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Abstract
Background  Individuals with type 2 diabetes (T2D) face an increased mortality risk, not fully captured by canonical 
risk factors. Biological age estimation through DNA methylation (DNAm), i.e. the epigenetic clocks, is emerging as 
a possible tool to improve risk stratification for multiple outcomes. However, whether these tools predict mortality 
independently of canonical risk factors in subjects with T2D is unknown.

Methods  Among a cohort of 568 T2D patients followed for 16.8 years, we selected a subgroup of 50 subjects, 27 
survived and 23 deceased at present, passing the quality check and balanced for all risk factors after propensity 
score matching. We analyzed DNAm from peripheral blood leukocytes using the Infinium Human MethylationEPIC 
BeadChip (Illumina) to evaluate biological aging through previously validated epigenetic clocks and assess the 
DNAm-estimated levels of selected inflammatory proteins and blood cell counts. We tested the associations of these 
estimates with mortality using two-stage residual-outcome regression analysis, creating a reference model on data 
from the group of survived patients. 

Results  Deceased subjects had higher median epigenetic age expressed with DNAmPhenoAge algorithm (57.49 
[54.72; 60.58] years. vs. 53.40 [49.73; 56.75] years; p = 0.012), and accelerated DunedinPoAm pace of aging (1.05 [1.02; 
1.11] vs. 1.02 [0.98; 1.06]; p = 0.012). DNAm PhenoAge (HR 1.16, 95% CI 1.05–1.28; p = 0.004) and DunedinPoAm (HR 
3.65, 95% CI 1.43–9.35; p = 0.007) showed an association with mortality independently of canonical risk factors. The 
epigenetic predictors of 3 chronic inflammation-related proteins, i.e. CXCL10, CXCL11 and enRAGE, C-reactive protein 
methylation risk score and DNAm-based estimates of exhausted CD8 + T cell counts were higher in deceased subjects 
when compared to survived.
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Background
Type 2 diabetes (T2D) is an age-related metabolic dis-
order characterized by chronic hyperglycemia and insu-
lin resistance, with a constantly increasing incidence 
and prevalence [1]. T2D, similarly to others age-related 
diseases, is a multifactorial disease resulting from a 
combination of genetic and environmental factors 
and characterized by a pervasive status of low-grade 
inflammation which accelerates the onset of diabetic 
complications, i.e. cardiovascular diseases, nephropa-
thy, retinopathy [2, 3]. Individuals with T2D have an 
increased mortality risk compared with the general pop-
ulation, not fully captured by conventional risk factors, 
e.g. HbA1c, LDL cholesterol, and blood pressure [4, 5].

Previous attempts of improving mortality risk strati-
fication relied on the assumption that T2D might be 
considered a condition of accelerated aging, with mul-
tiple surrogate markers sustaining this hypothesis [6–9]. 
Among these biomarkers, DNA methylation (DNAm) 
emerged as a measure of biological age, leading to the 
development of the so-called “epigenetic clocks”, that 
are capable of providing a measurement of the quality 
of the individual aging process, prevalently expressed 
as age acceleration. Generally, negative values of age 
acceleration indicate healthy aging, while positive val-
ues reflect unhealthy aging and are commonly observed 
in age-related diseases [10, 11]. Specifically, the first-
generation “epigenetic clocks”, i.e. Hannum and Horvath 
clocks, were built using chronological age as output vari-
able but had a poor performance in predicting morbidity 
and mortality outcomes [12]. More recent approaches, 
using mortality as the key variable to build the clock and 
incorporating data from multiple sources, were instead 
associated with a range of age-related endpoints [13, 
14]. Indeed, age acceleration metrics are predictors of 
disease risk, morbidity and mortality in large cohorts of 
healthy subjects [11, 15–19]. In addition, other studies 
support the possible usefulness of DNAm-derived bio-
logical age in improving 10 year risk prediction for T2D 
[20] or their ability to detect diabetes complications [21, 
22]. However, no study explored the ability of these tools 
to predict mortality specifically in subjects with T2D and 
independently of canonical risk factors.

To explore the possibility that DNAm-derived bio-
logical age is associated with mortality independently 
of common risk factors in subjects with T2D, we lever-
aged a well-characterized cohort of individuals with 

T2D who were followed-up for 16.8 years to create two 
groups, one of deceased individuals and the other of sur-
vived patients, fully matched for common risk factors. 
We performed a genome wide DNAm analysis of periph-
eral blood leukocytes to explore differentially methyl-
ated genes related to death in T2D, test the ability of a 
chosen set of existing tools estimating biological aging 
from DNAm to predict mortality, and assess the differ-
ences between deceased and survived diabetic patients in 
DNAm-inferred levels of selected inflammatory proteins 
and in predicted blood cell counts with a known patho-
physiological role in T2D.

