
Measurement 218 (2023) 113150

Available online 5 June 2023
0263-2241/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Photoplethysmograhic sensors, potential and limitations: Is it time for 
regulation? A comprehensive review 

Francesco Scardulla a,*, Gloria Cosoli b, Susanna Spinsante c, Angelica Poli c, Grazia Iadarola c, 
Riccardo Pernice a, Alessandro Busacca a, Salvatore Pasta a, Lorenzo Scalise b, 
Leonardo D’Acquisto a 

a Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy 
b Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, v. Brecce Bianche, 60131 Ancona, Italy 
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A B S T R A C T   

Healthcare is expected to increasingly shift care out of inpatient settings thanks to wearable monitoring systems. 
Photoplethysmography (PPG) is an optical technique already integrated into wrist-worn commercial products 
which presents significant advantages in terms of cost and dimensions. PPG-based devices, despite their ability to 
detect multiple cardiovascular parameters, are affected by several influencing conditions that depend both on 
technological or environmental variables, and on intra- and inter-subject variability that influences the whole 
measurement chain and reliability, hindering an objective characterization of PPG devices. Plus, the lack of 
standardization for data collection and processing leads to the lack of generalizability and reproducibility of 
results, preventing the full exploitation of the potential prognostic capacity of this technology. Thus, this review 
aims not only to summarize the main influencing parameters of PPG technology, which should be addressed 
when testing the sensor, but also to suggest tentative guidelines for a possible future standardization initiative.   

1. Introduction 

1.1. Background 

In the last decade, national health systems have registered a signif
icant increase in hospitalizations of patients suffering from chronic- 
degenerative diseases of the cardiovascular system. Although over the 
years there has been a significant increase in treatment techniques, both 
from a pharmacological and therapeutic point of view, this paradoxical 
increase in patients is due to two main reasons: the significant ageing of 
the world population [1] and the ability to save many more patients 
from acute events, but not from the related chronic degenerative dis
eases. This results in the need for assistive technologies for older people 
living at home, aiming at improving their quality of life (QoL) and well- 
being perception. 

Recent studies [2–4] have shown that carefully monitoring the 
physiological parameters indicating a possible onset of the conditions 
that predispose pathologies, would lead to various advantages for the 
benefit of the patients’ QoL and, therefore, in terms of reduction of 

hospital admissions and costs held by national healthcare systems. The 
care of chronic diseases will be increasingly shifted towards home 
treatment, and involving the use of mobile healthcare monitoring de
vices (small size, low price, high acceptability by the user and ability to 
detect multiple parameters) and artificial intelligence (AI) techniques, to 
provide decision support systems to remotely monitor the clinical 
progress of the pathology, as long as the measurement accuracy of such 
devices is appropriate. 

1.2. PPG sensors 

The scientific community has shown a strong interest in wearable 
sensors designed to detect various physiological parameters, particu
larly those related to cardiovascular system, due to the importance of 
prevention and monitoring. Among the various technologies available 
on the market, photoplethysmographic (PPG) sensors appear to be one 
of the most effective technology, thanks to their extremely small size and 
low costs, as well as the variety of potential physiological parameters 
that can be derived from the gathered signal [5]. Moreover, PPG sensors 
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can be easily integrated into wearable commercial products for large 
distribution, such as smartwatches and fitness trackers. Indeed, the 
growing interest of the scientific community in PPG sensors can be 
observed in Fig. 1, which shows that the related published articles have 
increased in the last 10 years by 176 % and the trend is still strongly 
rising. 

The simplest PPG sensor is basically constituted by few electrical 
components: a light source and a photodetector (PD). A PPG sensor can 
work in transmission mode, with the light source and the PD located in 
opposite sides with respect to the measurement site, which is capable to 
provide a good and stable signal [6]; generally, this represents the first 
choice for the measurement of blood oxygen saturation (SpO2), usually 
performed within hospitals. Transmission mode also enables the detec
tion of a wide range of blood components [7,8] through the study of the 
transmission spectrum of wavelengths in between 550 and 1050 nm [7]. 
Specifically, some research groups focused on the study of the influence 
of blood concentration in the optical path, with an “tissue optic” 
approach, performing a blood component analysis including, for 
instance, glucose [9], globulin [10], platelets [11] and red blood cell 
counting [12]. Nevertheless, transmission mode is suitable only for body 
parts with a low thickness; indeed, most of the commercial devices 
working this way are usually placed on the fingertip or earlobe, to carry 
out microvascular assessment, being instead larger arteries more diffi
cult to be inspected lying deeper in the tissue (even if some recent works 
employ also them on wrist [13,14]). However, the considerations 
hereinafter presented relate primarily to the reflectance mode configu
ration, which consists in installing the two components side by side, 
hence suitable to realize wrist-worn wearable devices based on a PPG 
sensor. In fact, even if the reflectance mode suffers from motion artifacts 
with respect to the transmission mode, it eliminates the problems 
associated with the sensor positioning, which effectively leads to us
ability and integration into different devices of daily use and therefore to 
a potential wide effective diffusion of use as a monitoring system, 
especially for what concerns heart rate (HR), and for SpO2 as well. 

Regardless the specific configuration, the source emits light at a fixed 
wavelength (usually between 550 and 850 nm), which travels under
neath the skin and is partly absorbed and partly reflected by several 
different biological tissues, including the blood flowing within vessels. 
The reflected light is then sensed by the nearby PD, which converts it 
into an electrical signal proportional to its intensity. 

The origin of PPG signal underlies on the light-tissue interaction, 
which is described by the modified Lambert-Beer law that takes into 
consideration the cumulative effects of both absorbers (e.g. blood, 
melanin) and scatters (collagen, keratin), which constitute the quite 
complex biological tissue. Several studies deal with the origin of PPG 
signal [15–17]; nevertheless, the most accredited theories identify as 
principal contributor factors the following ones [18]: (1) the different 
orientation of blood cells during the systolic and diastolic phases, 
resulting in changes of the overall light attenuation, (2) the volumetric 
distribution of the absorbers and (3) the mechanical movements of the 
capillaries and the elastic deformation of the skin during the vascular 
bed expansion. Beyond the increase of the overall capillary density, this 

phenomenon causes variations of the back-reflected light intensity due 
to local changes of both the scattering and the absorption coefficient of 
the light. 

However, the resulting waveform consists of two superimposed 
components: the quasi-DC component (direct current) and the AC 
component (alternating current). The quasi-DC component is generated 
by all the tissues whose optical properties do not vary significantly or 
rapidly over time. Possible slow changes of the DC components can be 
caused by fluctuations of the average blood flow within vessels, by 
thermoregulation and respiration, vasomotor activities or hydration 
level [19]. Indeed, PPG DC component represents the total blood volume 
changes, and thus can be successfully employed in some applications for 
lower limb venous assessments (approach also referred to as light 
reflection rheography, LRR) [20–23], since the changes in the total limb 
blood volume with posture can be derived considering the variations of 
light absorption in PPG signal. In this context, LRR through PPG has 
been used for the evaluation of peripheral vascular diseases (PVD), e.g. 
to evaluate venous reflux in subjects affected by deep venous reflux (also 
diagnosed using duplex ultrasonography) [24], as an objective diag
nostic test suitable for screening of lower limb chronic venous insuffi
ciency (CVI) [25], and as a suitable tool to screen deep vein thrombosis 
(DVT) in homecare settings through non-invasive devices [26]. 

Conversely, the AC component is associated to the variation of the 
blood volume within vessels (information usually of more interest in 
photoplethysmography): every time the heart beats, it pumps blood 
through arteries, thus leading to a cyclical variation of the blood volume 
flowing within different districts (depending on the vessels compliance). 
The significant absorption of light by the blood, which also depends on 
the orientation of the erythrocytes [27], leads to a change of the amount 
of light detected by the PD and therefore to a variation of the electrical 
output, which can be attributed primarily to the cardiac cycle. 

An important index relating the AC and DC components is the so- 
called perfusion index (PI), which represents the ratio of pulsatile 
light absorption on continuous light absorption, i.e. the AC/DC ratio 
[28,29]. PI was initially employed just as the gold standard for assessing 
PPG signal quality [29]; however, recently it has been shown that PI can 
be used also for non-invasive haemodynamic monitoring, given that this 
index assesses the local blood volume variation during systole, and 
changes according to the systemic and local haemodynamic status [28]. 
PI measures the local perfusion, is usually low (much lower than 10 %), 
varies according to the measurement site, and reflects not only the 
systemic macrohaemodynamic status, but it often especially reveals the 
local conditions, e.g. local vascular tone, local compression (soft tissues, 
veins and/or arteries), and outside temperature variations [28]. 

