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Abstract

Over the past two decades, artificial intelligence (AI) has experienced rapid develop-
ment and is being used in a wide range of sectors and activities, including finance.
In the meantime, a growing and heterogeneous strand of literature has explored the
use of Al in finance. The aim of this study is to provide a comprehensive overview
of the existing research on this topic and to identify which research directions need
further investigation. Accordingly, using the tools of bibliometric analysis and con-
tent analysis, we examined a large number of articles published between 1992 and
March 2021. We find that the literature on this topic has expanded considerably
since the beginning of the XXI century, covering a variety of countries and differ-
ent Al applications in finance, amongst which Predictive/forecasting systems, Clas-
sification/detection/early warning systems and Big data Analytics/Data mining /Text
mining stand out. Furthermore, we show that the selected articles fall into ten main
research streams, in which Al is applied to the stock market, trading models, vola-
tility forecasting, portfolio management, performance, risk and default evaluation,
cryptocurrencies, derivatives, credit risk in banks, investor sentiment analysis and
foreign exchange management, respectively. Future research should seek to address
the partially unanswered research questions and improve our understanding of the
impact of recent disruptive technological developments on finance.

Keywords Artificial intelligence - Finance - Machine learning - Bibliometric
analysis - Content analysis

JEL Classification 033 - G3

Introduction

The first two decades of the twenty-first century have experienced an unprecedented
way of technological progress, which has been driven by advances in the develop-
ment of cutting-edge digital technologies and applications in Artificial Intelligence
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(AI). Artificial intelligence is a field of computer science that creates intelligent
machines capable of performing cognitive tasks, such as reasoning, learning, tak-
ing action and speech recognition, which have been traditionally regarded as human
tasks (Frankenfield 2021). AI comprises a broad and rapidly growing number of
technologies and fields, and is often regarded as a general-purpose technology,
namely a technology that becomes pervasive, improves over time and generates
complementary innovation (Bresnahan and Trajtenberg 1995). As a result, it is not
surprising that there is no consensus on the way Al is defined (Van Roy et al. 2020).
An exhaustive definition has been recently proposed by Acemoglu and Restrepo
(2020, p.1), who assert that Artificial Intelligence is “(...) the study and develop-
ment of intelligent (machine) agents, which are machines, software or algorithms
that act intelligently by recognising and responding to their environment.” Even
though it is often difficult to draw precise boundaries, this promising and rapidly
evolving field mainly comprises machine learning, deep learning, NLP (natural lan-
guage processing) platforms, predictive APIs (application programming interface),
image recognition and speech recognition (Martinelli et al. 2021).

The term “Artificial intelligence” was first coined by John McCarthy in 1956 dur-
ing a conference at Dartmouth College to describe “thinking machines” (Buchanan
2019). However, until 2000, the lack of storage capability and low computing
power prevented any progress in the field. Accordingly, governments and investors
lost their interest and Al fell short of financial support and funding in 1974-1980
and again in 1987-1993. These periods of funding shortage are also known as “Al
winters!”.

However, the most significant development and spread of Al-related technologies
is much more recent, and has been prompted by the availability of large unstruc-
tured databases, the explosion of computing power, and the rise in venture capital
intended to support innovative, technological projects (Ernst et al. 2018). One of the
most distinctive The term Al winter first appeared in 1characteristics of Al technolo-
gies is that, unlike industrial robots, which need to receive specific instructions, gen-
erally provided by a software, before they perform any action, can learn for them-
selves how to map information about the environment, such as visual and tactile
data from a robot’s sensors, into instructions sent to the robot’s actuators (Raj and
Seamans 2019). Additionally, as remarked by Ernst et al. (2018), whilst industrial
robots mostly perform manual tasks, Al technologies are able to carry out activities
that, until some years ago, were still regarded as typically human, i.e. what Ernst and
co-authors label as “mental tasks”.

The adoption of Al is likely to have remarkable implications for the subjects
adopting them and, more in general, for the economy and the society. In particu-
lar, it is expected to contribute to the growth of the global GDP, which, accord-
ing to a study conducted by Pricewater-house-Coopers (PwC) and published in
2017, is likely to increase by up to 14% by 2030. Moreover, companies adopting Al

! The term AI winter first appeared in 1984 as the topic of a public debate at the annual meeting of the
American Association of Artificial Intelligence (AAAI). It referred to hype generated by over promises
from developers, unrealistically high expectations from end users, and extensive media promotion.
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technologies sometimes report better performance (Van Roy et al. 2020). Concern-
ing the geographic dimension of this field, North America and China are the lead-
ing investors and are expected to benefit the most from Al-driven economic returns.
Europe and emerging markets in Asia and South America will follow, with moderate
profits owing to fewer and later investments (PwC 2017). Al is going to affect labour
markets as well. The demand for high-skilled employees is expected to increase,
whilst the demand for low-skilled jobs is likely to shrink because of automation; the
resulting higher unemployment rate, however, is going to be offset by the new job
opportunities offered by Al (Ernst et al. 2018; Acemoglu and Restrepo 2020).

Al solutions have been introduced in every major sector of the economy; a sec-
tor that is witnessing a profound transformation led by the ongoing technological
revolution is the financial one. Financial institutions, which rely heavily on Big Data
and process automation, are indeed in a “unique position to lead the adoption of AI”
(PwC 2020), which generates several benefits: for instance, it encourages automa-
tion of manufacturing processes which in turn enhances efficiency and productiv-
ity. Next, since machines are immune to human errors and psychological factors,
it ensures accurate and unbiased predictive analytics and trading strategies. Al also
fosters business model innovation and radically changes customer relationships by
promoting customised digital finance, which, together with the automation of pro-
cesses, results in better service efficiency and cost-saving (Cucculelli and Recanatini
2022). Furthermore, Al is likely to have substantial implications for financial
conduct and prudential supervisors, and it also has the potential to help supervi-
sors identify potential violations and help regulators better anticipate the impact
of changes in regulation (Wall 2018). Additionally, complex Al/machine learning
algorithms allow Fintech lenders to make fast (almost instantaneous) credit deci-
sions, with benefits for both the lenders and the consumers (Jagtiani and John 2018).
Intelligent devices in Finance are used in a number of areas and activities, including
fraud detection, algorithmic trading and high-frequency trading, portfolio manage-
ment, credit decisions based on credit scoring or credit approval models, bankruptcy
prediction, risk management, behavioural analyses through sentiment analysis and
regulatory compliance.

In recent years, the adoption of Al technologies in a broad range of financial
applications has received increasing attention by scholars; however, the extant lit-
erature, which is reviewed in the next section, is quite broad and heterogeneous in
terms of research questions, country and industry under scrutiny, level of analysis
and method, making it difficult to draw robust conclusions and to understand which
research areas require further investigation. In the light of these considerations, we
conduct an extensive review of the research on the use of Al in Finance thorough
which we aim to provide a comprehensive account of the current state of the art
and, importantly, to identify a number of research questions that are still (partly)
unanswered. This survey may serve as a useful roadmap for researchers who are
not experts of this topic and could find it challenging to navigate the extensive and
composite research on this subject. In particular, it may represent a useful starting
point for future empirical contributions, as it provides an account of the state of the
art and of the issues that deserve further investigation. In doing so, this study com-
plements some previous systematic reviews on the topic, such as the ones recently
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conducted by Hentzen et al. (2022b) and (Biju et al. 2020), which differ from our
work in the following main respects: Hentzen and co-authors’ study focuses on cus-
tomer-facing financial services, whilst the valuable contribution of Biju et al. poses
particular attention to relevant technical aspects and the assessment of the effective-
ness and the predictive capability of machine learning, Al and deep learning mecha-
nisms within the financial sphere; in doing so, it covers an important issue which,
however, is out of the scope of our work.

