16. Bitocchi, E. et al. Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proc. Natl Acad. Sci. USA, 109, E788-E796 (2012).
17. Schmutz, J. et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46, 707-713 (2014).
18. Bitocchi, E. et al. Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front. Plant Sci, 8, 722 (2017).
19. Winkel, T. et al. Discontinuities in quinoa biodiversity in the dry Andes: An 18-century perspective based on allelic genotyping. PLoS One 13, e0207519 (2018).
20. Fages, A. et al. Tracking five millennia of horse management with extensive ancient genome time series. Cell, 177, 1419-1435 (2019).
21. Rendón-Anaya, M. et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol. 18, 60 (2017).
22. Allaby, R. G., Ware, R. L. \& Kistler, L. A re-evaluation of the domestication bottleneck from archaeogenomic evidence. Evol appl, 12, 29-37 (2019).
23. Castañeda-Álvarez, N. P. et al. Global conservation priorities for crop wild relatives. Nat. Plants 2, 16022 (2016).
24. Pochettino, M. L. \& Scattolin M. C. Identificación y significado de frutos y semillas carbonizados de sitios arqueológicos de la ladera occidental del Aconquija, Prov. Catamarca, Rca. Argentina. Rev. Mus. La Plata, Antropol. 9: 169-181 (1991).
25. Singh, S. P., Gepts P. \& Debouck D. G. Races of common bean (Phaseolus vulgaris, Fabaceae). Econ. Bot.

45, 379-396 (1991).
26. Williams, V.I. Formaciones sociales en el noroeste argentino: variabilidad prehispánica en el surandino durante el Periodo de Desarrollos Regionales y el estado Inca. Rev. Haucaypata 9, 62-76 (2015).
27. Núñez, L. \& Nielsen A.E. En ruta: Arquelogía, Historia y Etnografía del Tráfico Surandino (Encuentro Grupo Editor, Córdoba, 2011).
28. Da Fonseca, R. R. et al. The origin and evolution of maize in the Southwestern United States. Nat. Plants 1, 14003 (2015).
29. Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends. Plant Sci. 15, 573-581 (2010).
30. Rau, D. et al. Genomic dissection of pod shattering in common bean: mutations at non-orthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. Plant J. 97, 693-714 (2019).
31. Saitoh, K., Onishi, K., Mikami, I., Thidar, K. \& Sano, Y. Allelic diversification at the C (OsC1) locus of wild and cultivated rice: nucleotide changes associated with phenotypes. Genetics 168, 997-1007 (2004).
32. Estrada, O., Breen, J., Richards, S. M. \& Cooper, A. Ancient plant DNA in the genomic era. Nat. Plants 4, 394 (2018).
33. Brunson, K. \& Reich, D. The promise of paleogenomics beyond our own species. Trends Genet. 35, 319329 (2019).
34. Mascher, M. et al. Genomic analysis of 6,000 -year-old cultivated grain illuminates the domestication history of barley. Nature Genet. 48, 1089-1093(2016).
35. Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195-3201 (2016).
36. Wagner, S. et al. High Throughput DNA sequencing of ancient wood. Mol.Ecol. 27, 1138-1154 (2018).
37. Kistler, L. et al. Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science, 362, 1309-1313 (2018).
38. Smith, O. et al. A domestication history of dynamic adaptation and genomic deterioration in sorghum. Nat. Plants 5, 369-379 (2019).
39. Lema, V. Non domestication cultivation in the Andes: plant management and nurturing in the Argentinean Northwest. Veg hist archaeobot, 24, 143-150 (2015).
40. Oliszewski, N. \& Babot P. Procesos de selección del poroto común en los valles altos del noroeste argentino en tiempos prehispánicos. Análisis micro y macroscópico de especímenes arqueobotánicos. In: Avances y desafíos metodológicos en arqueobotánica: miradas consensuadas y diálogos compartidos desde Sudamérica (eds. Belmar C. \& Lema, V.) 301-324 (Facultad de Patrimonio Cultural y Educaciòn Universidad SEK Chile, 2015).

SUPPLEMENTARY METHODS AND RESULTS

TABLE OF CONTENTS

S1. Ancient beans collection and archaeological context
S2. Seed selection
S3. AMS radiocarbon dating
S4. Ancient DNA extraction and sequencing
S5. DNA damage assessment and mapping to the reference genome
S6. Modern accessions genomic data
S7. Analysis of genomic diversity
S8. Re-calibrating estimates of modern genomic diversity
S9. Structure of genomic diversity in ancient beans
S10. Loss and recovery of variation after domestication?
S11. Genes-focused scan for signature of ancient and/or recent selection
S12. References

Figure S1. Pictures of all 30 seeds (15 seeds for deep sequencing are also shown in Figure1, main text)
Figure S2. Bioanalyzer profiles
Figure S3. Fragment length distributions
Figure S4. Fragmentation plot
Figure S5. Misincorporation pattern
Figure S6. Endogenous DNA versus age site location
Figure S7. Estimates of individual θ
Figure S8. Scatterplots of individual θ values and coverage
Figure S9. Estimates of whole-genome diversity in pairs of modern seeds
Figure S10. Structure of genetic diversity in ancient and modern seeds as inferred by Admixture
Figure S11. Structure of genetic diversity in ancient and modern seeds as inferred by FineStructure
Figure S12. Distribution of proportion of SNPs per gene in AS and RS topologies
Figure S13. Distribution of selected genes along chromosomes

Table S1. Ancient seed information: AMS dates and basic sequencing statistics (provided as Supplementary
Excel file)
Table S2. Chloroplast genome coverages
Table S3. Modern genome samples
Table S4. Estimates of whole-genome diversity in ancient and modern individuals
Table S5. Estimates of whole-genome diversity in pairs of modern seeds
Table S6. Fraction of missing calls after haploid calling in ancient and modern seeds
Table S7. Results of selection scan using different accessions as outgroup (provided as Supplementary Excel file)

S1. Ancient beans collections and archaeological context
Ancient bean seeds were selected from five museum collections in Argentina: Museo de La Plata (La Plata, Buenos Aires, Argentina); Museo de Historia Natural de San Rafael (Parque Mariano Moreno, San Rafael, Argentina); Instituto de Investigaciones y Museo Arqueológico "Prof. Mariano Gambier", Universidad Nacional de San Juan (San Juan, Argentina); Instituto de Arqueología y Museo, Universidad Nacional de Tucumán (Tucumán, Argentina); Museo Arqueológico Pio Pablo Díaz (Cachi, Salta, Argentina).

Seeds were originally collected from nine archaeological sites located in different geographical regions of north and central-western Argentina (Figure 1a, main text). A brief description of each site is reported below. Codes for each seed, referring to Figure 1b (main text) and Figure S1, are reported in Table S1.

Puente del Diablo

Puente del Diablo (SSalLap20) archaeological site is a cave situated in the northern sector of the Calchaqui Valleys in a pre-puna landscape (Salta province). It was excavated in the 1970s and includes both domestic and funerary contexts. This is a multicomponent site with burials dating back to $10,000 \mathrm{yrs} \mathrm{BP}$, remains corresponding to burials and temporal occupations of hunter gatherers of ca. $3,000 \mathrm{yrs} \mathrm{BP}$ and also from ca. 2,000 yrs BP corresponding to the first agro-pastoralist societies in the area. From these last occupations, remains of Cucurbita maxima, Prosopis spp. and cactaceae were recovered together with remains of rodents (Lagidium sp.), Cervidae sp. and camelids (Lama sp.) (Lema, 2009, 2015).

Gruta del Indio

Gruta del Indio is an archaeological site located in Central Western Argentina, close to San Rafael city, in Monte phytogeographic province, at 700 m asl. Gruta del Indio was occupied by hunter-gatherers since the Pleistocene-Holocene transition ca. 10,500 years ago (Semper and Lagiglia 1968, Long et al 1998). Huntergatherers occupied the cave until at least ca. 1,900 yrs BP , when a strong domestic plant record appears in the archaeological record. This domestic archaeobotanical record include Zea mays, Chenopodium quinoa, Cucurbita, and Phaseolus vulgaris seeds, and Zea mays remains, such as canes and starches (Semper and Lagilia 1968, Lagiglia 1999). This domestic plant context (the oldest in the region) is isolated in time and space, and is associated to human bone remains, indicating the use of the cave as a cemetery. This archaeological context was called "Atuel II culture" (Semper and Lagiglia 1968) and all radiocarbon dates are between 2,100 and $1,900 \mathrm{yrs}$ BP (Gil et al 2014). Stable isotopes analyses from human bone suggest that the Zea mays was probably part of the diet but not as major component (Gil et al 2010). The Phaseolus vulgaris beans were found in a grass container holding ca. 500 grs . of seeds. Another grass container was full of Chenopodium quinoa seeds in the same archaeological mortuary context. After Atuel II, there is little evidence of human occupation and temporally close to the arrival of the Spanish (ca. 500 yrs BP).

