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Abstract: Flexure hinges are widely used in mechanical devices, especially for micro- or even nano-
scale applications, where conventional joints based on conjugate surfaces prove unsuitable. However,
to achieve accurate motion of devices whose joints are flexure hinges, knowledge of stiffness models
that correlate applied forces or bending moments with the resulting displacements is required.
Nonlinear bending models are typically too complex and difficult to implement. Therefore, it is
preferred to use linear models, which admit analytical solutions. The purpose of this paper is to show
what is lost in terms of accuracy in reducing a nonlinear bending stiffness model associated with
a flexure hinge when simplifications are made to obtain an analytical solution. An analysis of the
simplification process leading to a linear stiffness model and its analytical solution is presented. From
this study arises an increased awareness of flexure joints in terms of the accuracy obtained with their
stiffness models, suggesting important information to the user in choosing the level of complexity
required to model them in a specific application. A comparison between analytical and numerical
results is provided in the form of maps and tables so as to make that choice as clear as possible.

Keywords: flexure hinges; large displacements; stiffness model; compliance model

1. Introduction

In traditional mechanics, mechanisms usually consist of rigid links connected by joints
based on the principle of conjugate surfaces, typically lubricated and in sliding contact.

Recent research efforts have been directed toward designing mechanisms and me-
chanical systems at different scales, from macro to nano. However, they typically have
some drawbacks, such as assembly, friction, and lubrication problems. Among the tech-
nical solutions proposed to overcome them, compliant mechanisms (CMs) have become
increasingly popular in mechanical design, especially for micro and nano manipulators in
the measurement industry. CMs are mechanisms in which conventional kinematic pairs are
replaced by flexure hinges [1]. They have been extensively studied in the scientific literature,
with examples in many fields of application and with different objectives: mechanisms fea-
turing constant force [2] and multistable equilibrium [3], micro-electromechanical systems
(MEMS) [4], positioning stages and precision grippers [5–7], micro/nano manipulators [8],
fast servo tools for precision machining [9], servo valves [10] and other devices in the fields
of energy harvesting [11], micro-vibration suppression [12], alignment of optics and robotic
actuation [13], and many others.

In general, planar CMs have received more attention than their spatial counterparts.
In fact, the former are more popular because they can be easily manufactured with EDM
(Electrical Discharge Machining) technology. Moreover, their position kinematics can
be more easily modeled, allowing for easier implementation in small-scale mechatronic
systems that make use of flexures.

Many are the geometries of flexure hinges that have been studied: circular [14],
elliptical [15], corner-filleted [16], parabolic and hyperbolic [17], cycloidal [18], filleted V-
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shaped [19], conical with a generalized model [20,21] and various hybrid flexure hinges [22,23].
Some of these geometries are shown in the chart of Figure 1.

(a) circular (b) corner-filleted (c) elliptical (d) right-circular corner-filleted

(e) right-circular elliptical (f) V shape (g) hyperbolic (h) parabolic

Figure 1. Chart of the most frequent geometries of flexures.

Many techniques and methods have been proposed to study various flexure hinges
and compliant mechanisms, especially in the linear field. Some of them are based on
elastic beam theory [24–26], some on stiffness and compliance matrices [27,28], some on
elliptic integrals [29–31] and Castigliano’s theorem [17,23]. Ling et al. [32] proposed a
classification of the various methods based on the objectives of the analysis at hand, such
as the need for static or dynamic models of CMs [33–35]. The search for analytical models
that describe the behavior of flexure hinges is of great use. In controllers of compliant
mechanisms, easy-to-implement control logic based on kinematic models that are simple
and quick to compute is required. Although finite element models typically provide more
accurate solutions than analytical models, the former are usually implemented in dedicated
simulation environments and require more computation time. In closed kinematic chain
systems where there are many joints, it becomes crucial to have kinematic models of the
whole mechanism that quickly and accurately provide the relation between the actuated
joints and the end-effector operating in the mechanism workspace. Therefore, the simpler
the model of the joint turns out to be, the simpler the model associated with the mechanism
will be.

In the field literature, much more attention has been given to analyses of flexure hinges
in small deformations. In contrast, only a small fraction of the papers have proposed studies
on flexure hinges in large deformation [36–40].

In the present work, the bending of a flexure joint with a variable profile is modeled
in large displacements by means of the Euler–Bernoulli beam Elastica Theory [41]. Some
simplifications are applied to the nonlinear model to arrive at a model that can be solved
in analytical form. The simplification process is described in detail to understand what is
neglected in the process of obtaining an analytical solution and what it entails. In fact, each
simplification step results in a loss of accuracy of the stiffness model used for the flexure
joint. In this work, an analytical solution is first found for a flexure with any profile. Then,
this solution is applied to a flexure hinge with a rectangular section and an elliptical profile.
An extension to other geometries is quite straightforward. Toward the end of the paper, a
comparison is made between the results of the analytical solution of the simplified model
and the numerical solution of the complete nonlinear model. The results are proposed in
the form of maps and tables to appreciate the effect of varying different parameters on
the accuracy of the stiffness model chosen for the flexure joint of interest. An example of
how to use the information reported in this paper is shown in [42], where a case study is
proposed to provide instructions for designing a flexure hinge with given specifications.

2. Nonlinear Bending of a Straight Beam
2.1. Large Displacement Model of a Planar Beam

This work starts from a straight axis Euler–Bernoulli beam of length L in the plane xy,
as shown in Figure 2 on the left, aligned with the x-axis. It follows that all results shown
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below refer to beams that meet the assumptions of Euler–Bernoulli’s model. Furthermore,
the study of flexures characterized by homogeneous and isotropic material under nominal
temperature conditions is addressed.

A Bdx x

y

L

B’

A’ ζ

ds

dζ

dψθ

s
θ

ψ

P’

Figure 2. Undeformed and deformed states of a straight axis beam (left) and load conditions (right).

The undeformed state of the beam represents the reference condition, with points
A and B being its two ends. Under static loads acting on the mentioned plane the beam
changes geometry and assumes a different shape, where the new positions A′ and B′

of its extremes result in accordance with the planar load condition shown in Figure 3,
namely a force R0 in a generic direction of the plane xy and a bending moment M f
about its orthogonal z-axis applied at point B, or more generally at point B′ after the
beam deformation.
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Figure 3. Static load conditions.

A generic infinitesimal element dx in the beam reference condition deforms into the
element ds, which assumes the new coordinate position ζ and ψ. The two differentials
dx and ds are related by the following relationship: ds = dx(1 + ε), where ε is the axial
deformation of the beam.