From our review, it emerges that, from the beginning of the XXI century, the
literature on this topic has significantly expanded, and has covered a broad variety
of countries, as well as several Al applications in finance, amongst which Predic-
tive/forecasting systems, Classification /detection/early warning systems and Big
data Analytics/Data mining /Text mining stand out. Additionally, we show that
the selected articles can be grouped into ten main research streams, in which Al is
applied to the stock market, trading models, volatility forecasting, portfolio man-
agement, performance, risk & default evaluation, cryptocurrencies, derivatives,
credit risks in banks, investor sentiment analysis and foreign exchange management,
respectively.

The balance of this paper is organised as follows: Sect. “Methodology” shortly
presents the methodology. Sect. “A detailed account of the literature on Al in
Finance” illustrates the main results of the bibliometric analysis and the content
analysis. Sect. “Issues that deserve further investigation” draws upon the research
streams described in the previous section to pinpoint several potential research ave-
nues. Sect. “Conclusions” concludes. Finally, Appendix 1 clarifies some Al-related
terms and definitions that appear several times throughout the paper, whilst Appen-
dix 2 provides more information on some of the articles under scrutiny.

Methodology

To conduct a sound review of the literature on the selected topic, we resort to two
well-known and extensively used approaches, namely bibliometric analysis and con-
tent analysis. Bibliometric analysis is a popular and rigorous method for exploring
and analysing large volumes of scientific data which allows us to unpack the evo-
lutionary nuances of a specific field whilst shedding light on the emerging areas in
that field (Donthu et al. 2021). In this study, we perform bibliometric analysis using
HistCite, a popular software package developed to support researchers in elaborating
and visualising the results of literature searches in the Web of Science platform. Spe-
cifically, we employ HistCite to recover the annual number of publications, the num-
ber of forward citations (which we use to identify the most influential journals and
articles) and the network of co-citations, namely, all the citations received and given
by journals belonging to a certain field, which help us identify the major research
streams described in Sect. “Identification of the major research streams”. After that,
to delve into the contents of the most pertinent studies on Al in finance, we resort to
traditional content analysis, a research method that provides a systematic and objec-
tive means to make valid inferences from verbal, visual, or written data which, in
turn, permit to describe and quantify specific phenomena (Downe-Wambolt 1992).
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In order to identify the sample of studies on which bibliometric and content
analysis were performed, we proceeded as follows. First, we searched for perti-
nent articles published in English be-tween 1950 and March 2021. Specifically, we
scrutinised the “Finance”, “Economics”, “Business Finance” and “Business” sec-
tions of the “Web of Science” (WoS) database using the keyword “finance” together
with an array of keywords concerning Artificial Intelligence (i.e. “Finance” AND
(“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural
Networks*” OR “Natural Language Processing*” OR “Algorithmic Trading*” OR
“Artificial Neural Network™ OR “Robot*” OR “Automation” OR “Text Mining” OR
“Data Mining” OR “Soft Computing” OR “Fuzzy Logic Analysis” OR “Biomet-
rics*” OR “Geotagging” OR “Wearable*” OR “IoI”” OR “Internet of Thing*” OR
“digitalization” OR “Artificial Neutral Networks” OR “Big Data” OR “Industry 4.0”
OR “Smart products*” OR Cloud Computing” OR “Digital Technologies*”). In
doing so, we ended up with 1,218 articles. Next, two researchers independently ana-
lysed the title, abstract and content of these papers and kept only those that address
the topic under scrutiny in a non-marginal and non-trivial way. This second step
reduced the number of eligible papers to 892, which were used to perform the first
part of the bibliometric analysis. Finally, we delved into the contents of the previ-
ously selected articles and identified 110 contributions which specifically address
the adoption and implications in Finance of Al tools focussing on the economic
dimension of the topic, and which are employed in the second part of the bibliomet-
ric analysis and in the content analysis.

A detailed account of the literature on Al in Finance

In this section, we explore the patterns and trends in the literature on Al in Finance
in order to obtain a compact but exhaustive account of the state of the art. Specifi-
cally, we identify some relevant bibliographic characteristics using the tools of bib-
liometric analysis. After that, focussing on a sub-sample of papers, we conduct a
preliminary assessment of the selected studies through a content analysis and detect
the main AI applications in Finance. Finally, we identify and briefly describe ten
major research streams.

Main results of the bibliometric analysis

First, using HistCite and considering the sample of 892 studies, we computed, for
each year, the number of publications related to the topic “Al in Finance”. The cor-
responding publication trend is shown in Fig. 1, which plots both the annual absolute
number of sampled papers (bar graph in blue) and the ratio between the latter and
the annual overall amount of publications (indexed in Scopus) in the finance area
(line graph in orange). We also compute relative numbers to see if the trend emerg-
ing from the selected studies is not significantly attributable to a “common trend”
(i.e. to the fact that, in the meantime, also the total number of publications in the
financial area has significantly increased). It can be noted that both graphs exhibit a
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Fig. 1 Publication Trend, 1992-2021

strong upward trend from 2015 onwards; during the most recent years, the pace of
growth and the degree of pervasiveness of Al adoption in the financial sphere have
indeed remarkably strengthened, and have become the subject of a rapidly growing
number of research articles.

After that, focussing on the more pertinent (110) articles, we checked the journals
in which these studies were published. Table 1 presents the top-ten list of journals
reported in the Academic Journal Guide-ABS List 2020 and ranked on the basis of
the total global citation score (TGCS), which captures the number of times an article
is cited by other articles that deal with the same topic and are indexed in the WoS
database. For each journal, we also report the total number of studies published in
that journal. We can notice that the most influential journals in terms of TGCS are
the Journal of Finance (with a TGCS equal to 1283) and the Journal of Banking and
Finance (with a TGCS of 1253), whilst the journals containing the highest number
of articles on the topic are Quantitative Finance (68 articles) and Intelligent Systems
in Accounting, Finance and Management (43).

Finally, Fig. 2 provides a visual representation of the citation-based relationships
amongst papers starting from the most-cited papers, which we obtained using the
Java application CiteSpace.

Preliminary results of the content analysis

In this paragraph, we shortly illustrate some relevant characteristics of our sub-sam-
ple made up of 110 studies, including country and industry coverage, method and
underpinning theoretical background. Table 2 comprises the list of countries under
scrutiny, and, for each of them, a list of papers that perform their analysis on that
country. We can see that our sample exhibits significant geographical heterogeneity,
as it covers 74 countries across all continents; however, the most investigated areas
are three, that is Europe, the US and China. These results corroborate the fact that
the above-mentioned regions are the leaders of the Al-driven financial industry, as
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suggested by PwC (2017). The United States, in particular, are considered the “early
adopters” of Al and are likely to benefit the most from this source of competitive
advantage. More lately, emerging countries in Southeast Asia and the Middle East
have received growing interest. Finally, a smaller number of papers address underde-
veloped regions in Africa and various economies in South America.