Los Morrillos, Río Salado, Cerro Calvario and Punta del Barro (San Juan sites)

The San Juan sites are in the two western Departments of the Province of San Juan, Iglesia (to the north) and Calingasta (to the south). They are in a southern Andean area that extends between $28.25^{\prime} \mathrm{S}$ and $32033^{\prime} \mathrm{S}$ on the arid eastern slope of the Andes. This territory includes (from west to east) the "Cordillera de los Andes", two wide valleys between 1,900 and $1,600 \mathrm{~m}$ as and another system of high altitude but of older age than the mountain range called "Precordillera of La Rioja, San Juan and Mendoza"; its maximum summits constitute the eastern limit of these Departments.

Los Morrillos (caves 2 and 3) and Río Salado cave

The first evidence of agricultural and breeding (Lama glama) activity in the eastern slope of the Andes in San Juan province did not originate in the area, but were introduced together with the domesticated species. The human groups that introduced and developed agriculture were located in favorable small sites corresponding to the exit of the cordilleran streams in the great plain of the high foothills (approximately $2,900 \mathrm{~m}$ asl). Such human groups cultivated in summer, gathered wild fruits and ñandu eggs, and entered the high Andean valleys for the hunt of the guanaco (Lama guanicoe). They mostly inhabited natural caves in the area. Examples of such caves are Los Morrillos (caves 2 and 3). In the Los Morrillos caves, the thick layer with agriculture evidence overlapped with an older layer of hunter gatherers. By contrast, in the Río Salado cave
there is only a thick level with agricultural remains (Gambier 1977, 1988, 2000, Roig 1977). Los Morrillos caves were excavated in seven long seasons between 1969 and 1977, while the Río Salado cave was excavated in 1972. The three caves correspond to habitation sites without specific areas of activity. The botanical remains were found among the anthropic sediments with diverse remains: lithic, ceramic, artifacts in wood and bone, textiles, etc.).

Cerro Calvario sites (Calingasta Valley) and Punta del Barro site (Iglesia Valley)

The same agricultural and breeder groups described previously, with some foreign influences, later descended from the "Cordillera de Los Andes" towards the valleys at lower altitude and settled in open areas with the possibility of irrigation from small springs or streams. This is the case for the Cerro Calvario sites in the Calingasta Valley and Punta del Barro in the north of the Iglesia Valley (Basurero Norte, Basurero 3) (Gambier 1988, 2000; Michieli 2016).

Punta del Barro "10 canal" site

Around 1200 AD the local groups settled in the valleys of the Eastern slope of Los Andes in the current province of San Juan developed a large-scale agricultural system based on irrigation by means of large channels connected to the rivers. The agricultural sites of Punta del Barro " 10 canal" represent a residential area, excavated in 2011, which included an occupational floor almost at surface level with storage and combustion wells. Various cultivated botanical remains were found in one of the storage wells: corn, squash, quinoa and beans. It was related to a large hydraulic channel and three tombs with excellent preservation of both the bodies and the woven garments that enveloped them and other items (ceramics, pumpkin containers, wooden objects, etc.) (Michieli 2015).

Punta de la Peña

Punta de la Peña 9 is a residential site with stone-walled structures, blocky shelters, bedrock mortars, caches, open air activity areas, and rock art that was continuously occupied by agro-pastoralist farmers between ca. 2,000 to 400 yrs BP -post-Hispanic time (Babot et al 2006, López Campeny et al 2017, Somonte and Cohen 2006). It comprises processing, discard, workshop, funerary and ritual areas spatially segregated. The site is located on the southern margin of the Las Pitas River at an elevation of $3,665 \mathrm{~m}$ asl in the Salty Puna desert (Catamarca province). Subsistence was based on Ilama (Lama glama) herding, vicuña (Vicugna vicugna) hunting, small-scale cultivation, and plant gathering and exchange. Wild, domesticated and weed plant macro and micro-remains belong to a number of native and foreign taxa as Chenopodium quinoa, Solanum tuberosum, Oxalis tuberosa, Phaseolus vulgaris, Prosopis sp., Geoffroea decorticans, Zea mays, Amaranthus caudatus/A. mantegazzianus, Lagenaria siceraria, Cucurbita sp., Canna edulis and Cyperace and Cactaceae species (Babot 2009, Rodríguez 2013). Alero 1 is a blocky shelter rich in well preserved plant remains from the first millennium DC, placed in the sector I of the Punta de la Peña 9 site (Babot et al 2013).

Pampa Grande

Pampa Grande is an archaeological locality including seven caves explored in the 1970s. It is located in the Las Pirguas mountain range (Salta province), between 2,500 and $3,000 \mathrm{~m}$ asl in a montane grassland and forest landscape corresponding to the highest zone of the Yunga biogeographical province. Ancient remains are mainly related to funerary contexts and few occupational areas, corresponding to Candelaria groups. The age of these occupations range between $400-3,000 \mathrm{yrs}$ BP and corresponds to the first agropastoralist societies in the area. Remains related with subsistence include domestic, wild and hybrid plant species of Cucurbita maxima and Phaseolus vulgaris. Phaseolus lunatus, Lagenaria siceraria, Zea mays, Arachis hypogaea, Prosopis spp., Geoffroeae decorticans, tubers, Capsicum spp. and other wild and weed forms were recovered. Remains of wild and domestic camelids were also recovered together with fish, rodent and bird bones (Baldini et al 2003, Lema 2010).

Cueva de los Corrales

Cueva de Los Corrales 1 is an archaeological site located in the Quebrada de Los Corrales (EI Infiernillo, Tucumán) at $3,000 \mathrm{~m}$ asl in a dry shrub / grassland landscape, corresponding to the highest zone of the Yunga biogeographical province (Oliszewski et al 2008). It is a cave that was occupied at different times throughout 2,400 years (ca. 3,000-600 yrs BP), from transitional time between hunter-gatherer groups to
agro-pastoralist groups until purely agro-pastoralist time (Oliszewski et al. 2018). Remains related to subsistence include domestic camelids and dasiphodids; wild plants: Prosopis nigra, Geoffroeae decorticans, Celtis tala and Trichocereus sp.; cultivated plants: Phaseolus vulgaris, Zea mays and Chenopodium quinoa and wild Cucurbita maxima (Oliszewski and Arreguez 2015, Oliszewski and Babot 2015, Lema 2017).

Thirty ancient bean seeds (Figure S1) were selected for preliminary screening based on the site locations and archaeological context. All seeds had a clear domestic phenotype. After visual inspection, we selected seeds with different morphological features (e.g. coat color and dimension) and good preservation (e.g., less visible cracks or damages in the outer coat).

SJ21_g

SJ23_g

> SJ24_c
SJ25

SJ29
SJ30

1 cm

S2. Seeds selection

S3. AMS radiocarbon dating

A fragment of ca. $1 / 4$ of the cotyledon was removed from each seed and used for AMS radiocarbon dating at CEDAD, Center of Applied Physics, Dating and Diagnostics, Department of Mathematics and Physics "Ennio De Giorgi", University of Salento. Conventional radiocarbon ages and calibrated ranges for 30 seeds are reported in Table S1. Calibration was performed using OxCal Ver. 3.10 based on atmospheric data (Reimer et al 2009). Distribution curves of the calibrated age for each seed, and additional details on the dating procedure are available on request.