Be M the axial bending moment, E the Young’s modulus, Iz the moment of inertia of
the beam section, and κ the beam curvature. Two definitions of curvature can be found in
the literature: the mechanical curvature and the geometric curvature, denoted as κm and κg
respectively [43]:

κm =
dθ

dx

κg =
dθ

ds
=

dθ

dx
dx
ds

=
κm

1 + ε

. (1)

In the scientific literature, κm is commonly used [44–46] for many reasons, in particular
for its simplicity and its feature of isolating the effect of pure bending from curvature
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variations produced by stretching. However, in other works [47–49] κg is preferred over κm
because it is considered the most correct curvature due to its geometric meaning.

With reference to Figure 3, a static analysis of a portion of the beam, from the generic
section P′ to its end B′ where external loads are applied, provides the moment equation
with respect to ds or dx:

dM
ds

= R0 sin (θ − ϕ)

dM
dx

= (1 + ε)R0 sin (θ − ϕ)

, (2)

where ϕ is the slope of vector R of magnitude R0 with respect to the x-axis.
Exploiting the curvature-moment relationship and the definition of curvature, the

following differential equations can be found:

θ′′(x) + I′z(x)
Iz(x) θ′(x) = R0

EIz(x) [1 + ε(x)] sin [θ(x)− ϕ] (κ = κm)

θ′′(x) +
[

I′z(x)
Iz(x) −

ε′(x)
1+ε(x)

]
θ′(x) = R0

EIz(x) [1 + ε(x)]
2

sin [θ(x)− ϕ]
(
κ = κg

) (3)

With the assumption of an inextensible beam, the axial deformation ε is negligible.
Therefore, κm = κg = θ′(x) and both equations in Equation (3) become the following
reference equation:

θ′′(x) +
I′z(x)
Iz(x)

θ′(x) =
R0

EIz(x)
sin [θ(x)− ϕ] (4)

2.2. Dimensionless Model of a Planar Beam

Equation (4) is a nonlinear differential equation with variable coefficients and can only
be solved numerically. The search for an analytical solution is only possible if some of its
terms are negligible. It follows that a comparison regarding the relevance of each term of
the differential equation is required.

In order to highlight and compare the weight of the various terms that multiply θ(x)
and its derivatives, Equation (4) can be made dimensionless. This processing has the
ultimate goal of simplifying the lower-order terms and subsequently seeking an analytical
solution when available. Therefore, it is assumed that:

x = x0 x̃
Iz = Iz(x) = Iz[x(x̃)] = Iz(x̃) = Iz0 Ĩz

, (5)

where x0 is the dimensional part of x, whereas x̃ is its dimensionless part. Similarly for Iz0
and Ĩz. Moreover, ε(x) and θ(x) in Equation (4) are dimensionless as well by definition,
with ε(x) = ε̃(x̃) and θ(x) = θ̃(x̃).

In accordance with the previous relations and by means of their substitution in Equation (4),
a dimensionless form of the equation can be written as:

θ̃′′(x̃) +
Ĩ ′z (x̃)
Ĩz(x̃)

θ̃′(x̃) =
R0 x2

0

EIz0 Ĩz(x̃)
sin
[
θ̃(x̃)− ϕ

]
. (6)

3. Analytical Solution of the Flexure Joint Bending Stiffness Model
3.1. Nonlinear Model Simplification and Analytical Solution

If steel is taken as reference material, it can be assumed that the maximum rotation θ
will always be confined below the maximum rotation at the yield strength in order to avoid
permanent shape deformations. This means that the sine function in Equation (6) can be
expanded in Taylor series, namely:

sin
[
θ̃(x̃)− ϕ

]
≈ cos(ϕ)θ̃(x̃)− sin(ϕ), (7)
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On the basis of all these assumptions, the following simplified form is obtained:

θ̃′′(x̃) +
Ĩ′z(x̃)
Ĩz(x̃)

θ̃′(x̃) + a(x̃)θ̃(x̃) = b(x̃), (8)

where

a(x̃) = −
Ax2

0

EIz0 Ĩz(x̃)
cos(ϕ)

b(x̃) = −
Ax2

0

EIz0 Ĩz(x̃)
sin(ϕ)

. (9)

An equation with variable coefficients, such as Equation (8), admits an analytical
solution when the zero-order derivative term is identically null. Therefore, on a preliminary
basis it is assumed that the maximum value of |a(x̃)| is small and negligible when compared

to the coefficients of the other terms in Equation (8), namely “1” and
∣∣∣ Ĩ′z(x̃)

Ĩz(x̃)

∣∣∣ for the second-

and first-order derivatives respectively.
It should be noted that |a(x̃)| and |b(x̃)| differ only for their sinusoidal term, namely

sin(ϕ) and cos(ϕ) respectively. If sin(ϕ) ≤ cos(ϕ), then coefficient |b(x̃)| should be
neglected as well. However, the presence of the term b(x̃) does not affect the existence
or non-existence of the analytical solution. On the contrary, it only improves its quality.
Therefore, it will be considered, regardless of the value of the angle ϕ.

Finally, a further simplified version of Equation (8) is obtained:

θ̃′′(x̃) +
Ĩ′z(x̃)
Ĩz(x̃)

θ̃′(x̃) = b(x̃), (10)

whose domain and validity have to be verified in order to be considered acceptable, as
shown in the following.

Finally, the analytical solution can be made explicit, bearing in mind that it relates to a
simpler model than the complete nonlinear one given in Equation (6). In fact, the solution
of Equation (10) has the following form:

θ̃(x̃) =
∫ x̃

x̃i

c1 + c2 τ

Ĩz(τ)
dτ, (11)

where x̃i and c1 are coefficients that result from two boundary conditions applied to
Equation (10) related to the beam constraints, whereas c2 is:

c2 = b(x̃) Ĩz(x̃) = −
Ax2

0 sin(ϕ)

EIz0
. (12)

3.2. Boundary Conditions

A beam with a generic double symmetric profile along the axis direction x and a
cross-section with a rectangular shape in the yz plane is considered.

A natural consequence of such a choice is considering elastic deformations only within
the xy plane. Given the double symmetry of the beam profile along its axis, it is convenient
to place a reference system in the center of symmetry, as shown in Figure 4. It follows that
x̃ ∈ [−1; 1].



Appl. Sci. 2023, 13, 9785 6 of 24

y

xO

Figure 4. Beam geometry and local reference frame.

