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Abstract: The seamless integration of indoor and outdoor positioning has gained considerable
attention due to its practical implications in various fields. This paper presents an innovative
approach aimed at detecting and delineating outdoor, indoor, and transition areas using a time
series analysis of Global Navigation Satellite System (GNSS) error statistics. By leveraging this
contextual understanding, the decision-making process between GNSS-based and Visual-Inertial
Odometry (VIO) for trajectory estimation is refined, enabling a more robust and accurate positioning.
The methodology involves three key steps: proposing the division of our context environment into a
set of areas (indoor, outdoor, and transition), exploring two methodologies for the classification of
space based on a time series of GNSS error statistics, and refining the trajectory estimation strategy
based on contextual knowledge. Real data across diverse scenarios validate the approach, yielding
trajectory estimations with accuracy consistently below 10 m.

Keywords: indoor–outdoor positioning; sensor fusion; GNSS; VIO; space classification

1. Introduction

Positioning and geolocalization have been significant challenges that humans have
sought to address since the dawn of civilisation. Technological advancements made in the
last century have empowered 21st-century citizens to determine their location like never
before. However, further progress is still necessary. One of the most relevant challenges is
achieving seamless indoor–outdoor positioning on a global scale [1]. This requires a single
positioning device capable of providing a reliable solution in any environment, whether it
be outdoors or indoors.

On one hand, outdoor tracking technologies are well-established through GNSS [2].
The integration of GNSS into smartphones, along with applications like Google Maps,
incorporating georeferenced topographical and aerial or background maps, significantly
facilitates people’s location and navigation [3]. Although the error of these GNSS systems
is typically a few meters, it still provides a more than satisfactory model for its intended
purpose: assisting users in reaching a destination within a city, whether it is a strategic site
or any building. The advantage of using GNSS-based positioning is that it can be applied
to all people moving in an outdoor space [4]. The problem arises when people move from
outdoors to indoors because GNSS-based systems degrade their performance in these
environments [5–7]. This occurs because GNSS signals cannot penetrate indoor spaces.
Moreover, they may also significantly degrade position accuracy in outdoor environments
due to the blockage of GNSS signal or multipath, especially in non-GNSS friendly areas
such as urban or forested regions.
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Although several approaches for indoor positioning exist in the literature and on
the market (mainly radiofrequency-based), these are not suitable for worldwide indoor–
outdoor tracking because they rely on infrastructure that may not be available every-
where [8]. Another infrastructure-independent approach is also being developed by the
scientific community, aiming to determine trajectories in indoor spaces using camera(s) and
IMU data. The most advanced solutions rely on Simultaneous Localization and Mapping
(SLAM) or Visual Inertial Odometry (VIO) approaches but may suffer from positional drift
in the absence of loop closures, limiting their practical applicability to some extent.

Approaches that integrate GNSS with SLAM-VIO-based methods have recently been
investigated [9–12], but they are in the early stages. One recent effort in this direction is
the work carried out in the IOPES project [8]. The research aimed to continuously track
members of civil protection or emergency teams as they moved between outdoor and indoor
areas. The authors believe that current technologies, encompassing both software and
hardware, are robust enough to build a system capable of meeting the tracking requirements
for emergency teams. This system would be based on data provided by IMUs, RGB-D
cameras, and GNSS receivers [13], along with a suitable fusion algorithm. All these devices
are installed on a helmet, and two trajectories are estimated in real-time, one based on the
GNSS signal and the other one on the camera and IMU data, specifically relying on Visual
Inertial Odometry (VIO) (Figure 1). Both trajectories are combined using a fusion algorithm
to provide a single indoor–outdoor trajectory. The system predominantly relies on a GNSS-
based solution for outdoor tracking and a VIO-based solution for indoor tracking [14].

Figure 1. Positioning system mounted on a helmet designed and built by CTTC.

Although this work represents a significant step forward in seamless indoor–outdoor
tracking performance, it remains insufficient. This limitation arises from the current ap-
proach, which relies solely on the most recent GNSS error statistic (such as horizontal
GNSS accuracy error) to determine whether a person is indoors or outdoors, subsequently
deciding on the most reliable trajectory between the GNSS-based or the VIO-based meth-
ods. Consequently, while the indoor and outdoor trajectories are accurate individually, the
connection between the two lacks precision, potentially resulting in a substantial shift in
indoor areas.