Methods
Patient selection
Patients were retrieved from a previously character-
ized cohort of 568 patients affected by T2D [6]. Subjects 
were recruited between 2003 and 2006 in sites located 
within the Marche Region, Italy, according to the follow-
ing inclusion criteria: clinical diagnosis of T2D estab-
lished according to the American Diabetes Association 
guidelines [23] from at least 3 years, age ranging from 55 
to 70 years, HbA1c between 6.0 and 8.0%, BMI < 35 kg/
m2, eGFR > 45 mL/min, no current smoking, and no his-
tory of previous major adverse cardiovascular events 
(MACE), including non-fatal myocardial infarction or 
stroke. The presence of T2D complications, i.e. reti-
nopathy, nephropathy, neuropathy, MACE, and athero-
sclerotic vascular disease was established as previously 
described [6]. All participants were of European ancestry.

Among the 181 subjects that met the inclusion criteria, 
49 died during the 16 year follow-up period. A propen-
sity score was calculated for each patient using a logistic 
regression model with baseline variables that potentially 
influenced the outcome, i.e. sex, age, HbA1c, eGFR, hs-
CRP, LDL-cholesterol, disease duration, and BMI. We 
then matched 28 patients that were deceased during the 
follow-up period—14 males and 14 females—one-to-
one with survived patients by propensity score match-
ing using the nearest neighbor matching method of the R 
package MatchIt, version 4.5.

The study was approved by the Institutional Review 
Board of IRCCS INRCA hospital (Approval No. 34/
CdB/03). Written informed consent was obtained from 
each participant in accordance with the principles of the 
Declaration of Helsinki.

Conclusions  These findings suggest that biological aging, as estimated through existing epigenetic tools, is 
associated with mortality risk in individuals with T2D, independently of common risk factors and that increased 
DNAm-surrogates of inflammatory protein levels characterize deceased T2D patients. Replication in larger cohorts is 
needed to assess the potential of this approach to refine mortality risk in T2D.
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DNA Extraction and methylation assay
DNA extraction was performed using QIAamp DNA 
Blood Mini Kit (Qiagen) in spin procedure according to 
the manufacturer’s instructions. In brief, 200 µL of whole 
blood samples were lysed with 20 µL of Qiagen Protease 
in presence of Buffer AL incubating for 10 min in 56 °C. 
Samples were purified on mini spin columns with two 
consecutive washes with Buffers AW1 and AW2. DNA 
were unbound from membranes by 10  min incubation 
(room temperature) and elution in 200 µL of Buffer AE, 
and they were stored at 4 °C until quality control. Extrac-
tion yield was estimated using a Qubit 3.0 Fluorometer 
with dsDNA BR Assay Kit (Thermo Fisher Scientific) 
and samples were normalized to 1000  ng in 45  µL with 
ddH2O. Genomic DNA was bisulfite-converted using the 
EZ-96 Deep Well DNA Methylation Kit (Zymo Research) 
and analyzed using the Infinium Human Methylation-
EPIC v1.0 BeadChip (Illumina) according to the respec-
tive manufacturer’s instructions. All processing steps 
were performed with accurate randomization of the sam-
ples and phenotypic groups.

Data preprocessing
Raw idat files obtained from Illumina array run were 
preprocessed in Linux environment using bioinformatic 
pipeline implemented in R (version 3.6.3). This workflow 
included quality control, normalization, cleansing and fil-
tering steps according to the recommendations of Maksi-
movic et al. [24]. Briefly, for each sample we checked the 
quality by calculating its mean probe detection p-value 
and verifying that it reached the statistical significance 
(< 0.05). Data was normalized using noob background 
correction with dye-bias normalization (minfi R pack-
age, version 1.32.0) [25]. We filtered out the probes 
which presented detection p-value > 0.01 in at least one 
of the samples, those located on sex chromosomes and 
those mapping to SNPs. Additionally, we excluded non-
specific, cross-reactive, variant-containing, masked from 
mapping and multiple alignment probes according to the 
recently published recommendations regarding the Illu-
mina arrays [26–29]. Only CpG sites that did not have 
bi- or tri-modal distribution in any of the sex groups of 
survived patients were considered. Eventually, for all suc-
cessfully assessed probes we calculated beta values that 
express DNA methylation levels as a ratio of methylated 
to unmethylated alleles intensities (with 0 correspond-
ing to totally unmethylated and 1—to totally methylated 
states) and used them in subsequent and differential and 
epigenetic estimates analysis.

Differential methylation analysis
CpG sites associated with diabetic patients’ condition 
(survived or deceased) were identified generating multi-
ple linear models with robust regression fitting (limma R 

package, version 3.42.2) as previously described [30]. The 
models were corrected for chronological age, sex, and 
presence of complications, DNA-methylation based esti-
mates of blood cell counts (naive CD8 + T cells, CD4 + T 
cells, exhausted cytotoxic CD8 +, CD28−, and CD45R− 
T cells, natural killer cells, granulocytes, and plasma 
blasts) obtained with Horwath’s New DNA Methylation 
Age Calculator (https://dnamage.genetics.ucla.edu/) and 
Illumina array batch. Differentially methylated positions 
(DMP) were identified selecting CpGs that i) reached sig-
nificant p-value after Benjamini–Hochberg adjustment 
for multiple tests at statistical significance level of 0.05 
and ii) presented absolute value of methylation difference 
between two compared groups above 5%. Differentially 
methylated regions (DMR) were detected using Comb-
p approach [31] which searches for associations using 
meta-analysis integrating nominal p-values of neighbor-
ing CpG sites that were previously estimated with linear 
models. Regions that reached adjusted combined p-value 
below 0.05 were considered as significantly associ-
ated with death in T2D. Differentially variable positions 
(DVPs) were revealed performing the methylation abso-
lute deviation analysis as implemented in varFit() func-
tion of missMethyl R package, version 1.20.4. CpGs which 
demonstrated absolute value of variance ratio between 
two groups after logarithmic transformation above 2 and 
which presented nominal p-value below 0.001 were con-
sidered as DVPs.