In order to study Equation (10), boundary conditions must be imposed. The study
case of a beam fixed at one end and free to move at the other end is proposed. These two
conditions are summarized as:

θ̃(−1) = 0

θ̃′(1) =
x0M0M̃(1)
EIz0 Ĩz(1)

, (13)

where the second relation is obtained by applying a bending moment M(x) = EIz(x)κ(x)
with M(x) = M0M̃(x̃). From Equations (11) and (13), the analytical solution of a beam
subjected to static loads is obtained:

θ̃(x̃) =
∫ x̃

−1

[
x0M0M̃(1)
EIz0 Ĩz(τ)

+ c2
τ − 1
Ĩz(τ)

]
dτ. (14)

4. Bending Stiffness Model of a Flexure Hinge

A simple bending stiffness model of a flexure hinge with a generic profile along its axis
is useful when it is part of a more complex mechatronic device, and a user needs information
about the driving forces or bending moments responsible for a desired kinematic behavior.

A relation between the maximum angular displacement and the known acting loads in
terms of a stiffness coefficient can be derived from Equation (14) after small arrangements.
The angular displacement of the joint is evaluated in x̃ = 1, and the moment applied to the
free end of the beam is highlighted, leading to:

M f = Kθ f + ∆M, (15)

where

M f = M0M̃(1), θ f = θ̃(1),

K =
1∫ 1

−1

x0

EIz0 Ĩz(τ)
dτ

, ∆M =

c2

∫ 1

−1

(1− τ)

Ĩz(τ)
dτ∫ 1

−1

x0

EIz0 Ĩz(τ)
dτ

.
(16)

Coefficients K and ∆M depend on the geometry of the beam, its material, and the
amplitude of loads and moments applied to its free end.

In summary, several assumptions have been made to simplify both the differential
equations in Equation (3) leading to Equation (10). Finally, the latter can be solved analyt-
ically. This simplification process has led toward a linearization of the nonlinear model,
and, in addition, it allows us to understand under which conditions the solution of the
linear problem is valid. Such a linear solution is formally the same as that proposed by
Chen et al. [50] for an elliptic flexure. In the following section, a more detailed investi-
gation of the conditions of validity of the linear analytical solution for an elliptic flexure
is proposed.
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4.1. Case Study: An Elliptical Flexure Hinge

An example of the application of the model shown in the previous sections allows us
to deepen the study in a real physical case. A flexure with a rectangular section and an
elliptical profile under static loads is proposed as a case study, as shown in Figure 5. The
cross-section of the flexure hinge changes its dimension with x; in fact, even if its horizontal
side l is constant, its height is variable according to 2y(x). The smallest section in x = 0
has a thickness of t. The major and minor semi-axes of the ellipsis in Figure 5 are ax and
ay, respectively.

y

xO

A

A

A–A

F

Q
Mf

t

ax

ay

l
2y(x)

Figure 5. Elliptical flexure hinge with applied static loads.

The choice of elliptical geometry allows us to give an expression to the dimensional
coefficients in Equation (5), namely x0 and Iz0. The former can be easily identified, in fact:

x = ax x̃ with x̃ ∈ [−1; 1]. (17)

The latter requires more processing, following a sequence of logical steps. It starts
from the expression of an elliptical profile, as shown in [15]:

y(x) = ay

(1 + βy
)
−

√
1−

(
x
ax

)2
. (18)

Then, Equation (18) is converted into a new function of x̃ by means of Equation (17):

ȳ(x̃) = ay

[(
1 + βy

)
−
√

1− x̃2
]
= y0 ỹ(x̃), (19)

where
βy =

t
2ay

; y0 = ay; ỹ(x̃) =
(
1 + βy

)
−
√

1− x̃2 . (20)

In Equation (19) ỹ(x̃) is the positive dimensionless y coordinate of the elliptical pro-

file. Finally, said Iz(x) = l[2y(x)]3

12 the moment of inertia of the cross section about the
z-axis, which varies with x, and using both Equations (18) and (19), it follows the required
expression of Iz0 and Ĩz(x̃). Their product provides Īz(x̃) according to Equation (5):

Iz0 =
2
3

la3
y; Ĩz(x̃) =

[(
1 + βy

)
−
√

1− x̃2
]3

= [ỹ(x̃)]3 . (21)

4.2. Conditions of Applicability of the Linear Model

Once the profile of the flexure hinge is known, the applicability of the analytical model
provided in Equation (14) can be verified by looking at the coefficient a(x̃). An analysis of
this term means understanding under which conditions the assumptions of its negligibility
can be considered valid, namely when:

max
x̃∈[−1;1]

|a(x̃)| � 1

max
x̃∈[−1;1]

|a(x̃)| � min
x̃∈[−1;1]

∣∣∣∣∣ Ĩ′z(x̃)
Ĩz(x̃)

∣∣∣∣∣ . (22)
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From the first of Equation (22) it is:

a2
x

EIz0

|F|
min

x̃∈[−1;1]
Ĩz(x̃)

� 1. (23)

It is easy to verify that min
x̃∈[−1;1]

Ĩz(x̃) = Ĩz(0) = βy
3 by looking at the expression of the

terms involved. A convenient substitution in Equation (23) can be made by introducing the
following dimensionless parameters, as in [15]:

ρ =
ax

ay
; µF =

F
E l ax

. (24)

The first indicates how far the elliptical profile deviates from a circular profile, repre-
sented by ρ = 1. The second allows the value of the axial force to be dimensionless.

Taking advantage of expressions in Equations (20) and (24), from Equation (23) the
following condition on µF can be easily found:

|µF| �
2
3

(
βy

ρ

)3

. (25)

The second condition in Equation (22) can be re-elaborated as follows:

3
2

(
ρ

βy

)3
|µF| � min

x̃∈[−1;1]

∣∣∣∣∣ Ĩ′z(x̃)
Ĩz(x̃)

∣∣∣∣∣. (26)

Said c(x̃) = Ĩ′z(x̃)
Ĩz(x̃)

, its trend with a single zero in x̃ = 0, due to the fact that it is an odd

function as it will be shortly demonstrated, can be observed in Figure 6. It follows that:

min
x̃∈[−1;1]

∣∣∣∣∣ Ĩ′z(x̃)
Ĩz(x̃)

∣∣∣∣∣ = 0. (27)

–1 1
x~

~c(x)

Figure 6. Trend of function c(x̃).

The result just obtained demonstrates that there is certainly a range of x̃ in which the
condition in Equation (26) is not verified. What follows is dedicated to finding the limits of
this range.

