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Abstract—The distribution network is recognized for its
inherent fragility and challenging management compared
to the transmission network. This challenge arises from
the complex topology of the distribution network, involving
thousands of nodes to monitor by predictive maintenance.
This article introduces the implementation of an artifi-
cial neural network (ANN) for predictive maintenance of
medium-voltage (MV) switchgears. In particular, the study
here presented consists in proposing a new approach that
correlates temperature measurements, at different positions
within the switchgear, to potential faults. The specific cause of temperature change is the variable fastening in a single
point of the MV switchgear. Thus, starting from experimental measurements, the ANN is thoroughly analyzed, compared,
and validated to provide a proper classification of the switchgear health status. The obtained results affirm the efficacy
of the proposed approach and highlight the benefits of its application in practical predictive maintenance scenarios.

Index Terms— Accuracy, artificial intelligence (AI), artificial neural network (ANN), distributed measurement systems,
fault detection, machine learning (ML), medium- voltage (MV) switchgears, predictive maintenance, temperature moni-
toring, thermocouples.

I. INTRODUCTION

MONITORING plays a crucial role in ensuring the robust-
ness and reliability of both transmission and distribution

networks within the electrical power systems. In transmission
networks, which carry electricity over long distances, real-time
monitoring is essential to track power flow, voltage levels,
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and line capacities. Continuous surveillance of equipment,
such as transformers and circuit breakers, is imperative to
detect potential issues early and prevent catastrophic fail-
ures [1]. On the other hand, distribution networks, responsible
for delivering electricity to end-users, demand monitoring
at various nodes due to their intricate topology. Thousands
of nodes in distribution networks necessitate comprehen-
sive monitoring instrumentation to detect load imbalances,
voltage fluctuations, and equipment malfunctions promptly.
Both networks benefit from advanced monitoring technologies,
including sensors and supervisory control and data acquisition
(SCADA) systems [2]. This, to enhance situational awareness,
optimize performance, and facilitate timely maintenance inter-
ventions, ensuring a resilient and efficient electricity supply to
consumers.

In smart grids, the choice between time-based maintenance
and predictive maintenance approaches is pivotal for optimiz-
ing operational efficiency and ensuring system reliability [3].
Traditionally, time-based maintenance relies on predefined
schedules for equipment checks and replacements, offering
simplicity in execution but often leading to unnecessary
interventions and resource inefficiencies [4]. On the contrary,
predictive maintenance leverages advanced technologies such
as distributed measurement systems [5] and artificial intelli-
gence (AI) to anticipate potential failures based on real-time
data and performance indicators. This proactive approach
allows for targeted interventions, reducing downtime and
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optimizing the lifespan of grid components. In the dynamic
and interconnected landscape of smart grids, where real-time
data are abundant, predictive maintenance emerges as a strate-
gic choice, offering a more precise and cost-effective way to
manage the complexities of modern distribution networks.

The article focuses on predictive maintenance to prevent
faults in medium-voltage (MV) switchgears. As highlighted
in [6], several quantities could be evaluated inside a MV
switchgear. Thermal, mechanical, and partial discharge (PD)
measurements can help early identification of abnormal condi-
tions by means of AI [6]. The objective of this study is exactly
to combine distributed measurement systems and machine
learning (ML) to enhance predictive maintenance in MV
switchgears. Specifically, the article proposes a new approach
that leverages the correlation between potential fault and tem-
perature measurements. Then, the temperature measurements
are collected at different positions within a MV switchgear,
and due to variable fastening in a single point of such MV
switchgear. Indeed, the temperature variations, if properly
correlated with fastening, can offer valuable information about
the health status of the MV switchgear. The aforementioned
correlation is then employed to implement an artificial neural
network (ANN) fed with in-field temperature measurements.
The innovation of the proposed method lies exactly in formu-
lating an ANN for MV switchgears. It should be also noted
that the proposed approach can be, more generally, applied
to other input quantities different from temperature values
considered in this study.

The remainder of the article is structured as follows.
Section II presents an overview on the state-of-the-art of
predictive maintenance in MV switchgears and ML-based
methods, including the selected ANN algorithm. Section III
serves as the core of the work, covering the case study descrip-
tion, with the involved equipment and the details on the ANN
training and testing. Section IV presents the obtained results.
In more detail, the algorithm and the proposed approach are
first validated by simulations. Afterward, actual measurements,
collected inside an operating MV switchgear, are used to prove
the efficacy of the approach in practical applications. Final
remarks are provided in Section V.