Pathway enrichment analysis
We performed a pathway enrichment analysis to get an 
insight on functional significance of observed methyla-
tion changes. For this purpose all identified DMPs were 
mapped to genes and created list of emerged unique 
genes was uploaded to Enrichr web-based tool [32, 33] 
and we used KEGG database [34] for pathway annota-
tion. In the analysis we focused on the pathways for with 
Fisher’s exact test p-values < 0.05.

Epigenetic estimates analysis
Whole-genome methylation data was used to evaluate 
a battery of DNAm estimates including i) predictors of 
biological aging, ii) biomarkers of plasma proteins, iii) 
signature of chronic low-grade inflammation based on 
C-Reactive protein (CRP) and iv) estimates of blood cell 
counts. Table S1 provides a detailed list of DNAm vari-
ables that were assessed in this study, with short descrip-
tions, indications of respective references and links to 
source scripts used for calculations.

For each epigenetic biomarker, outlier samples with 
values below Q1–1.5 IQR or above Q3 + 1.5 IQR (where 
Q1 and Q3 are first and third quartile, respectively, 
and IQR refers to interquartile range) were removed. 
DNAm-based estimates were compared between two 

https://dnamage.genetics.ucla.edu/
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phenotypes using two-stage residual-outcome regression 
approach following 3-step workflow: (1) generation of 
a linear regression model on group of survived diabetic 
patients correcting for chronological age and including 
as covariates sex and presence of complications (lmC-
TRL <—lm(var_i ~ VarX + VarCov1 + VarCov2, data = df_
noOutliers[df_noOutliers$Group =  = CTRL,]), where, 
var_i—Methylation estimate, VarX—Chronological age, 
VarCov1—Sex, VarCov2—Complications); (2) applica-
tion of created model to entire cohort and calculation of 
chronological age-corrected residuals; (3) comparison of 
group averages and hypothesis testing using parametric 
Student’s t-test; (4) adjustment of nominal p-value for 
multiple comparisons with Benjamini-Hochberg (BH) 
procedure.

Statistical analysis
Continuous variables were reported as either mean and 
standard deviation or median and interquartile range 
based on their distribution (assessed using Shapiro–
Wilk test). Spearman’s correlation was used to assess 
correlations between continuous variables. The associa-
tion between DNAm-Phenoage and all-cause mortality 
was investigated by Cox proportional hazards analysis, 
adjusted for age, sex, hypertension, smoking status, BMI, 
eGFR, HbA1c, hs-CRP, LDL-C, and disease duration). 
Significance was accepted as p < 0.05. Statistical analysis 
was performed using the Jamovi software (version 2.3.1).

Results
Out of 56 assessed samples, 6 samples failed DNA quality 
check and were removed from downstream processing. 
The final analysis included 50 samples—27 in the sur-
vived group and 23 in the deceased group—with a total 
of 662′889 probes each. Baseline subject’s characteristics 
are summarized in Table 1.

Differential methylation analysis (DMA)
We evaluated the differences in methylation pat-
terns between deceased and survived T2D patients 
using a linear regression model including the presence 
of the diabetes complications, Illumina array batch, 
and mDNA-based estimations of blood cell counts as 
covariate.

Differentially methylated positions (DMPs)
DMA showed 228 differentially methylated positions 
with BH-adjusted p-value < 0.05 and absolute value of 
difference in methylation Δβ > 0.05 when comparing the 
deceased patients with those who are living.

Among significative DMPs, 170 were located in genic 
regions being distributed respectively 7.39% in the first 
exon, 3.94% in the 3’UTR, 14.78% in the 5’UTR, 49,75% 
in the gene body, 15.27% in the TSS1500 and 8.87% in the 
TSS200.

Seventy-five CpGs, which corresponded to 74 unique 
genes (32.89% of CpGs), were hypermethylated in group 
of deceased patients, whereas 153 CpGs corresponding 
to 128 unique genes (67.11% of CpGs) were hypomethyl-
ated. Tables S2, S3 reported the list of the differentially 
(hyper-and hypo-) methylated genes in deceased patients 
in comparison to survived individuals.

The pathway enrichment analysis was carried out to 
identify the pathways and biological functions associated 
with genes emerged from the DMA. Of note, we found 
a significant enrichment of KEGG pathways involved in 
aging processes (regulation of lifespan, cell proliferation, 
autophagy, mitochondrial function, cellular senescence), 
such as RAS, mTOR and MAPK signalling (Table S4) [35, 
36].