This paper introduces a novel approach to address this issue. We propose a method
for detecting outdoor, indoor, and transition areas based on a time series of GNSS error
statistics rather than relying on a single epoch. By utilising this accumulated contextual
knowledge, we aim to improve the decision-making strategy for choosing between GNSS-
based and VIO methods. The goal is to provide a more robust and accurate seamless indoor
and outdoor trajectory.

The approach consists of three distinct steps. Firstly, a proposal to divide our con-
textual environment into a set of areas (indoor, outdoor, and transition). Then, the imple-
mentation and exploration of three methodologies for the classification of the space: one
based on the most recent GNSS statistics and two based on a time series of GNSS error
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statistics. Finally, the seamless indoor–outdoor trajectory estimation approach is enhanced
by integrating knowledge of the contextual environment. The feasibility of the approach
has been verified by obtaining and analysing estimated trajectories using real data from
various scenarios with distinct characteristics.

The main contribution of this paper can be summarised as follows:
• The introduction of an innovative approach for detecting outdoor, indoor, and transi-

tion areas through the time series analysis of GNSS error statistics.
• The refinement of the decision-making process between GNSS-based and Visual-Inertial

Odometry (VIO) for trajectory estimation by leveraging contextual understanding.
• The validation of the approach using real data from diverse scenarios, demonstrating

trajectory estimations with a consistent accuracy.
The rest of the paper is organised as follows: in Section 2, the scientific background is

reported, which raises an objection to the context environment classification, and a proposal
for its division are introduced; moreover, a description of the different methods developed
and implemented in this paper are contextualised with recent research findings in Section 3.
Then, Section 4 presents the different scenarios that have been used to evaluate the potential
of the approach and the achieved results. In Section 5, the conclusions and further research
are presented, together with a comparative analysis with existing methods.

2. Related Works

Several comprehensive reviews have been identified in the scholarly literature, em-
phasizing the critical need for integrated indoor–outdoor (IO) localization capabilities [15].
Scholars have explored various indoor and outdoor localization technologies, highlighting
mechanisms for seamless transitions between environments without disrupting the local-
ization process. Discussions include indoor localization technologies such as RFID [16],
Ultra-Wide Band (UWB) [17], and Bluetooth Low Energy (BLE) [18], while outdoor local-
ization is predominantly analyzed through GNSS.

For enhanced seamless positional accuracy, leveraging a hybrid fingerprinting ap-
proach that amalgamates data from multiple sensors is advocated over reliance on singular
sensor systems. The adoption of fingerprinting techniques for seamless positioning has
been elaborated upon in [17], where fingerprinting data are derived from either compre-
hensive or streamlined training databases. Techniques such as clustering, path-loss models,
and image-based strategies are evaluated for their efficacy in contexts requiring range mea-
surements. As shown in [19], Multi-Dimensional Scaling facilitates the transformation of
high-dimensional data into a more manageable lower-dimensional format, accompanied by
visual representation. Another important work [20] shows the effectiveness of localization
techniques deployed on commercial smartphones, employing traditional methodologies
such as proximity, Received Signal Strength (RSS), angle, timing, and map matching, noting
their user-friendly advantage despite performance variability. Finally, in [21] IO localiza-
tion advancements within the context of the Internet of Things (IoT) is shown, observing
consistency in traditional localization methods alongside the introduction of novel ap-
proaches, notably LTE and 5G, for localizing entities like sensor nodes and drones in both
two-dimensional and three-dimensional spaces.

However, it is worth noting that specific discussions on seamless IO localization—
beyond mere differentiation between indoor and outdoor settings—are scarce, with a
primary focus on technological methodologies and signal properties. Albeit the role of
machine and deep learning in facilitating such adaptive, data-driven applications is deemed
pivotal given their disruption, further investigation on data optimization with statistical
techniques is mandatory.

Besides this gap, the literature shows that the definition of transition between indoor
and outdoor needs clarification. In daily use, indoor and outdoor may seem clear, yet
precisely defining them proves to be challenging. A review [22] compiles diverse spatial
definitions from various fields. An increasing number of standards and applications are
working towards three-dimensional notions to be able to represent parts of space. These
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aspects were investigated mainly because the key to link the outdoor/indoor trajectories is
a function of the space due to the fact that the GNSS signal is influenced by the space [21].

A very dense canopy is another case where the GNSS signal may not be reliable, but
there are also a lot of intermediate cases among open outdoor area and urban canyons [23]
or dense forest areas [24]. So, it is natural to ask which is the limit; in terms of environment,
we may consider an outdoor area with acceptable signal noise.

There are many studies presented in the literature regarding the definition of spaces
in terms of navigation. Some define indoor spaces by physical boundaries [25,26], such as
walls, doors, and windows, while others include underground spaces [27] or limit them to
built environments [28].