A look at the expressions in Equation (21) reveals that Ĩz(x̃) is positive for x̃ ∈ [−1; 1]
with βy ∈ ]0; 1] and that it is an even function, namely Ĩz(−x̃) = Ĩz(x̃). Furthermore, its

derivative is an odd function, namely − Ĩz
′
(−x̃) = Ĩz

′
(x̃) or also Ĩz

′
(−x̃) = − Ĩz

′
(x̃).
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It follows that c(x̃) is an odd function, as mentioned above:

c(−x̃) =
Ĩz
′
(−̃x)

Ĩz(−̃x)
= − Ĩz

′
(x̃)

Ĩz(x̃)
= −c(x̃). (28)

A similar analysis can be addressed for a(x̃). According to Equation (9), it is easy to
verify that it is an even function, in fact:

a(−x̃) = −Aa2
x cos (ϕ)

EIz0

1
Ĩz(−x̃)

= −Aa2
x cos (ϕ)

EIz0

1
Ĩz(x̃)

= a(x̃). (29)

Its sign depends on the sign of cos (ϕ). Assuming that the latter is positive, it follows
that a(x̃) < 0 for x̃ ∈ [−1; 1], as shown in Figure 7, whereas c(x̃) ≤ 0 for x̃ ∈ ]−1; 0].
Therefore, the two functions a(x̃) and c(x̃) may intersect only within the range ]−1; 0] of x̃,
as shown in Figure 8. It follows that a(x̃) is certainly smaller than c(x̃) for x̃ ∈ [0; x̃z].

–1 ~1
x

~a(x)

0

Figure 7. Trend of function a(x̃) when cos (ϕ) > 0.

x~xz
~–1

a(x)~

c(x)~

0

Figure 8. Intersection between functions a(x̃) and c(x̃).

A deeper investigation is needed for x̃ ∈ [−1; 0]. A difference function can be de-
fined as:

d(x̃) = c(x̃)− a(x̃). (30)

An analytical study of Equation (30) to find its zeros is too complex because it re-
quires a sixth-degree polynomial to be solved. Under condition Equation (25), a linear
approximation of Equation (30) by means of a Taylor series and a subsequent search for its
zero provides:

x̃z = −
βy

2

(
ρ

βy

)3
µF. (31)
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Therefore, in the range −1 ≤ x̃ ≤ 0 the condition |a(x̃)| < |c(x̃)| is met when
−1 ≤ x̃ < x̃z. The property of symmetry of both functions |a(x̃)| and |c(x̃)| allows to
state that:

|a(x̃)| < |c(x̃)| for x̃ ∈ [−1; x̃z[ ∧ ]−x̃z; 1]. (32)

Since it is required that |x̃z| << 1, the following relationship must hold:

|µF| �
2
βy

(
βy

ρ

)3

. (33)

Comparing conditions in Equations (25) and (33) it turns out that:[
2
3

(
βy

ρ

)3
]

/

[
2
βy

(
βy

ρ

)3
]
=

βy

3
< 1; (34)

therefore the condition in Equation (25) is more restrictive than the one in Equation (33).
Furthermore, the average values of a(x̃) and c(x̃) in the range [−1; 0] of x̃ (or x̃ ∈ [0; 1]
when cos(ϕ) < 0) are:

|a(x̃)| =
3

[
3πδ2

y + 6
√

βyγy + 8
√

β3
yγy + 4

√
β5

yγy + 6δ2
y tan−1

(
1√

βyγy

)]
8δy
(

βyγy
) 5

2
ρ3|µF|

|c(x̃)| = −3 ln
(

βy

δy

) , (35)

where δy = 1 + βy and γy = 2 + βy. Pursuing the goal of having |a(x̃)| << |c(x̃)|, it
follows that:

|µF| <<
8δy
(

βyγy
) 5

2

3

[
−3πδ2

y − 6
√

βyγy − 8
√

β3
yγy − 4

√
β5

yγy − 6δ2
y tan−1

(
1√

βyγy

)] 1
ρ3 . (36)

It is easy to verify that the condition in Equation (25) is more restrictive than the one
in Equation (36) for any βy ∈ ]0; 1]. Under the constraint in Equation (25) the condition

max
x̃∈[−1;1]

|a(x̃)| � min
x̃∈[−1;1]

∣∣∣ Ĩ′z(x̃)
Ĩz(x̃)

∣∣∣ is true for their average values. Since the interval x̃ ∈ [x̃z;−x̃z]

is particularly small if compared with the whole range, assuming true the condition in
Equation (25), the hypothesis of neglecting a(x̃) is conveniently considered admissible.

To summarize, for an elliptical flexure joint, the analytical solution Equation (14) is
valid if the dimensionless axial load µF complies with Equation (25). It can be assumed
that this condition can also be extended to flexure with a profile other than elliptical.

4.3. Solution of the Model for an Elliptical Flexure Hinge

An analytical expression for θ̃(x̃) can be found from solving the integral in Equation (14),
according to the results presented by Chen et al. [50], with some reworking. For the sake of
conciseness, a compact form is here proposed:

θ̃(x̃) =
ρ3M f

E a2
x l

f
(

x̃, βy
)
+ µQ ρ3g

(
x̃, βy

)
. (37)

where µQ is defined, as analogously done for µF in Equation (24) referring to F, as
µQ = Q

E l ax
. In Figures 9 and 10, functions f

(
x̃, βy

)
and g

(
x̃, βy

)
are represented for

some discrete values of βy. As known in the literature [51], it is:

σ(x) = −E κ(x) y(x), (38)
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where σ(x) represents the axial stress in the beam. The negative sign is due to the convention
chosen; namely, a positive curvature means a counterclockwise rotation of the beam with
the upper fibers compressed. Conventionally, a compression tension is considered negative.

200

– 1.0 – 0.5 0.5 1.0
x

400

600

800
f (x, β y )

βy= 0.1
βy= 0.2
βy= 0.3

~

~

Figure 9. Trend of function f in terms of x̃ and βy.

– 1.0 – 0.5 0.5 1.0
x

200

400

600

800
g (x, β y )

βy= 0.1
βy= 0.2
βy= 0.3

~

~

Figure 10. Trend of function g in terms of x̃ and βy.

Equation (38) can be updated with the simplification made on κ(x) and can be made
dimensionless as follows:

σ(x̃) = −E
ρ

θ̃′(x̃) ỹ(x̃). (39)

In the first place, it is assumed that the most stressed section of the flexure is in x̃ = 0.
When the maximum stress in the elastic domain is set in such a section, given by the yield
stress σsn of the material, the maximum moment that can be applied to the free end of the
beam can be found for positive values of y(x) as a function of ρ, βy and Q:

M f ,max = −axQ± 2
3

a2
xl
(

βy

ρ

)2

σsn, (40)

where the positive sign in Equation (40) has to be chosen to have a counterclockwise
rotation, whereas the negative sign has to be chosen to have a clockwise rotation.