Table 1  Comparison of biochemical and anthropometric 
characteristics between survivor and deceased patients with 
type 2 diabetes (T2D)
Variables Survived 

N = 27
Deceased 
N = 23

p-
value

Age (years) 67 (65–68) 67 (65–70) 0.738
Gender (Males, %) 14 (52%) 10 (43%) 0.555
BMI (Kg/m2) 27.2 (25.7–29.8) 26.8 (25.3–30.1) 0.930
Waist-hip ratio 0.92 (0.89–0.98) 0.91 (0.86–0.96) 0.599
Total cholesterol (mg/dL) 213 (190–239) 212 (183–246) 0.922
HDL-C (mg/dL) 52 (45–63) 48 (43–62) 0.514
LDL-C (mg/dL) 123 (99–139) 110 (93–131) 0.471
Triglycerides (mg/dL) 116 (86–149) 104 (80–139) 0.540
HbA1C (%) 7.0 (6.7–7.4) 7.3 (6.6–7.8) 0.447
HOMA index 1.71 (1.03–2.23) 1.53 (1.12–2.70) 0.620
Hemoglobin (g/dL) 14.5 (13.9–15.6) 14.6 (13.9–15.7) 0.539
hs-CRP (mg/L) 2.21 (1.12–3.95) 2.55 (1.32–4.21) 0.711
Creatinine (mg/dL) 0.8 (0.7–1.0) 0.8 (0.7–1.0) 0.835
eGFR (mL/min) 83 (73–98) 83 (67–85) 0.311
Alanine aminotransferase 
(U/L)

38 (35–48) 36 (33–42) 0.459

Disease duration (years) 14 (8–22) 16 (9–22) 0.539
Survival (years) – 11.4 (7.5–14.4) –
Relevant medications (n)
 Any T2D medication 21 (78%) 17 (74%) 0.750
 Metformin 7 (26%) 8 (35%) 0.496
 Sulphonylureas 19 (70%) 11 (48%) 0.105
 Insulin 0 (−) 6 (26%) 0.006
 Statins 4 (15%) 5 (22%) 0.595
 Vitamin K antagonists 1 (4%) 1 (4%) 0.822
T2D complications (n)
 Retinopathy 2 (7%) 4 (17%) 0.395
 Nephropathy 3 (11%) 1 (4%) 0.614
 Neuropathy 1 (4%) 3 (13%) 0.322
 History of MACE 0 (−) 1 (4%) 0.460
 Peripheral artery disease 1 (4%) 1 (4%) 1.000
 Any T2D complication 6 (22%) 9 (39%) 0.193
Data are median (IQR) or number (%). P-values for Mann–Whitney U (continuous 
variables), Chi-squared and Fisher’s exact (categorical variables) tests
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Further, we performed exploratory data analysis using 
the 228 emerged DMPs in order to verify the level of sim-
ilarity between 50 analyzed individuals and to uncover 
potential grouping patterns in the cohort. Multidimen-
sional scaling analysis (MDS) revealed that, except for an 
outlier, a certain degree of separation between two phe-
notypes was observed (Figure S1). Individuals displayed 
a tendency to group together according to their pheno-
type, highlighting the dissimilarities between deceased 
and alive patients. Subsequently, the principal compo-
nent analysis (PCA) performed on dataset after exclu-
sion of detected outlier, further confirmed that samples 
of deceased individuals tend to cluster together end sepa-
rate from alive patients. First (PC1) and second (PC2) 
principal components explained 20.57% and 9.54% of the 
variance present in the data, respectively (Figure S2A). 
Conversely, no cluster associations were identified when 
we considered the presence or absence of T2D complica-
tions within the two groups (Figure S2B). Thus, with this 
exploratory analysis we confirmed the association of the 
identified set of CpGs with mortality risk.

Differentially methylated regions (DMRs)
We decided to pursue the analysis considering the dif-
ferentially methylated regions as they may contain other 
biological information. In this study, we found 102 
DMRs, but only 2 loci had at least three significantly dif-
ferentially methylated CpGs in deceased compared to 
alive group. One DMR is located on chromosome 11 and 
overlaps with TIGD3, a gene encoding a DNA-transpos-
able element, whereas the second DMR, on chromosome 
15, is positioned in ATP10A gene, which encodes for the 
ATPase Phospholipid Transporting 10A.

Differentially variable positions (DVPs)
Finally, differential variability was assessed by compar-
ing methylation absolute standard deviation of deceased 
patients and those who are living. There were 70 DVPs 
significantly associated with mortality. In particular, in 
deceased group we found 57 hypervariable and 13 hyp-
ovariable CpGs of which 38 and 9 were genic, respectively 
(Table S5). Among the most significative hypervariable 
DVPs, we found CpGs located in ACOT7, SPICE1 and 
PC genes, whereas the most significative hypovariable 
CpGs were identified in ADAM12, SOS2, and COL5A 
genes.