1.3. PPG signal 

A typical PPG waveform varying during time is depicted in Fig. 2. 
The rising edge of the pulse is the “anacrotic phase”, which is related to 
systole, while the falling edge of the pulse is the so-called “catacrotic 
phase”, which is instead related to diastole and wave reflections from 
the periphery [5]. The “dicrotic notch” is usually seen in catacrotic 
phase when analysing PPG waveforms acquired from subjects with 
healthy compliant arteries [5]. The origin of the dicrotic notch has been 

Fig. 1. Report of the number of PPG related articles since 1990. Font: PubMed, 
October 2022, search query: ((PPG) OR (Photoplethysmography) OR 
(Photoplethysmographic)). 
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Fig. 2. Typical PPG waveform varying in time: (1) anacrotic phase; (2) cata
crotic phase; (x) dicrotic notch. 
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most explained as caused only by the aortic valve closure, but a recent 
study by Politi et al. demonstrated that reflected pressure waves could 
participate as one of the causes of the dicrotic notch due to changes in 
peripheral vascular resistance [30]. 

Moreover, the slow varying envelope of the PPG waveform repre
sents the well-documented low frequency respiratory-induced intensity 
variations that include contributions from the venous return to the 
heart, caused by variations in intra-thoracic pressure and in the sym
pathetic tone control of cutaneous blood vessels [5]. For this reason, 
several recent works have focused on algorithms for extracting the 
respiratory signals starting from PPG waveforms, e.g. using bandpass 
filters or the Empirical Mode Decomposition (EMD) method [31–33]. 

The bandwidth of PPG signal is typically lower than 15–20 Hz 
[34,35]. As an example, Fig. 3 shows the typical frequency content of a 
wrist PPG waveform with a first peak at approximately 0.2 Hz (corre
sponding to the respiratory frequency) and a second peak at approxi
mately 1.2 Hz (representing instead the average heart rate). 

1.4. PPG strengths and applications 

PPG technology has two main advantages that make it such a highly 
effective technology in the clinical setting. The first advantage is that 
PPG is an extremely simple and relatively inexpensive technology, 
whose main components can be contained in particularly small wearable 
devices, such as smartwatches, whose popularity (as mentioned above) 
is constantly increasing. According to the Pew Research Center, 21 % of 
Americans wear a smartwatch or a smart band, mostly aged between 18 
and 49 years [36]. Indeed, smartwatches are the new trend [37] 
nowadays, being their global market valued at $20.64 billion in 2019 
and projected to reach $96.31 billion by 2027 [38,39]. Smartwatches 
are very appealing since they also allow immediate access to the digital 
world, including internet browsing, messages and notifications; at the 
same time, IoT-enabled devices simplify remote monitoring by sharing 
data on cloud-based services [40], thus potentially playing an important 
role in telemedicine. Plus, rapid advancements in miniaturization are 
expected to propel further growth in the market. In addition to that, 
these devices are not perceived by users as medical devices, favouring a 
continuous use over the day and, thus, the possibility to be continuously 
monitored without perceiving it, hence obtaining measurement results 
that better represent the real-life conditions of the user. This increases 
even further the capability not only in detecting acute events, but also in 
monitoring the progression of a particular clinical condition over time, 
making it possible to establish thoughtful targeted actions, but also to 
identify anomalous patterns and prevent developing issues. The second 
reason that gives this technology such high potential is the great variety 
of relevant physiological parameters it can provide. In addition to the 
HR, which can be derived from the cyclical variation of the blood vol
ume over time, further information can be extracted from a PPG signal 
and its derivatives [41,42], such as pulse rate variability. 

(PRV) [43–51], atrial fibrillation events [52–58], cardiac output 
[59–64], breathing rate [31,65–67], blood oxygenation [68], general 
vascular health and the risk for cardiovascular diseases [69]. 

Among the others, the Pulse Transit Time (PTT) exploiting PPG 

signals recorded at two different sites can also be used to determine the 
Pulse Wave Velocity (PWV) and to continuously estimate, without any 
cuff [70–75], the Blood Pressure (BP), which can also be measured via 
PPG sensors with other different techniques [76]. PTT has been defined 
as the time it takes for a pulse wave to travel a known distance (along a 
given artery) and is inversely proportional to PWV, which is the speed of 
the pulse wave along the arterial vessel [72]. Some recent works have 
highlighted the feasibility of using the reflective PTT (named R-PTT) to 
estimate the blood pressure [77–80]. R-PTT can be extracted computing 
the time duration between the first PPG peak (i.e. the percussion) and 
the second one (reflected) in a cardiac pulsation cycle. Physiologically, 
the R-PTT measured on the wrist represents the time required for the 
pulse wave to propagate from the radial artery in forward direction to 
the end of the arm, and then reflected back to the radial artery as a back- 
propagating pulse [77]. Even if PTT and R-PTT methods usually still 
require individual calibration processes using conventional cuff type 
devices, recent works have shown encouraging results, with errors in BP 
estimations lower than 8 mmHg, defined as “Grade A” devices by the 
Advancement of Medical Instrumentation (AAMI) and British Hyper
tension Society (BHS) standards [79–81]. 

Besides, the combination of the parameters measured using PPG 
signals can subsequently give indications on other physiological condi
tions reflected by them, such as the level of stress or fatigue of a worker 
[82–85] (also in the Industry 4.0 context), the quality of sleep [86,87] or 
if the attention threshold falls below certain limits during specific ac
tivities [88] or, recently, even in the early detection of COVID-19 
symptoms [89,90]. 

Despite this capability in detecting multiple physiological conditions 
related to the cardiovascular system, the PPG signal is affected by 
several influencing parameters [6,69], described in the following sec
tion. Such parameters prevent the PPG technology from being exten
sively used in a clinical environment, which is the reason why its clinical 
use is limited only to few parameters, such as HR and peripheral oxygen 
saturation, mainly in a transmission mode configuration. Thus, due to 
the great inter- and intra-subject variability and to several sources of 
uncertainty [69,91], PPG technology is mainly used for general health 
status assessment and for fitness purposes. 

Therefore, the PPG-derived HR, which represents a powerful trans- 
diagnostic biomarker that could be used in a clinical environment, and 
which could potentially be continuously monitored during normal daily 
life, cannot be used for a clinical health assessment as the accuracy of the 
acquisitions is often inadequate in the general population. Several 
studies have investigated the feasibility of using PRV indices, extracted 
starting from pulse-pulse interval (PPI) time series, as a surrogate of 
HRV computed from gold standard electrocardiogram (ECG) [92–94]. 
Usually, short-term measurement norms are based on ~ 5 min time 
series, and time-domain and frequency domain indices are more often 
considered. Among the time-domain indices, the MEAN PPI can be used 
to detect alterations of heart rhythm (e.g. tachycardia, bradycardia); the 
standard deviation of the inter-beat interval of normal sinus beats 
(SDNN) represents the HR variability, while the root mean square of 
successive differences between normal heartbeats (RMSSD) is used to 
estimate the vagally mediated changes reflected in HRV [95]. In the 
frequency domain, the main bands considered are the Low Frequency 
(LF) band (0.04–0.15 Hz), mainly related to sympathetic activity of the 
Autonomous Nervous System (ANS), and the High Frequency (HF) band 
(0.15–0.4 Hz), instead reflecting more the parasympathetic activity and 
the respiration. The ratio of LF to HF power (LF/HF ratio) has been 
widely employed to estimate the ratio between sympathetic and para
sympathetic nervous system activity, i.e. the sympatho-vagal balance, 
under controlled conditions, although this index has been recently 
debated [95,96]. Some recent studies investigating the feasibility of 
using PPG for assessing HRV found an overall good agreement of most 
time and frequency- domain short-term measures during rest, which 
however decreases during postural or mental stress [50,93,94]. 

Other studies are currently focusing on which extent it is possible to 
Fig. 3. Typical frequency content of a PPG waveform. The peaks corresponding 
to the respiratory rate and cardiac activity are indicated in the figure. 
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decrease time series length (i.e. the so called ultra-short term HRV) for 
reliably assessing heart rate variability also from PPG recordings in daily 
life situations [97–100]. 

It is worth mentioning that many research groups are nowadays also 
focusing on the so called “non-contact PPG”, also exploiting machine 
learning approaches, which represents a possible alternative to the 
conventional PPG technique (with several potential advantages) 
[101–104] to detect physiological parameters, such as HR. Specifically, 
the measurements rely on digital cameras; the frames sequence is 
analyzed within a region of interest (usually the face) to detect the color 
variation of the frames pixels. However, since non-contact PPG sub
stantially differs from the contact one and also has different influencing 
parameters and criticalities, it is beyond the scope of this paper. 