S4. Ancient DNA extraction and sequencing

DNA extraction and library preparation were performed at the Molecular Anthropology and Paleogenetic Laboratory of the Department of Biology, University of Florence, using facilities that are exclusively dedicated to processing ancient DNA and following all the necessary precautions to minimize contamination from exogenous DNA. One sample ($09-C M$) was extracted and a library built at the ancient DNA laboratory of the University of Oslo. Negative controls were included in each step of the molecular analysis. All seeds were photographed prior to sampling (Figure S1). After removing the cuticle, each seed was UV irradiated in a crosslinker for 45 minutes. The embryo and a portion of cotyledon were then pulverized by hand with mortar and pestle that had been decontaminated with bleach and UV. Half of the powder, was used for DNA extraction following a high-salt CTAB extraction protocol according to the Small Fragment Protocol of Qiagen DNeasy mericon Food Handbook. The amount of powder used in the DNA extraction ranged between 48 and 240 mg , depending on the size of the seed. Food Lysis Buffer was substituted with a homemade CTAB high salt extraction buffer according to the following recipe: 100 mM Tris $-\mathrm{HCl} \mathrm{pH} 8,25 \mathrm{mM}$ EDTA pH $8,4 \mathrm{M} \mathrm{NaCl}, 2 \%$ CTAB, $0.3 \% \beta$-mercaptoethanol. An aliquot of each extract was converted into a sequencing library with 7 bp P7 indexes according to Meyer \& Kircher 2010. No UDG treatment was performed. The fill-in reaction was split in 4 aliquots that were amplified separately in $100 \mu \mathrm{l}$ reaction mixes with 0.25 mM dNTPs mix (New England Biolabs), $0.30 \mathrm{mg} / \mathrm{ml}$ BSA (New England Biolabs), 2.5 U Agilent Pfu Turbo Polymerase (Agilent Technologies) and $0.4 \mu \mathrm{M}$ of each primer. The following indexing PCR profile was performed by default on each library: $95^{\circ} \mathrm{C} 2^{\prime},\left[95^{\circ} \mathrm{C} 30^{\prime \prime}, 58^{\circ} \mathrm{C} 30^{\prime \prime}, 72^{\circ} \mathrm{C} 1^{\prime}\right] \times 14,72^{\circ} \mathrm{C} 10^{\prime}$. DNA quantification and quality control were performed on a Agilent 2100 Bioanalyzer using the Agilent DNA 1000 kit, following manufacturer's instructions. All libraries and extraction blanks showed flat BioAnalyzer profiles (see Figure S2), but were included in the pool of the first sequencing round (see below). The libraries were sequenced at the Norwegian Sequencing Centre, University of Oslo, Norway, where all samples were pooled in equimolar ratios and paired-end sequenced on the Illumina HiSeq 2500. First, samples were screened for DNA preservation by low-coverage sequencing. Based on the results of this first sequencing run and on sample characteristics (age, location, phenotype, mapping quality, age-related damage patterns), a subset of 18 samples was re-pooled and sequenced further on four Hiseq2500 lanes. Additionally, one sample (O1-PD) was sequenced on one lane each on the HiSeq 4000 platform. One sample (09-CM) was sequenced on the Hiseq 2500 in a different pool from all other beans. Based on the final results we further selected 15 samples with coverage higher than 4 X for downstream population genomic analyses (Table S1).

Figure S2. BioAnalyzer profiles of library ($k-1, k-3, k-5$) and extraction ($k-2, k-4 . k-6$) blanks.

S5. DNA damage assessment and mapping to the reference genome

Paleomix v.1.2.12 (Schubert et al 2014), a pipeline specifically designed for aDNA, was employed for the filtering and mapping of aDNA data. Adapter trimming, collapsing of overlapping mate-pairs, trimming of low-quality bases and removal of reads shorter than 25 bp was performed with AdapterRemoval (Lindgreen et al 2012). Filtered reads were aligned to the Phaseolus vulgaris reference genome v2.1 (Schmutz et al 2014), downloaded from Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) using bwa aln (Li and Durbin 2009) and retaining reads with mapping quality $>=25$. PCR duplicates were filtered using the Paleomix rmdup_duplicates option. Fragment length distributions, break point and misincorporation patterns were explored in each sample (Figures S3, S4, S5) using MapDamage2.0 (Jónsson et al 2013).. Indel-realigned bams were generated using the GATK Indel realigner (McKenna et al 2010). Realigned and filtered bam files were then indexed and sorted with Samtools-0.1.19 (Li et al 2009). The percentage endogenous DNA and coverage were determined from these realigned and filtered bam files.

An evaluation of the DNA preservation (percentage of endogenous DNA and deamination pattern) in the ancient bean seeds as a function of sample age and site location is reported in Figure S6. Altitude, and not age, seems to be a good predictor of deamination patterns.

Almost all of the following analyses including both ancient and modern (see section "Modern accessions genomic data) samples were based on transversions, since transitions are more affected by post-mortem damages than transversion and could reflect DNA damage rather than true DNA variation (e.g., Hofreiter et al 2012). Only the selection test (Supplementary Information S11) considered both transitions and transversions because in this test only changes observed in all the 15 ancient seeds are used. We estimate that these simultaneous changes are very unlikely related to post-mortem damages. The following regions were analyzed separately for the Admixture and Neighbor-Joining analyses (see below): i) callable regions, defined as the whole genome excluding repeated regions; ii) neutral regions defined as callable regions excluding genes (both exons and introns) and 10 kb upstream and downstream each gene and iii) exons. The estimation of Wattersons Theta $\left(\theta_{w}\right)$ and the FineStructure analysis were performed on callable regions only (see below).

Figure S3. Fragment length (bp) distributions for the 30 ancient seeds. Labels present the original sample ID and the manuscript ID (see Table S1). Plots were generated using MapDamage 2.0.

Figure S4. aDNA fragmentation plots for ancient bean seeds. Labels present the original sample ID and the manuscript ID (see Table S1). Plots were generated using MapDamage 2.

Figure S5. Frequency of C to T (red) and G to $A(b l u)$ misincorporation at 5^{\prime} and 3^{\prime} ends for the 30 ancient seeds. Plots were generated using MapDamage 2.0. Labels present the original sample ID and the manuscript ID (see Table S1).

Figure S6. Endogenous DNA preservation in the 30 ancient bean seeds of the preliminary screening. a) Proportion of reads mapping to the common bean reference genome vs. age of the samples; b) Average read length vs. age of the samples; c) Misincorporation pattern at 5' end vs. age of the samples; d) Misincorporation pattern at 5' and 3' ends vs. site locations.

The fragments lengths and the fragmentation and deamination patterns of our data concur with what could be expected from these kinds of samples and we are confident about the authenticity of our ancient genomes. To further support the absence of contamination in our ancient DNA data, we estimated the heterozygosity level in the chloroplast calls. Contamination can introduce additional chloroplast haplotypes in the original library resulting in the presence of heterozygous sites. We performed a SNP calling analysis in chloroplast reads extracted from 14 ancient seeds (one seed was excluded because of low chloroplast coverage. The complete chloroplast sequence from the Negro Jamapa cultivar (accession: NC_009259, Guo et al, 2007) was added to the nuclear reference, and the bioinformatic approach described above was used to align the sequencing data from ancient samples to this new reference genome. Each resulting bam file was processed using ANGSD v0.916 (Korneliussen et al 2014) and the chloroplast consensus sequences were called for each seed setting the "-doFasta 2" option. The analysis was restricted to reads having a mapping quality score higher than 20 and to nucleotides showing a minimum base quality score of 20 . The mean coverage ranges from 69X to 633X, and approximately 40% of the chloroplast genome was recovered in each sample (Table S2). This fraction is expected considering that several short chloroplast fragments (as those obtained from our samples), have multiple mapping position on the nuclear genome and were therefore excluded from further analyses. Each bam file was independently analysed with the mpileup/call commands from BCFtools, calling both monomorphic and polymorphic sites of the chloroplast, setting the ploidy of the region to 2 . The following flags were added: a minimum base quality score of 20 (-Q 20), a minimum mapping quality score of 30 (-q 30) and the mapping quality of reads with two mismatches compared to the reference was adjusted (-C 50). Indels were not called. The resulting vcf files were filtered and only sites having a QUAL field > 30 were retained. The number of called heterozygous seeds was very small: 0 in 11 seeds, 1 in two seeds ($13-\mathrm{CM}$ and $03-\mathrm{GI}$), and 2 in one seed ($02-\mathrm{CM}$). The total number of high quality/mapping base pairs used varied in different seeds between 45448 and 61699. The three ancient seeds with one or two heterozygous sites in the chloroplast genome do not show any significant pattern of increased nuclear heterozygosity when compared to other seeds.

Table S2. Chloroplast genomes coverage.

MANUSCRIPT ID	MEAN COVERAGE	FRACTION OF CALLED (NON-MISSING) BASE PAIRS
15-CC	167.7	0.42
01-PD	633.1	0.40
03-GI	151.4	0.37
07-PP	475.1	0.43
04_CM	290.6	0.38
10-CM	153.7	0.37
14-CM	102.4	0.35
12-CM	511.9	0.41
11-CM	752.4	0.43
13-CM	369.3	0.42
08-CM	450.3	0.41
06-PB	79.5	0.38
02-CM	627.7	0.42
05-CM	336.8	0.43

S6. Modern accessions genomic data

Genomic data from modern domesticated and wild common bean samples were included in our analyses (Table S3). In particular, we included: i) 12 modern domestic common bean genomes from both Andean and Mesoamerican domestication gene pools, sequenced by the ERA-CAPS funded project "BeanAdapt: The Genomics of Adaptation during Crop Expansion in Bean" (unpublished; provided by the coordinator of the project, Prof. Roberto Papa, Marche Polytechnic University); ii) two published genomes from wild P. vulgaris (G19901 from Argentina and G24594 from Chiapas, Mexico; Rendòn-Anaya et al 2017); ;ii) one published genome of the wild relative P. hintonii to be used as outgroup in our selection scan (Rendòn-Anaya et al 2017). Trimmomatic v0.36 (Bolger et al 2014) was used to remove poor-quality regions from downloaded Illumina reads, discarding nucleotides having an average base quality score less than 20 across a 5bp window. Reads longer than 35 bp were mapped to the P. vulgaris reference genome v 2.1 in the paired-end mode using bwa mem (Li and Durbin 2009) with the parameter "- M ". The quality of bam alignments was improved removing PCR duplicates with Picard (software.broadinstitute.org) and performing the Indel realignment procedure, as described above for ancient samples. Depth of coverage was estimated in each sample using Samtools depth. Two publicly available but unpublished genomes from Argentinean wild seeds, G16798 and G18705 in the SRA archive and obtained from 2×150 bp libraries sequenced on an Illumina Hiseq 3000 platform, were used to confirm that the global pattern of variation of ancient seeds is compatible with the pattern of variation observed in modern seeds form the same geographic area. The mean coverage of these genomes was estimated at 9.9 X and 8.8 X , respectively.