The most investigated sectors are reported in Table 3. We can notice that,
although it primarily deals with banking and financial services, the extant research
has addressed the topic in a vast array of industries. This confirms that the applica-
tion potential of Al is very broad, and that any industry may benefit from it.

Through our analysis, we also detected the key theories and frameworks applied
by researchers in the prior literature. As shown in Table 4, 73 (out of 110) papers
explicitly refer to some theoretical framework. Specifically, ten of them (14%) resort
to computational learning theory; this theory, which is an extension of statistical
learning, provides researchers with a theoretical guide for finding the most suitable
learning model for a given problem, and is regarded as one of the most important and
most used theories in the field. Specific theories concerning types of neural networks
and learning methods are used too, such as the fuzzy set theory, which is mentioned
in 8% of the sample, and to a lesser extent, the Naive Bayes theorem, the theory
of neural networks, the theory of genetic programming and the TOPSIS analyti-
cal framework. Finance theories (e.g. Arbitrage Pricing Theory; Black and Scholes
1973) are jointly employed with portfolio management theories (e.g. modern portfo-
lio theory), and the two of them account together for 21% (15) of the total number of
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Table 3 List of sectors covered by the literature
Sector Author(s) / Year

Aerospace, airline, aircraft

Agriculture, Hunting and forestry fishing
Agriculture Machinery

Automotive industry, Vehicle Manufacturing,
Repair of vehicles

Banking /financial services

Business services
Raw Materials

Commercial and service industry and/or general
machinery

Construction

Consumer goods

Commodities

Computer and peripheral equipment
Communication

Cryptocurrency

Education

Kelejian and Mukerji 2016; Zhang et al. 2021;
Reber 2014; Kanas 2001;

Cortés et al. 2008; Jones and Wang 2019;
Kelejian and Mukerji 2016;

Kelejian and Mukerji 2016; Cortés et al. 2008;
Zhang et al. 2021;

Khandani et al. 2010; Butaru et al. 2016; Lahmiri
2016; Kim and Kim 2014; Sun and Vasarhelyi
2018; Dunis et al. 2013; Sirignano 2018; Feldman
and Gross 2005; Fernandes et al. 2014; Wanke
et al. 20164, b, ¢, d; Guotai and Abedin 2017;
Frino et al. 2017; Le and Viviani 2018; Wei
et al. 2019; Cortés et al. 2008; Jagric, Jagric,
and Kracun, 2011; Trinkle and Baldwin 2016;
Culkin and Das 2017; Law and Shawe-Taylor
2017; Vortelinos 2017; Renault 2017; Jiang and
Jones 2018; Zhang et al. 2021; Deku et al. 2020;
Caglayan et al. 2020; Calomiris and Mamaysky
2019; Reber 2014; Kumar et al. 2019; Cao, Liu,
Zhai, et al., 2020;; Xu and Zhao 2022; Papadimi-
triou, Goga, and Agrapetidou, 2020; Tao et al.
2021; Durango-Gutiérrez, Lara-Rubio, and
Navarro-Galera, 2021; Kanas 2001; Loukeris
and Eleftheriadis 2015; Abedin et al. 2019; Xu
et al. 2019; Wanke et al. 2016a, b, c, d ; Jones
and Wang 2019; Episcopos, Pericli and Hu, 1998;
Funahashi 2020; Lu and Ohta 2003; Holopainen
and Sarlin 2017; Zhao et al. 2018; Guotai and
Abedin 2017; Hentzen et al. 2022a; IBM Cloud
Education 2020; Petukhina et al. 2020; PwC 2017,
PwC 2018; Tao et al. 2021; Yang et al. 1999;
Zheng et al. 2019

Uddin et al. 2020;
Kim and Kim 2014;
Varetto 1998; Kelejian and Mukerji 2016;

Altman et al. 1994; Varetto 1998; Cortés et al.
2008;Sabau, Popa et al., 2021; Reber 2014; Uddin
et al. 2020; Kanas 2001; Jones and Wang 2019;

Kim and Kim 2014; Kelejian and Mukerji 2016;
Kanas 2001;

Yang et al. 1999; Fernandes et al. 2014; Kelejian
and Mukerji 2016; Trinkle and Baldwin 2016;
Zhang et al. 2021; Li et al. 2020;

Kelejian and Mukerji 2016;

Kelejian and Mukerji 2016; Cortés et al. 2008;
Jones and Wang 2019;

Pichl and Kaizoji 2017; Burggraf 2021; Petukhina
et al. 2020;

Cortés et al. 2008;
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Table 3 (continued)

Sector

Author(s) / Year

Electronics Equipment and Manufacturing
industry

Electronics

Energy and utilities

Extractive industry
FinTech

Food, Tobacco, Beverages

Footwear
Health Care

Gold
Name of Industry
Heating Industry

Household goods
Information services

IT industry

Manufacturing (of woods, textile, leather products)
Manufacture of Chemical, Plastics, Rubber

Manufacture of electrical and optical equipment
Medical equipment and supplies

Metal

Mining industry

Paper, paper products, publishing, printing
Pharmaceutical and medicine

Power and automation
Technology

Petroleum, Nuclear fuel

Restaurants. Hotel, tourism and personal services

Wholesale and Retail

Reber 2014; Kelejian and Mukerji 2016;

Kelejian and Mukerji 2016;

Jones et al. 2017; Kim and Kim 2014; Jiang and
Jones 2018; Sabau, Popa et al., 2021; Zhang et al.
2021; Cortés et al. 2008; Jones et al. 2017; Reber
2014; Kelejian and Mukerji 2016; Li et al. 2020;

Sabdu Popa et al. 2021;

Jones et al. 2017; Kelejian and Mukerji 2016; Cor-
tés et al. 2008; Tao et al. 2021;

Jones et al. 2017; Zhang et al. 2021; Cortés et al.
2008; Kanas 2001; Reber 2014;

Kanas 2001;

Kelejian and Mukerji 2016; Kim and Kim 2014;
Cortés et al. 2008; Jones et al. 2017; Reber 2014,
Kanas 2001;

Law and Shawe-Taylor 2017
Author(s) / Year

Kelejian and Mukerji 2016; Pompe, and Bilderbeek
2005;

Jones et al. 2017;
Uddin et al. 2020;

Jones et al. 2017; Uddin et al. 2020; Kanas 2001;
Varetto 1998; D’Hondt et al. 2020; Creamer 2012;
Creamer and Freund 2010;

Sabau, Popa et al., 2021; Cortés et al. 2008; Reber
2014; Jones and Wang 2019;

Coats and Fant 1993; Gepp et al. 2010; Cortés et al.
2008; Reber 2014; Kanas 2001;

Cortés et al. 2008;

Kelejian and Mukerji 2016; Cortés et al. 2008;

Li et al. 2020;

Kelejian and Mukerji 2016; Rodrigues and Ste-
venson 2013; Zhang et al. 2021; Jones and Wang
2019;

Cortés et al. 2008;