1.5. PPG vs ECG 

If PPG and ECG are compared, several differences can be identified in 
both measurement procedure and accuracy. For example, ECG recording 
requires a preliminary phase, where skin must be adequately prepared, 
and the measurement circuit needs to be closed for signal acquisition. 
On the other hand, PPG-based devices allow an immediate measure
ment, and this is undoubtedly advantageous for wearable sensors 
commonly used for own health monitoring. Moreover, ECG suffers from 
baseline wandering, that is not the case of PPG, even if it presents a 
baseline drift requiring an initial stabilization period. For sure, the most 
evident weakness of PPG sensors is represented by motion artifacts, still 
leaving a lot of room for research and improvement, from hardware 
development to measurement procedure optimization (even through 
proper artifact rejection algorithms). Furthermore, ambient light con
ditions can also influence PPG measurement, and this requires particular 
attention in LED and PD positioning, needing a very good sensor-skin 
contact. Skin color can also affect the results, but multi-wavelength 
PPG (e.g. green, red, blue, IR, etc.) seems to be powerful to this aim 
[105]. Conversely, the flexibility of PPG-based sensors with respect to 
ECG should be highlighted; in fact, whereas ECG requires a standard 
electrode positioning (generally on the thorax and on the limbs, but 
sometimes the loop closes through electrodes embedded in a smart
watch, such in the case of Samsung Galaxy Watch3 [106]), PPG sensors 
can be placed wherever a quite superficial vessel is available (not only a 
finger and the wrist, but, just as an example, also on the temple (e.g. 
OH1 sensor by Polar [107]) or earlobe). 

Different wearable commercial products have been proposed in the 
recent years [108], but very few of them achieved the U.S. Food and 
Drug Administration (FDA) clearance. It is worth mentioning that 
different smartwatch companies are catching in the field with their 
products. While Apple cleared the FDA status for irregular rhythm 
notification by using the electrocardiogram in its Apple Watch, the 
Samsung Gear S2 achieved the approval to monitor the HR when used in 
combination with the LIVMOR HaloTM detection system [69]. Hence, 
despite the significant improvement in terms of monitoring of the main 
physiological parameters allowed by these typologies of devices (i.e. 
PPG-based smartwatches and chest straps), the full exploitation of the 
prognostic capacity is still lacking due to the sources of disturbance. 

1.6. Aim of the work 

Several recent articles describe all the main potential sources of in
accuracy of PPG-based devices [41,69,109,110]. This is an important 
first step for a kind of research that aims to achieve a careful and 
conscious planning of experimental tests, thus leading to improve the 
accuracy of these devices and allowing them to be used in a clinical 
setting. However, the mere knowledge of the influence parameters is not 
a sufficient condition for this step to take place. Indeed, due to the 
intrinsic. 

nature of these parameters of influence which does not allow their 
control, traditional guidelines for the evaluation of uncertainty are not 

adequate [108], as it is difficult to control many of the individual in
fluence parameters, resulting in a great amount of physiological vari
ability. Therefore, the scope of this work is not limited to describe the 
possible sources of influence, but also to disseminate a series of sug
gestions and standardized methodologies proposed by the scientific 
community that, if collectively adopted, could lead to an easier com
parison and correlation of different results from various experiments 
thanks to some common guidelines that should be followed in the 
metrological evaluation of these devices. This could also accelerate the 
process that may lead to the adoption of PPG-based devices in the 
clinical practice, thus enhancing the efficacy of the national healthcare 
systems and increasing the patients QoL by reducing hospitalizations. In 
the following paragraphs, special attention is paid to the ANSI/CTA- 
2065 standard [127] (hereafter mentioned as CTA-2065), proposed 
and released in 2018 by the Consumer Technology Association, since it 
aims to define the process to test and validate the accuracy of a device 
for HR monitoring under different conditions. 

The rest of the article is organized as follows: the first part (Section 2) 
reviews and analyzes the main influencing parameters. The second part 
(Section 3) describes and summarizes the principal standards that have 
been proposed by the scientific community. Finally, in Section 4 the 
authors provide their considerations and conclusion. 

2. Accuracy and potential influencing parameters 

The great potential of PPG sensors is to enable monitoring of 
different physiological parameters via a small practical wearable device. 
Table 1 illustrates an overview of PPG wearable devices and the related 
measured parameters. As shown in Table 1, PPG wearable devices allow 
HR monitoring. Moreover, many other parameters can be derived from 
PPG, such as HRV, SpO2, PTT, BP and Blood Volume Pulse, perfusion 
index, respiration rate, glucose concentration. Besides, Table 1 reports 
also the positioning and the typology of the device (commercial or 
prototypal). 

However, PPG-based wearable devices are not intended as medical 
devices. Indeed, in clinical environments, the detection of a specific 
physiological parameter should be accurate for a heterogeneous 

Table 1 
Comparison of PPG wearable devices.  

Name Position Typology Measured parameters 

AIO Smart Sleeve [111] arm commercial HR, HRV, SpO2 

Aktiia [112] wrist commercial HR, HRV, BP 
Apple Watches [113] wrist commercial HR, HRV, SpO2 

Asus VivoWatch SP  
[114] 

wrist commercial HR, PTT, BP, SpO2 

BP with prototypal PPG- 
based device [76] 

wrist prototypal HR, PTT, BP 

CareUp [115] wrist prototypal HR, PTT, BP, SpO2 

Cosinuss Two [116] ear commercial HR, BP, SpO2, perfusion 
index 

Dream Sock [117] ankle commercial HR, average SpO2 

Empatica EmbracePlus  
[118] 

wrist commercial Blood Volume Pulse, HR, 
HRV, SpO2, respiration 
rate 

Fitbit Smartwatch [119] wrist commercial HR, HRV, SpO2, 
respiration rate, glucose 

Garmin Smartwatches  
[120] 

wrist commercial HR, SpO2, respiration rate 

Jabra Elite Sport [121] ear commercial HR 
Oura Ring [122] finger commercial HR, SpO2 

Polar OH1 [123] arm/ 
temple 

commercial HR 

PPG-based Smart 
Wearable Device  
[124] 

wrist prototypal HR, glucose 

Samsung Galaxy Watch  
[125] 

wrist commercial HR, BP 

Scosche Rhythm [126] wrist commercial HR  
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population both in the short term, that is in a specific limited time in
terval within a single day, as well as in a longer time interval, which can 
be either days or weeks. This implies that also physiological variability 
should be managed by the measuring technology itself, to provide reli
able results. 

PPG technology is characterized by a significant sensitivity to 
various influencing factors that affect acquisitions, especially in normal 
daily life conditions. Specifically, Fig. 4 highlights how the output signal 
is not a function of the single input quantity, but instead of a combi
nation of multiple influencing factors, which in many cases cannot be 
controlled or isolated. Hence, these aspects should be considered within 
the measurement uncertainty, to correctly interpret the results also in 
function of the target application requirements. 

When following a scientific approach aimed to the metrological 
characterization of PPG sensors, if these influencing parameters are not 
properly accounted with a standardized protocol, different research 
groups could end up with inhomogeneous results, which implies a 
general poor reproducibility and replicability of tests and, consequently, 
the impossibility to use PPG sensors in a clinical environment. 

Among other things, the lack of a univocal approach mainly regards 
the planning of the tests, including the choice of the reference device (i. 
e. the gold standard) to compare the PPG output. Indeed, during the 
evaluation of the metrological performances of a PPG-based device 
during HR measurements, a common practice is to compare the mea
surements between the tested device (i.e. PPG-based device) and a 
reference device (usually an ECG-based device [128]) to determine if 
results are within fixed limits of agreements [129,130] based on the 
specific target clinical application. 

While there are recommendations that specify whether a HR 
measuring device can be considered accurate or not (e.g. ANSI/AAMI/ 
IEC 60601-2-27:2011/(R)2016 considers accurate a HR monitoring 
device if the mean absolute percentage error is ≤10 % of the input rate 
or ± 5 bpm), on the other hand there is not a general adoption of 
univocal characteristics of the reference device. Some research groups 
have adopted different devices used as reference, among which ECG 
[129,131] devices, chest straps [82,132,133], and pulse oximeters 
[134–136]. Thus, it should be considered that even before describing the 
possible influencing factors, a first discrepancy in obtaining the actual 
accuracy of any optical sensor lies on the choice of the reference device, 
which can introduce itself an additional error and lead to poor reliability 
of the results. Moreover, it should be also considered that the agreement 
between the reference and tested device (which obviously has its own 
measurement accuracy) may also depend on how the reference device is 
used and on the characteristics of the protocol chosen, especially in the 
case of physical activity execution (commonly, higher the activity in
tensity, higher the measurement uncertainty of wearable devices) [137]. 
For instance, ECG patches perform badly when the skin is stretched or 
excessively wet, whereas ECG straps are inaccurate when the skin is too 
dry (due to the different electrodes technology), when the strap loosens 
up, or for specific anatomical shapes of the chest [138]. 