Few definitions address ambiguous semi-enclosed areas. Kray et al. [29] argue for a
third transitional space alongside outdoor or indoor spaces. In terms of the reception of
GNSS signal, the authors of [30] considered whatever was a GNSS-denied environment
as indoor or semi-indoor, while the authors of [31] provided another classification of the
areas: open outdoors, semi-outdoors, light indoors, and deep indoors as shown in Figure 2.

Figure 2. Space definition proposed by [31] and adapted by [22].

Urban canyons and wooded areas are considered semi-outdoors. Light indoors resem-
bles semi-outdoor spaces near windows with partial satellite availability. Deep indoors
lack satellite coverage.

3. Methodology

3.1. Space Classification
Initially, the approach that best suited our study was the one proposed by Wang [31],

summarising how the GNSS signal might be affected by the surrounding space. In this
approach, semi-outdoor serves as a transitional zone, merging light and deep indoor spaces
into a single indoor area. GNSS errors arise when satellites are not directly visible, in other
words, when they are Not in the Line Of Sight (NLOS) of that device, causing a multipath
effect, which is a blend of direct and reflected signals (see Figure 3) [32]. Testing the GNSS
in different spaces helps determine how it responds, aiding in defining semi-indoor and
semi-outdoor limits. However, these limits fluctuate due to various factors such as satellite
positions and weather, creating shifting boundaries rather than fixed lines.

Defining areas solely with GNSS signals for context detection proved challenging due
to this complexity. In this context, the data available produced by a receiver and used in
this research are as follows:

• Time of each point collected;
• Longitude, latitude, and height of each point collected;
• Horizontal error (H_err);
• Vertical error (V_err);
• Number of satellites.

Based on these parameters, in the following section three different procedures are
presented to assign one of the following categories: indoor, outdoor, and transition area.
The first one uses the most recent GNSS statistics (H_err and V_err), while the other
approaches are based on a time series of GNSS-error estimation.
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Figure 3. Left side: sky representation with projected satellites (green = LOS; red = NLOS). Right
side: schemes of the multipath and NLOS effect [32].

3.2. Determination of Indoor, Outdoor, and Transition Areas
3.2.1. Determination of Indoor, Outdoor, and Transition Areas Using GNSS
Error Estimation

In the previous work [13], the method for detecting indoor and outdoor transitions
relied on recent statistics (H_err and V_err) gathered by GNSS trajectories and two different
thresholds (Th1 and Th2) (Figure 4). However, this approach encountered challenges when
merging GNSS trajectories with VIO data, as highlighted in the introduction. The key to
improving the combined trajectory is still hidden in the trajectory itself, so the trajectory
data must be studied to obtain a trend that explains the behaviour of the GNSS in different
spaces, and the algorithm must recognise the trend changes in time, otherwise linking
a new trajectory to the GNSS one will result in substantial errors. These aspects will be
explained in detail in the next paragraphs.

Figure 4. Flowchart depicting the algorithm used to determine indoor, outdoor, and transition areas
using the GNSS error estimation.

3.2.2. Determination of Indoor, Outdoor, and Transition Areas Using Time Series of GNSS
Error Estimation—Slope Approach

To establish a criterion for transitioning between GNSS- and VIO-based trajectories, the
initial approach involves computing a slope from GNSS error statistics using a predefined
n-size window. However, peaks may arise, particularly due to obstructions like trees,
requiring rules to exclude these peaks while considering those near buildings or during
entry indoors. Small obstacles, such as individual trees, briefly impact errors (denoted
as Tin). Tin indicates the time to get in/out to/from the indoor area. Therefore, relying
solely on a high horizontal or vertical slope (S) does not distinguish between approaching
indoor areas or momentary obstacles. This emphasises the necessity for a transitional zone.
Hereafter, the notation is as follows: Si stands for slope number i, Thi for threshold number
i, and Tini for time to get in/out number i.

For instance, meeting conditions S1 within Tin1 seconds, with horizontal error ex-
ceeding Th1, suggests a non-deteriorating signal. Alternatively, exceeding S2 within Tin2
seconds, with higher accuracy, indicates entering an indoor area, differentiating from
transitional zones. Failing these criteria implies remaining in an open outdoor area.
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Determining the transition from indoor to outdoor might be complex. A slope lower
than S3 during Tin3, which is a rapid horizontal error improvement, and overall error
below Th1 signifies entry into reliable outdoor spaces. This algorithm is summarized in
Figure 5.