Analysis of DNAm estimates
To assess whether DNAm-based estimates of epigenetic 
aging associate with all-cause mortality in subjects with 
type 2 diabetes, we applied several models (Table  2). 
Among classical algorithms, two epigenetic biomarkers 
showed significant differences between groups, based 
on a FDR of 10%. DNAm PhenoAge, an epigenetic clock 
built using chronological age and DNAm-based esti-
mates of biochemical and hematological variables as pre-
dictors, estimated a higher median age in non-survived 
subjects (57.49 [54.72–60.58] years. vs. 53.40 [49.73; 
56.75] years.; p = 0.012) (Fig.  1A). Similarly, the Duned-
inPoAm algorithm revealed a significantly faster pace of 
aging in deceased subjects (p = 0.012). In multivariable 
Cox regression models (Table S6, adjusted for chronolog-
ical age, sex, hypertension, smoking status, BMI, eGFR, 
HbA1c, hs-CRP, LDL-C, and disease duration, both the 
DNAm PhenoAge clock (HR 1.16, 95% CI 1.05–1.28) and 
the DunedinPoAm algorithm (HR 3.65, 95% CI 1.43–
9.35) showed an association with mortality. No signifi-
cant differences were reported in DNAm age predicted 

Table 2  Results of statistical hypothesis testing comparing DNAm clocks between survived and deceased patients with T2D, using the 
two-stage residual-outcome regression approach
DNAm variables Outliers Median [IQR] in survived Median [IQR] in deceased P-values BH-adjusted p-values
DNAm Age 2 68.13 [65.59; 72.06] 66.08 [64.07; 70.25] 0.500 0.659
DNAm Age Hannum 3 56.32 [54.64; 59.61] 55.46 [54.25; 60.47] 0.282 0.559
IEAA 3 1.12 [− 2.38; 4.58] − 1.52 [− 2.91; 1.38] 0.074 0.370
IEAA Hannum 1 − 0.81 [− 3.38; 4.79] − 0.09 [− 2.78; 3.48] 0.740 0.793
DNAm PhenoAge 2 53.40 [49.73; 56.75] 57.49 [55.05; 60.22] 0.012 0.090
DNAm Age Skin Blood clock 1 65.05 [62.58; 68.26] 66.67 [61.64; 71.13] 0.298 0.559
Epigenetic Age Zhang 2 67.36 [65.97; 68.58] 67.91 [66.50; 68.15] 0.849 0.849
DNAm GrimAge2 based on predicted Age 1 70.88 [67.82; 73.98] 71.48 [68.18; 78.07] 0.109 0.409
DNAm GrimAge2 based on real age 0 72.02 [68.76; 73.38] 72.41 [68.18; 78.07] 0.231 0.559
DNAm GrimAge based on predicted age 1 66.88 [61.00; 72.45] 65.19 [61.92; 72.96] 0.227 0.559
DNAm grimage based on real age 0 66.11 [64.29; 69.33] 66.60 [63.27; 70.65] 0.527 0.659
AltumAge 3 70.70 [68.34; 72.21] 70.05 [66.48; 72.48] 0.434 0.659
DNAm TL 3 6.76 [6.70; 6.83] 6.68 [6.58; 6.85] 0.516 0.659
DunedinPoAm 0 1.02 [0.98; 1.06] 1.05 [1.02; 1.11] 0.012 0.090
DunedinPACE 2 1.02 [0.94; 1.07] 1.02 [0.99; 1.05] 0.674 0.777
For each variable, median values with interquartile range in the two groups are reported. Significant p-values and Benjamini-Hochberg (BH)-adjusted p-values are 
reported in bold
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by the original Horvath epigenetic clock (DNAmAge, 
p = 0.50). Figure 1B summarizes the epigenetic aging 
acceleration measures that showed significant differences 
between groups.

Results obtained implementing bolstered models of 
DNAm clocks which are improved with principal com-
ponent analysis (PC-clocks) [37] further confirmed the 
differences between the two studied groups as summa-
rized in Table 3.

Deceased subjects presented significant biological age 
acceleration when estimated with enhanced PC-Pheno-
Age algorithm (p = 0.020) and they manifested increased 
shortening of telomere length according to the DNAm-
based estimator PC-DNAmTL (p = 0.048 comparing to 
survived patients, Fig. 2).Then, we evaluated the DNAm-
based surrogate biomarkers of plasma proteins using the 
online DNA Methylation Age Calculator. Interestingly, 

the DNAm-based scores for three inflammation-related 
proteins, i.e. CXCL10, CXCL11 and enRAGE were higher 
in deceased subjects (Fig. 3, Table S7).

We then tested whether EpiScores proposed by Gadd 
et al. [38] (Table S1) were associated with all-cause mor-
tality in our cohort. Gadd and colleagues identified spe-
cific methylated CpGs that could predict the levels of 
109 plasma proteins. This data was used to assign an epi-
genetic score or ‘EpiScore’ to each protein. Interestingly, 
the EpiScores for 12 proteins were significantly different 
between groups (Table  4 and Fig.  4). The DNAm-based 
scores of 9 proteins (CD5L, EZR, TPSB2, E-selectin, 
PARC, NEP, FCG3B, SHBG, and Lymphotoxin.a1b2) 
were higher in deceased patients, whereas DNAm-based 
scores of 3 proteins were lower (CRTAM, OSM, and 
GDF8).