Another important choice when planning a test protocol is the spe
cific physical activity to be performed by the test population. Wang and 

colleagues [139] recruited 50 healthy adults to test simultaneously for 
each subject a standard ECG, the Polar H7 ECG-based chest strap, and 
four wrist worn PPG-based commercial products. They found that the 
wrist-worn devices decrease their performance with physical exercises, 
showing a difference in HR acquisition up to -39 and +33 bpm, 
respectively, if compared to the standard ECG; none of them achieved 
the accuracy of the chest-strap. Indeed, as it will be discussed in the next 
section, the accuracy of HR measurements varies significantly under 
different conditions of physical activity. Specifically, several studies 
agree that wearable wrist-worn optical sensors tend to underestimate 
HR values with an overall negative bias [134,139–141]. 

In a controlled laboratory setting, different commercial devices have 
proven to adequately measure the HR under different physical activities 
within an acceptable error range of 5 % [131,142]. However, different 
physical activities replicated in the laboratories do not fully reflect daily 
life situations, including small simple actions, such as specific rhythmic 
movements or cyclic motion of the wrist [143,144], that can lead to 
different additional errors. In a recent study [110] the accuracy of a 
PPG-based wristband was assessed under different actions (e.g. 
keyboard typing) and physical activities (e.g. slow walking). Authors 
found that the accuracy decreases significantly in dynamic conditions 
not only for hand movement, but also during speaking activities, 
cognitive and emotional stress, which indicates the presence of influ
encing factors different from physical disturbances. 

In addition to the reference device and physical activity choice, there 
are many other influencing parameters that affect the output of the 
sensor; the main ones are reported in Table 2. All these influencing 
parameters should suggest considering suitable precautions to mitigate 
their effects during the performance evaluation of a PPG-based device. 

Nevertheless, without any standardization process and any capa
bility to detect all the possible influencing parameters affecting the 
output of the sensor, any evaluation of the accuracy is not possible, and, 
thus, the clinical validation of PPG technology. 

2.1. Contact pressure 

The contact pressure between the sensor and the individual’s skin 
can significantly affect the quality of the PPG signal, leading to a peak 
distortion and a decrease in amplitude that prevent the straight-forward 
usage of the sensor, resulting in errors in the HR determination 
[133,145–147]. During PPG acquisition on a subject at rest, the ampli
tude of PPG signal increases with increasing contact pressure up to a 
maximum and then decreases again [146], as qualitatively shown in 
Fig. 5. 

Specifically, there are two main reasons which cause the contact 
pressure to affect the PPG signal: the former concerns the stability of the 
adhesion of the sensor to the skin. Indeed, if the sensor is not firmly 
attached to the skin, relative movements may create additional motion 
artifacts. Moreover, if the displacement of the sensor is perpendicular 
and far enough from the skin, this could lead to the complete loss of the 
AC component of the PPG signal. The latter reason is that an excessive 

Fig. 4. Schematic representation of different influencing parameters which are 
part of the output function. Specifically, qi and qo represent the input and 
output quantity, respectively, while d1, …, dn represent different influ
encing variables. 

Table 2 
Principal influencing parameters of PPG signal.  

Sensor design and 
positioning 

Subject specificity External factor 

Emitting light intensity Oxygen concentration Ambient light 
Wavelength Microcirculation volume Room 

temperature 
Photodiode sensitivity Arterial stiffness and blood volume  
Sensor skin interface Interstitial fluids  
Contact pressure Skin tone  
Motion artifacts Body mass index and wrist 

circumference  
Body location Body temperature  
Sensor design Venous pulsation   
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contact pressure on the skin may be transferred through the subcu
taneous tissues to the blood vessels, altering and deforming the arterial 
geometry and the subcutaneous perfusion, and, therefore, the acquired 
PPG signal. Ideally, the best PPG waveform can be obtained when the 
contact pressure is equal to the pressure difference between the inside 
and outside of the blood vessel (i.e. transmural pressure) [6]. When the 
pressure exerted by the probe exceeds the transmural pressure, the 
vessel wall starts collapsing and flattering, thus the AC amplitude starts 
decreasing as the arterial pulsation is locally partially inhibited to 
expand. Despite the significant influence of this parameter, no generally 
accepted standards have been adopted, neither the CTA-2065 standard 
provides any specific indication in this sense. 

In different studies the optimal contact pressure was tested for 
different subjects under different conditions. Teng and colleagues [146] 
evaluated the change in pulse amplitude (AC) of reflective PPG signals 
with increasing contact force, from 0.2 to 1.8 N; authors found that the 
pulse amplitude peaked at different contacting forces, from 0.2 to 1.0 N, 
for different subjects, with most of subjects achieving their maximum of 
AC/DC ratio between 0.2 and 0.4 N. They concluded that the actual 
force exerted at the artery wall would be different for each subject due to 
the specific subject’s characteristics (i.e. physiological inter-subject 
variability). In another study [148], the finger PPG waveform was 
analysed under different contact pressure values, finding the highest 
amplitude at 60 mmHg. Similarly, in a recent study [137], authors tested 
the performance of a wrist-worn HR-PPG sensor for different contact 
pressures during different physical activity rates; they found that 54 
mmHg provided the best HR results (compared with an ECG-based chest 
strap) among the whole cohort of subjects, and that the contact pressure 
produces stronger effects on the PPG signal quality than those deriving 
from the intensity of the physical activity. Furthermore, authors 
concluded that, by considering the specific optimal contact pressure of 
each subject, it is possible to reduce the mean average percentage error 
up to 47 %. However, assessing the optimal range of the contact pressure 
is challenging due to the wide variability of the biological characteristics 
of subjects in terms of tissues features and arterial stiffness [146,149]. 

Based on the recent studies on the effect of contact pressure in PPG 
measurements, a device which can carefully control the contact pressure 
and vary it with respect to the specific characteristics of the user, to get 
the best AC/DC ratio, would bring a potential benefit in terms of signal 
quality and reliability. Nevertheless, this represents an important 
parameter that should be taken into consideration when testing the 
performances of PPG sensors, to achieve a standardization of PPG 
measurements. 

2.2. Skin tone and wavelength 

Skin colour and light wavelength are two interconnected aspects to 
be addressed together; indeed, the penetration depth of the light beam 
and the optical response of the skin tissue vary with wavelength and 
subjective characteristics. 

Regardless of the specific body location, the first tissue encountered 

by the light beam is the skin, whose characteristics play an important 
role in light absorption and scattering (Table 3, readapted from 
[77,150]). The epidermis is quite thin and basically a light-absorbing 
layer, whereas the dermis is a thick layer where light scattering plays 
an important role [151]. For instance, it has been calculated that the air- 
skin interface causes about 5 % of the light provided by the LED to be 
reflected away from the skin and this percentage can be even higher for 
oblique angles of incidence [151]. Nevertheless, this aspect could be 
reduced with a proper contact pressure, minimizing the thickness of the 
air-skin interface. As above mentioned, cutaneous optical properties 
vary among different subjects; specifically, there is a significant varia
tion in melanin content among human races, accounting for different 
skin colours. Fig. 6 shows the absorption spectra of melanin, water, and 
oxygenated and deoxygenated haemoglobin for different wavelengths. 

As reported in the figure, melanin is a highly light absorber, hence it 
can significantly attenuate the incident light provided by the PPG 
sensor. While for wavelengths higher than 1200 nm, the percentage of 
melanin (and, therefore, the skin colour) no longer influences the ab
sorption, at shorter wavelengths (i.e. 530 nm - which is commonly used 
in PPG-based commercial devices) it strongly affects the PPG output. 
Conversely, shorter wavelengths as the green light have been demon
strated to be less susceptible to motion artifacts. Indeed, blue and green 
radiations do not penetrate through the skin (Fig. 7) as deeply as the red 
and the infrared [152,153] ones, thus the signal is also less prone to 
disturbances [154]. 

Lee and colleagues [156] compared the HR during physical activity 
measured through a PPG sensor equipped with different PPG wave
length values. They concluded that green light ensured relative freedom 
from motion artifacts if compared with red, so the authors concluded 
that it is more suitable for monitoring the HR in normal daily life [157]. 
Moreover, Shchelkanova et al. [158] compared blue and green wave
lengths for PPG acquisition in normal and cold temperatures evidencing 
that, despite the fact that blue light has received little attention until 
now due to the employment of photodetectors with inherently lower 
sensitivity, it could be convenient to combine blue light-based treat
ments with simultaneous PPG acquisition for cardiovascular parameters 
monitoring. 