Figure 5. Flowchart depicting the algorithm used to determine indoor, outdoor, and transition areas
using the slope approach.

3.2.3. Determination of Indoor, Outdoor, and Transition Areas Using Time Series of GNSS
Error Estimation—Mann–Kendall Test Approach

The Mann–Kendall statistical test (MK Test) is a non-parametric test [33,34] used for
assessing the significance of trends [35]. It is mainly used for hydro-meteorological time
series, and we assert that such a statistical test, despite there being no cases in the literature
where this test has been used for similar purposes, could be fitting for this dataset. This is
attributed to its compatibility with non-normally distributed data, its robustness against
outliers in the data, and its capability to detect trends with relatively small sample sizes,
as long as the data exhibit monotonic trends. A detailed description of the MK test can be
found in Appendix A.

Having established this, we need to define a rule to switch between the different spaces.
Similar to the prior scenario involving slope values, we establish the criteria described in
Figure 6. In this approach, the MK statistical value (written as S in Appendix A) is used
instead of the slope value.

Figure 6. Flowchart depicting the algorithm used to determine indoor, outdoor, and transition areas
using the MK approach.

3.3. Seamless Indoor–Outdoor Trajectory Estimation
In order to compute a seamless indoor–outdoor trajectory, a data fusion algorithm

that relates GNSS and camera-based positions, providing a single trajectory regardless
of whether it originated indoors, outdoors, or both, has been adapted [8]. The tool has
been modified to incorporate the determination of outdoor, transition, and indoor areas by
introducing an external indicator as a new feature. The use of this indicator, derived from
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a time series of GNSS statistics, seeks to improve the selection criteria between using the
GNSS-based or the VIO-based solution in each epoch, thus aiming to enhance the overall
accuracy of the seamlessly estimated indoor–outdoor trajectory.

4. Results

4.1. Test Areas Description and Data Sources
Several campaigns were conducted to validate the performance of positioning sensors

(visual-inertial odometry and GNSS sensors), to assess the efficacy of the approaches based
on the time series of GNSS positions for detecting outdoor, indoor, and transition areas,
and to evaluate the performance of the seamless indoor–outdoor positioning system. These
campaigns spanned three locations in Catalonia (Spain): CTTC premises in Parc Mediterrani
de la Tecnologia (Castelldefels) and its environs, Garraf town, and Collsuspina, each
featuring indoor spaces, clear-sky areas, and locations with strong multipath conditions.

Five distinct routes were designated, encompassing various scenarios, including
outdoor with clear sky, outdoor with low GNSS availability, and indoor spaces. The “PMT-
LAB” route navigated a campus with multipath zones and indoor areas within different
CTTC buildings. “Sa Falconera” explored Garraf’s surroundings, including cliff-side walks
and tunnel passages. “Garraf Town” traversed narrow streets and concluded within a
house showcasing four distinct rooms. Two routes in Collsuspina involved forest walks,
cave exploration, and entry and exit from the building.

The prototype developed by [8] was used in these routes to acquire the positioning data.
The positioning sensors that are included in the system are: a GNSS receiver that provides
the GNSS-based trajectory, a stereo camera that provides the VIO-based trajectory, and a
magnetometer. The system was mounted on a helmet (Figure 1), and a person walked through
the routes while the positioning data were acquired and stored. Then, a seamless indoor–outdoor
trajectory combining the GNSS and VIO-based trajectory was computed in post-processing.
Although the system allows for real-time trajectory estimation, in this work, an offline and
adapted version of the sensor fusion software approach of the system was used.

The “PMT-LAB” route facilitated a comprehensive analysis, evaluating GNSS error
statistics and the performance of two algorithms for detecting outdoor, indoor, and transi-
tion areas. The remaining routes assessed the seamless indoor–outdoor trajectory estima-
tion method’s performance and the detection of the detection of several areas using GNSS
statistical time series data.

A very rough transition or semi-outdoor area was outlined along the “PMT-Lab” and
“Garraf Town” routes, for aiding in the analysis of GNSS errors. This area was defined
considering an angle of 20 degrees from the top of each building (Figure 7). A vectorial layer
comprising the buildings of the area was generated using the Open Street Maps plugin
in QGIS. The height information for each building was derived from a Digital Surface
Model (DEM) provided by the Spanish Geographical National Institute, available for free
at https://centrodedescargas.cnig.es (accessed on 1 February 2024). An example of this
transition is is shown in Figure 8.