Kelejian and Mukerji 2016; Cortés et al. 2008;
Zhang et al. 2021; Reber 2014; Kanas 2001;

Kelejian and Mukerji 2016;

Law and Shawe-Taylor 2017; Kanas 2001;

Cortés et al. 2008;Sabau, Popa et al., 2021; Reber
2014; Uddin et al. 2020;

Jones et al. 2017; Cortés et al. 2008; Jiang and
Jones 2018; Sabau, Popa et al., 2021; Reber 2014;
Uddin et al. 2020; Kanas 2001; Jones and Wang
2019;
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Table 3 (continued)
Sector Author(s) / Year

Public administration and defence

Real estate, renting and business activities

Robotics /automation industry

Hygiene products

Social media platforms

Software Engeerning

Soap, cleaning compound andtoilet preparation
Technology company

Trading

Telecommunication (service and manufacturing,

Altman et al. 1994; Jones et al. 2015; Jones et al.
2017; Gepp et al. 2010; Cortés et al. 2008; Reber
2014; Jones and Wang 2019;

Cortés et al. 2008; Chen et al. 2013; Zhang et al.
2021; Uddin et al. 2020; Jones and Wang 2019;

Cortés et al. 2008;
Jones et al. 2017;
Houlihan and Creamer 2021;; Xu and Zhao 2022;

Kelejian and Mukerji 2016;
Cortés et al. 2008; Kim and Kim 2014,

Kim and Kim 2014; Jones et al. 2017; Zhang et al.

2021; Reber 2014; Heston and Sinha 2017; Kanas
2001;

Dunis et al. 2013; Scholtus et al. 2014; Reboredo
et al. 2012; Sabau, Popa et al., 2021; Cortés et al.
2008; Reber 2014; Uddin et al. 2020; Jones and
Wang 2019;

Jones et al. 2017;
Sabiu Popa et al. 2021;
Uddin et al. 2020;

companies)

Transportation and storage

Vehicle manufacturing
Professional Scientific and technical activities

Warehousing

papers. Finally, bankruptcy theories support business failure forecasts, whilst other
theoretical underpinnings concern mathematical and probability concepts.

The content analysis also provides information on the main types of companies
under scrutiny. Table 5 indicates that 30 articles (out of 110) focus on large compa-
nies listed on stock exchanges, whilst only 16 studies cover small and medium enter-
prises. Similarly, trading and digital platforms are examined in 16 papers that deal
with derivatives and cryptocurrencies.

Furthermore, Table 6 summarises the key methods applied in the literature, which
are divided by category (note that all the papers employ more than one method).
Looking at the table, we see that machine learning and artificial neural networks
are the most popular ones (they are employed in 41 and 51 articles, respectively).
The majority of the papers resort to different approaches to compare their results
with those obtained through autoregressive and regression models or conventional
statistics, which are used as the benchmark; therefore, there may be some overlaps.
Nevertheless, we notice that support vector machine and random forest are the most
widespread machine learning methods. On the other hand, the use of artificial neural
networks (ANNGs) is highly fragmented. Backpropagation, Recurrent, and Feed-For-
ward NN are considered basic neural nets and are commonly employed. Advanced
NN, such as Higher-Order Neural network (HONN) and Long Short-Term Memory
Networks (LSTM), are more performing than their standard version but also much
more complicated to apply. These methods are usually compared to autoregressive
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models and regressions, such as ARMA, ARIMA, and GARCH. Finally, we observe
that almost all the sampled papers are quantitative, whilst only three of them are
qualitative and four of them consist in literature reviews.

A taxonomy of Al applications in Finance

After scrutinising some relevant features of the papers, we make a step forward and
outline a taxonomy of Al applications used in Finance and tackled by previous lit-
erature. The main uses of Al in Finance and the papers that address each of them are
summarised in Table 7.

Many research papers (39 out of 110) employ Al as a predictive instrument for
forecasting stock prices, performance and volatility. In 23 papers, Al is employed in
classification problems and warning systems to detect credit risk and frauds, as well
as to monitor firm or bank performance. The former use of Al permits to classify
firms into two categories based on qualitative and quantitative data; for example, we
may have distressed or non-distressed, viable-nonviable, bankrupt-non-bankrupt, or
financially healthy—not healthy, good—bad, and fraud—not fraud. Warning systems fol-
low a similar principle: after analysing customers’ financial behaviour and classifying
potential fraud issues in bank accounts, alert models signal to the bank unusual trans-
actions. Additionally, we see that 14 articles employ text mining and data mining
language recognition, i.e. natural language processing, as well as sentiment analysis.
This may be the starting point of Al-driven behavioural analysis in Finance. Amongst
others, trading models and algorithmic trading are further popular aspects of Al
widely analysed in the literature. Moreover, interest in Robo-advisory is growing in
the asset investment field. Finally, less studied Al applications concern the modelling
capability of algorithms and traditional machine learning and neural networks.

Identification of the major research streams

Drawing upon the co-citation analysis mentioned in Sect. "Methodology", we
detected ten main research streams: (1) Al and the stock market; (2) Al and Trading
Models; (3) Al and Volatility Forecasting; (4) Al and Portfolio Management; (5) Al
and Performance, Risk, and Default Valuation; (6) Al and Bitcoin, Cryptocurren-
cies; (7) Al and Derivatives; (8) Al and Credit Risk in Banks; (9) Al and Investor
Sentiments Analysis; (10) Al and Foreign Exchange Management. Some research
streams can be further divided into sub-streams as they deal with various aspects of
the same main topic. In this section, we provide a compact account for each of the
aforementioned research streams. More detailed information on some of the papers
fuelling them is provided in Appendix 2.

Stream 01: Al and the stock market

The stream “Al and the Stock Market” comprises two sub-streams, namely algo-
rithmic trading and stock market, and Al and stock price prediction. The first sub-
stream deals with the impact of algorithmic trading (AT) on financial markets. In
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A SPRINGERNATURE journal