There are several articles in literature [159–161] demonstrating that 
PPG sensors used on darker skins provide inaccurate HR measurements 
up to 15 % more frequently if compared with lighter skin [109]. Given 
the dependency between the subject’s characteristics and the wave
length, the possibility of having different wavelengths in the same 
sensor, to choose from time to time the one that best suits the individual 
subject characteristics, is the condition that could provide the best ac
curacy on a heterogeneous cohort of subjects, opening a new path for 
multiple applications. Towards this direction, different studies 
[162–164] adopted multi-wavelength sensors to investigate the perfor
mances of different light colours in various conditions. Most of these 
studies used a configuration in which a single PD is placed in the centre 
of the sensor, and a plurality of LEDs are placed around it, with different 
configurations, but always keeping the same distance between the PD 
and the LEDs with the same wavelength. This configuration can ensure a 
higher probability that at least one of the LEDs is in a proper contact 
with the skin in case of unwanted relative shifts/rotations between PPG 
and skin, besides being able to rely on different wavelengths. Yan et al. 
[152] used an advanced multi-wavelength patch sensor (i.e. green, or
ange, red, and infrared - IR) able to select a suitable illumination and 
LED illumination intensity based on the skin colour. They found the 
compatibility of that particular PPG sensor if compared with three-lead 
ECG regardless the skin colour. Similarly, in a recent study, Han and 
colleagues [155] developed a sensor with a plurality of LEDs (i.e. blue, 
green, red, and IR) arranged in two concentric circumferential paths 
with radius of 4.75 and 9.75 mm, respectively. The aim of this specific 
sensor layout was to reduce the problems of directionality between the 
light and the PD, as well as to test different distances between the LEDs 
and the PD. Authors found that the blue light provided the worst 
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Fig. 5. Variation of PPG signal amplitude for increasing contact pressure [137].  
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performance if compared to the other wavelengths, attributing the low 
signal quality to the poor depth penetration within the epidermis [165]. 
Besides, they confirm the feasibility of measuring PPG while using a 
multi-wavelength circular optical sensor, foreseeing the circular 
configuration in future wearable commercial devices. 

Given the high number of articles describing skin colour as a 
parameter that influences the quality of the PPG signal, with some ex
ceptions [109,166], it is important that future studies aiming at 

evaluating the metrological performance of the PPG sensor take this 
influencing parameter into account, by possibly using distinct wave
lengths for different applications, and by enrolling people with different 
skin colours. In this direction, the von Luschan’s chromatic scale and 
Fitzpatrick scale are widely used for skin classification [167–169]. 
Table 4 shows the classification of each skin type in corresponding 
regions. 

The CTA-2065 standard provides indications on the characteristics of 
the cohort of subjects to be enrolled. Specifically, it advises that at least 
25 % of the participants should have a skin colour within the range of I 
to III and at least 25 % should be within the range of IV to VI based on 
the Fitzpatrick Scale. 

Moreover, the standard suggests to place the optical sensor away 
from wounds, tattoos, or other kinds of skin conditions that may affect 
the signal, such as high density wrist hair and sweat, which have been 
found to influence the measurement results [108]. 

2.3. LED-PD distance and configuration 

As previously described, the most important information of a PPG 
signal is contained within a very small AC component, which is super
imposed to a noisy and drifting DC component, leading the PPG signal to 
be prone to noise and, thus, inaccuracy when extracting physiological 
parameters. Recent studies focused on the improvement of the quality of 
PPG sensors through the optimization of three constructive parameters, 
namely: a) the distance between the LED and the PD, b) the area 
including LED and PD, and c) the relative position of the LED and PD 
[170]. This optimization aims at maximizing the AC/DC components 
ratio to achieve a better reliability of the PPG sensor. This is achieved 
through the assessment of the optical model that simulates the light 
within the skin, based on the Lambert-Beer law [171,172]. Specifically, 
the path travelled by the light, which is often defined as “banana sha
ped”, changes according to the path length within the skin, which acts as 
a medium that gradually deteriorates the light as it travels back to the 
PD. 

A schematic representation of the light path travel is shown in Fig. 8 

Table 3 
Tissue depth and optical parameters.  

Materials Thickness [mm] Refractive index Absorption [1/mm] Scattering anisotropy Scattering coefficient [1/mm] Wavelength [nm] 

Air –  1.00  –  – –  
Epidermis 0.14  1.40  0.50  0.8 31.3 530     

0.26  22.1 660     
0.12  17.4 850     
0.06  16.0 940 

Dermis 2.6  1.50  0.28  0.8 19.2 530     
0.15  14.4 660     
0.10  10.5 850     
0.08  9.7 940 

Subcutis 4  1.44  0.28  0.8 16.3 530     
0.40  12.3 660     
0.13  9.6 850     
0.08  8.9 940 

Arteries 2 (DC)  1.40  1.80  0.95 709 530     
1.88  0.98 849 660  

2.2 (AC)   4.65  0.98 804 850     
5.87  0.97 710 940  

Fig. 6. Absorption spectra of skin [151].  

Fig. 7. Different mean light penetration depth at different wavelengths [155].  

Table 4 
Fitzpatrick and von Luschan’s skin classification.  

Fitzpatrick type von Luschan Description 

I 0–6 Very light or white 
II 7–13 Light 
III 14–20 Light intermediate 
IV 21–27 Dark intermediate 
V 28–34 Dark or brown 
VI 35–36 Very dark or black  
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[173]. The light incident on the skin surface is denoted as Ii, while I is the 
intensity of light emerging from the tissue following the “banana sha
ped” path. According to Lambert-Beer law, the light intensity passing 
through different layers of skin decays in an exponential manner [173]. 

Kao and colleagues [77,174] simulated an optical model to deter
mine the optimal distance between the PD and LED for different wave
lengths within the range from 1.65 mm to 3.65 mm with increments of 
0.1 mm. The authors concluded that the best AC/DC ratio occurs for 
different distances based on the wavelength, and specifically of 1.85, 
2.35, 2.75 and 2.75 mm for wavelengths of 530, 660, 850, and 940 nm, 
respectively. Nevertheless, other aspects (e.g. current, PD surface) or 
configurations may lead to different results [170]. Indeed, several 
existing multi-wavelength sensors have non-uniform distances between 
each single wavelength and the photodetector [155]. 

As concerns the LED-PD distance, another parameter which may 
influence the PPG sensor performance is the number of LEDs and PDs, as 
well as the specific arrangement layout. Indeed, placing multiple LEDs 
around a photodetector in a single sensor can improve the quality of the 
PPG signal [175], thanks to two main reasons: a) to capture more light 
reflected back to the PD and b) to increase the chance that at least one 
LED or PD remains properly in contact with the skin, in case of sensor 
movement. 

Different configurations have been adopted in both commercial and 
academic research implementations (Fig. 9) and the general common 
layout is the circular one, where the other components (in a variable 
number) are mounted on circumferences of increasing radius with 
respect to a central LED or PD [152,155,175]. 

In a configuration with the LEDs arranged on external circumfer
ences it is important to not exceed the distances to be able to effectively 
get the pulsatile flow [155] (it is suggested to be less than 6 mm for 
multiple wavelengths [176]). Baek and colleagues [175,177] employed 
two configurations: triple LEDs with centred photo-detector, for 
enhancing light intensity, and multiple PDs with centred light source 
configuration. They conclude that a multiple PDs configuration intends 
to detect more reflected light (with respect to the emitted portion), 
whereas multiple light source configuration aims at the emission of 
enhanced light intensity to make more reflected photons towards a given 
detection area. Therefore, thresholds for adaptive light intensity control 
should be determined differently according to the sensor type. 

In conclusion, the sensor configuration should be properly selected 
according to the specific target application. Moreover, adopting more 
wavelengths can be useful to monitor more physiological parameters (e. 
g. SpO2), as well as to improve the quality of the PPG signal, making it 
more suitable for different users’ biological characteristics. 

2.4. Motion artifacts and signal crossover 

Other significant sources of inaccuracy in PPG-based wearable de
vices are caused by i) motion artifacts (MA), which result in a low signal 
quality, and ii) cyclical wrist motions/physical activities, which cause 
signal crossover. These potential sources of inaccuracy are more intense 
when the PPG signal is acquired from the wrist if compared to the finger 
[143], due to the flexibility of the wrist and the extensor digitorum 
tendons. MA, which can be periodic, quasi-periodic, or non-periodic 
[178,179], are caused by subject-sensor relative movements and result 
in a signal distortion with an amplitude much larger than the pulsatile 

Fig. 8. Banana shape effect on reflection mode PPG [173].  