Figure 7. Example of an area next to a building marked as transition or semi-outdoor area.

https://centrodedescargas.cnig.es
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Figure 8. Transition or semi-outdoor area for the “PMT-LAB” (red) and GNSS-based trajectory (green).
Building layouts are shown in blue.

4.2. Determination of Areas Using GNSS Error Statistics
This section showcases the outcomes from analyzing indoor, outdoor, and transitional

zones using the latest GNSS error statistics (H_err and V_err) along the “PMT-LAB” route.
Figures 9 and 10 exhibit the individual GNSS statistics’ horizontal and vertical errors to ob-
serve their behaviours. The horizontal error (H_err) emerged as the most dependable data
for investigation (Figure 9). Figure 9 also shows some vertical lines, manually identified,
corresponding to relevant events that occur such as entering or going out from transitional
areas and buildings. In contrast, the vertical error (V_err) demonstrated relatively smoother
changes in slope, making it less susceptible to rapid alterations over a short duration. How-
ever, this smoothness might obscure significant variations, complicating the identification
of encountered obstacles, be it multipath zones or minor interferences like trees, causing
signal noise (Figure 10).

Figures 9 and 10 illustrate the initial convergence time required by the GNSS receiver
after turning on. Once the error stabilizes, the graph maintains a nearly constant value
of around 3.5 m. Notably, a significant deviation occurs around the second 342, just after
the grey line. Here, the error increases slightly beyond 5 m and persists for approximately
130 s until the vertical yellow boundary. This deviation coincides with the trajectory near
the building, where multipath results in an increase in the error. Consequently, after a few
seconds, the estimated trajectory deviates from a straight line, failing to capture the real
user’s path. The yellow line marks the conclusion of this initial obstacle. As expected,
the horizontal error demonstrates improvement as the positioning device enters an open
space, gradually stabilizing to values similar to those observed before encountering the
first building.

Following the trajectory, two closely vertical positioned lines (blue and green) appear.
The blue line denotes the boundary that supposedly marks the influence zone of the
upcoming building, established at a 30-degree angle from the building’s top. In contrast,
the green line marks the moment when the user approaches the entrance of this building.
This approach, relying on thresholds derived from the last epoch of GNSS error statistics,
reveals a major weakness. One would expect that a significant deviation in GNSS error
indicators when the positioning device enters a building, highlighting that the GNSS-based
solution is unreliable when switching to a VIO-based solution. However, the H_err displays
only a marginal increase, similar to the earlier observed multipath effect. Although a 5-m
error remains acceptable for estimating pedestrian trajectories, using an algorithm with
these settings fails to guarantee a continuous and realistic trajectory.
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Figure 9. GNSS trajectory horizontal error vs. time. Vertical lines highlight relevant events such as
entering or going out from transitional areas and buildings. Horizontal orange line shows a a line
with constant horizontal error of 5 m, while the horizontal green line shows of 3.5 m.

Figure 10. GNSS trajectory vertical error vs. time.

The H_err values increase significantly when the device enters the building after
several seconds. Consequently, relying solely on a simple approach like the H_err or its
standard deviation in a specific area will result in switching to the VIO trajectory too
late. This leads to erroneous positioning in that part of the trajectory, causing a loss of
crucial information about the user’s indoor location while carrying the device. Similarly,
the same issue arises when the user exits the building, indicated by the dark blue line
in Figure 9. Although the GNSS signal becomes reliable upon exiting, it is imperative to
switch to it instead of relying on the VIO trajectory, even though the H_err remains unstable
at this point. This introduces another problem as a shifted VIO trajectory, considered
incorrect, is utilised. The GNSS trajectory should be adopted as soon as the signal achieves
reliability. However, defining these limits is still essential and requires understanding and
establishment. A clear observation from the plot in Figure 9 is that using thresholds based
solely on the last GNSS error statistics proves insufficient.

4.3. Determination of Areas Using GNSS Slope
In this subsection, the slope of the horizontal error using a different time window of

n = 10, 5, and 3 s has been computed and examined. The size of this window was selected
due to the low motion dynamics (walking) that were used for data acquisition during tests.
A very high n would imply that the positions of the people carrying out the positioning
system might change significantly. The slope, defined as the ratio of the vertical change
to the horizontal change between two consecutive points, when calculated over a shorter
period (n = 3), highlights sharp changes in errors, while over a longer duration (n = 10),
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it results in a smoother representation. Figures 11–13 illustrate examples of these time
windows, plotting the slope derived from a set of n horizontal and vertical errors values
for the “PMT-LAB” test area.