(2024) 4:23

SN Bus Econ

{0107 PUndIq pue Iowear)) ‘717 Jowear) {0z0¢ ‘T8 19 IPUOH . S10T SIPLLIdYIJI[H pue SLId
N0 1Z0T T8 12 OB {0Z0T ‘T8 12 BUIY MY € [()7 UOSUA)S pue san3LIPoy 7661 oudlsa( pue 1dduy,
‘010C T8 39 swun L[ BYULS PUB UOISSH GT(T SIPRLIDYII[H pue
SLINOT ()77 OUBULIID) PUB AJLIRS 6] ()7 99T pue Suef (10T ‘T8 12 OBYZ (00T yseyeund 107 109y
*120T 1oWeal) pue UBYINOH ‘00T T8 19 ULX ‘7ZOT OBYZ PU® nX i/ (T BYULS PUB UOISSH :L10T
MNBUSY 1L 10T BYUIS PUE UOISIH ‘6107 AysKeWRA pue sLIwoe) ‘610 T8 19 A 10T Wy pue wryf
{2107 Towear)
{0T0T T2 30 OULL] 9T(T '[& 32 OBD [ (T [& 10 UIe[ {)T0T T2 10 BUYNIOd ‘T[0T ‘& 19 Jo5Ioquaz)I]
‘910z tynA pue uerlopay] 1L 10T e 10
outiq :910¢ 1NN pue uerloay S [0T e 30 SMOYdS 10T e 10 Proqey) (1 10T ‘Té 32 NOYsIopuaH
$610C Te P nX
‘0T0T 'Te 19 UIX ‘TTOT OBYZ PUE NX /[T BYUIS pue UOISOH :LT(T MNBUSY 10T ‘& 10 eATWEY (0Z0T
‘839 I'T <€00T ©IYO PuR 0] < p 0 °q ‘B9 ‘[B 10 MUBA\ ‘[ 70T ‘BIA[BD-OLIBARN PUR OIqNy-vIe] ‘ZdI
-1nno-osueIng {107 Seuey {0Z0T T8 32 NOPqV ‘1707 ueny] pue Sueny [ g(g JOWeI) pue UByInoy
610¢C 'Te 10 nx
{910 MIWE T ‘gT(T TUBTATA pue 97 :L[(T JNeUdY L[0T Ullres pue uouredo[oH £ 10T e 3o IW[es
10T SIPRLIDYIJS[H PUB SLINOT ([ 70T “BIO[ED-OLIBABN PUR OIqmy-eIe] ‘Zaupnnn-osueind ‘610
‘T8 39 Jewiny] (1707 ‘T8 190 BzZe10)) {)Z0T T8 30 N {1707 ono pue Jueny 8] ()g SQUO[ pue JueIf ‘¢10T
‘8319 T T[0T ‘unoery] pue duSe[ OLIZe[ (GO0 SSOID pue UBWP[I ‘8661 ONAIBA 9[0T [ 12 nieing
$GT0T ‘T8 12 SAUO[ </ [T "Te 19 SaUOf {010 ‘[ 10 Tuepueyy ‘€661 UR pue S1B0)) ‘H66] T8 19 Uy
020¢ ‘nopnedesdy pue ‘50D ‘norniwipeded ‘407 WY Pue WY 610T [& 10 OIYSE],
GT0T Te 30 yroog ‘8661 MH pue I[d11ed ‘sodoosidy :610g Suep pue sauof {0z0g 1ong ‘610T Te 12
uIpaqy ‘G10T SIPELIDYIAH UL SLIBYNOT L[0T BYUIS PUB UOISAH ‘¢ [(T e 10 stuIduiiag {010 e 10
stun(J {800 S0SIN0TI00) pue soIryeg ‘0707 ‘T8 10 ueke[3e) [ (7 Jowea1) pue ueyIlnoy ‘1207 'Te 10
Sueyz 170 ‘e 10 edod Ngqes ‘61T SoInfeg pue LITWye T L[ SOUI[AMOA £ 10T Hozrey] pue [yotd
‘L10T 1o[Ae-omeyg pue Me :L[(T ‘[& 19 UOXI(T 91T UIMP[eq Pue SPULLL (10T T8I0 UdYD ‘€[0T
UOSUAAQ)S PUB $aNTLIPOY ‘7007 BHIA pue SeN (000 UoIowe)) pue LIYSOJA ‘6107 ‘Te 10 10Ied 8107 Iue
“IAIA PUR 97 P 0 °q “BYIQT T8 12 NUBA 10T T8 19 SIPUBLIS] ‘T[0T ‘T8 19 OPR10QY ‘6661 BIEPPRIN

6

Cl

i4!

€

K10S1ApE-0QOY

SYIOMION] [RINAN [BIOYNIY

sIsATeue Jjuownuas /3uissaoo1d agen3ue] [eInjeN

s[opow urpei], /Suipes) JIWYILIOS Y

Sururw 1xa], / Sururw eye( / sonATeuy ejep Sig

swoIsAs Sururem A[Ie9 / UOT)OIOP / UOTIBOYISSEID)

A SPRINGERNATURE journal

Page 26 of 46

23

pue ‘10 ‘€107 T 30 smun( 010¢ ‘Te 10 ddon 8107 1A[oyIeseA pue ung {6667 T 12 Suex ¢£10¢ ‘T8 10 seuof 6€ SwoIsAs SUTISEOAIO] /AATIOIPAI]

STBOX / (S)sIOyINy  SO[ONIE JO U suoneordde 1y

QMBI oY) Aq PISSAIPPE 9dUBUY UT [ JO SIsn UTRI / 3|qe]

SN Business & Economics



23

Page 27 of 46

(2024) 4:23

SN Bus Econ

SN Business & Economics

€002 BYO pue n']
LT0T ddl1oyny

pue nyoYsI[ED {[ZOT 9D PUE UYD {)TOT WIY PUB Wy £ 10T T8 39 UOXI $LT0T Se PUE UM[n)
6102 T8 30 nX

£120¢ Je133ing {070 YSISeA pue IUBWAR[OS (G1()7 SUBYZ PUB [BAYDIDY ‘H()7 SQUOL PUB RIS Isey
{0T0T Wseyeun <0107

‘e 39 swun ][0T ‘T8 32 J0[PWY ([Z0T UBM PUB UaYD) £ 10T UIPIQY PUE IBIOND) H[(T ‘T8 19 SOPUBLIS]

9

K3orouyo?) e331p / uoneziensiq
Sururea doog

SuruIea] auryoRI

SurepoN

SIBQX / (S)sIoyny

SO[ONIE JO U

suonesrdde 1y

(ponunuoo) £ s|qey

A SPRINGERNATURE journal



23 Page 28 of 46 SN Bus Econ (2024) 4:23

this regard, Herdershott et al. (2011) argue that AT increases market liquidity by
reducing spreads, adverse selection, and trade-related price discovery. This results
in a lowered cost of equity for listed firms in the medium-long term, especially in
emerging markets (Litzenberger et al. 2012). As opposed to human traders, algorith-
mic trading adjusts faster to information and generates higher profits around news
announcements thanks to better market timing ability and rapid executions (Frino
et al. 2017). Even though high-frequency trading (a subset of algorithmic trading)
has sometimes increased volatility related to news or fundamentals, and transmitted
it within and across industries, AT has overall reduced return volatility variance and
improved market efficiency (Kelejian and Mukerji 2016; Litzenberger et al. 2012).

The second sub-stream investigates the use of neural networks and traditional
methods to forecast stock prices and asset performance. ANNs are preferred to linear
models because they capture the non-linear relationships between stock returns and
fundamentals and are more sensitive to changes in variables relationships (Kanas
2001; Qi 1999). Dixon et al. (2017) argue that deep neural networks have strong
predictive power, with an accuracy rate equal to 68%. Also, Zhang et al. (2021) pro-
pose a model, the Long Short-Term Memory Networks (LSTM), that outperforms
all classical ANNSs in terms of prediction accuracy and rational time cost, especially
when various proxies of online investor attention (such as the internet search vol-
ume) are considered.