II. PREDICTIVE MAINTENANCE AND ML
A. Predictive Maintenance of MV Switchgears

This section seeks to offer an overview of current research
pertaining to MV switchgears. Notably, a significant portion
of the research investigates temperature rises resulting from
normal/abnormal operations. For instance, the objective of [7]
is to quantify temperature increases due to power losses. In [8],
a thermal model is constructed to analyze the temperature rise
at the connection points of the copper busbars. Similarly, the
work presented in [9] delves into the creation of a thermal
model capable of estimating temperature distributions within
the switchgear.

In terms of the technology employed for measuring parame-
ters such as temperature, current, and voltage, acoustic sensors
are featured in [10] and [11]. The wireless nature of these
sensors eliminates the need for physical attachment to the sur-
face to measure. Study [12] contributes an insightful review of
wireless temperature measurement techniques. Shifting toward
more experimental endeavors, distributed measurement sys-
tems can be designed to detect PDs in MV switchgears [13],
[14], [15]. Alternative options for predictive maintenance

in MV switchgears can be arc detection [16], [17], or sulfur
hexafluoride monitoring [18]. Crucially, a distributed mea-
surement system must be cost-effective, easy to install, and
sufficiently accurate to warrant consideration for widespread
deployment in electric cabinets.

AI is adopted in [19], where an algorithm is developed
to estimate the temperature of the switchgear components.
This algorithm leverages an a priori thermal model of the
switchgear, showcasing the integration of AI in temperature
estimation processes. Finally, the authors started this research
with an experimental campaign described in [20].

B. Current Status of ML-Based Predictive Maintenance
AI stands as a subfield within computer science, ded-

icated to replicating human intelligence processes through
the implementation of computer programs. AI systems oper-
ate by processing extensive datasets, empowering effective
problem-solving capabilities. One of the main reasons of AI
significance in electrical engineering comes from the abun-
dance of available data and information, provided for example
by distributed measurement systems. In the spectrum of AI
for predictive maintenance, several techniques of ML and
deep learning emerge as salient [21]. ML enables algorithms
to autonomously learn and improve by adapting to pro-
vided data using computational and mathematical techniques.
In predictive maintenance for electrical facilities engineering,
ML enhances power systems with self-adaptability and self-
awareness, boosting network autonomy [22].

ML-based predictive maintenance applications can be
divided into supervised and unsupervised learning approaches.
In supervised learning, datasets include information about the
system status, e.g., health status, remaining useful life (RUL)
values, or fault types. Conversely, unsupervised learning algo-
rithms lack maintenance-related data [23]. Focusing on super-
vised learning tasks, classification and regression problems
are identified. The former arises for example when distin-
guishing between health and malfunction states [24], [25].
The latter comes into play when forecasting RUL [26] or
another target variable. For instance, in [27], the objective is
to implement AI-based thermal prognostic models predicting
the likely temperature along a cable joint.

In the domain of energy systems, the primary focus in
predictive maintenance research is directed toward high-power
wind turbines [28]. In [29], a data-driven framework is
introduced to predict faults in wind generators, comparing
support sector machine (SVM), adaptive boosting algorithm,
and ANN. Additionally, in [30], an ANN is applied to SCADA
data to predict operating anomalies in the main components of
wind turbines. Finally, in [31], various algorithms, including
random forest (RF), ANN, SVM, and decision tree (DT), are
evaluated for predicting the insulation health condition of MV
distribution transformers based on their oil test results.

C. Selected Algorithm
ANNs have gained widespread application in predic-

tive maintenance tasks. However, within the realm of MV
switchgears, the utilization of ANNs remains relatively
uncommon. This study aims to address this gap by proposing
an ANN for predictive maintenance of MV switchgears based
on temperature measurements. Particularly, the proposed ANN
is designed to establish a correlation between temperature
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measurements within the switchgear and its health status. The
case study is formulated as a multiclass classification task.

The fundamental architecture of an ANN comprises input,
hidden, and output layers, with layers being vertical structures
composed of elementary units known as neurons [32]. Each
neuron is characterized by its activation function, dictating the
input–output relation, and a bias value that introduces a shift
to the input. The connections among neurons are defined by
weights, indicating the strength of the interneuron connections.