Figure 11. Slope calculated in a time window of 10 s, using as input the horizontal error (red) and
vertical error (blue).

Figure 12. Slope calculated in a time window of 5, using as input the horizontal error (red) and
vertical error (blue).

The red peaks that emerge in each graph signify an encountered obstacle in the
environment. This is promising because drastic changes are well visualized, especially in
the 5- and 3-s graphs. In contrast, the graph calculated using the 10-s window does not
show these peaks prominently enough (Figure 13).

Figure 13. Slope calculated in a time window of 3 s, using as input the horizontal error (red) and
vertical error (blue).
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Looking for criteria to determine if the area is indoor, outdoor, or a transition area,
and so to decide when the positioning system must change from GNSS-based to VIO-based
trajectory solution, the slope at 3 s was chosen as an indicator as it has the sharpest peaks.
Following the decision tree introduced in Figure 5, the used values are detailed thereafter:
S1 = 0.5, Tin1 to a interval of [0;2] seconds; Th1 = 6 m, S2 = 1.0, Tin2 to [2;10] seconds;
Th2 = 10 m, and S2 = �1.0.

Following the defined rules, they were configured in QGIS to visualise the trajectory’s
appearance. The green colour denotes the moment of transition from the GNSS-based
trajectory to the VIO-based trajectory, discernible near the encountered buildings. Upon
analysing this outcome, it might seem suitable to switch to VIO in all the suggested cases.
However, there is not a significant improvement compared to the previous results obtained
from [8]. While this method might seem suitable initially, there is a notable and substantial
delay, especially upon entering the last building shown in the figure below (Figure 14).

Figure 14. Slope test applied to the trajectory of “PMT-LAB”. Yellow points are points classified as
good GNSS areas, while green points are points belonging to be transition or indoor areas. Building
layouts are shown in blue, while transition or semi-outdoor area for the “PMT-LAB” is shown in red.

4.4. Determination of Areas Using GNSS Mann–Kendall
Applying the MK test to the entire dataset simultaneously lacks significance. A single

value computed for the entire dataset fails to discern the specific moments or locations
where the trajectory is affected by the surrounding area. Furthermore, its application
to small areas is unfeasible due to its requirement for real-time analysis or sequential
processing of acquired data along the path. The intended approach is to employ the MK
test on the most recent 10, 5, and 3 s of acquired data, with the 10-second analysis yielding
the most favourable results.

At this point, we implemented a criterion similar to the one previously used for slope.
While identifying the transition area remains crucial, the positioning device now switches
exclusively between the GNSS-based and VIO-based trajectories. A rule distinguishing
solely between outdoor and indoor areas is unnecessary; instead, we require a rule en-
compassing both indoor and transitional zones, which significantly impact GNSS data.
Thus, we used the same criteria to detect transitional and indoor areas. The newly applied
rules for this trajectory are outlined in Figure 6. The used values are detailed thereafter:
S1 = 2.0, Tin1 to 10 s, Th1 = 4 m, S2 = 2.0, Tin2 to 10 s, Th2 = 4 m, S3 = �2.0, Tin3 to 10 s,
and Th3 = 8 m.
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The resulting outcome is shown in a new coloured trajectory (Figure 15). The indoor
area becomes recognisable before entering a building, and the outdoor area is identified in
less than 10 s upon exiting indoors. Additionally, the transition areas are detected when
a significant multipath affects the GNSS receiver, eliminating smaller disturbances. This
improvement can significantly alter the time taken to switch from GNSS-based to VIO-based
and vice versa, using only the last 10 s of collected data. Figures 16 and 17 show the results
of the new approach using the MK test at the Garraf, Falconera, and Collsuspina sites.

Figure 15. MK test applied to the trajectory of “PMT-LAB”. Green points are good GNSS areas,
orange points are transitional areas from outdoor to indoor, and red are from indoor to outdoor.
Building layouts are shown in blue, while transition or semi-outdoor area for the “PMT-LAB” is
shown in red.

Figure 16. MK test applied to the trajectory in Garraf town. Green points are good GNSS areas,
orange points are transitional areas from outdoor to indoor. Building layouts are shown in blue while
transition or semi-outdoor area for the Garraf town is shown in red.
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Figure 17. MK test applied to the trajectory of Falconera (left) and Colluspina (right). On the left
figure, green points are good GNSS areas, orange are transitional areas from outdoor to indoor, and
red are from indoor to outdoor. On the right, blue points are good GNSS areas while red points are
indoor areas.