Stream 02: Al and trading models

From the review of the literature represented by this stream, it emerges that neu-
ral networks and machine learning algorithms are used to build intelligent auto-
mated trading systems. To give some examples, Creamer and Freund (2010) cre-
ate a machine learning-based model that analyses stock price series and then selects
the best-performing assets by suggesting a short or long position. The model is also
equipped with a risk management overlayer preventing the transaction when the
trading strategy is not profitable. Similarly, Creamer (2012) uses the above-men-
tioned logic in high-frequency trading futures: the model selects the most profitable
and less risky futures by sending a long or short recommendation. To construct an
efficient trading model, Trippi and DeSieno (1992) combine several neural networks
into a single decision rule system that outperforms the single neural networks;
Kercheval and Zhang (2015) use a supervised learning method (i.e. multi-class
SVM) that automatically predicts mid-price movements in high-frequency limit
order books by classifying them in low-stationary-up; these predictions are embed-
ded in trading strategies and yield positive payoffs with controlled risk.

Stream 03: Al and volatility forecasting

The third stream deals with Al and the forecasting of volatility. The volatility index
(VIX) from Chicago Board Options Exchange (CBOE) is a measure of market senti-
ment and expectations. Forecasting volatility is not a simple task because of its very
persistent nature (Fernandes et al. 2014). According to Fernandes and co-authors,
the VIX is negatively related to the SandP500 index return and positively related
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to its volume. The heterogeneous autoregressive (HAR) model yields the best
predictive results as opposed to classical neural networks (Fernandes et al. 2014;
Vortelinos 2017). Modern neural networks, such as LSTM and NARX (nonlinear
autoregressive exogenous network), also qualify as valid alternatives (Bucci 2020).
Another promising class of neural networks is the higher-order neural network
(HONN) used to forecast the 21-day-ahead realised volatility of FTSE100 futures.
Thanks to its ability to capture higher-order correlations within the dataset, HONN
shows remarkable performance in terms of statistical accuracy and trading efficiency
over multi-layer perceptron (MLP) and the recurrent neural network (RNN) (Serm-
pinis et al. 2013).

Stream 04: Al and portfolio management

This research stream analyses the use of Al in portfolio selection. As an illustra-
tion, Soleymani and Vasighi (2020) consider a clustering approach paired with VaR
analysis to improve asset allocation: they group the least risky and more profitable
stocks and allocate them in the portfolio. More elaborate asset allocation designs
incorporate a bankruptcy detection model and an advanced utility performance sys-
tem: before adding the stock to the portfolio, the sophisticated neural network esti-
mates the default probability of the company and asset’s contribution to the optimal
portfolio (Loukeris and Eleftheriadis 2015). Index-tracking powered by deep learn-
ing technology minimises tracking error and generates positive performance (Kim
and Kim 2020). The asymmetric copula method for returns dependence estimates
further promotes the portfolio optimization process (Zhao et al. 2018). To sum up,
all papers show that Al-based prediction models improve the portfolio selection pro-
cess by accurately forecasting stock returns (Zhao et al. 2018).

Stream 05: Al and performance, risk, default valuation

This research stream comprises three sub-streams, namely Al and Corporate Per-
formance, Risk and Default Valuation; AI and Real Estate Investment Perfor-
mance, Risk, and Default Valuation; Al and Banks Performance, Risk and Default
Valuation.

The first sub-stream examines corporate financial conditions to predict financially
distressed companies (Altman et al. 1994). As an illustration, Jones et al. (2017) and
Gepp et al. (2010) determine the probability of corporate default. Sabdu Popa et al.
(2021) predict business performance based on a composite financial index. The find-
ings of the aforementioned papers confirm that Al-powered classifiers are extremely
accurate and easy to interpret, hence, superior to classic linear models. A quite inter-
esting paper surveys the relationship between face masculinity traits in CEOs and
firm riskiness through image processing (Kamiya et al. 2018). The results reveal
that firms lead by masculine-faced CEO have higher risk and leverage ratios and are
more frequent acquirers in MandA operations.

The second sub-stream focuses on mortgage and loan default prediction (Feldman
and Gross 2005; Episcopos, Pericli, and Hu, 1998). For instance, Chen et al. (2013)
evaluate real estate investment returns by forecasting the REIT index; they show that
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the industrial production index, the lending rate, the dividend yield and the stock
index influence real estate investments. All the forecasting techniques adopted (i.e.
supervised machine learning and ANNs) outperform linear models in terms of effi-
ciency and precision.

The third sub-stream deals with banks’ performance. In contradiction with past
research, a text mining study argues that the most important risk factors in banking
are non-financial, i.e. regulation, strategy and management operation. However, the
findings from text analysis are limited to what is disclosed in the papers (Wei et al.
2019). A highly performing NN-based study on the Malaysian and Islamic banking
sector asserts that negative cost structure, cultural aspects and regulatory barriers
(i.e. low competition) lead to inefficient banks compared to the U.S., which, on the
contrary, are more resilient, healthier and well regulated (Wanke et al. 2016a, b, c, d;
Papadimitriou et al. 2020).

Stream 06: Al and cryptocurrencies

Although algorithms and Al advisors are gaining ground, human traders still domi-
nate the cryptocurrency market (Petukhina et al. 2021). For this reason, substantial
arbitrage opportunities are available in the Bitcoin market, especially for USD-CNY
and EUR-CNY currency pairs (Pichl and Kaizoji 2017). Concerning daily realised
volatility, the HAR model delivers good results. Likewise, the feed-forward neural
network effectively approximates the daily logarithmic returns of BTCUSD and the
shape of their distribution (Pichl and Kaizoji 2017).

Additionally, the Hierarchical Risk Parity (HRP) approach, an asset allocation
method based on machine learning, represents a powerful risk management tool able
to manage the high volatility characterising Bitcoin prices, thereby helping crypto-
currency investors (Burggraf 2021).

Stream 07: Al and derivatives

ANNs and machine learning models are accurate predictors in pricing financial
derivatives. Jang and Lee (2019) propose a machine learning model that outperforms
traditional American option pricing models: the generative Bayesian NN; Culkin
and Das (2017) use a feed-forward deep NN to reproduce Black and Scholes’ option
pricing formula with a high accuracy rate. Similarly, Chen and Wan (2021) suggest
a deep NN for American option and deltas pricing in high dimensions. Funahashi
(2020), on the contrary, rejects deep learning for option pricing due to the insta-
bility of the prices, and introduces a new hybrid method that combines ANNs and
asymptotic expansion (AE). This model does not directly predict the option price
but measures instead, the difference between the target (i.e. derivative price) and its
approximation. As a result, the ANN becomes faster, more accurate and “lighter” in
terms of layers and training data volume. This innovative method mimics a human
learning process when one learns about a new object by recognising its differences
from a similar and familiar item (Funahashi 2020).
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Stream 08: Al and credit risk in banks

The research stream labelled “Al and Credit Risk in Banks”? includes the following
sub-streams: Al and Bank Credit Risk; AI and Consumer Credit Risk and Default;
Al and Financial Fraud detection/ Early Warning System; Al and Credit Scoring
Models.

The first sub-stream addresses bank failure prediction. Machine learning and
ANNSs significantly outperform statistical approaches, although they lack transpar-
ency (Le and Viviani 2018). To overcome this limitation, Durango-Gutiérrez et al.
(2021) combine traditional methods (i.e. logistic regression) with Al (i.e. Multiple
layer perceptron -MLP), thus gaining valuable insights on explanatory variables.
With the scope of preventing further global financial crises, the banking industry
relies on financial decision support systems (FDSSs), which are strongly improved
by Al-based models (Abedin et al. 2019).