Table S3. Modern genomes included in our analyses. Gene pool indicates to which gene pool the sample belongs; AD: Andean domesticated, MD: Mesoamerican domesticated, AW: Andean wild, MW: Mesoamerican wild. Sequencing mode was 2×125 bp for all Bean Adapt samples and 2×100 for the other samples.

Sample ID	Manuscript ID	Species	Wild/ Domestic	Gene pool	Country/Sampling site	Mean coverage (genome / callable regions)	Source
ECa005	CHI1	P. vulgaris	D	AD	Chile	$11.6 / 13.0$	Bean Adapt Project
ECa006	BOL1	P. vulgaris	D	AD	Bolivia	$24.9 / 27.7$	Bean Adapt Project
ECa016	CHI2	P. vulgaris	D	AD	Chile	$9.1 / 9.8$	Bean Adapt Project
ECa038	PER1	P. vulgaris	D	AD	Perú	$8.9 / 9.9$	Bean Adapt Project
ECa040	ARG1	P. vulgaris	D	AD	Argentina	$16.6 / 19.5$	Bean Adapt Project
ECa041	ARG2	P. vulgaris	D	AD	Argentina	$6.1 / 6.7$	Bean Adapt Project

ECa086	MEX1	P. vulgaris	D	MD	México	$10.5 / 11.6$	Bean Adapt Project
ECa095	MEX2	P. vulgaris	D	MD	México	$6.2 / 6.7$	Bean Adapt Project
ECa104	MEX3	P. vulgaris	D	MD	México	$10.1 / 11.2$	Bean Adapt Project
ECa332	ARG3	P. vulgaris	D	AD	Argentina	$5.3 / 5.8$	Bean Adapt Project
ECa330	ARG4	P. vulgaris	D	AD	Argentina	$13.9 / 13.9$	Bean Adapt Project
ECa333	BOL2	P. vulgaris	D	AD	Bolivia	$7.9 / 8.9$	Bean Adapt Project Rendòn-Anaya et al 2017
G24594	MEX-W	P. vulgaris	W	MW	México	$19.6 / 22.5$	Rendòn-Anaya et al 2017
G19901	ARG-W	P. vulgaris	W	AW	Argentina	$16.6 / 15.5$	Rendòn-Anaya et al 2017
P. hintonii	-	P. hintonii	W	-	México	$9.5 / 10.6$	

S7. Analysis of genomic diversity

To test whether there has been a decrease in genetic diversity due to the history of domestication, we compared levels of diversity between ancient and modern common bean seeds both as individual- and as population-level diversity. Genetic diversity was measured (using only transversions) estimating Watterson's Theta $\left(\theta_{w}\right)$ in non-overlapping windows of 10kb, taking into account per-individual inbreeding coefficients and hence accounting for possible deviations from Hardy-Weinberg equilibrium, as proposed by Vieira et al 2013. This is a two-step procedure: first, ANGSD v0.916 (Korneliussen et al 2014) was used to call a high confidence SNP set based on GATK genotype likelihoods (-GL 2) including only alignment positions having an associated base and mapping quality score equal or higher than 20 and 30 , respectively. To increase the reliability of the called set, we set the baq computation (-baq 1), adjusted the mapping quality in case of excessive mismatches (-C 50), and only retained positions having a high probability to be polymorphic (SNP_pvalue 1e-6), without any missing data. From this set, we randomly sampled 2,000 SNPs without replacement and we used ANGSD to recompute the genotype likelihoods at these positions (-doGIf 3) applying the same quality filters. The program ngsF (Vieira et al 2013) was then used to estimate the individual genome-wide inbreeding coefficient for each accession using default parameters, except for the min_epsilon option that was decreased to 10^{-9}. The SNP sampling and the estimation of inbreeding processes were repeated five times in order to obtain five independent estimates of the inbreeding coefficient for each individual. The average across replicates was then used as point estimate of each individual inbreeding coefficient.

We then estimated a site frequency spectrum, using the command -doSaf 2 in ANGSD, to calculate the persite posterior probabilities of the site allele frequencies based on individual genotype likelihoods accounting for the previously estimated inbreeding coefficients. Genotype likelihoods were calculated with the GATK method (-GL 2 option), and a folded spectrum was used (i.e., unknown ancestral state, option -fold 1). Options -minQ $20-m i n M a p Q 30-s e t M a x D e p t h ~ 50 ~ w e r e ~ a p p l i e d ~ t o ~ f i l t e r ~ l o w ~ q u a l i t y ~ b a s e s ~ a n d ~ p o s i t i o n s ~$ showing excessive coverage, while the option -sites was set to filter for callable regions. The option -noTrans 1 was applied to all the above steps to systematically remove transitions from the analysis. The output of this command line was then used as input for the calculation of per-site thetas, using the command doThetas 1. Window-based theta estimates were calculated using the command thetaStat do_stat. Windows having a proportion of usable sites less than 50% were discarded.

Table S4. Estimates of diversity in ancient and modern accession of common bean from Central (Meso) and South (Andean) America. The number of 10 kb -windows with at least 50% of the region covered is reported.

Manuscript ID	Gene pool	Country	10kb-windows	Θ_{w} mean	Θ_{w} median
CHI1	Andean	Chile	24486	$1.29 \mathrm{E}-05$	$9.62 \mathrm{E}-08$
BOL1	Andean	Bolivia	24686	$1.56 \mathrm{E}-05$	0
CHI2	Andean	Chile	24493	$1.18 \mathrm{E}-05$	$1.73 \mathrm{E}-07$
PER1	Andean	Perú	24597	$9.62 \mathrm{E}-06$	$8.87 \mathrm{E}-08$
ARG1	Andean	Argentina	24636	$1.51 \mathrm{E}-05$	$1.18 \mathrm{E}-08$

ARG2	Andean	Argentina	23827	$7.44 \mathrm{E}-06$	$2.98 \mathrm{E}-07$
MEX1	Meso	México	21749	$4.66 \mathrm{E}-05$	$9.05 \mathrm{E}-07$
MEX2	Meso	México	20071	$2.42 \mathrm{E}-05$	$1.06 \mathrm{E}-06$
MEX3	Meso	México	20965	$3.86 \mathrm{E}-05$	$5.76 \mathrm{E}-07$
ARG3	Andean	Argentina	23674	$8.96 \mathrm{E}-06$	$1.40 \mathrm{E}-06$
ARG4	Andean	Argentina	24272	$1.67 \mathrm{E}-05$	$2.35 \mathrm{E}-06$
BOL2	Andean	Bolivia	24491	$1.99 \mathrm{E}-05$	$4.43 \mathrm{E}-07$
15-CC	Andean	Argentina	15865	$3.02 \mathrm{E}-05$	$1.72 \mathrm{E}-05$
09-CM	Andean	Argentina	13284	$3.78 \mathrm{E}-04$	$3.44 \mathrm{E}-04$
01-PD	Andean	Argentina	20897	$5.48 \mathrm{E}-05$	$5.41 \mathrm{E}-07$
03-GI	Andean	Argentina	15241	$1.79 \mathrm{E}-04$	$1.50 \mathrm{E}-04$
07-PP	Andean	Argentina	15303	$3.40 \mathrm{E}-05$	$1.03 \mathrm{E}-05$
$14-\mathrm{CM}$	Andean	Argentina	9372	$1.12 \mathrm{E}-04$	$9.15 \mathrm{E}-05$
$04-\mathrm{CM}$	Andean	Argentina	9892	$8.31 \mathrm{E}-05$	$6.10 \mathrm{E}-05$
$10-\mathrm{CM}$	Andean	Argentina	8422	$1.80 \mathrm{E}-04$	$1.50 \mathrm{E}-04$
08-CM	Andean	Argentina	13130	$6.91 \mathrm{E}-05$	$4.27 \mathrm{E}-05$
$12-\mathrm{CM}$	Andean	Argentina	16859	$1.15 \mathrm{E}-04$	$9.23 \mathrm{E}-05$
11-CM	Andean	Argentina	18346	$5.08 \mathrm{E}-05$	$1.25 \mathrm{E}-05$
$13-C M$	Andean	Argentina	22600	$8.76 \mathrm{E}-05$	$3.10 \mathrm{E}-05$
02-CM	Andean	Argentina	21224	$4.99 \mathrm{E}-05$	$8.47 \mathrm{E}-06$
06-PB	Andean	Argentina	19426	$5.51 \mathrm{E}-04$	$5.17 \mathrm{E}-04$
05-CM	Andean	Argentina	17519	$1.85 \mathrm{E}-04$	$1.58 \mathrm{E}-04$
ARG-W	Andean wild	Argentina	24255	$4.08 \mathrm{E}-05$	$1.93 \mathrm{E}-06$
MEX-W	Meso wild	México	22583	$1.51 \mathrm{E}-03$	$9.25 \mathrm{E}-04$
G16798 (unpublished)	Andean wild	Argentina	23982	$5,38 \mathrm{E}-05$	$1,91 \mathrm{E}-05$
G18705 (unpublished)	Andean wild	Argentina	23960	$5,33 \mathrm{E}-05$	$2,00 \mathrm{E}-05$