4.5. Improved Hybrid Trajectory Using MK Context Information vs. GNSS Error Estimation
Context Information

This subsection presents the results obtained with the hybrid trajectory estimation
procedure.

An example of the estimated trajectory can be observed in the “PMT-LAB” case
(Figure 15). Upon examining the outcomes around the second building from the bottom
left, it can be observed that a user spent some time inside it. When inside a building, there
might be an enhancement in the received GNSS signal as the user passes near a window,
thereby entering a semi-indoor–outdoor area, for instance. Consequently, certain areas
within the building might be marked as red, signifying a transition from the VIO-based to
the GNSS-based solution. Nevertheless, this does not pose an operational challenge for the
hybrid trajectory estimation software because transitioning from VIO-based to GNSS-based
also requires waiting for the improvement of GNSS location accuracy and the classification
of the area as green (outdoor).

The hybrid trajectory has been estimated for the “PMT-LAB” case based on the MK
outcome, as depicted in Figure 18. The newer hybrid trajectory is denoted in blue, while the
older hybrid trajectory is displayed in red. Particularly noticeable within indoor spaces, the
newer trajectory is much more accurate achieving less than 5 m and sub-metric precision.
Furthermore, during transitions from indoors to outdoors, the updated trajectory closely
mirrors the actual walking path. This similarity is especially evident in areas with GNSS
open-sky conditions, such as the space between the two buildings.

Figure 18. Comparison of the older seamless indoor–outdoor trajectory (red) with the newer one
(blue) for the “PMT-LAB”. Ground truth trajectory is depicted in black (dashed line).
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The previous result highlighted the potential of this approach for urban navigation.
Nevertheless, it is crucial to assess its performance across various scenarios and evaluate
its reliability, especially in areas with narrow streets, dense canopy cover, or tunnels, which
are integral in applications like urban mapping, logistics, and emergency management. To
do so, the hybrid trajectory has been estimated for the Falconera, Garraf, and Colluspina
sites, encompassing these diverse scenarios. The results are shown in Figures 19 and 20.

The Collsuspina test follows a nearly symmetrical walking path, starting outdoors,
moving to an inner area, and then retracing the same route back to the starting point.
Figure 19 illustrates the previously estimated trajectory alongside the updated one derived
from GNSS and MK test time series data. A significant deviation between the two trajec-
tories is evident, particularly emphasising that the outbound and return paths are closer
together in the blue trajectory (the new one) compared to the red one (the former trajectory).
Notably, the average distance between the two trajectories has decreased from 8 to 2 m.
Additionally, detailed floor plans of the building interior have been utilizsed to confirm
that the updated trajectory provides greater accuracy, averaging below 5 m.

To emphasise the proposed approach more strongly, two different trajectories were
estimated, each comprising distinct walking paths that concluded indoors at the same
building while also following the same indoor route. These walking paths were previously
illustrated in Figures 16 and 17 (left image). One corresponds to the Falconera site, while the
other represents the Garraf town site. As the Falconera area covered is quite extensive, the
final segments of both estimated trajectories, using both the older and newer approaches,
are displayed in Figure 20 below.

Figure 19. Comparison of the older (red) estimated trajectory with the newer one (blue) in Collsuspina
site. Ground truth trajectory is depicted in black (dashed line).

Given that the indoor path was identical for the conclusion of both the Falconera and
Garraf trajectories, a comparison of their final segments is feasible. In Figure 20 (left), a
considerable distance (averaging 10–15 m) between the two trajectories is evident when
employing the older approach, based on the latest GNSS error indicator. Conversely, with
the new approach (Figure 20 right), the two trajectories align closely, with an average
reduction of less than 5 m. Although a slight error persists even with the new approach, it
remains well within the initially established requirements.
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Figure 20. The final segments of the Falconera and Garraf estimated trajectories conclude at the same
building. The left side displays the previous trajectories, while the right side shows the updated
trajectories.

5. Discussion and Conclusions

In this paper, we propose an enhanced approach to detecting outdoor, indoor, and tran-
sition areas based on a time series of GNSS error statistics rather than a single epoch. This
approach utilises gained knowledge of the contextual environment to improve the decision
strategy, for choosing between GNSS-based or VIO-based methods, thereby providing
a more robust and accurate seamless indoor and outdoor trajectory. We implemented
and tested two methodologies for classifying space based on a time series of GNSS error
statistics. The results highlight that the method based on Mann–Kendall outperforms those
based on the slope of a GNSS error time series and those based on a single epoch GNSS
error statistic. The feasibility of the approach has been verified by obtaining and analysing
estimated trajectories corresponding to a variety of scenarios with different characteristics.
The results demonstrate that a seamless indoor–outdoor trajectory can be estimated with
an accuracy below 5 m and with greater precision.