Moreover, as T2D is considered a prototypical age-
related disease, we validated a DNAm signature previ-
ously associated with chronic low-grade inflammation, 
as measured by C-Reactive protein (CRP) [39] to stratify 
survived and non-survived diabetic subjects. Interest-
ingly, deceased T2D patients had higher DNAm-based 
levels of CRP (p = 0.025, Fig. 5A), which were weakly asso-
ciated with serum CRP levels (Spearman’s rho = 0.213).

Analysis of DNAm-predicted blood cell counts [10] 
revealed that deceased T2D patients had a significantly 
higher amount of exhausted CD8 + T cells, marked as 
CD8 + CD28-CD45RA- (p = 0.020, Fig. 5B and Table S8), 
with no differences in terms of total CD8 + cells between 
groups.

Discussion
We performed a genome-wide methylation analysis to 
identify biomarkers of prognostic value in a cohort of 50 
subjects with T2D, comparing alive and deceased indi-
viduals after a long-term follow-up. We identified 228 

Table 3  Results of statistical hypothesis testing comparing 
PC-clocks between survived and deceased patients with T2D, 
using the two-stage residual-outcome regression approach
DNAm variables Outliers Median [IQR] 

in survived
Median 
[IQR] in 
deceased

P-
value

PCHorvath1 3 61.560 [58.37; 
64.78]

62.05 [59.63; 
65.67]

0.284

PCHorvath2 3 61.504 [58.80; 
64.98]

62.806 [60.63; 
67.10]

0.096

PCHannum 4 68.213 [64.34; 
71.35]

69.721 [67.00; 
70.95]

0.124

PCPhenoAge 3 63.032 [60.53; 
65.77]

66.396 [60.37; 
70.48]

0.020

PCGrimAge 0 74.171 [73.02; 
76.31]

75.886 [72.86; 
78.41]

0.057

PCDNAmTL 0 6.854 [6.77; 
6.89]

6.739 [6.57; 
6.86]

0.048

For each variable, median values with interquartile range in the two groups are 
reported. Significant p-values are reported in bold

Fig. 1  A Chronological age versus DNAm PhenoAge. B Epigenetic biomarkers DNAmPhenoAge (left) and DunedinPoAm (right) in survived and de-
ceased T2D patients. Residuals from two-stage residual-outcome regression approach with survivor group as reference fit are reported on Y axis. P-values 
from Student’s t-test are disclosed
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differentially methylated positions (DMPs). 74 unique 
genes were hypermethylated, whereas 128 unique genes 
were hypomethylated in deceased compared to survived 
patients. Among emerged genes were CD160 which in 
RNA-seq and flow cytometry assays resulted as promot-
ing regulation of glucose metabolism in NK cells through 
the PI3K/AKT/mTOR/s6k signaling pathway [37], 
PIEZO1 that was found overexpressed in isolated human 
islets of T2D patients and subjects with impaired glucose 

tolerance [40], and ALDH1A2—previously related to 
congenital heart disease [41].

We reported a significant enrichment of pathways 
associated with the aging processes, including the RAS, 
mTOR, and MAPK signaling pathways, also corroborat-
ing the functional role of DNAm in explaining the accel-
erated aging of non-survivors. Interestingly, a number of 
genes involved in these pathways, such as RPS6KA2 [42], 

Fig. 3  Differences between survived and deceased T2D patients in DNA methylation-based estimators of protein levels. Residuals from two-stage resid-
ual-outcome regression approach with survivor group as reference fit are reported on Y axis. P-values from Student’s t-test are disclosed

 

Fig. 2  Differences between survived and deceased T2D patients in epigenetic biomarkers expressed by PC-PhenoAge (left) and PC-DNAmTL (right) 
models. Residuals from two-stage residual-outcome regression approach with survivor group as reference fit are reported on Y axis. P-values from Stu-
dent’s t-test are disclosed
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IGF1R [43], TNFRSF1A [44], and TSC2 [45], have been 
previously related to T2D complications.

When the differentially methylated regions were ana-
lyzed, only 2 loci presented at least three significantly 
differentially methylated CpGs in deceased compared to 
alive group. Curiously, one DMR is on chromosome 11 
and overlaps with TIGD3, a gene encoding a DNA-trans-
posable element. Even if the role of transposable elements 
is emerging in several human diseases [46], the associa-
tion of altered methylation status in a transposable ele-
ment with mortality in patients with T2D is novel and 
deserves future investigations. The second DMR, located 
on chr. 15, is associated with the ATP10A gene, which 
encodes for the ATPase Phospholipid Transporting 10A 
and has been previously related to glucose homeostasis, 
blood lipids, and liver metabolism [47].

The cytosolic acyl coenzyme, a thioester hydrolase 
gene, ACOT7, which emerged from differential meth-
ylation variability analysis, was previously observed 
overexpressed in diabetic fatty rat islets [48] and in 
β-cell enriched human tissue [49]. Also, deregulation 
of pyruvate carboxylase encoded by PC gene was previ-
ously linked to T2D in humans [50, 51] and its inhibition 
could be a potential therapeutic approach for diabetes. 
Increased expression of ADAM17, disintegrin and metal-
loproteinase domain-containing protein 17, is associated 

with the development of insulin resistance and hepatos-
teatosis [52–54].