Fig. 9. Different configurations of LEDs (L) and PDs (PD) layout and design for both commercial and research purposes. A = Apple Watch series 6, B = Huawei Watch 
GT 2, C = Fitbit Inspire HR, D = configuration from Han et al. [155], E = configuration from Yan et al. [152]. 
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component [143] and a very low signal-to-noise ratio (SNR), especially 
during intense physical activity. Plus, MA, whose frequency band usu
ally ranges from 0.1 to 20 Hz [180], can overlap to HR frequency range 
(commonly from 0.9 to 3 Hz). Indeed, MA generated by repetitive ac
tions like walking and jogging tend to lock on the HR signal generated by 
the cardiovascular cycle. Thus, common filtering strategies cannot 
effectively remove this problem without distorting the useful signal 
[180] and algorithms may mistake the step rate as the HR cadence. In a 
recent study, Bent et al. [109] explored HR and PPG data from 
consumer-grade and research-grade devices under different activities. 
They found that wearable PPG-based devices reported a higher error 
during physical activity, varying with the specific activity type. The 
overall results showed to over-report the HR during low-intensity 
physical activity, and the consumer-grade devices were found to be 
more accurate than research-grade devices at rest. They also stated that 
repetitive motion (e.g. walking), which can lead to signal crossover ef
fect, led to significant errors. Plus, repetitive actions which involve the 
wrist (e.g. typing) produced an error in HR higher if compared with 
results achieved at rest and as high as during walking (i.e. repetitive 
motion). In this context, Umair and colleagues [98] compared the data 
quality of six common wearable heart rate monitoring biosensors (ECG: 
Firstbeat Bodyguard 2, Polar H10 chest strap; PPG devices: Empatica E4, 
Samsung Gear S2, and Polar OH1) in resting and physical/mental stress 
sessions. Their results highlighted that ECG chest strap obtained the 
lowest number of artifacts, followed by the PPG wristband, ECG sensor 
board kit, and PPG smartwatch. Although MA can be minimized by 
choosing specific wavelengths (e.g. green [6,181]), or acquiring the 
signal from specifics body locations [181], or using soft flexible sensors 
better adhering onto the skin [182], they cannot be entirely eliminated 
for the specific working principle of the PPG sensor and for the sus
ceptibility of the opto-mechanical coupling between the sensor and the 
skin. Thus, there is the need for suitable signal processing algorithms 
steps for removing the motion interferences to correctly trace the HR. 
Several research groups have proposed different effective strategies for 
minimizing the effect of MA, including the use the moving average, 
Wiener and Kalman filtering, independent component analysis, and 
artificial neural network analysis [163,183–193]. The use of these al
gorithms has already proved a good efficacy. Sukor and colleagues [194] 
carried out different acquisitions of a PPG and a simultaneous ECG 
signal; in order to improve the overall quality of the PPG acquisitions, 
they extracted specific morphology features from the signal, achieving a 
mean error of 0.49 ± 0.66 bpm, compared to 7.23 ± 5.78 bpm without 
using the artifact detection algorithm. Other positive results were ach
ieved by Karlen and colleagues [195], who created an algorithm based 
on Gaussian filters and cross-correlation with 96.2 % sensitivity and 
99.2 % positive predictive values with a capability to detect MA even 
between two heartbeats. Li and colleagues [196] proposed a MA 
removal algorithm based on the optical difference in frequency domain 
of the acquired signals to suppress irregular disturbances. They not only 
simulated their method, but also designed and fabricated a wearable 
optoelectronic device to monitor the PPG signal, demonstrating that the 
proposed method reduces the average error in HR estimation from 13.04 
to 3.41 bpm in motion and deformation situations [196]. 

Another common technique increasing the capability in identifying 
the part of the PPG signal corrupted by MA is to use a secondary sensor 
working in conjunction with the optical sensor; its specific task is to 
detect and quantify the movement, to isolate the correspondent specific 
portion of the PPG signal and to increase the capability to interpret it 
with more awareness and effectiveness through adaptive filters. The 
most commonly used sensors for this scope are accelerometers 
[197–199], gyroscopes [200,201], and piezoelectric transducers [202]. 
Although secondary sensors are not capable of discerning small move
ments (e.g. typing on a keyboard), their contribution is important in 
reconstructing and restoring the original PPG signal. 

For example, Lee and colleagues [200] evidenced that signals ac
quired using accelerometers are often not suitable for MA reduction, 

while gyroscope-assisted approach exhibited better performance, espe
cially during an exercise involving walking, at the expense however of a 
higher power consumption. Even better results can be achieved using an 
adaptive MA reference selection approach implemented by Lee et al. 
[203], that exploits both acceleration and gyroscope signals. The results 
reported in [203] showed that such an approach, which compares the 
dominant frequencies from PPG, acceleration and gyroscope signals 
selecting the most appropriate one, is capable of further improving HR 
estimation accuracy. 

Some commercial products, such as Empatica E4, rely on two LEDs, 
one of which (i.e. red light) is used as a reference light to reduce motion 
artifacts [204]. Although this approach may result in some data gap, an 
approach to mitigate the effect of the artifact correction method has 
already been proposed [205]. 

The use of a secondary sensor to reduce MA is not limited to accel
erometers. Indeed, instead of a motion sensor, an additional PD has also 
been used to reduce MA [143], demonstrating also a good capability in 
capturing micro-motions artifacts, which mainly derive from the relative 
motion between the skin and the vessels underneath [206,207]. In this 
direction, Pandey and colleagues [207] implemented an additional 
organic PD able to significantly reduce MA and ambient light interfer
ence, containing the DC drift within 1 % of its average. Specifically, the 
authors used the additional PD as a motion reference to enhance the 
capability of recovering the corrupted PPG signal, also reducing the 
ambient light noise by controlling the emitter intensity and PD bias. 
Similarly, to overcome some limitations of accelerometers as motion 
reference, such as the poor performances in detecting specific motions 
(e.g. finger tapping), a recent approach [208] explored the use of a 
secondary PPG sensor (with a different wavelength), finding a highest 
correlation between the main PPG sensors with the secondary one rather 
than an accelerometer. Although the study focused only on specific wrist 
motions, without performing a complete motion characterization, this 
approach is promising and can lead to signal improvements both on time 
and frequency domains. Finally, to overcome SNR degradation of PPG 
signal due both to motion and changes in ambient light, some studies, 
rather than using an additional sensor, designed a specific low-current 
and high dynamic range analog front-end [209,210], achieving good 
results in terms of noise reduction and power consumption. 

2.5. Other potential influencing parameters 

The influencing parameters described in the previous paragraphs are 
only a part of them all, and represent those most discussed and examined 
in the literature. In this section, other potential influencing parameters 
will be briefly discussed; under certain conditions, they could signifi
cantly limit the overall quality of the PPG signal. 

First, the room/body temperature is an important factor that should 
be considered during PPG acquisitions, as it can activate the biological 
mechanism of vasoconstriction or vasodilatation, which results in a 
different blood perfusion within the capillary bed underneath the 
sensor. Although the level of perfusion is significantly variable across 
human populations and it depends on many factors, low temperature 
could reduce perfusion even further, especially in the body extremities 
(where usually PPG sensors are located), reducing SNR and lowering the 
reliability of PPG signal. Khan and colleagues [211] investigated the 
effect of temperature on the PPG signal quality and on the SpO2 esti
mation from the hand in three different conditions: i) normal digit 
temperature, ii) after 5-minute immersion of the hand in a 0–4 ◦C ice- 
water bucket, and iii) after keeping the hand in hot water at 55 ◦C. 
The authors concluded that the warm condition significantly improved 
the quality of the acquired PPG signal, whereas under cold condition the 
quality was reduced. 

In similar studies [212,213], the relationship between ambient and 
skin temperature while deriving different cardiovascular parameters (i. 
e. pulse wave velocity, BP, HR) from a PPG signal was evaluated. Results 
demonstrated the inter-dependency of temperature and signal quality, 
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suggesting that room and peripheral temperature should be considered 
when using PPG sensors. Also the exposure to mild cold has proven to 
affect the circulation, altering the PPG reproducibility and decreasing 
the AC components amplitude [214]. Thus, temperature has been 
proven to affect the accuracy of PPG signal [69]. Specifically, if tem
perature rises, the PPG amplitude increases [215,216], while when 
temperature falls both PPG amplitude and PTT decrease [214,217,218]. 
Also Shchelkanova and colleagues [158] found that PPG estimated 
precision tended to degrade upon a significant drop in the skin tem
perature, evidencing that such a decrease of precision is more evident 
for shorter heart beat intervals (i.e. higher HR), being instead less 
affected for lower HR. Therefore, temperature is a parameter to keep 
under control not only in terms of peripheral body temperature, but also 
as an external environmental parameter. 