Two distinct types of ANN models, feed-forward and recur-
rent neural networks, are recognized based on the direction
of information flow. The former exhibits unidirectional infor-
mation flow (from input to output layer), while the latter
allows for bidirectional information flow, including backward
propagation. The specific architecture of the ANN proposed in
this study is a feed-forward neural network comprising three
layers: input, hidden, and output layers. Furthermore, the cho-
sen activation functions for hidden layer and output layer are,
respectively, the rectified linear unit (ReLU), with 20 hidden
neurons, and the Softmax. The choice of ReLU and Softmax
is driven by several considerations. ReLU is a common choice
for the activation function in hidden layers of ANNs because
it is computationally efficient since it allows for faster con-
vergence of the model, accelerating the training process [33].
In fact, ReLU activates only when the input is positive, pro-
viding greater learning capacity compared to other functions.
Softmax is, instead, commonly used in the last layer of a
neural network for multiclass classification problems. Indeed,
it converts the network outputs into a probability distribution
with sum equal to 1, making them interpretable as predicted
probabilities for each class. In particular, for an N -size input
vector x, the following equations are implemented:

ReLU =

{
0, if xi < 0
xi , if xi ≥ 0

(1)

Softmax =
exi∑N
j=1 ex j

, i = 1, 2, . . . , N (2)

where xi represents the i th element of x. Finally, for train-
ing the network, the adaptive moment estimation optimizer
is employed. Moreover, the implementation of the ANN is
carried out using the Keras module of the TensorFlow library
in the Python programming language.

III. TEMPERATURE-BASED PREDICTIVE
MAINTENANCE OF MV SWITCHGEAR

This section presents the case study for the temperature-
based predictive maintenance of MV switchgears. The analysis
method is described in Fig. 1. In summary, temperature val-
ues were acquired during an in-field measurement campaign.
Subsequently, synthetic datasets are generated from these
measurements to facilitate the training phase of the selected
algorithm described in Section II-C. Finally, the efficacy of
the algorithm is validated by using both simulated temperature
values and actual temperature measurements.

A. Experimental Setup
The predictive maintenance herein proposed builds upon

temperature measurements to carry out inside MV switchgears,
which should comply with the International Standard IEC
62271-200. The experimental setup employed for the case
study is composed by a MV switchgear and a data acquisition
system to measure the temperature values.

Fig. 1. Flowchart of the analysis method.

Fig. 2. Compartments of the MV switchgear and location of
thermocouples.

The MV switchgear is an Imesa MINIVER/C MV
switchgear, namely, a metal-closed switchboard, designed in
compliance with the International Standard IEC 62271-200,
for voltages above 1 kV and up to and including 52 kV.
It consists of four main sections, shown in Fig. 2: a busbar
compartment (a), a line compartment (b), a circuit breaker
compartment (c), and a low-voltage compartment (d). The
busbar compartment contains two copper busbars, linked by
a joint, and connected to the fixed contact of a higher inter-
rupting device envelope. The busbar compartment is supplied
by a three-phase system, which branches off along all the MV
compartments. Then, in the line compartment, the current is
reduced by a factor of 750 through a WATTSUD IWR10K
current transformer working at a frequency of 50 Hz. The
line compartment is also designated for hosting the lines that
connect the power cables, arranged in the rear part, to the fixed
contact of a lower interrupting device envelope. Finally, the
switchgear is endowed with an interrupting device and a low-
voltage equipment, placed, respectively, in the circuit breaker
compartment (c) and in the low-voltage compartment (d). The
switchgear is supplied by a current of 630 A, generated at a
frequency of 50 Hz.

In the correct operating conditions of the MV switchgear,
the joint between the busbars as well as the connection to the
power cables are fastened by torque wrench and M10 bolts
with a torque of 45 Nm [20]. The fixed contacts with the two
interrupting device envelopes, i.e., the former in the busbar
compartment and the latter in the line compartment, as well
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TABLE I
MINIMUM AND MAXIMUM TEMPERATURE VALUES ACQUIRED DURING THE THREE SESSIONS BY FASTENING

THE CURRENT TRANSFORMER WITH A TORQUE OF 60, 20, AND 4 Nm

Fig. 3. Data acquisition system with cDAQ-9178 CompactDAQ chassis,
equipped with single NI-9214 Temperature Input Module.

as the lower and upper tulips of the circuit breaker are, instead,
fastened by M16 bolts with torque of 165 Nm [20]. At last,
the current transformer is fastened by M12 bolts with a torque
of 60 Nm [20].