A strict relationship between DNA methylation and 
the biological functions of genes involved in diabetes 
complications is not well established. Some studies have 
explored the effect of DNA methylation on T2D com-
plications in patients previously diagnosed with T2D. A 
case–control study, which compared T2D patients with 
or without retinopathy, reported that global DNA meth-
ylation in peripheral blood leukocytes (PBL) was a pre-
dictive factor for retinopathy, regardless of other risk 
factors for retinopathy, such as hyperglycaemia, hyper-
tension, dyslipidaemia, and T2D duration [55]. Simi-
larly, low levels of DNA methylation in PBLs from T2D 
patients were associated with the onset of peripheral 
neuropathy [56]. DNA methylation levels at 77 CpG sites, 
localized at gene regulatory regions of genes involved in 
metabolic functions and apoptosis, were also observed as 
significantly associated with eGFR decline, so predicting 
the progression to nephropathy [57].

In recent years, the perspective of estimating bio-
logical age through DNAm-based predictor systems has 
emerged. Here, we assessed a set of existing DNAm-
based biological clocks and found that three (DNAm-
PhenoAge, DunedInPACE, and PC-DNAmTL) of 
them evidenced a significantly higher biological age in 
deceased subjects compared to those who survived. Of 
note, the PhenoAge clock was associated with mortality 
independently of canonical risk factors, possibly suggest-
ing the usefulness of this tool in improving risk stratifica-
tion in T2D.

First-generation DNAm age estimators used a super-
vised machine learning method to regress a transformed 
version of chronological age with respect to different 
CpG sets from different tissues and age spectra. The 
subjects showing an epigenetic age that is older than 
chronological age have a positive epigenetic age accel-
eration. However, possibly due to the approach used to 
build them, these tools demonstrated a weak or no asso-
ciation with mortality and other age-related endpoints 
[12, 22, 58, 59]. Consistently, in our results, the Han-
num’s and the Horvath’s clocks did not show significant 
differences between deceased and survived patients, also 
when the estimates were considered in terms of intrin-
sic epigenetic age acceleration. On the contrary, second-
generation DNAm-based estimators of biological aging, 
such as DNAm PhenoAge, GrimAge, and DunedinPoAm 
were built to differentiate morbidity and mortality risk 
among individuals of the same age [13]. In the valida-
tion study conducted on the NHANES IV cohort, each 
1-year increase in phenotypic age, as determined by the 
combination of nine routinely assessed biomarkers (i.e. 
PhenoAge), was associated with a 20% increase in the 
risk of mortality related to diabetes [13]. Moreover, the 

Table 4  Comparison of EpiScores between survived and 
deceased patients with T2D
mDNA 
Variables

Outliers Median [IQR] in 
survived

Median [IQR] in 
deceased

p-
value

CD5L 0 − 0.073 
[− 0.079;− 0.067]

− 0.066 
[− 0.070;− 0.061]

0.002

EZR 1 − 0.009 
[− 0.015;− 0.005]

− 0.013 
[− 0.017;− 0.008]

0.011

CRTAM 2 0.059 [0.053; 
0.064]

0.066 [0.059; 
0.072]

0.013

TPSB2 3 − 0.171 
[− 0.188;− 0.159]

− 0.190 [− 0.197; 
0.173]

0.016

OSM 0 0.073 [0.068; 
0.080]

0.081 [0.076; 
0.090]

0.017

GDF.8 1 0.147 [0.143; 
0.149]

0.143 [0.140; 
0.144]

0.020

sE-Selectin 1 − 0.021 
[− 0.028;− 0.014]

− 0.030 
[− 0.034;− 0.018]

0.024

PARC 1 − 0.139 
[− 0.148;− 0.133]

− 0.133 
[− 0.139;− 0.127]

0.024

NEP 1 − 0.016 
[− 0.027;− 0.009]

− 0.009 [− 0.018; 
0.006]

0.029

FCG3B 0 − 0.206 
[− 0.210;− 0.201]

− 0.193 
[− 0.206;− 0.188]

0.033

SHBG 0 − 0.075 
[− 0.086;− 0.061]

− 0.063 
[− 0.079;− 0.054]

0.036

Lympho-
toxin.a1b2

0 − 0.040 
[−0.053;− 0.030]

− 0.042 
[− 0.055;− 0.030]

0.045

For each variable, median values with interquartile range in the two groups are 
reported
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difference between phenotypic age and chronological 
age proved useful in stratifying the risk of mortality in 
patients with T2D enrolled in the ACCORD trial [60]. 
In our cohort, both DNAm PhenoAge and the Dunedin-
PoAm algorithms revealed significantly higher values in 
deceased subjects. In addition, we observed that DNAm 
PhenoAge, similar to Hannum’s and Horvath’s clocks, 
yielded epigenetic age estimations that were lower than 
subjects’ chronological age, in agreement with previous 
studies that showed considerable variations in the predic-
tion accuracy depending on the tissue where DNAm was 
assessed, disease states, and chronological age itself [61, 
62].