The second sub-stream compares classic and advanced consumer credit risk mod-
els. Supervised learning tools, such as SVM, random forest, and advanced decision
trees architectures, are powerful predictors of credit card delinquency: some of them
can predict credit events up to 12 months in advance (Lahmiri 2016; Khandani et al.
2010; Butaru et al. 2016). Jagric et al. (2011) propose a learning vector quantiza-
tion (LVQ) NN that better deals with categorical variables, achieving an excellent
classification rate (i.e. default, non-default). Such methods overcome logit-based
approaches and result in cost savings ranging from 6% up to 25% of total losses
(Khadani et al. 2010).

The third group discusses the role of Al in early warning systems. On a retail
level, advanced random forests accurately detect credit card fraud based on customer
financial behaviour and spending pattern, and then flag it for investigation (Kumar
et al. 2019). Similarly, Coats and Fant (1993) build a NN alert model for distressed
firms that outperforms linear techniques. On a macroeconomic level, systemic risk
monitoring models enhanced by Al technologies, i.e. k-nearest neighbours and
sophisticated NNs, support macroprudential strategies and send alerts in case of
global unusual financial activities (Holopainen, and Sarlin 2017; Huang and Guo
2021). However, these methods are still work-in-progress.

The last group studies intelligent credit scoring models, with machine learning
systems, Adaboost and random forest delivering the best forecasts for credit rating
changes. These models are robust to outliers, missing values and overfitting, and
require minimal data intervention (Jones et al. 2015). As an illustration, combin-
ing data mining and machine learning, Xu et al. (2019) build a highly sophisticated
model that selects the most important predictors and eliminates noisy variables,
before performing the task.

2 Since credit risk in the banking industry remarkably differs from credit risk in firms, the two of them
are treated separately.
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Stream 09: Al and investor sentiment analysis

Investor sentiment has become increasingly important in stock prediction. For this
purpose, sentiment analysis extracts investor sentiment from social media platforms
(e.g. StockTwits, Yahoo-finance, eastmoney.com) through natural language process-
ing and data mining techniques, and classifies it into negative or positive (Yin et al.
2020). The resulting sentiment is regarded either as a risk factor in asset pricing
models, an input to forecast asset price direction, or an intraday stock index return
(Houlihan and Creamer 2021; Renault 2017). In this respect, Yin et al. (2020) find
that investor sentiment has a positive correlation with stock liquidity, especially in
slowing markets; additionally, sensitivity to liquidity conditions tends to be higher
for firms with larger size and a higher book-to-market ratio, and especially those
operating in weakly regulated markets. As for predictions, daily news usually pre-
dicts stock returns for few days, whereas weekly news predicts returns for longer
period, from one month to one quarter. This generates a return effect on stock prices,
as much of the delayed response to news occurs around major events in company
life, specifically earnings announcement, thus making investor sentiment a very
important variable in assessing the impact of Al in financial markets. (Heston and
Sinha 2017).

Stream 10: Al and foreign exchange management

The last stream addresses Al and the management of foreign exchange. Cost-effec-
tive trading or hedging activities in this market require accurate exchange rate fore-
casts (Galeshchuk and Mukherjee 2017). In this regard, the HONN model signifi-
cantly outperforms traditional neural networks (i.e. multi-layer perceptron, recurrent
NNs, Psi sigma-models) in forecasting and trading the EUR/USD currency pair
using ECB daily fixing series as input data (Dunis et al. 2010). On the contrary,
Galeshchuk and Mukherjee (2017) consider these methods as unable to predict the
direction of change in the forex rates and, therefore, ineffective at supporting profit-
able trading. For this reason, they apply a deep NN (Convolution NNs) to forecast
three main exchange rates (i.e. EUR/USD, GBP/USD, and JPY/USD). The model
performs remarkably better than time series models (e.g. ARIMA: Autoregressive
integrated moving average) and machine learning classifiers. To sum up, from this
research stream it emerges that Al-based models, such as NARX and the above-
mentioned techniques, achieve better prediction performance than statistical or time
series models, as remarked by Amelot et al. (2021).

Issues that deserve further investigation

As shown in Sect. "A detailed account of the literature on Al in Finance", the litera-
ture on Artificial Intelligence in Finance is vast and rapidly growing as technological
progress advances. There are, however, some aspects of this subject that are unex-
plored yet or that require further investigation. In this section, we further scrutinise,
through content analysis, the papers published between 2015 and 2021 (as we want
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to focus on the most recent research directions) in order to define a potential research
agenda. Hence, for each of the ten research streams presented in Sect. "Identification
of the major research streams", we report a number of research questions that were
put forward over time and are still at least partly unaddressed. The complete list of
research questions is enclosed in Table 8.

Al and the stock market

This research stream focuses on algorithmic trading (AT) and stock price prediction.
Future research in the field could analyse more deeply alternative Al-based market
predictors (e.g. clustering algorithms and similar learning methods) and draw up a
regime clustering algorithm in order to get a clearer view of the potential applica-
tions and benefits of clustering methodologies (Law, and Shawe-Taylor 2017). In
this regard, Litzenberger et al. (2012) and Booth et al. (2015) recommend broaden-
ing the study to market cycles and regulation policies that may affect Al models’
performance in stock prediction and algorithmic trading, respectively.® Furthermore,
forecasting models should be evaluated with deeper order book information, which
may lead to a higher prediction accuracy of stock prices (Tashiro et al. 2019).

Al and trading models

This research stream builds on the application of Al in trading models. Robo advi-
sors are the evolution of basic trading models: they are easily accessible, cost-
effective, profitable for investors and, unlike human traders, immune to behav-
ioural biases. Robo advisory, however, is a recent phenomenon and needs further
performance evaluations, especially in periods of financial distress, such as the
post-COVID-19 one (Tao et al. 2021), or in the case of the so-called “Black swan”
events. Conversely, trading models based on spatial neural networks (an advanced
ANN) outperform all statistical techniques in modelling limit order books and sug-
gest an extensive interpretation of the joint distribution of the best bid and best ask.
Given the versatility of such a method, forthcoming research should resort to it with
the aim of understanding whether neural networks with more order book informa-
tion (i.e. order flow history) lead to better trading performance (Sirignano 2018).

Al and volatility forecasting

As previously mentioned, volatility forecasting is a challenging task. Although
recent studies report solid results in the field (see Sermpinis et al. 2013; Vortelinos
2017), future work could deploy more elaborated recurrent NNs by modifying the
activation function of the processing units composing the ANNs, or by adding hid-
den layers and then evaluate their performance (Bucci 2020). Since univariate time

3 As this issue has not been addressed in the latest papers, we include these two papers although their
year of publication lies outside the established range period.
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series are commonly used for realised volatility prediction, it would be interesting to
also inquire about the performance of multivariate time series.

Al and portfolio management

This research stream examines the use of Al in portfolio selection strategies. Past
studies have developed Al models that are capable of replicating the performance of
stock indexes (known as index tracking strategy) and constructing efficient portfo-
lios with no human intervention. In this regard, Kim and Kim (2020) suggest focus-
sing on optimising Al algorithms to boost index-tracking performance. Soleymani
and Vasighi (2020) recognise the importance of clustering algorithms in portfolio
management and propose a clustering approach powered by a membership func-
tion, also known as fuzzy clustering, to further improve the selection of less risky
and most profitable assets. For this reason, analysis of asset volatility through deep
learning should be embedded in portfolio selection models (Chen and Ge 2021).