Three separate sessions for temperature acquisition were
carried out. In the first session, the correct operating con-
ditions of the MV switchgear were observed, as described
above. In the successive sessions, the fastening on the current
transformer was progressively loosened, keeping all the other
fastenings at the correct operating conditions. In detail, for the
second acquisition, the current transformer was fastened with
a torque of 20 Nm, while, for the third acquisition, the current
transformer was fastened with a torque of 4 Nm.

The temperature values were measured by a set of seven TC
SR30KX K-type thermocouples, located inside the switchgear.
The thermocouples were distributed to measure differential
temperature in seven points of the MV switchgear and circled
in Fig. 2: 1) joint between the busbars; 2) fixed contact
with the higher interrupting device envelope in the busbar
compartment; 3) top contact with the current transformer;
4) fixed contact with the lower interrupting device envelope
in the line compartment; 5) connection to the power cables;
6) lower tulip; and 7) upper tulip of the circuit breaker.

The thermocouples were connected to a data acquisition
system consisting of a National Instruments cDAQ-9178
CompactDAQ chassis, equipped with a National Instru-
ments NI-9214 C Series Temperature Input Module [34]
and represented in Fig. 3. The NI-9214 Temperature Input
Module of the cDAQ-9178 CompactDAQ chassis converts
the temperature-dependent voltage from the thermocouples in
temperature values. The NI-9214 Temperature Input Module
can acquire up to 16 thermocouple input channels. Thus,
a single module is enough to measure simultaneously the
temperature values from seven thermocouples, occupying only
one of the eight slots of the cDAQ-9178 CompactDAQ chassis,
as shown in Fig. 3.

In order to observe the different temperature increase
due to the three fastenings, each acquisition session started
only 5 h and 35 min after turning on the switchgear.

Then, 50 temperature values were acquired by each ther-
mocouple, one every 2 min and 30 s since the beginning
of the session. The minimum and maximum values of the
temperature acquired during the three sessions, by fastening
the current transformer with a torque of 60 , 20 , and 4 Nm,
are reported in Table I.

According to the IEC 62271-200, MV switchgears work in
normal operating conditions if their external air temperature
falls in the range [−5.0 °C, 40.0 °C]. For this reason, two
K-type thermocouples were located outside the switchgear for
the three sessions, measuring air temperature values on average
equal to 18.9 °C, 19.1 °C, and 18.2 °C, respectively. Thus,
the external air temperature values during the experimental
tests are within the range limits. As a rule, the environmental
conditions of MV switchgears should be controlled in order to
guarantee that the external air temperature is within the spec-
ified range. Obviously, should the environmental conditions
bring to uncontrolled variations outside the limits set by the
IEC 62271-200, the switchgear operation would not be bound
to the temperature values expected by predictive maintenance.

B. Dataset Generation
In order to implement the ANN, training and testing stages

are required. To this aim, synthetic datasets representative of
the three fastenings are created from the in-field temperature
measurements. The specific decision of creating synthetic
datasets is rooted to the fact that ANN models typically need
extensive training to achieve optimal performance, a require-
ment often unmet by solely in-field measurements.

For dataset generation, 1000 temperature values are syn-
thetically generated from a uniform distribution for each
thermocouple and each fastening. In particular, the uniform
distribution is centered on the mean value of the 50 tempera-
ture values acquired by each thermocouple for each fastening,
as described in Section III-A. Instead, as concerns the interval
limits of the uniform distribution, the choice is guided by typi-
cal measurement uncertainty associated with sensors employed
in this application scenario, according to the International
Standard IEC 60751. Therefore, for a numerical evaluation,
described in Section IV-B, two extreme cases are consid-
ered, i.e., with uncertainty equal to ±0.5 °C and ±1.5 °C.
Subsequently, for an experimental evaluation, described in
Section IV-C, the uncertainty is set to ±1.0 °C, as provided by
the specifications of the adopted data acquisition system [34].
Definitely, the datasets for each fastening consist of 7000 tem-
perature values, for a total dataset of 21 000 temperature
values.

C. Algorithm Implementation
The ANN model described in Section II-C is characterized

by simplicity and high performance. Fig. 4 depicts the block
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Fig. 4. Block scheme of the ANN with its activation functions.

scheme of the considered network, pointing out input features
and output labels, as well as the activation functions of hidden
and output layers.