The DunedinPoAm algorithm was associated with a 
faster pace of aging in T2D [63]. However, when consid-
ering specific diseases, a clear association emerged only 

with the incidence of other conditions [64]. In our cohort, 
DunedinPoAm associated with mortality in T2D, pro-
viding a useful metric capable of summarizing multiple 
blood-chemistry and organ-system-function biomarkers 
with established prognostic value in T2D [65–68].

More importantly, we provide first-time evidence that 
the DNAm based estimator of phenotypic age, i.e. DNAm 
PhenoAge, and the DunedinPoAm estimator of the pace 
of aging are able to discriminate individuals with T2D 
deceased during a > 16  year follow-up, independently of 
canonical risk factors. Replication in larger, longitudinal 
cohorts, including those with diverse ethnic backgrounds 
beyond European populations, is necessary to explore the 
potential of this specific clock to refine risk stratification 
for mortality in T2D.

Fig. 4  Differences between survived and deceased T2D patients in DNA methylation-based estimators: EpiScores. Residuals from two-stage residual-
outcome regression approach with survivor group as reference fit are reported on Y axis. P-values from Student’s t-test are disclosed
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Previous studies suggest that the genes affected by 
changes in CpG sites are functionally related to metabo-
lism but also to immune response and inflammation [69], 
corroborating the key role of these phenomena in T2D 
disease’s natural history [2]. We showed that the esti-
mated levels of CXCL10, CXCL11, enRAGE and CRP 
were increased in deceased T2D patients, reinforcing the 
role of subclinical chronic inflammation as a mediator of 
unfavorable outcomes in T2D. Similarly, analysis of the 
Episcores estimating circulating levels of inflammatory 
proteins provided a number of biomarkers associated 
with T2D-related mortality. Notably, we showed a high 
proportion of exhausted CD8 + T cells as estimated by 
DNAm in deceased patients. The expansion of senescent/
exhausted CD8 + populations was invariably associated 
with declining immunity, vascular dysfunction, athero-
sclerosis, and cardiovascular mortality in older individu-
als [70–72].

While the association of CRP and circulating RAGEs 
with cardiovascular events and mortality in T2D has 
been extensively explored [7, 68], our data might suggest 
the incorporation of CXCL10, CXCL11, and estimates of 
specific immune cell subpopulations into a prognostic 
signature. These molecules might help in monitoring the 
burden of low-grade inflammation and immune system 
aging and should be further studied for their ability to 
predict hard age-related outcomes.

Our study has some limitations. First, given the goal of 
the study, we opted for a very stringent design and com-
pared fully matched groups discordant only for survival 

status. This might have affected the yield of differentially 
methylated genes. For the same reason, we could not 
explore whether biological age improves risk stratifica-
tion on top of common variables. On the other hand, 
this approach is the most suited to evaluate the ability 
of biological clocks to predict mortality independently 
of canonical risk factors. In addition, the retrospective 
nature of the study is inherently linked to possible, resid-
ual, unmeasured confounders, and the propensity score 
matching may suffer from artifactual effect modification 
when performed on a small size case–control study [73]. 
However, our cohort is very well characterized, and the 
long-term follow-up should maximize the chances of 
observing the intrinsic effect of altered biological age. 
Finally, we did not replicate our results in an external val-
idation cohort, which is a mandatory passage to propose 
biological age as a tool to stratify mortality risk on top of 
existing clinical tools.

Conclusions
The evaluation of epigenetic age and pace of aging can 
help to identify subjects with diabetes with a higher risk 
of death [15, 74, 75]. T2D is particularly suited to ben-
efit from such an approach, since conventional risk fac-
tors do not fully intercept the increased risk of mortality 
accompanying this condition. Here, we demonstrate the 
association between epigenetic clocks with the long-
term prognosis of diabetes and found that non-survivor 
T2D subjects had an increased epigenetic age estimated 
by the second-generation clock DNAm-PhenoAge and 

Fig. 5  A Differences between survived and deceased T2D patients in DNA methylation-based signature associated with chronic low-grade inflamma-
tion as measured by C-Reactive protein levels. Residuals from two-stage residual-outcome regression approach with survivor group as reference fit are 
reported on Y axis. P-values from Student’s t-test are disclosed. B Differences between survived and deceased T2D patients in DNA methylation-based 
predictions of CD8 + CD28-CD45RA- T cell counts. Residuals from two-stage residual-outcome regression approach with survivor group as reference fit 
are reported on Y axis. P-values from Student’s t-test are disclosed
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accelerated pace of aging calculated with DunedinPoAm. 
Also augmented shortening of predicted telomere length 
confirmed acceleration of biological aging linked to death 
in T2D. In addition, we found higher DNAm-based esti-
mates of plasma levels for CXCL10, CXCL11, enRAGE, 
signature of chronic low-grade inflammation and sur-
rogate of exhausted CD8 + T cell counts in non-survivor 
T2D patients. These results support the hypothesis that 
DNAm-based clocks and inflammatory estimates can 
serve as prognostic biomarkers for T2D patients. Trans-
lation of these minimally invasive blood-based biomark-
ers into clinical practice requires extensive validation 
efforts [76].
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