The genomic variation in ancient beans is compatible with the variation observed in modern wild Argentinean seeds (see also Figure 1b in the main text), larger than that observed in modern domestic seeds with Andean gene pool, and smaller than that found in the Meso-American wild seed (Figure S7).

Figure S7. Mean (upper panel) and median (lower panel) values of Theta estimates for modern and ancient seeds, in ascending order. Seed codes as in Table S4.

The impact of coverage (in callable regions) on heterozygosity estimates cannot be excluded. However, we note that a) the range of coverage in these regions is very similar in the ancient ($4.2 \mathrm{X}-23.2 \mathrm{X}$; average: $9,0 \mathrm{X}$) as compared to modern (5.8 X - 27.7 X , average: 12.7 X) genomes; b) in the modern genomes data set, excluding the wild Mexican sample (typed at high coverage, and where genomic variation is expected to be much higher than the Andean samples for biological reasons), the increase of coverage from the smaller value (which is >5) does not seems to affect genetic variation in different cultivars (Figure S8, left panel); b) in the ancient genomes data set, 6 seeds with coverage>10 have, on average, a heterozygosity that is one third smaller than the remaining seed at coverage <10 (Figure S8, right panel). There might be therefore a small bias, probably due to the overestimation of theta by the probabilistic ANGSD approach when the coverage is low. Nevertheless, using only the 6 ancient seeds at coverage >10, or only the 10 ancient seeds at coverage >5, the average theta results equal to $1.10 \mathrm{E}-4$ and $1.09 \mathrm{E}-4$, respectively, which is only 23% smaller than the global (15 seeds) average reported in the main text. Most importantly, this value of theta does not change the main pattern identified in our study: 1.1E-4 (or $1.09 \mathrm{E}-4$) is still 8.5 times larger than the average variation in the modern Andean cultivars (1.3E-5), and these differences are highly significant (Mann-Whitney, U<0.001).

Figure S8. Plots of Theta estimated in modern (left panel) and ancient (right panel) seeds, as a function of the coverage in callable regions.

S8. Re-calibrating estimates of modern genomic diversity

Genomic diversity of each modern accession was likely reduced by the protocols commonly used before whole-genome sequencing, which included a selfing protocol after collecting the seeds from the seed bank. In addition, previous maintenance practices applied at each seed bank could have also affected genomewide diversity. To test whether such very recent events could be the cause of the observed pattern of lower diversity in modern seeds as compared to ancient seeds, we re-estimated whole-genome diversity in pairs of seeds from closely related cultivars. The rationale behind this test is the following. Diversity loss caused by recent seed bank or sequencing protocols occurred at random along the genome in each cultivar, so that each cultivar should have lost a different fraction of its diversity. Taking together two (or more) closely related cultivars should restore most of the variation prior to the stocking into the seed banks. Of course, this estimate is also affected by the possible genetic divergence between the cultivars used in each pair.

Estimates of diversity $\left(\theta_{w}\right)$ in pairs of cultivars should better represent the single cultivar variation before seed bank and sequencing protocols (or even over-estimate, due to cultivar genetic divergence). We selected the two modern Chilean cultivars, already included in all our analyses (see Table S3) and added three cultivars from the same country sequenced within the ERA-CAPS funded project "BeanAdapt: The Genomics of Adaptation during Crop Expansion in Bean" (unpublished; provided by the coordinator of the project, Prof. Roberto Papa, Marche Polytechnic University). We estimated ϑ_{w} in ten random pairs of seeds. Specifically, we compared average θ_{ω} estimated in three groups of accessions: 10 pairs of Chilean accessions, 12 single modern accessions from South America, and in 15 ancient seeds. Alongside individual variation, we also compared the distribution of θ_{w} across all 10 kb -windows from each group.

As expected, genome wide diversity in pairs of seeds is higher than in single seeds (Table S5). However, average modern seed pairs diversity is still more than three times lower (Mann-Whitney U test, $P=0.003$) than that estimated in ancient seeds (Table S4). The same pattern appears when considering the summarized diversity across all 10kb-windows in each group (Figure S5).

Table S5. Estimates of diversity in five accessions from Chile (two of them were also used in the main analyses) and in the ten pairs of Chilean samples. The number of 10 kb -windows with at least 50% of the region covered is reported.

Manuscript ID	10kb-windows	Θ_{w} mean	Θ_{w} median
CHI1 (ECa005)	24486	$1.29 \mathrm{E}-05$	0.96E-07
CHI2 (ECa016)	24493	$1.18 \mathrm{E}-05$	$1.73 \mathrm{E}-07$
CHI3 (ECa004)	24524	$1.37 \mathrm{E}-05$	0.62E-07
CHI4 (ECa018)	24609	$1.57 \mathrm{E}-05$	0.33E-07
CHI5 (ECa020)	24541	$1.47 \mathrm{E}-05$	0.94-07
CHI3.CHI1	27870	$4.33 \mathrm{E}-05$	$2.89 \mathrm{E}-07$
CHI3.CHI2	27875	$4.24 \mathrm{E}-05$	$4.43 \mathrm{E}-07$
CHI3.CHI4	27912	$3.96 \mathrm{E}-05$	$1.95 \mathrm{E}-07$
CHI3.CHI5	27891	$4.63 \mathrm{E}-05$	$3.46 \mathrm{E}-07$
CHI1.CHI2	27856	$4.47 \mathrm{E}-05$	$4.89 \mathrm{E}-07$
CHI1.CHI4	27903	$5.32 \mathrm{E}-05$	$3.14 \mathrm{E}-07$
CHI1.CHI5	27889	$4.32 \mathrm{E}-05$	$3.69 \mathrm{E}-07$
CHI2.CHI4	27916	$4.57 \mathrm{E}-05$	4.07E-07
CHI2.CHI5	27888	$3.59 \mathrm{E}-05$	$4.49 \mathrm{E}-07$
CHI4.CHI5	27930	$5.61 \mathrm{E}-05$	$4.56 \mathrm{E}-07$

Figure S9. Estimates of whole-genome diversity in 15 ancient seeds (Ancient), in 12 modern accession from South America (Andean), and in 10 pairs of cultivars from the same region (Chile). Distribution of ϑ_{w} are based on all 10kb-windows across all samples in each group.

In order to exclude major effects of selfing before sequencing, we also applied a conservative procedure and increased the heterozygosity values of modern seeds as a function of the number of selfing cycles. We note that our modern cultivar samples are a subsample of the cultivars sequenced during the ERA-CAPS project "BeanAdapt" (see Data accessibility in the main text), used here for comparison. Notably, not all the modern seeds followed in that project the same selfing protocol: some of them were sequenced directly after the collection at the CIAT seed bank, where one cycle of selfing was performed, whereas the other seeds were subjected to two cycles of selfing. More specifically, some modern Andean seeds in our sample (ARG3, ARG4, and BOL2) were subjected to one cycle of selfing, and others (BOL1, CHI1, CHI2, PER1, ARG1, and ARG2) were subjected to two cycles of selfing. Two additional Andean seeds sequenced for the BeanAdapt project (two cultivars from Argentina) were selfed only once, and we included them in this analysis (ARG5 and ARG6). Considering only modern seeds with Andean ancestry, we have therefore 15 ancient seeds (no selfing before sequencing) and 11 modern seeds (5 and 6 with one and two cycles of selfing, respectively).