Finally, Evdochin and colleagues [219] investigated the behaviour of 
PPG signals for two different external stimuli, namely the external 
temperature and pressure. They concluded that the vasomotor mecha
nism, caused by an external temperature, results in a significant effect on 
the signal, thus affirming that the information about the external tem
perature could be used to fed an algorithm that consequently switches 
on a wavelength (e.g. IR) able to reach deeper tissues. 

Another important aspect that influences the PPG signal is the spe
cific body location where PPG sensor is placed [220]. In particular, there 
are two aspects to consider: the first is due to the specific anatomical 
constitution of the body site. In fact, in presence of a thick layer of skin, 
fat or poor vascularity can lead to a decrease in sensor performance by 
increasing the absorbed light and thus decreasing the amount of light 
backscattered to the PD. The second aspect is due to the susceptibility of 
that site to cause MA due either to the presence of muscles and tendons 
or to body accelerations (e.g. wrist). 

As previously briefly introduced, most PPG probes work in reflec
tance mode, since this modality allows to place the sensor potentially 
anywhere on the body. Instead, PPG sensors in transmission mode are 
usually employed on the fingers and earlobes, since in other body lo
cations it is difficult for light to penetrate human tissues. However, some 
recent works [13,63] proposed a PPG transmission wristband with USB 
communication data transfer within a combo ECG/PPG portable system 
aimed at low invasive acquisition for real-time monitoring of cardio
vascular and respiratory parameters. This has been made possible also 
thanks to the employment of a novel typology of photodetectors, i.e. the 
silicon photomultipliers (SiPMs) (provided by STMicroelectronics) with 
high responsivity, gain and Signal to Noise Ratio (SNR) [221,222]. 

Both in transmission and reflectance modes, on one side forehead, 
fingertips, and earlobe are excellent measurement sites [223–225] 
thanks to the high density of blood vessels near the surface of the skin; 
therefore, these are typical PPG sensors locations in a clinical environ
ment. Plus, during physical activities the ear is less susceptible to MA, 
thus reducing the optical noises corrupting the PPG signal. On the other 
hand, despite the high signal quality that can be achieved from these 
locations, another aspect to consider is the user’s comfort, since the 
optical device should not hinder the normal daily life gestures. Thus, 
favouring this aspect, the wrist is generally considered the most 
appropriate spot, having increased its popularity due to its adoption by 
the vast majority of commercial devices (e.g. smartwatches and wrist
bands). Nevertheless, the wrist location suffers from a high degree of 
variability in vascular structures underneath the skin and from optical 
noises originated by the movements of tendons, muscles, and fingers. 

Ambient light represents yet another influencing parameter 
[226,227], which interferes with the PPG signal both with regard to the 
DC and the AC components. Therefore, it is important that the PD is 
exposed only to the light provided by the LED that has already travelled 
through the subcutaneous tissues. In this direction, some useful pre
cautions consist in i) encasing the PD in a shield able to avoid the direct 
light coupling [228], or ii) to use PDs integrating a light filter [229], or 
iii) to implement filters outside the PPG bandwidth [69]. 

Finally, there are also further influencing parameters, which depend 

on specific user’s biological and physiological characteristics. Among 
these, the most significant ones are the body mass index (BMI), the 
respiration rate, and the venous pulsation. Specifically, the BMI indi
rectly affects the PPG signal by varying the dermal capillary density 
[230–232] and its depth, as well as varying the skin thickness [233,234] 
and the trans-epidermal water loss [235], which results in a variation of 
the path and of the properties of the tissues encountered by the light. 
Similarly, the respiration rate and the venous pulsation indirectly affect 
the optical signal due to their mechanical effects on the vascular system, 
both resulting in a variation of the PPG amplitude of DC and AC com
ponents [236–239]. 

Recently, Fine and colleagues [69] carried out a detailed review of 
several influencing parameters of the PPG technology, summarizing 
them in a very effective and schematic table (partially reported in 
Table 5), where they also report the impact of each influencing 
parameter and provide a potential mitigation technique. 

Due to the widespread use of PPG sensors in commercial products (e. 
g. smartwatches), which could represent a significant step forward in 
physiological monitoring during normal daily life, it is interesting to 
mention the main influencing parameters considered by the smartwatch 
manufacturers, thus going beyond the scientific production. 

Among the commercial products that adopt the PPG sensors to ac
quire HR and other physiological parameters, the Apple Watch results 
from numerous studies [109,240,241] to be the one providing the 
highest quality HR in different conditions, when compared with other 
commercial products considered as reference. Nevertheless, Apple Inc. 
states that “Even under ideal conditions, Apple Watch may not be able to 
get a reliable heart rate reading every time for everybody. And for a 
small percentage of users, various factors may make it impossible to get 
any heart rate reading at all” [242]. Thus, it is interesting to recall the 
main influencing factors that could play a role on the signal quality 
(Table 6), as reported by Apple Inc. [243] on its official website. Apple 
Inc. does not directly report the skin colour as a possible parameter of 
influence, despite numerous scientific articles confirm such correlation, 
as described in the paragraph 2.2. However, it should also be considered 
that the current Apple Watch on the market employs three different 
wavelengths (i.e. green, red, and IR) that have a different degree of 
absorption by melanin, as already discussed and shown in Fig. 6. A very 
recent study assessing the reliability of commercially available smart
watches and devices (Withings Move ECG lead I, Apple Watch series 5 - 
lead I, Kardia Mobile 6L - six leads) (lead II) for electrocardiogram-based 
detection of atrial fibrillation indicated very high sensitivity/specificity 
values (91 %–99 %); Kardia resulted the most sensitive device, but less 

Table 5 
Summarized influencing parameters, impact and mitigation technique; re.  

Influencing 
parameter 

Impact Mitigation technique 

Skin tone Decrease signal intensity PPG wavelength selection 
Obesity/BMI Decrease signal intensity, 

modified PPG waveform 
Not found in literature 

Age Change in signal intensity, 
modified PPG waveform 

Calibration 

Gender Change in signal intensity Calibration 
Respiratory rate Modified PPG waveform High pass filter 
Venous Pulsation Modified PPG waveform High pass filter/contact 

pressure 
Local body 

temperature 
Change in signal intensity Calibration 

Body site Change in signal intensity, 
modified PPG waveform 

Calibration 

Motion artifacts Change in SNR Filters and secondary 
sensors 

Ambient light Change in SNR Optical shielding and 
selective filters 

Contact pressure Change in SNR, modified PPG 
waveform 

Apply optimal pressure 
for high SNR 

adapted from [69] 
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useful to rule out atrial fibrillation, whereas Apple had the highest 
specificity [244]. 

To summarize what has been discussed in this section, Table 7 re
ports the relevant recent approaches and results that have been pro
posed by different research groups in regard to the evaluation of each 
influencing parameter. 

3. Lack of homogeneity in assessing the metrological 
performance of wrist-worn PPG-based devices 

Literature reports that there is often a lack of homogeneity in the 
evaluation of the metrological performance of optical wearable sensors 
for the measurement of HR due to various factors (e.g. the choice of the 
sample, which is often too homogeneous, or the omission of significant 
information or an inappropriate setting for the intended use). The lack of 
standardization, hindering a proper comparison of the results from 
different or similar studies, reduces the effectiveness of a study and 
jeopardizes the overall quality of results. Specifically, many validation 
studies on wrist-worn PPG-based devices are also considered to provide 
inconclusive evidences for different reasons, such as for the approach in 
comparing different variables [245] or for methodological issues [138]. 
For instance, for clinical applications, the most popular method (around 
85 %) to present the results and to assess the agreement of two different 
measurement systems is the Bland-Altman plot [246,247]. However, in 
the medical literature there is still inappropriate application of other 

statistical methods to assess agreement [246]. Pearson’s correlation 
coefficient and Student’s t-test or the corresponding non-parametric 
Wilcoxon test in case of small sample size with not normally distrib
uted data [248,249] are also largely used by researchers but are not 
considered exhaustive [250], as well as the concordance correlation 
coefficient. All this inevitably leads to confusion in reporting results 
when comparing a PPG sensor with a reference device. 

Aside the data analysis and reporting, from a methodological point of 
view, the effect of the skin colour or of the sensor placement, strap 
tightness, contact pressure, room temperature, BP, or wrist circumfer
ence are often not reported; plus, many physical activities, performed to 
verify the sensor accuracy, do not reflect real daily life actions. Thus, the 
authors agree with Sartor and colleagues [138], that the lack of regu
lation in the commercialization of non-medical HR monitoring devices 
should not justify the lack of standard requirements for validating this 
technology. The above considerations lead to side effects on both sci
entific and commercial point of view. From a scientific point of view, the 
diffusion of inhomogeneous results creates contradictory findings, 
which cannot be interpreted, replicated, reproduced, and generalized 
[251]. This not only leads to a waste of energy that does not increase 
awareness on the behaviour of the device under different conditions, but 
also to a lack of support in the quantification of the accuracy and, 
therefore, in their adoption in the healthcare context. Similarly, from a 
commercial point of view, the lack of clear and well-defined methods of 
benchmarking sensor accuracy can cause several companies to enter the 
market with low-cost and low-quality products. Thus, on the one hand 
there will be inexpensive products accessible to a larger part of the 
population, but on the other hand this will lead to a generalized distrust 
on the performance and reliability of these devices. It is crucial to 
establish what are the optimal conditions of use of PPG-based devices, 
and, above all, what are those biological behavioural or environmental 
conditions that cause a reduction in metrological performance, making 
the devices no longer suitable for a specific sporting or clinical use. Only 
with this information it would be possible to implement all those 
appropriate strategies for shielding or compensating the different un
desired influence parameters as much as possible. 