Such equation results from a combination of Equations (5), (12), (14), (21) and (24) with
Equation (39). It is demonstrated here below that the hypothesis of having the maximum
stress in x̃ = 0. From this relation, Equation (40) is more valid when small values of µQ are
considered in the module.

First of all, a development in the Taylor series of the stress σ(x̃) in Equation (39) up to
the second order allows to look for stationary points. The maximum of σ(x̃) is obtained in:

x̃s = −
βy

2
1

1 +
M f

l a2
xµQ E

. (41)
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The expression of the maximum moment M f ,max, assuming that a positive moment
generates a counterclockwise rotation inducing a compressive tension on the fibers with
positive y(x̃), evaluated when σ(x̃s) = −σsn, is:

M f ,max = −axQ±

1
3

a2
x l
(

βy

ρ

)2
σsn +

√√√√[1
3

a2
x l
(

βy

ρ

)2
σsn

]2

−
βy

4
(axQ)2

. (42)

The positive sign in Equation (42) has to be chosen to have a counterclockwise rotation,

as already mentioned. The term in square brackets exists if |µQ| ≤ 2
3

β3/2
y
ρ2

σsn
E . The constraint

on |µQ| imposes a limit to the possible values of Q. In particular, it is:

µQ,max = 2
3

β3/2
y
ρ2

σsn
E ; µQ,min = − 2

3
β3/2

y
ρ2

σsn
E . (43)

A look at Equation (42) reveals that its expression tends to Equation (40) when the
second term under the square root is negligible with respect to the first; namely, when:

|µQ| <<
2
3

β3/2
y

ρ2
σsn

E
. (44)

Therefore, the flexure is the more stressed at its geometric center; the smaller µQ is
in modulus.

A final investigation can be directed towards the search for the expressions and trends
of K and ∆M, presented above. By calculating the integrals in Equation (16) and expressing
them in terms of the nondimensional parameters ρ, βy and Q, it is:

K =
4 E a2

x l
3 ρ3

δy
(

βy γy
) 5

2

6
√

βyγy + 8
√

β3
yγy + 4

√
β5

yγy + 3δ2
y
[
π + 2csc−1

(
δy
)]

∆M = −axQ

. (45)

It can be observed from Equation (45) that, except for the Young’s Modulus, coefficient
K depends only on the beam geometry, whereas the dependence on the loads can be found
only in ∆M. The stiffness coefficient K mainly depends on the beam geometry. Its trend
is shown in Figure 11 when βy and ρ vary. In addition, it can be observed that in order to
have a low value of stiffness K, which corresponds to a large rotation without excessive
tension of the material, high values of ρ are preferred and, conversely, low values of βy.

0.1 0.2 0.3 0.4
βy

0.01
0.02
0.03
0.04
0.05
0.06

3 K
4 ax2l E

ρ = 0.8
ρ = 1
ρ = 1.2

Figure 11. Trend of function K in terms of βy and ρ.

Regarding parameter ∆M, it is easy to verify that when it is null, the classical linear
relation between M f and θ f is obtained, namely: M f = Kθ f . Moreover, by looking at
the second expression in Equation (45), the right side of the equation represents the first
addendum in Equation (42). With reference to the results presented in Equations (42) and (44)
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and remembering the definition of µQ, the following expressions of M f and Q can be imposed
introducing the two coefficients αQ and αM:

Q = αQElaxµQ,max

M f = αM M f ,max

(46)

where αM ∈ [0; 1] and αQ ∈ [−1; 1]. The smaller αQ is in modulus, the more the maximum
stress is in the middle section of the flexure joint. On the other hand, the smaller αM is, the
further away from the yield condition.

An analytical study of θ f allows us to evaluate its maximum value. In particular, it
occurs when αM = 1 and αQ = 0, namely for a pure bending load:

θ f ,max = ±2
3

a2
xl
(

βy

ρ

)2 σsn

K
. (47)

5. Domain of Application of the Linear Model

All the models presented so far are based on the assumption that the flexure hinge
behaves like a beam. Therefore, it must be ensured that this assumption is admissible.

It is certainly known that a three-dimensional solid behaves like a beam when one of
its dimensions is about ten times larger than the other two. The flexure hinge under study
has two constant dimensions (length and depth), whereas the height is variable.

Since the flexure hinge has to be compliant with rotations about the z-axis, its depth
has to result from a compromise between transversal compliance and bending stiffness.

With reference to Figure 5 and Equation (18), the length and the mean height of the
flexure hinge from −x to x are equal to:

L(x) = 2x
H(x) = 1

2x
∫ x
−x 2y(τ)dτ.

(48)

From the previous two relations, the ratio between the length and the mean height is
given by:

r(x) =
4x2∫ x

−x 2y(τ)dτ
(49)

Because the formula for y(x̃) has a complex nonlinear expression, a Taylor series
expansion is used for expression in Equation (49), up to a fourth-order truncation error,
in order to be precise enough but at the same time have a simple resulting expression. It
follows:

rT(x) =
ρ

βy

x
ax
− ρ

6β2
y

(
x
ax

)3
(50)

Imposing the derivative of Equation (50) equal to zero and solving the resulting
equation, the position along the axis of the flexure hinge where the ratio rT(x) is maximum
can be found. In particular, it is:

xr = ±ax
√

2βy

rT,xr =
2
√

2
3

ρ√
βy

. (51)

Assuming the condition rT,xr ≥ 10, the following condition must apply:

ρ ≥ 15

√
βy

2
(52)
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From Equations (39) and (46), it is possible to evaluate the stress in xr. Assuming
αM = 1 and αQ = 0, it follows:

|σx̃r | =
β2

y

2 + β2
y − 2

√
1− 2βy(1 + βy)

σsn (53)

where x̃r =
x
ax

.

A limit for βy is obtained from the previous relation, in particular βy ∈
]
0; 1

2

]
. Evalu-

ating the mean absolute value of the stress in Equation (53) in the range mentioned for βy,
a value of about 0.2σsn is obtained.

It follows that the area of the flexure hinge with length equal to 2ax
√

2βy, namely
2|xr|, is the most stressed. Therefore, it is correct to consider it as the reference hinge length
to evaluate the depth to be assigned to the joint, not the whole length of the flexure hinge.