Four out of five modern seeds subjected to one cycle of selfing have a mean θ_{w} higher than all the modern seeds subjected to two cycles of selfing, and five out five modern seeds subjected to one cycle of selfing have a median θ_{w} higher than all the modern seeds subjected to two cycles of selfing. This is consistent with the expectation that selfing is reducing heterozygosity as a function of selfing cycles.

The original θ_{w} values for the modern seeds were then doubled or quadrupled (depending on the number of selfing cycles) to conservatively (some level of outcrossing during the procedure cannot be excluded) account for the reduction of variation before sequencing, allowing for a more robust comparison between ancient and modern seeds. Considering the means, 10 out of 15 ancient seeds have a θ_{w} value larger than the 11 modern seeds. This produces a significant difference between θ_{w} values ($\mathrm{p}<0.01$, Mann-Whitney U test). Considering the medians, 14 out of 15 ancient seeds have a θ_{ω} value larger than the 11 modern seeds. This produces a significant difference between θ_{w} values ($\mathrm{p}<0.01$, Mann-Whitney U test).

S9. Structure of the genomic diversity in ancient beans

A haploid calling on all samples (15 ancients, 14 modern) was performed on each chromosome, separately, using ANGSD 0.916 (Korneliussen et al 2014). We set -minQ 20 and -minMapQ 30 to exclude low quality bases and low mapping quality bases; -only_proper_pairs 0 to use all reads (not only reads with both mapping pairs); -dohaplocall 2 to select the most frequent base in the haploid calling (i.e., not a random one); -doCounts 1 to count the bases at each sites after filters; -minMinor 2 to exclude singletons and -
noTrans 1 to exclude transitions. The output of the haploid calling was then masked according to the three genomic regions as defined above (callable, neutral and exons) using Bedtools intersect (Quinlan and Hall 2010). The fraction of missing calls (after haploid calling) and the total number on variable sites is reported in Table S6. Higher values in ancient compared to modern genomes can be attributed to the shorted read length.

TableS6. Proportion of missing calls after haploid calling in neutral, exons and callable regions. The total number of variable positions across samples is indicated within brackets.

Manuscript ID	Neutral (500,580)	Exons (335,124)	Callable ($3,517,565$)
15-CC	0.29	0.09	0.29
09-CM	0.41	0.13	0.33
03-GI	0.30	0.10	0.30
10-CM	0.45	0.13	0.45
02-CM	0.17	0.07	0.15
05-CM	0.27	0.10	0.26
04-CM	0.42	0.11	0.41
14-CM	0.41	0.14	0.41
08-CM	0.33	0.09	0.34
01-PD	0.14	0.06	0.12
07-PP	0.29	0.07	0.30
06-PB	0.25	0.11	0.21
12-CM	0.29	0.09	0.27
11-CM	0.24	0.06	0.23
13-CM	0.13	0.07	0.11
CHI1	0.04	0.03	0.03
BOL1	0.03	0.02	0.02
CHI2	0.05	0.04	0.03
PER1	0.04	0.03	0.02
ARG1	0.04	0.03	0.02
ARG2	0.06	0.04	0.04
MEX1	0.09	0.04	0.05
MEX2	0.11	0.06	0.07
MEX3	0.09	0.03	0.05
ARG4	0.04	0.02	0.02
ARG3	0.07	0.06	0.05
BOL2	0.05	0.04	0.03
ARG-W	0.04	0.03	0.03
MEX-W	0.07	0.03	0.04

The main components of the genetic diversity and the eventual admixture proportion in all samples were inferred by Admixture analyses (Alexander and Novembre 2009; Supplementary Figure S10). This analysis was performed using the haploid data after combining all chromosomes in one file. As Admixture input is binary Plink (.bed) or ordinary Plink (.ped), the haploid data was converted in tped format (Plink transposed text genotype table), using the haploToPlink function implemented in ANGSD. Non biallelic sites were excluded. This file was then converted to bed format, using -make-bed option in plink-1.90 (Chang et al 2015). The option -bp-space 50000 was added in order to select one SNP every 50 kb (thinning) and minimize the effect of linkage disequilibrium in the Admixture analysis. We tested k values from 1 to 15 , and cross validation error (Alexander and Lange 2011) was calculated for each k value, adding --cv flag to the command line. Cross validation plots and admixture plots (for each K value) were created in R (Supplementary Figure S10).

Figure S10. Structure of the genetic diversity and cross-validation error inferred using three different genomic regions (callable: solid line, exons: large dashed line, neutral: small dashed line). For all genomic regions $k=3$ represented the nest fitting model. Ancient domesticated Andean (red), modern domesticated Andean (blue) and Mesoamerican (green), wild Andean (pale blue) and Mesoamerican (pale green).

The output of the haploid calling masked according to the three genomic regions was also used to calculate per chromosome pairwise genetic distances across all modern and ancient individuals using a custom awk script (available at https://github.com/anbena/ancient-beans). Per-chromosome distances were then combined into a single genome-wide distance matrix, which was used to reconstruct a Neighbor-Joining tree using the ape package in R (Paradis et al 2004). Trees were visualized with FigTree (http://tree.bio.ed.ac.uk/software/figtree). As in the Admixture analysis, the three genomic regions produced almost identical results (the Neighbor-Joining tree based on callable region only is presented in Figure 1d in the main text).

Population structure was also inferred using the method implemented in FineStructure (Lawson et al 2012; Figure S11). The pattern of similarity and dissimilarity between haploidized individuals can be visualized by a distance matrix, and discrete populations can be separated by a cladogram. This method is able to capture at least as much information as that captured by other exploratory analyses such as PCA and Structure, but it also has the advantage to help identifying the pattern of population structure and to combine the information at linked markers. The latter advantage is of course reduced, or absent, in our haploidized data set. We used Plink to filter the dataset in order to exclude any variable position with missing data (not allowed in FineStructure) and the plink2chromopainter.pl conversion script to prepare the input file to run the FineStructure pipeline. In the first step of the pipeline, haplotype blocks are "painted" (Li and Stephens 2003) according to the nearest (in terms of genetic distance) individual in the sample (chromosome painting step). Painting results are then employed to build a distance matrix summarizing the blocks similarity between all pairs of individuals. The distance matrix is, in turn, the basis of a Bayesian clustering approach aiming at partitioning the sample into K homogeneous groups (Supplementary Figure S11).

Figure S11. Finestructure analysis based on callable genomic region (483885 SNPs). Ancient domesticated Andean (red), modern domesticated Andean (blue) and Mesoamerican (green), wild Andean (pale blue) and Mesoamerican (pale green).

S10. Loss and recovery of variation after domestication?

Here we briefly support the view that the heterozygosity in the ancient seeds is comparable to that observed in the wild seeds because of a smaller or negligible drift effect during the initial phases of domestication, and not as a consequence of a strong bottleneck during domestication and subsequent recovery by mutation. Let's assume an individual heterozygosity of $1 / 10000$ in an ancient seed at 2500 BP (the order of magnitude we observe). If a severe bottleneck occurred around the initial phases of domestication (say 8000 BP), followed by expansion, the coalescence tree of two homologous bases in the ancient seed would likely coalesce at 8000 BP, i.e, 5500 year earlier. Then, if we equate individual heterozygosity with the expected difference between the two bases (10-4), the transversion rate per base pair per year should take a value of almost $10-8 /$ base/year $(10-4 /(2 \times 5500)=0.91 \times 10-8)$. This rate is more than one order of magnitude larger than what can be estimated by, for example, comparing P. vulgaris with P. hintonii (separated 5MYA, Delgado-
 comparison between P. hintonii and the Mexican reference genome for P. vulgaris). In other words, it seems very unlikely that if a bottleneck occurred, a significant fraction of the variation was recovered after 5500 years, unless a much higher transversion rate than currently estimated is assumed.

S11. Gene-focused scan for signature of ancient and/or recent selection

A gene-by-gene selection scan was performed to identify genes targeted by artificial selection during early and/or late stages of domestication. A gene underlying a desirable trait is expected to have undergone one or more selective sweeps targeting specific alleles coupled with recurrent hitchhiking at linked neutral sites. Selected genes will then accumulate variants which are either directly advantageous or got fixed because of locally low effective population size due to linked selection (Slotte 2014, Renaut and Rieseberg 2015, Beissinger et al 2016). We then expect to find an excess of fixed differences at genes under selection when samples of pre (i.e., wild) and post domestication populations are compared.