The input features of the model comprise the tempera-
ture value and the corresponding number of the measuring
thermocouple, for eight input features altogether. Clearly, the
thermocouple number is indicative of the measurement point
inside the MV switchgear. In order to enhance performance,
particular attention is given to data preprocessing, ensuring
that the model can effectively leverage the input features to
achieve optimal results. Specifically, the temperature values
are normalized between 0 and 1. Instead, the thermocouple
number, ranging from 1 to 7, is encoded by one-hot encoding.
The one-hot encoding technique is commonly used to con-
vert categorical data into binary vectors. In this case study,
characterized by the seven thermocouples, the first vector is
represented as [1, 0, 0, 0, 0, 0, 0], while the last vector is
represented as [0, 0, 0, 0, 0, 0, 1]. Thus, the seven vectors,
one for each thermocouple, are the actual input features of
the ANN model, along with the temperature value. As con-
cerns the output, three distinct classes are identified for each
torque value: 60, 20, and 4 Nm labeled, respectively, as 0, 1,
and 2, and corresponding to correct, intermediate, and critical
operating conditions.

IV. RESULTS

This section consists of three parts. Initially, the definition
of the metrics used for the evaluation of the tests is given.
Then, the results of the preliminary testing performed with
the synthetic data are given. Finally, the results of algorithm
testing, using experimental data, are discussed.

A. Evaluation Metrics
Concerning the evaluation of the ANN model performance,

various metrics are available to assess its classification out-
comes. The definition of metrics involves the identification
of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) cases. TP and TN represent correctly
predicted values, while FP and FN denote noncorrectly pre-
dicted values. In the context of a binary classification task,
TP and TN count instances where positive (1) and negative (0)
values are predicted as 1 and 0 by the model, respectively.
Conversely, FP and FN represent cases where 0 and 1 values
are predicted as 1 and 0. Confusion matrix is an effective
visual representation of classifier results. Principal diagonal
cases represent the correct predictions made by the algorithm,
while other cells contain the mistaken values.

Accuracy assesses the overall correctness of the model

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%. (3)

Therefore, in what follows, the Accuracy is presented as a
unique value that assesses the model performance and not as
a parameter evaluated for each of the K considered classes.

Precision quantifies the ratio of correctly predicted positive
values to the predicted positive values

Precision(k) =
TP(k)

TP(k) + FP(k)
× 100%, k = 1, 2, . . . , K .

(4)

High Precision relates to the low false-positive rate.
Sensitivity expresses the ratio of correctly predicted positive

values to the actual positive values

Sensitivity(k) =
TP(k)

TP(k) + FN(k)
× 100%, k = 1, 2, . . . , K .

(5)

For a comprehensive evaluation of model performance, both
Precision and Sensitivity should be considered. Thus, the
F1 score serves as a helpful metric that incorporates both
Precision and Sensitivity

F1(k) = 2
(4) × (5)

(4) + (5)
× 100%, k = 1, 2, . . . , K . (6)

Since the proposed case study is formulated as a multiclass
classification task, a note on metrics calculation is required.
Precision, Sensitivity, and F1 can be computed for each class
individually or averaged across all classes. The averaging
approach includes macroaveraging, which calculates scores
for each class individually and then averages them. The
macroaverage of Precision, Sensitivity, and F1 are, respec-
tively, calculated as

macro-averagePrecision =
1
K

K∑
k=1

Precision(k) (7)

macro-averageSensitivity =
1
K

K∑
k=1

Sensitivity(k) (8)

macro-averageF1
=

1
K

K∑
k=1

F1(k). (9)

In reality, other methods of averaging metrics include microav-
erage and weighted average. However, the microaverage, when
calculated for each metric, always matches the Accuracy value.
This happens because, in multiclass classification, the microav-
erage aggregates the contributions of all classes by summing
their TP, FN, and FP, which is exactly the computation of
Accuracy. Similarly, the weighted average is equivalent to
the macroaverage because each class has the same number
of instances, making the weights equal across all classes.

B. Numerical Evaluation
The two datasets consisting of 21 000 synthetic temperature

values with uncertainty, respectively, ±0.5 °C and ±1.5 °C,
described in Section III-B, are employed for the numerical
evaluation. Then, for both the datasets, the 80% is considered
for training, while the remaining 20% is reserved for testing.