Assuming 2|xr |
l = rT,xr and that condition Equation (52) is verified, then it follows:

l ≤
√

2
5

√
βy ax (54)

6. Comparison of Analytical and Numerical Solutions

In this section, a comparison is presented between the solutions obtained applying the
linear analytical model, solving numerically the second differential equation in Equation (3)
and by means of Finite Element (FE) simulations using the software ANSYS, estimating
the error due to the approximations made. Each simplifying assumption, namely the
negligibility of the axial deformation, the effect of linearization due to small rotations, and
the negligibility of the axial load F, has been considered. In the absence of experimental data,
the values obtained from FE simulations are taken as a reference to evaluate the errors made
from the nonlinear model through the series of approximations. FE analyses were performed
on a three-dimensional elliptical flexure with depth derived from Equation (54) when the
equal sign is taken. They are provided in more detail in a previous work of the same
authors [42]. Still, some information can be recalled here: the model of the flexure hinge was
divided into three parts in order to refine the mesh in the thinnest central area. The whole
number of nodes was about 5 · 105, and a quadratic element with a “Hex Dominant” mesh
method was used in the central area of the flexure hinge. In all the analyses, an elliptical
flexure hinge made of steel with ax = 1 has been taken into account (E = 210 GPa and
σsn = 600 MPa). Finally, the force F acting at the free end of the beam can be defined by
using the expression in Equation (25):

F = αF
2
3

Elax

(
βy

ρ

)3

(55)

where αF ∈ [−1; 1]. The smaller αF is, in modulus, the more the condition in Equation (25)
is verified. That is, the analytical solution well describes the behavior of the flexure joint.

Some cases of interest are presented in the following varying the dimensionless pa-
rameters ρ, βy, αF, αQ and αM in their range of existence: βy ∈

]
0; 1

2

]
,
(
αF, αQ

)
∈ [−1; 1]

and αM ∈ [0; 1]. The proposed studies are not intended to be exhaustive but only to give an
idea of the behavior of an elliptical flexure joint as the most significant parameters change.

6.1. Case I

In this first case study, a fixed value is assigned to ρ, βy, αQ, and αM, while parameter
αF is left free in order to analyze its effect on the rotation θ f of the free end of the beam.
The flexure hinge is considered in the most stressed condition, namely when αQ = 0 and
αM = 1, whereas the values of ρ and βy are chosen respectively equal to 15 and 0.1. The
resulting values of θ f are collected in Table 1, where the superscript + indicates the choice
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of the positive sign in Equation (42). Entirely similar results but mirrored in the signs, in
agreement with the absence of the transversal force Q, are obtained for negative rotations,
in the following indicated by the superscript −.

Table 1. CASE I—Comparison between analytical and numerical models with ρ, βy, αQ and αM fixed
while αF varies.

αF θ+f ,A[
◦] θ+f ,n[

◦] θ+f ,n−ε[
◦] θ+f ,n−T [

◦] θ+f ,n−a(x̃)[
◦] θ+f ,FEM [◦]

1.00 12.605 8.740 8.740 8.731 12.605 8.744
0.50 12.605 10.316 10.316 10.308 12.605 10.322
0.10 12.605 12.069 12.069 12.065 12.605 12.075
0.05 12.605 12.331 12.331 12.329 12.605 12.337
0.01 12.605 12.549 12.549 12.549 12.605 12.555
−0.01 12.605 12.661 12.661 12.662 12.605 12.668
−0.05 12.605 12.892 12.892 12.894 12.605 12.898
−0.10 12.605 13.192 13.192 13.197 12.605 13.199
−0.50 12.605 16.209 16.209 16.264 12.605 16.218
−1.00 12.605 22.582 22.582 23.010 12.605 22.593

αF ∆n,A% δε% δT % δa(x̃)% ∆FEM,A%

1.00 44.224 1.76× 10−7 0.103 44.223 44.16
0.50 22.183 1.27× 10−7 0.086 22.183 22.12
0.10 4.446 3.42× 10−8 0.028 4.445 4.39
0.05 2.223 1.78× 10−8 0.015 2.223 2.17
0.01 0.445 3.66× 10−9 0.003 0.445 0.40
−0.01 0.444 3.72× 10−9 0.003 0.445 0.50
−0.05 2.223 1.92× 10−8 0.017 2.224 2.27
−0.10 4.447 3.98× 10−8 0.036 4.448 4.50
−0.50 22.234 2.72× 10−7 0.342 22.234 22.28
−1.00 44.180 8.32× 10−7 1.895 44.180 44.21

From Equation (47), the constant value of θ f resulting from the analytical solution was
predictable, but the numerical solution presented in Table 1 reveals that θF depends on αF.

In Table 1 the subscripts used in defining θ f have the following meaning: θ f ,A refers
to the analytical value obtained with Equation (47), θ f ,n, θ f ,n−ε, θ f ,n−T and θ f ,n−a(x̃) are
respectively the numerical solutions of the second equation in Equation (3) for the complete
model, a simplified model where only the axial deformation ε is neglected, yet a simplified
model where the trigonometric functions are linearized and eventually another simplified
model where the effect of the axial load F is neglected. As a reference, θ f ,FEM is the
numerical value obtained by means of FE simulations.

In addition, symbols ∆(.)% and δ(.)% in the tables are percentage errors defined as:

∆n,A% = 100

∣∣∣∣∣ θ f ,n − θ f ,A

θ f ,n

∣∣∣∣∣
∆FEM,A% = 100

∣∣∣ θ f ,FEM−θ f ,A
θ f ,FEM

∣∣∣
δε% = 100

∣∣∣∣∣ θ f ,n − θ f ,n−ε

θ f ,n

∣∣∣∣∣
δT% = 100

∣∣∣∣∣ θ f ,n − θ f ,n−T

θ f ,n

∣∣∣∣∣
δa(x̃)% = 100

∣∣∣∣∣ θ f ,n − θ f ,n−a(x̃)

θ f ,n

∣∣∣∣∣.

(56)

From Table 1 and Figures 12 and 13, it can be observed that the approximation of
neglecting ε and the linearization of the trigonometric functions are practically verified in
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the whole range of αF. On the contrary, the negligibility of the effect of the axial load F is
increasingly allowed when αF is small in absolute value. Furthermore, the values obtained
with the FE analyses are in agreement with those obtained numerically. It can also be noted
that the error decreases as αF decreases, which demonstrates the impact of the axial force
on the model accuracy.

– 1.0 – 0.5 0.5 1.0
αF
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θ f , A

+

θ f , n
+

θ f ,n–ε
+

θ f ,n–T
+

θ f ,n–a( x )
+

θ f ,FEM
+

~

Figure 12. CASE I—Trend of θ f evaluated analytically and numerically.
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Figure 13. CASE I—Trend of the various percentage errors.