Leveraging our ancient data, we tested each of the 27,000 genes for a significant enrichment of fixed alternative alleles in two possible configurations. The first configuration is AS (Ancient Selection), indicated by the topology in the left panel in Figure 2A (main text), where all the ancient + modern Chilean samples have the same allele, and the wild samples (one wild Andean P. vulgaris and one P. hintonii as wild outgroup) have the alternative allele. We expect AS to be frequent within genes that experienced changes before 2,500 years ago. The second configuration is RS (Recent Selection), indicated by the topology in the right panel in Figure 2B (main text), where all modern Chilean samples have the same allele, and all the other samples (ancient + wild samples) have the alternative alleles. We expect RS to be frequent within genes that experienced changes in last 600 years, i.e., more recently than the estimated age interval for the ancient seeds.

Clearly, the enrichment of AS or RS allelic configurations (corresponding to the different topologies based on fixed differences) depends on many factors beside the selection dynamic, such as the sample sizes and the drift intensity in different time intervals. We therefore used a randomization procedure that keeps constant the groups, their sample sizes, and the total number of SNPs, but randomly assigns the SNPs to the genes. The relative frequency of SNPs with fixed differences in AS and RS topologies, computed after this randomization, becomes our null hypothesis, which is used to test if the observed frequencies of such topologies in each gene are higher than expected by chance.

In particular, we applied the following protocol: 1) for 27,000 genomic region each identified by a gene and 10 kb before and after it, we counted the proportion of fixed differences in the AS and the RS configuration; 2) we randomly re-assigned each SNP found in the real dataset (including the modern seeds from Chile, the ancient seeds from Argentina, the wild seed and the outgroup) to the 27,000 regions; 3) we estimated from different random assignment runs the proportion of AS and RS configurations expected by chance in a "average" genomic region; 4) we used the proportion estimated in point 3 as the null hypothesis, and applied a binomial test to each proportion observed in the real genes (point 1) to compute a p-value of significant enrichment of that particular configuration; 5) we converted the p-values in q-values (False Discovery Rate, FDR) using the python function qualue.py
(https://github.com/nfusi/qvalue/blob/master/qvalue/qvalue.py) based on (Storey and Tibshirani, 2003); 6) only genomic regions with a $\mathrm{FDR}<0.001$ were initially considered as genes significantly enriched in a particular topology (see Supplementary Figure S12); 7) finally, we applied an additional conservative criterion to filter each list of AS and RS enriched genes, and retained only those genes with numbers of fixed differences within the coding region and a 1 kb region upstream and downstream the gene higher than a threshold defined by the 99 -percentile of all the 27,000 genes.

The procedure we applied is highly conservative, and we likely missed genes where the selection process may have modified the allelic compositions. It allows however to significantly reduce the rate of false positives, and to correctly estimate the relative proportion of genes with relevant modifications before and after the time interval defined by the ages of the seeds we analyzed, respectively.

We found 360 and 86 genes with a significant enrichment of SNPs in the AS and RS topology, respectively, with a $\mathrm{AS} / \mathrm{RS}$ ratio $=4.2$. We also estimated the ratio of ancient vs. modern sweeps considering the hypothesis that different genes on the same linkage block may produce a signal of selection without being effectively selected. Partially following the approach used by Schmutz et al (2014), we merged all AS or RS genes in our study if they were separated by less than 40 kb , and we considered these extended regions as anciently selected regions (ASR, i.e., ancient sweeps) or recently selected regions (RSR, i.e., recent sweeps). The number of ASR and RSR is of course smaller than AS and RS, but the ratio between ancient and recent sweeps is very similar: 161 vs. 46 for ASR and RSR, respectively, with a ratio of 3.5 . If the maximum distance allowed to merge genes was increased from 40 kb to up to 150 kp , the ratio ASR/RSR remains larger than 3.1.

Considering the ancient seeds as a single population, we estimated Tajima's D (Tajima, 1989) along the genome and compared it with the position of ancient selection signals (AS) identified by our previous test. Using the same pipeline applied in section S 7 to estimate genomic diversity in groups of seeds (i.e, command thetaStat do_stat in ANGSD 0.916), we computed Tajima's D in non-overlapping 10kb genomic windows. This is a one-sample test (i.e., it is not based on the divergence among groups), and negative values from this test can be therefore considered as additional evidence of selection which is independent from the results of the ad hoc test we developed. Using a threshold of -1.25 to identify Tajima's D values supporting a sweep (this threshold was chosen so to have a comparable numbers of candidate windows/genes in both tests), we found that 66 out of $360(18.3 \%)$ genes (including 50 Kb before and after the gene) show both a signature of ancient selection in our test and a Tajima's D score smaller than -1.25 . As a comparison, 73 out of 678 (10.8\%) Andean domestication genes identified in Schmutz et al (2014) show also a Tajima's D score smaller than -1.25 . When blocks around AS genes are defined including 50 kb upstream and downstream of the gene, and the same is done for the genes identified in Schmutz et al (2014), 25 blocks are shared among studies and also overlap with the windows with reduced Tajima's D (<1.25).
The chromosomal position of the selective sweeps that may result from domestication found in our data was visually compared in Supplementary Figure S13 with those inferred in Schmutz et al, (2014) and with the Tajima's D candidate windows Several chromosomal regions (e.g, beginning of chromosome 1; between 46 and 48 Mb in chromosome 2; between 36 and 38 Mb in chromosome 7; end and beginning of chromosome 8) show co-localization of the selection signals, pointing to regions that deserve specific attention in further studies. The ASR/RSR ratio considering only the blocks that overlap with the sweeps inferred in Schmutz et al, (2014) is $12.5(25 / 2)$ and $5.9(41 / 7)$ applying a strict overlap criterion or extending the blocks to 50 kb upstream and downstream, respectively.
The two final lists of genes showing signature of AS and/or RS were grouped into functional clusters using the web-based software David (Huang et al 2009). For this analysis, we could only use genes with a known ortholog in A. thaliana (317 and 72 for the ancient and the recent selection targets, respectively, excluding multiple matches with the same A. thaliana orthologs). We used the functional enrichment score estimated by David only to rank the functional clusters found in the two lists of genes without excluding any cluster. Analyses were also replicated using the genome of a wild Mesoamerican P. vulgaris as outgroup instead of P. hintonii (Table S7), with 65% and 68% of the genes in the first set (with P. hintonii as outgroup) found as AS and RS in the second set (using Mesoamerican P. vulgaris as outgroup). In this case, the ratios AS/RS and ASR/RSR reduced to 2.3 and 2.1 respectively, still indicating that at least twice as many selection events occurred before the time period covered by the ancient seeds. The reduction of this ratio is almost entirely due to an increase of genes classified as RS (147) or RSR (75), whereas AS genes and ASR regions remain approximately constant (333 and 160 , respectively). If RS (and RSR) topologies with the P. hintonii outgroup are likely related to real changes occurring in genes in recent centuries (because modern seeds are genetically differentiated from genes conserved in wild and ancient beans, which are still similar to the distantly related outgroup P. hintonii), RS (and RSR) topologies may increase when a wild Mesoamerican P. vulgaris is used as outgroup because of incomplete lineage sorting within the P. vulgaris species. When the wild Mesoamerican P.vulgaris is used as outgroup, the ASR/RSR ratio for the blocks that overlap with sweeps inferred in Schmutz et al, (2014) becomes 6.5 (26/4) and 4.1 (45/11) applying a strict overlap criterion or extending the blocks to 50 kb upstream and downstream, respectively.

Figure S12. Observed (in color) and null (gray) distribution of proportion of SNPs per gene in AS (red, top panel) or RS (blue, bottom panel) topology used as summary statistics in the selection scan. The lowest fraction of AS or RS topologies in the selected genes (after using the FDR threshold of $q<0.001$, and before the implementation of the additional conservative filter based on the absolute number of SNPs, see above) is indicated as a solid line in each panel.

Figure S13. Candidate genes as selected during ancient (AS, red) and recent (RS, blue) domestication stages identified by our test,

S12. References

Alexander, D. H. \& Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 12, 246 (2011).

Alexander, D. H., Novembre, J. \& Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655-1664 (2009).

Babot, P., Aguirre, M.G. \& Hocsman, S. Aportes del sitio Punta de la Peña 9 (Puna de Catamarca) acerca de la producción y usos prehispánicos de quinua. In: Libro de Resùmenes del Simposio Internacional de la Quinua. Universidad Nacional de Jujuy, Instituto Nacional de Tecnología Agropecuaria, Centro de Investigaciones y Transferencia de Jujuy , 65-66, (CONICET, 2013).

Babot, P., et al.Ocupaciones agropastoriles en los sectores intermedios de Antofagasta de la Sierra (Catamarca): un análisis desde Punta de la Peña 9.I. Comechingonia 9,57-78 (2006).

Babot, P. La cocina, el taller y el ritual: explorando las trayectorias del procesamiento vegetal en el Noroeste argentino. Darwiniana 47, 7-30 (2009).