Two recent works provided a performance evaluation of estimated indoor–outdoor
trajectories in scenarios with some similarities to those used in this work. In [36], the
authors reported errors (in terms of 2D positioning error) of less than 15 m for the Track
6 scenario and higher than 45 m for the Track 3 scenario. Meanwhile, in [37], the authors
reported errors for the Door01 (indoor–outdoor switching) scenario between 0.7 and 9.3 m
using VIO-based approaches or GNSS-RTK based approaches. Although these scenarios
are similar to those presented in the results section, a quantitative evaluation cannot be
properly performed since the scenarios, positioning sensors, and motion dynamics are not
the same. Future work should include the additional validation of our approach using other
scenarios/datasets, including other motion dynamics (robot and car), and a comparison
of the performance achieved with the proposed approach against other state-of-the-art
approaches using benchmark datasets such as WHUVID [38] and M2DGR [37].

While this work represents a step forward in seamless indoor–outdoor positioning
performance, there is still room for improvement in terms of overall performance and
robustness. Consideration of context information is essential to enhance the fusion strategy
in future works and to characterise the features of these transition areas. Implementing the
semantic classification of urban scenes and scene/place recognition using images provided
by the VIO system and deep learning techniques, as proposed in studies such as those
by [39–42], could be beneficial. Furthermore, considering hybrid methods that merge the
current approach with a trajectory forecasting approach based on Artificial Intelligence, as
suggested in works by [43,44], could also be valuable.

The research presented here originates from the IOPES project, which aimed to con-
tinuously and robustly track members of civil protection or emergency teams, regardless
of whether they are indoors or outdoors, during the emergency or post-emergency phase
of a disaster [13]. The proposed solution operates independently of any deployed infras-
tructure, yet it is delivered through cost-effective equipment, intending to serve a wide
number of users. This dual combination may enable the adoption of the proposed solu-
tion by other groups that might need robust and continuously seamless indoor/outdoor
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positioning, such as elderly and differently-abled people [1], wildlife [45], or warehouse
assets [21]. Moreover, the proposed solution holds potential for applications in autonomous
car and robot navigation; various automotive services such as vehicle accident detection;
smart parking systems; and the estimation of free slots, real-time car parking monitoring,
and automatic billing [21]. Furthermore, it could be combined with mapping sensors to gen-
erate point clouds that can be used with further post-processing for building information
modeling purposes or virtual reality applications.
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Abbreviations

The following abbreviations are used in this manuscript:

GNSS Global Navigation Satellite System
H_err Horizontal error
IMU Inertial Measurement Unit
MK Mann–Kendall
NLOS Non Line of Sight
RGB-D Red Green Blue-Depth
S Slope
S_i Slope number i
SLAM Simultaneous localization and mapping
UWB Ultra-Wide Band
Th Threshold
Th i Threshold number i
T_in Time to get in/out to/from indoor
T_in i Time to get in/out to/from indoor number i
V_err Vertical Error
VIO Visual Inertial Odometry

Appendix A

The following assumptions underlie the MK test (https://vsp.pnnl.gov/help/index.
htm#vsample/design_trend_mann_kendall.htm (accessed on 1 February 2024)):

• When no trend is present, the measurements (observations or data) obtained over time
are independent and identically distributed. The assumption of independence means
that the observations are not serially correlated over time.

• The observations obtained over time are representative of the true conditions at
sampling times.

https://vsp.pnnl.gov/help/index.htm#vsample/design_trend_mann_kendall.htm
https://vsp.pnnl.gov/help/index.htm#vsample/design_trend_mann_kendall.htm
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• The sample collection, handling, and measurement methods provide unbiased and
representative observations of the underlying populations over time.

S =
n�1

Â
k=1

n

Â
j=k+1

sgn(Xj � Xk) (A1)

sgn =

( 1 i f x > 0
0 i f x = 0
�1 i f x < 0

(A2)

The mean of S is E[S] = 0, and the variance is

s2 =

n
n(n � 1)(2n + 5)� Âp

j=1 tj(tj � 1)(2tj + 5)
o

18
(A3)

where p is the number of the tied groups in the data set and tj is the number of data points
in the jth tied group. The statistic S is approximately normal distributed provided that the
following Z-transformation is employed:

sgn =

( S�1
s i f x > 0

0 i f x = 0
S+1

s i f x < 0
(A4)
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