6.2. Case II

In the second case study, the effects of ρ and βy on the rotation θF are analyzed when
the other parameters are fixed. In particular, their values are chosen as follows: αF = 0.05,
αQ = 0 and αM = 1.

Results are shown in Table 2 and in the sensitivity maps of Figure 14. In the latter,
the values of θF evaluated analytically, numerically, and by means of FE simulations are
shown. Even in this case, the absence of the tangential force Q provides mirrored values
for negative rotations.

From Table 2 and Figure 15, it can be noted that the error decreases as βy decreases
while remaining constant as ρ is varying. Furthermore, it can be observed that the angular
displacements increase when βy decreases and when ρ increases as well.
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Figure 14. CASE II—Trend of θF evaluated analytically, numerically and by FE simulations varying ρ

and βy.
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Figure 15. CASE III—Trend of θF evaluated analytically, numerically and by FE simulations, varying
αQ and αM.
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Table 2. CASE II—Comparison between analytical and numerical models with αF, αQ and αM fixed
while ρ and βy vary.

ρ βy θ+f ,A[
◦] θ+f ,n[

◦] θ+f ,n−ε[
◦] θ+f ,n−T [

◦] θ+f ,n−a(x̃)[
◦] θ+f ,FEM [◦]

5 0.050 6.021 5.922 5.922 5.922 6.021 5.929
5 0.175 3.113 3.029 3.029 3.029 3.113 3.074
5 0.300 2.300 2.225 2.225 2.225 2.300 2.301

10 0.050 12.042 11.846 11.846 11.845 12.042 11.849
10 0.175 6.226 6.057 6.057 6.057 6.226 6.077
10 0.300 4.600 4.449 4.449 4.449 4.600 4.483
15 0.050 18.063 17.771 17.771 17.767 18.063 17.773
15 0.175 9.339 9.087 9.087 9.086 9.339 9.099
15 0.300 6.900 6.674 6.674 6.674 6.900 6.696

ρ βy ∆n,A% δε% δT % δa(x̃)% ∆FEM,A%

5 0.050 1.664 1.28× 10−7 0.003 1.664 1.556
5 0.175 2.792 1.35× 10−6 0.001 2.791 1.279
5 0.300 3.391 3.48× 10−6 0.001 3.390 0.043

10 0.050 1.656 1.60× 10−8 0.011 1.655 1.627
10 0.175 2.789 1.69× 10−7 0.004 2.788 2.453
10 0.300 3.388 4.34× 10−7 0.003 3.388 2.614
15 0.050 1.642 4.70× 10−9 0.024 1.642 1.633
15 0.175 2.783 5.00× 10−8 0.010 2.783 2.639
15 0.300 3.385 1.29× 10−7 0.006 3.385 3.051

6.3. Case III

In this last case study, the effects of αQ and αM on the rotation θF are analyzed when
the other parameters are fixed. In the analyses, the following parameter values are chosen:
αF = 0.05, ρ = 15 and βy = 0.1.

Results are shown in Tables 3 and 4 and in the sensitivity maps of Figure 15. From
the tables and the figure, it can be noted that the error decreases as αQ, in absolute value,
decreases and αM increases. Furthermore, it can be observed that the angular displacements
increase when αM decreases and when αQ approaches 1 in absolute value.

In Figure 16, the values of the maximum tension σ in the flexure hinge are shown
for different geometries (varying ρ and βy) and different load conditions (varying αQ and
αM). In the first case, the value of tension is quite uniform for the different geometries. It
increases greatly when βy increases and ρ decreases. In the second case, it can be observed,
as expected, that the value of stress is not uniform at the different load conditions. In
particular, the stress increases for small values of αM and when αQ, in absolute value, is
close to 1.

To summarize, tables and figures in all the proposed case studies provide information
about the effect of geometric parameters in the kinematic behavior of a flexure joint, show-
ing the importance of a proper stiffness model that will be required to move it accurately.

Nonlinear models can be typically avoided when small axial forces are applied to the
free end of the flexure hinge, whereas the differences between the FE model and the linear
analytical model become relevant when more important axial forces are involved.

On the contrary, it is evident from the proposed results that the linearization due
to small rotations and the neglection of the term due to the axial deformation are both
noninfluential contributions, at least for the typical rotation range allowed to flexure
hinges. Their removal from the model is then allowed with the aim of obtaining a solvable
formulation in analytical form. A linear model with an analytical solution is, therefore, the
best choice in case axial forces have limited values.
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Table 3. CASE III—Comparison between analytical and numerical models for positive rotations with
αF, ρ and βy fixed while αQ and αM vary.

αQ αM θ+f ,A[
◦] θ+f ,n[

◦] θ+f ,n−ε[
◦] θ+f ,n−T [

◦] θ+f ,n−a(x̃)[
◦] θ+f ,FEM [◦]

−1.0 0.1 −35.244 −30.001 −30.001 −34.446 −30.516 −30.013
−0.5 0.1 −16.761 −15.758 −15.758 −16.381 −16.093 −15.765
−0.1 0.1 −2.330 −2.274 −2.274 −2.276 −2.327 −2.275
0.1 0.1 4.845 4.725 4.725 4.736 4.833 4.727
0.5 0.1 19.113 17.887 17.887 18.682 18.260 17.895
1.0 0.1 36.505 30.962 30.962 35.679 31.488 30.974
−1.0 0.5 −16.779 −15.153 −15.153 −16.385 −15.464 −15.157
−0.5 0.5 −4.085 −3.935 −3.935 −3.982 −4.034 −3.935
−0.1 0.5 4.294 4.211 4.211 4.202 4.302 4.213
0.1 0.5 8.280 8.065 8.065 8.096 8.246 8.069

αQ αM θ+f ,A[
◦] θ+f ,n[

◦] θ+f ,n−ε[
◦] θ+f ,n−T [

◦] θ+f ,n−a(x̃)[
◦] θ+f ,FEM [◦]

0.5 0.5 15.846 14.924 14.924 15.485 15.243 14.930
1.0 0, 5 23.082 20.401 20.401 22.550 20.792 20.408
−1.0 0.9 1.686 1.690 1.690 1.676 1.700 1.693
−0.5 0.9 8.592 8.577 8.577 8.417 8.762 8.583
−0.1 0.9 10.918 10.737 10.737 10.681 10.975 10.743
0.1 0.9 11.715 11.394 11.394 11.456 11.647 11.400
0.5 0.9 12.578 11.924 11.924 12.289 12.186 11.929
1.0 0.9 9.658 8.947 8.947 9.420 9.153 8.948