Baldini, M., Baffi, E., Salaberry, M.\&Torres, M. Candelaria: una aproximación desde un conjunto de sitios localizados entre los cerros de Las Pirguas y El Alto del Rodeo (Dto. Guachitas, Salta, Argentina). In: La mitad verde del mundo andino. Investigaciones arqueológicas en la vertiente oriental de los Andes y las Tierras Bajas de Bolivia y Argentina (eds. Ortiz, G. \& Ventura, B.)131-151 (Universidad Nacional de Jujuy,, 2003)

Beissinger, T. M., et al. Recent demography drives changes in linked selection across the maize genome. Nat. Plants 2, 16084 (2016).

Bolger, A. M., Lohse, M., \& Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120 (2014).

Chang, C. C., et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

Delgado-Salinas, A., Bibler, R., \& Lavin, M. Phylogeny of the Genus Phaseolus (Leguminosae): A Recent Diversification in an Ancient Landscape. Systematic Botany 31, 779-791 (2006).

Gambier, M. La cultura de Ansilta (San Juan, Instituto de Investigaciones Arqueológicas y Museo UNSJ, 1977).

Gambier, M. La fase cultural Punta del Barro (Instituto de Investigaciones Arqueológicas y Museo, Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan, 1988)

Gambier, M. Prehistoria de San Juan. (Ansilta, 2000).
Gil, A. F., Neme, G.A \& Tykot, R. H. Isótopos estables y consumo de maíz en el Centro Occidente Argentino: Tendencias temporales y espaciales. Chungara 42, 497-513 (2020).

Gil, A. F., Giardina, M. A., Neme G. A. \& and Ugan A. Demografía humana e incorporación de cultígenos en el centro occidente argentino: Explorando tendencias en las fechas radiocarbónicas. Rev. Esp. de Antropol. Am. 44,523-553 (2014).

Guo, X., et al. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts. BMC Genomics 8, 228 (2007)

Hofreiter, M., Collins, M., \& Stewart, J. R. Ancient biomolecules in Quaternary palaeoecology. Quat. Sci. Rev. 33, 1-13 (2012).

Huang, D.W., Sherman, B.T., Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 4, 44-57 (2009).

Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L., \& Orlando, L. mapDamage2. 0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682-1684 (2013).

Korneliussen, T. S., Albrechtsen, A., \& Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC
Bioinform.15, 356 (2014).
Lagiglia, H. Nuevos fechados radiocarbónicos para los agricultores incipientes del Atuel. In: Actas del XII Congreso Nacional de Arqueología Argentina(ed.Marín, C. D.), 3,239-250 (Universidad Nacional de La Plata,1999).

Lawson, D. J., Hellenthal, G., Myers, S., \& Falush, D. Inference of population structure using dense haplotype data. PLoS Genet. 8, e1002453 (2012).

Lema, V. Domesticación vegetal y grados de dependencia ser humano-planta en el desarrollo cultural pre hispánico del Noroeste argentino. PhD Thesis at Universidad Nacional de La Plata, Argentina, 2009.

Lema, V. Confluencia y emergencia: domesticación y prácticas de manejo del entorno vegetal en la frontera. In: Actas del XVII Congreso Nacional de Arqueología Argentina -Arqueología Argentina en el Centenario de la Revolución de Mayo (eds. Bárcena, R. \& Chiavazza, H.) , 3, 1043-1048 (2010).

Lema, V. Non domestication cultivation in the Andes: plant management and nurturing in the Argentinean Northwest. Veg. Hist. Archaeobot. 24, 143-150 (2015).

Lema, V. Geografías y prácticas: plantas que circulan, que se quedan y que se van para no volver. In Arqueología de la vertiente oriental surandina: interacción macro-regional, materialidades, economía y ritualidad (eds.Ventura, B.,Ortiz G. \& Cremonte, B.) 267-276 (Sociedad Argentina de Antropología, Buenos Aires, 2017).

Li, H., \& Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760 (2009).

Li, H., et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078-2079 (2009)..
Li, N. \& Stephens, M. Modeling linkage disequilibrium and identifying recombination hotspots using singlenucleotide polymorphism data. Genetics 165, 2213-2233 (2003).

Lindgreen, S. AdapterRemoval: easy cleaning of next-generation sequencing reads. BMC Res. Notes 5, 337 (2012).

Long, A., Martin, P. \& Lagiglia, H. Ground sloth extintion and human occupation at Gruta del Indio, Argentina. Radiocarbon 40, 693-700 (1988).

López Campeny, S.M.L., Romano, A.S. \& Aschero, C.A. Remodelando el Formativo. Aportes para una discusión de los procesos locales en las comunidades agropastoriles tempranas de Antofagasta de la Sierra (Catamarca, Argentina). In: Crónicas materiales precolombinas. Arqueología de los primeros pobladores del Noroeste argentino, 313-353 (Sociedad Argentina de Antropología, Buenos Aires, 2017)

McKenna, A., Hanna, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing nextgeneration DNA sequencing data. Genome Res., 20, 1297-1303 (2010).

Meyer, M. \& Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc., 2010, pdb-prot5448 (2020).

Michieli, C. T.. Arqueología de Angualasto: historia, ruinas y cóndores (Facultad de Filosofía, Humanidades y Artes Universidad Nacional deSan Juan, 2015).

Michieli, C. T. Aprovechamiento del agua en las instalaciones "Aguada" de la Provincia de San Juan: nuevas evidencias. Anti, perspectivas y proyectos culturales de América. 85-98 (Inter-American Committee on Ports Buenos Aires, 2016).

Oliszewski, N., Martínez, J.G.,Arreguez, G., Gramajo Bühler, M. \& Naharro, E. "La transición" vista desde los valles intermontanos del noroeste argentino: nuevos datos de la Quebrada de Los Corrales (El Infiernillo, Tucumán, Argentina). Chungara Revista de antropología Chilena 50,71-86 (2018).

Oliszewski, N., Martínez, J. \& Caria M. Ocupaciones prehispánicas de altura: el caso de Cueva de los Corrales 1 (El Infiernillo, Tafí del Valle, Tucumán). Relac. Soc. Argent. Antropol. 33, 209-221 (2008).

Oliszewski, N. \& Arreguez G. Los recursos vegetales alimenticios de la Quebrada de Los Corrales en El Infiernillo, Tucumán, durante el 1° milenio d.C. Comechingonia 19111-140 (2015).

Oliszewski, N. \& Babot P. Procesos de selección del poroto común en los valles altos del noroeste argentino en tiempos prehispánicos. Análisis micro y macroscópico de especímenes arqueobotánicos. In: Avances y desafíos metodológicos en arqueobotánica: miradas consensuadas y diálogos compartidos desde Sudamérica (eds.Belmar C. \& Lema, V.) 301-324 (Facultad de Patrimonio Cultural y Educaciòn Universidad SEK Chile, 2015).

Paradis, E., Claude, J., \& Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290 (2004).

Quinlan, A. R. \& Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842 (2010).

Reimer, P.J., et al. IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon 51,1111-50 (2009).

Renaut, S. \& Rieseberg, L. H. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other compositae crops. Mol. Biol. Evol. 32, 2273-2283 (2015).

Rendón-Anaya, M., et al. Genomic history of the origin and domestication of common bean unveils its closest sister species. Genome Biol 18, 60 (2017)..

Rodríguez, M.F. Los grupos humanos y las plantas en la Puna meridional argentina: arqueobotánica de Antofagasta de la Sierra. Intersecciones en Antropología 14, 315-339 (2013).

Roig, Fidel A. Frutos y semillas arqueológicos de Calingasta, San Juan. In: La cultura de Ansilta.(ed. Gambier, M.) 216-250 (Instituto de Investigaciones Arqueológicas y Museo San Juan, 1977).

Schmutz, J., et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet., 46, 707 (2014).

Schubert, M., et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX.Nat. Prot. 9, 1056 (2014).

Semper, J. \& Lagiglia, H. Excavaciones arqueológicas en el Rincón del Atuel. Revista Científica de Investigaciones 1,89-158 (1968).

Slotte, T. The impact of linked selection on plant genomic variation. Brief. Funct. Genom., 13, 268-275 (2014).

Somonte, C. \& Cohen, M. L. Reocupación y Producción Lítica: un aporte a la historia ocupacional de los recintos 3 y 4 del sitio agropastoril Punta de la Peña 9 - Sector III (Antofagasta de la Sierra, Catamarca, Argentina). Revista Werken 9,135-158 (2006).

Storey, J. D. \& Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440-9445 (2003).

Tajima, F. "Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism." Genetics 123: 585-95 (1989).

Vieira, F. G., Fumagalli, M., Albrechtsen, A., \& Nielsen, R. Estimating inbreeding coefficients from NGS data: impact on genotype calling and allele frequency estimation. Genome Res. 23, 1852-1861 (2013)