Al and performance, risk, default valuation

Bankruptcy and performance prediction models rely on binary classifiers that only
provide two outcomes, e.g. risky—not risky, default-not default, good—bad perfor-
mance. These methods may be restrictive as sometimes there is not a clear distinc-
tion between the two categories (Jones et al. 2017). Therefore, prospective research
might focus on multiple outcome domains and extend the research area to other
contexts, such as bond default prediction, corporate mergers, reconstructions, take-
overs, and credit rating changes (Jones et al. 2017). Corporate credit ratings and
social media data should be included as independent predictors in credit risk fore-
casts to evaluate their impact on the accuracy of risk-predicting models (Uddin et al.
2020). Moreover, it is worth evaluating the benefits of a combined human—-machine
approach, where analysts contribute to variables’ selection alongside data mining
techniques (Jones et al. 2017). Forthcoming studies should also address black box
and over-fitting biases (Sariev and Germano 2020), as well as provide solutions for
the manipulation and transformation of missing input data relevant to the model
(Jones et al. 2017).

Al and cryptocurrencies

The use of Al in the cryptocurrency market is in its infancy, and so are the poli-
cies regulating it. As the digital currency industry has become increasingly impor-
tant in the financial world, future research should study the impact of regulations
and blockchain progress on the performance of Al techniques applied in this field
(Petukhina et al., 2021). Cryptocurrencies, and especially Bitcoins, are extensively
used in financial portfolios. Hence, new Al approaches should be developed in order
to optimise cryptocurrency portfolios (Burggraf 2021).
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Al and derivatives

This research stream examines derivative pricing models based on Al. A valuable
research area that should be further explored concerns the incorporation of text-
based input data, such as tweets, blogs, and comments, for option price prediction
(Jang and Lee 2019). Since derivative pricing is an utterly complicated task, Chen
and Wan (2021) suggest studying advanced Al designs that minimise computational
costs. Funahashi (2020) recognises a typical human learning process (i.e. recogni-
tion by differences) and applies it to the model, significantly simplifying the pricing
problem. In the light of these considerations, prospective research may also investi-
gate other human learning and reasoning paths that can improve Al reasoning skills.

Al and credit risk in banks

Bank default prediction models often rely solely on accounting information from
banks’ financial statements. To enhance default forecast, future work should con-
sider market data as well (Le and Viviani 2018). Credit risk includes bank account
fraud and financial systemic risk. Fraud detection based on Al needs further experi-
ments in terms of training speed and classification accuracy (Kumar et al. 2019).
Early warning models, on the other hand, should be more sensitive to systemic risk.
For this reason, subsequent studies ought to provide a common platform for model-
ling systemic risk and visualisation techniques enabling interaction with both model
parameters and visual interfaces (Holopainen and Sarlin 2017).

Al and investor sentiment analysis

Sentiment analysis builds on text-based data from social networks and news to iden-
tify investor sentiment and use it as a predictor of asset prices. Forthcoming research
may analyse the effect of investor sentiment on specific sectors (Houlihan and
Creamer 2021), as well as the impact of diverse types of news on financial markets
(Heston and Sinha 2017). This is important for understanding how markets process
information. In this respect, Xu and Zhao (2022) propose a deeper analysis of how
social networks’ sentiment affects individual stock returns. They also believe that
the activity of financial influencers, such as financial analysts or investment advi-
sors, potentially affects market returns and needs to be considered in financial fore-
casts or portfolio management.

Al and foreign exchange management

This research stream investigates the application of Al models to the Forex market.
Deep networks, in particular, efficiently predict the direction of change in forex rates
thanks to their ability to “learn” abstract features (i.e. moving averages) through hid-
den layers. Future work should study whether these abstract features can be inferred
from the model and used as valid input data to simplify the deep network structure
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(Galeshchuk and Mukherjee 2017). Moreover, the performance of foreign exchange
trading models should be assessed in financial distressed times. Further research
may also compare the predictive performance of advanced times series models,
such as genetic algorithms and hybrid NN, for forex trading purposes (Amelot et al.
2021).

Conclusions

Despite its recent advent, Artificial Intelligence has revolutionised the entire finan-
cial system, thanks to advanced computer science and Big Data Analytics and the
increasing outflow of data generated by consumers, investors, business, and govern-
ments’ activities. Therefore, it is not surprising that a growing strand of literature
has examined the uses, benefits and potential of Al applications in Finance. This
paper aims to provide an accurate account of the state of the art, and, in doing so, it
would represent a useful guide for readers interested in this topic and, above all, the
starting point for future research. To this purpose, we collected a large number of
articles published in journals indexed in Web of Science (WoS), and then resorted
to both bibliometric analysis and content analysis. In particular, we inspected several
features of the papers under study, identified the main Al applications in Finance
and highlighted ten major research streams. From this extensive review, it emerges
that AI can be regarded as an excellent market predictor and contributes to market
stability by minimising information asymmetry and volatility; this results in profit-
able investing systems and accurate performance evaluations. Additionally, in the
risk management area, Al aids with bankruptcy and credit risk prediction in both
corporate and financial institutions; fraud detection and early warning models moni-
tor the whole financial system and raise expectations for future artificial market sur-
veillance. This suggests that global financial crises or unexpected financial turmoil
will be likely to be anticipated and prevented.

All in all, judging from the rapid widespread of Al applications in the financial
sphere and across a large variety of countries, and, more in general, based on the
growth rate exhibited by technological progress over time, we expect that the use of
Al tools will further expand, both geographically, across sectors and across financial
areas. Hence, firms that still struggle with coping with the latest wave of techno-
logical change should be aware of that, and try to overcome this burden in order to
reap the potential benefits associated with the adoption of Al and remain competi-
tive. In the light of these considerations, policymakers should motivate companies,
especially those that have not adopted yet, or have just begun to introduce Al appli-
cations, to catch up, for instance by providing funding or training courses aimed
to strengthen the complex skills required by employees dealing with these sophisti-
cated systems and languages.

This study presents some limitations. For instance, it tackles a significant range
of interrelated topics (in particular, the main financial areas affected by Al which
have been the main object of past research), and then presents a concise descrip-
tion for each of them; other studies may decide to focus on only one or a couple of
subjects and provide a more in-depth account of the chosen one(s). Also, we are
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aware that technological change has been progressing at an unprecedented fast and
growing pace; even though we considered a significantly long time-frame and a rel-
evant amount of studies have been released in the first two decades of the XXI cen-
tury, we are aware that further advancements have been made from 2021 (the last
year included in the time frame used to the select our sample); for instance, in the
last few years, Al experts, policymakers, and also a growing number of scholars
have been debating the potential and risks of Al-related devices, such as chatGBT
and the broader and more elusive “metaverse” (see for instance Mondal et al. 2023
and Calzada 2023, for an overview). Hence, future contributions may advance our
understanding of the implications of these latest developments for finance and other
important fields, such as education and health.
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