αQ αM ∆n,A% δε% δT % δa(x̃)% ∆FEM,A%

−1.0 0.1 17.476 5.32× 10−7 14.816 1.717 17.429
−0.5 0.1 6.365 2.22× 10−7 3.954 2.126 6.318
−0.1 0.1 2.463 9.13× 10−8 0.088 2.331 2.418
0.1 0.1 2.540 6.71× 10−8 0.233 2.286 2.496
0.5 0.1 6.854 2.21× 10−7 4.445 2.085 6.806
1.0 0.1 17.903 5.30× 10−7 15.235 1.699 17.857
−1.0 0.5 10.731 5.99× 10−7 8.130 2.052 10.701
−0.5 0.5 3.812 3.21× 10−7 1.194 2.516 3.812
−0.1 0.5 1.971 1.03× 10−8 0.214 2.161 1.923
0.1 0.5 2.666 5.93× 10−8 0.384 2.244 2.615
0.5 0.5 6.178 2.23× 10−7 3.759 2.137 6.135
1.0 0.5 13.142 5.67× 10−7 10.534 1.917 13.103
−1.0 0.9 0.237 6.55× 10−7 0.828 0.592 0.413
−0.5 0.9 0.175 4.12× 10−8 1.865 2.157 0.105
−0.1 0.9 1.686 2.21× 10−8 0.522 2.217 1.629
0.1 0.9 2.817 4.73× 10−8 0.544 2.220 2.763
0.5 0.9 5.485 2.28× 10−7 3.061 2.197 5.441
1.0 0.9 7.947 6.82× 10−7 5.287 2.302 7.935

Table 4. CASE III—Comparison between analytical and numerical models for negative rotations with
αF, ρ and βy fixed varying αQ and αM.

αQ αM θ−f ,A[
◦] θ−f ,n[

◦] θ−f ,n−ε[
◦] θ−f ,n−T [

◦] θ−f ,n−a(x̃)[
◦] θ−f ,FEM [◦]

−1.0 0.1 −36.505 −30.962 −30.962 −35.679 −31.488 −30.974
−0.5 0.1 −19.113 −17.887 −17.887 −18.682 −18.26 −17.895
−0.1 0.1 −4.845 −4.725 −4.725 −4.736 −4.833 −4.727

0.1 0.1 2.330 2.274 2.274 2.276 2.327 2.275
0.5 0.1 16.761 15.758 15.758 16.381 16.093 15.765
1.0 0.1 35.244 30.001 30.001 34.446 30.516 30.012
−1.0 0.5 −23.082 −20.401 −20.401 −22.55 −20.792 −20.408
−0.5 0.5 −15.846 −14.924 −14.924 −15.485 −15.243 −14.93
−0.1 0.5 −8.280 −8.065 −8.065 −8.096 −8.246 −8.069
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Table 4. Cont.

αQ αM θ−f ,A[
◦] θ−f ,n[

◦] θ−f ,n−ε[
◦] θ−f ,n−T [

◦] θ−f ,n−a(x̃)[
◦] θ−f ,FEM [◦]

0.1 0.5 −4.294 −4.211 −4.211 −4.202 −4.302 −4.213
0.5 0.5 4.085 3.935 3.935 3.982 4.034 3.935
1.0 0.5 16.779 15.153 15.153 16.385 15.464 15.157
−1.0 0.9 −9.658 −8.947 −8.947 −9.420 −9.153 −8.948
−0.5 0.9 −12.578 −11.924 −11.924 −12.289 −12.186 −11.929
−0.1 0.9 −11.715 −11.394 −11.394 −11.456 −11.647 −11.400

0.1 0.9 −10.918 −10.737 −10.737 −10.681 −10.975 −10.743
0.5 0.9 −8.592 −8.577 −8.577 −8.417 −8.762 −8.583
1.0 0.9 −1.686 −1.690 −1.690 −1.676 −1.700 −1.693

αQ αM ∆n,A% δε% δT % δa(x̃)% ∆FEM,A%

−1.0 0.1 17.903 2.65× 10−7 15.235 1.699 17.857
−0.5 0.1 6.854 1.11× 10−7 4.445 2.085 6.806
−0.1 0.1 2.540 3.35× 10−8 0.233 2.286 2.496

0.1 0.1 2.463 4.56× 10−8 0.088 2.331 2.418
0.5 0.1 6.365 1.11× 10−7 3.954 2.126 6.318
1.0 0.1 17.476 2.66× 10−7 14.816 1.717 17.433
−1.0 0.5 13.142 2.84× 10−7 10.534 1.917 13.103
−0.5 0.5 6.178 1.11× 10−7 3.759 2.137 6.135
−0.1 0.5 2.666 2.96× 10−8 0.384 2.244 2.615

0.1 0.5 1.971 5.18× 10−9 0.214 2.161 1.923
0.5 0.5 3.812 1.61× 10−7 1.194 2.516 3.812
1.0 0.5 10.731 3.00× 10−7 8.130 2.052 10.701
−1.0 0.9 7.947 3.41× 10−7 5.287 2.302 7.935
−0.5 0.9 5.485 1.14× 10−7 3.061 2.197 5.441
−0.1 0.9 2.817 2.86× 10−8 0.544 2.220 2.763

0.1 0.9 1.686 1.10× 10−8 0.522 2.217 1.629
0.5 0.9 0.175 2.06× 10−8 1.865 2.157 0.105
1.0 0.9 0.237 3.28× 10−7 0.828 0.592 0.413
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Figure 16. CASE III—Trend of the tension σ evaluated by FE simulations varying ρ and βy (up) and
αQ and αM (down).

7. Conclusions

In this work, the nonlinear bending model derived from continuum mechanics, which
describes the rotational behavior of a flexure hinge under static loads, is analyzed.
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The process of developing the model from nonlinear to linear through successive
simplifications is presented in detail, showing the analytical solution of the latter and its
conditions of applicability.

The present work shows how the approximated analytical model may be used to
describe the angular displacement of the free-loaded end of an elliptical flexure hinge, also
showing its limits of applicability with respect to the conventional complete model, which
can only be solved in numerical form.

In particular, the axial force applied to the free end of the flexure hinge is shown to be
the determining effect in choosing the reference stiffness model.

The introduction of some nondimensional parameters related to the geometry of the
flexure hinge and the planar loads applied to its free end allows the evaluation of the
angular displacements of the joint in different working conditions. As a result, it can be
observed that the analytical model approximates the numerical one the better; the lower αF
and αQ are in absolute value while having high values for αM. Regarding the geometric
parameters, instead, the analytical model better approximates the behavior of the flexure
hinge when βy decreases, namely when thin sections are chosen with respect to the overall
height of the joint.
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