Table II reports, for each dataset, the Accuracy values
and the execution times of training and testing phases.
The results derived from testing the ANN model on the
datasets with uncertainty ±0.5 °C and ±1.5 °C are compiled
in Tables III and IV, respectively. In these tables, the first
three rows present the Precision, Sensitivity, and F1 metrics
for the three output classes. Focusing on the results obtained
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TABLE II
OVERALL PERFORMANCE AND EXECUTION TIMES

FOR SYNTHETIC DATASETS

TABLE III
METRICS FOR SYNTHETIC DATASET WITH UNCERTAINTY ±0.5 ◦C

TABLE IV
METRICS FOR SYNTHETIC DATASET WITH UNCERTAINTY ±1.5 ◦C

Fig. 5. Confusion matrix for synthetic dataset with uncertainty ±0.5 ◦C.

for the dataset with uncertainty ±0.5 °C, different outcomes
emerge depending on the specific class under consideration.
The 60 Nm class exhibits the highest values among all the
three metrics, while the 4 Nm class yields the least favorable
results. On a global scale, the average values for all the metrics
exceed the 83%. Increasing measurement uncertainty leads to
a performance decrease. Regarding the results for the dataset
with uncertainty ±1.5 °C, the average values exceed the 77%.
The poorest metric values are observed when classifying
instances of the 20 Nm class.

For a comprehensive evaluation of the classifier results,
Figs. 5 and 6 show, respectively, the confusion matrices
obtained for the synthetic datasets with uncertainty ±0.5 °C
and ±1.5 °C. Predominantly, instances belong to the princi-
pal diagonal, indicating accurate classification performance.
Notably, in the case of uncertainty ±0.5 °C, no instances of the
60 Nm class are misclassified as 4 Nm values, and vice-versa.
This observation underscores the model ability to consistently
predict both the best and worst fastenings, demonstrating
that only neighboring classes may undergo classification
interchange. As the uncertainty increases, the classification

Fig. 6. Confusion matrix for synthetic dataset with uncertainty ±1.5 ◦C.

Fig. 7. Comparison of algorithms in terms of Accuracy.

performance diminishes. This result is predictable due to the
nature of the adopted algorithm.

In addition, for the sake of completeness, the selected
algorithm is compared to several ML algorithms. Specifi-
cally, the following algorithms are implemented and assessed
for temperature-based predictive maintenance of the MV
switchgear: SVM, RF, DT, and k-nearest neighbors (K -NN).
SVM is widely used in predictive maintenance tasks due to
its effectiveness in high-dimensional spaces. RF and DT are
renowned for their high performance and interpretability in
classification tasks. K -NN is favored for its simplicity and
adaptability. In this scenario, all the models are trained with
the 80% of datasets with uncertainty ±0.5 °C and ±1.5 °C
and tested with the remaining 20%. The comparison results
illustrated in Fig. 7 demonstrate that the proposed ANN model
achieves higher performance for both the uncertainty values.

C. Experimental Evaluation
The experimental evaluation is intended to assess the effec-

tiveness of the ANN in practical settings. In this case, the
synthetic dataset with uncertainty ±1.0 °C is employed for
the training phase. Then, the testing phase is implemented on
the actual temperature measurements obtained as described
in Section III-A. Therefore, the testing datasets for each
fastening consist of 350 measurement values, corresponding
to 1050 temperature measurements on the whole.

Table V shows the reached value of Accuracy for the
experimental measurements and the execution times for
both the phases of training and testing. Table VI presents
the other metrics. The metric values exceed the 78%,
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TABLE V
OVERALL PERFORMANCE AND EXECUTION TIMES

FOR EXPERIMENTAL MEASUREMENTS

TABLE VI
METRICS FOR EXPERIMENTAL MEASUREMENTS

Fig. 8. Confusion matrix for experimental measurements.

which is a good outcome. Additionally, Fig. 8 displays the
corresponding confusion matrix.

V. CONCLUSION

The goal of this article is to enhance fault location strate-
gies for improved predictive maintenance in MV switchgears.
It proposes the integration of ANN with a distributed measure-
ment system that collects temperature data. These temperature
values, collected from within the switchgear, are correlated
with the switchgear health status using AI. A key novelty
of this article is linking temperature changes, resulting from
varying component fastening levels within the switchgear,
to the asset condition. This advanced health status monitoring
allows for the immediate detection of malfunctions, enabling
system operators to implement predictive maintenance strate-
gies effectively.

The article provides a detailed description of the network
and experimental setup, followed by an account of algorithm
training and testing. The ANN has been evaluated both on
synthetic data and actual data from a measurement campaign.
The high level of Accuracy obtained on the numerical and
experimental data proves that the proposed method is suitable
for health assessment of MV switchgears. Generally speaking,
the results strongly support the benefits of implementing a
predictive maintenance approach that combines distributed
measurements and ML algorithms.
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