Promoting a standardization and good scientific practices 
[245,251–254] in order to characterize wearable technology means 
enhancing the safety of the end-users, as well as exploiting an extraor
dinary opportunity to drastically improve the effectiveness of wearable 
devices for physiological health status monitoring but also, in perspec
tive, for the assessment of many different conditions [84,98,255,256]. 

Table 6 
Influencing parameters reported by Apple Inc. [242].  

Influencing 
parameter 

Description 

Skin perfusion Skin perfusion varies significantly from person to person and 
can also be impacted by the environment. If you’re exercising 
in the cold, for example, the skin perfusion in your wrist might 
be too low for the HR sensor to get a reading 

Skin tattoos Permanent or temporary changes to your skin can impact HR 
sensor performance. The ink pattern and saturation of some 
tattoos can block light from the sensor, making it difficult to get 
reliable readings. 

Motion artifacts Rhythmic movements, such as running or cycling, give better 
results compared to irregular movements, like tennis or boxing 

Contact pressure Wearing Apple Watch with the right fit – not too tight, not too 
loose, and with room for your skin to breath – keeps you 
comfortable and lets the sensors do their job  

Table 7 
Influencing parameters affecting the quality of PPG signal and optimal approaches to improve the data acquisition.  

Influencing parameter Technique investigated to mitigate 
the issue 

Result Challenge Relevant work 

Contact pressure Optimal contact pressure Wrist-worn device: [0.2–0.4] N and 54 mmHg, 
finger device: 60 mmHg 

Tissues and arterial stiffness [137,146,148] 

Skin tone and wavelength Optimal light colour Green light, blue light multi-colour light Skin conditions (e.g., wrist 
hair and sweat) 

[152,155–158,162–164]  

Optimal skin colour Light skin  [109,159–161] 
LED-PD distance and 

configuration 
Optimal LED-PD distance < 6 mm if multiple wavelengths Sensor type and target 

application 
[155]  

Optimal configuration Multiple LEDs or PDs around a LED or PD  [152,155,177,181] 
Motion artifacts and 

signal crossover 
Reduced MA in data collection Wavelength selection, sensor body location, sensor 

adherence on the skin 
Physical activity type [6,181–182]  

Reduced MA in signal processing Moving average, Wiener and Karman filtering, 
independent component analysis, ANNs  

[163,183–193]  

Quantified movements to interpret 
MA 

Additional sensors (e.g., accelerometer and 
gyroscope) or double LEDs  

[197–202,204,205] 

Other potential 
influencing parameters 

Optimal SNR and reliability Warm skin and ambient temperature Blood perfusion [158,211–218]  

Optimal light transmission Photomultipliers and location with high density of 
blood vessels 

Constitution of body site [13,63,221–225]  

Reduced interferences from 
ambient light 

PD in a shield, light filter integrated or implemented  [69,226–229]  

Reduced interferences from others 
physiological features 

High pass filter (except for BMI influence) BMI, respiration rate and 
venous pulsation 

[230–239]  
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4. Necessity of a technical standard 

As mentioned in the previous paragraph, in recent years a general 
request has arisen from the scientific community 
[108,109,245,251,257] to adopt a standardized methodology at a global 
level in the evaluation of the performance of HR measurement devices, 
and specifically of PPG sensors. In addition to increasing the trans
parency, the repeatability, the consistency, and the interpretability of 
results, this would allow to give a specific weight to the various influ
encing parameters and finally to quantify the measurement uncertainty. 
Thus, the adoption of a single standard could make it possible to 
compare results of different PPG sensors (also typically tested under 
different conditions). 

Table 8 summarizes different aspects that should be taken into 
consideration during the design phase of any comparative PPG test, 
including any aspect which may influence the measured quantity. 

Currently, the Guide to the Expression of Uncertainty in Measure
ment (GUM) [258] would not seem adequate to meet the required needs. 
For this reason, in this paragraph, some interesting methodological 
proposals reported by the scientific community will be summarized and 
presented, with the hope that a single and profitable way of testing these 
devices can be adopted by the widest participation. Among different 
sources [245,251], particular consideration will be given to the standard 
ANSI/CTA-2065 [127]. It provides not only directions on the different 
characteristics that are desirable for the test sample and test methods 
and procedures, but also detailed indications (time and intensity) on 
different indoor test protocols. In the next paragraphs the following 
aspects will be discussed: study participants, device characteristics and 
setup, and, finally, analysis and results. 

4.1. Study participants 

Table 9 summarizes the three main steps that should be followed in 
selecting the potential candidates for the experimental study. 

The sample size should be carefully determined based on the char
acteristics and the objective or application of the study [259,260]. 
Indeed, on the one hand the sample size should have sufficient statistical 
power to provide reliable and significant results, on the other hand it 
should minimize the costs and the time of the tests. The CTA-2065 
standard suggests 20 participants as the minimum number for a 
generic study to evaluate the performance of a device. However, as the 
data acquired from some subjects could be damaged or unusable, once 
the target number has been set, it should be still increased by at least 10 
% to prevent it from being undersized. For instance, in a study aimed at 

evaluating wearable technology for physiological acquisitions, Van Lier 
and colleagues [245], after having determined the sample size in 55 
subjects through a power analysis, recruited 40 % more subjects to 
ensure the right amount of available data. In addition to the number of 
participants, it is essential that the sample is representative across bio
logical and physiological differences among the population, as such 
characteristics could have a significant influence on PPG signal, as 
described in the previous sections. Table 5 reports a list of potential 
covariates, which are generally recognized to be relevant in the selection 
of the sample for bio-behavioural research purposes [251]. In this di
rection, the CTA-2065 standard prescribes specific percentages of the 
sample composition in terms of skin tone, BMI, and gender balance. 
Specifically, basing on the Fitzpatrick scale, at least 25 % of participants 
should fall within a skin colour between 1 and 3 and another 25 % 
should have a skin colour between 4 and 6. Plus, the sample, which 
should have a minimum percentage of 40 % for both men and women, 
must also contain a 10 % of subjects with a BMI below 20 kg/m2 and a 
10 % with a BMI above 25 kg/m2. 

Arterial BP is not reported in the CTA-2065 standard. However, also 
this parameter should be taken into consideration, as it can affect the 
PPG signal amplitude by changing the variation of the volume of blood 
vessels at each heartbeat, depending on the specific arterial compliance 
of the subject. Plus, it can provide also useful information when setting 
the optimal contact pressure of the sensor against the skin, as it depends 
on the transmural pressure, which is linked to the actual BP of each 
participant. 

The wrist circumference of each participant should be measured, as it 
can potentially affect the PPG signal [251], reporting whether some 
participants perceive a particular cooling sensation in the extremities of 
the limbs, which could be associated with a severe peripheral vaso
constriction. Kleckner and colleagues [261] proposed a framework for 
selecting and benchmarking mobile devices in psychophysiological 
research, evidencing the fundamental importance to employ well-used 
and validated tasks (e.g. those indicated by Menghini and colleagues 
[110], to enable the researcher to attribute the validation failure to the 

Table 8 
Proposed strategy to evaluate the metrological performance of PPG sensor.  

Aspect to consider Proposed 
strategy 

Reference Comments  

Study participants Sample size Min 20 participants + 10 % more subjects than target 
number 

ANSI/CTA- 
2065 [127] 

Select based on objective and study application  
[202,203]   

+ 40 % more subjects than target number Van Lier et al. 
[245]   

Sample type Specific percentages for skin tone, BMI and gender ANSI/CTA- 
2065 [127]    

Representative across biological and physiological 
differences (age, gender, skin, tone, weight, height, BMI, 
wrist circumference, and blood pressure) 

Nelson et al.  
[251]   

Survey before 
experiment 

Collect information on the health status, explain and sign 
the protocol, verify presence of tattooes 

Nelson et al.  
[251]  

Device 
characteristics 
and setup 

Reference device ECG or electrode-based device ANSI/CTA- 
2065 [127] 

Provide sensor type and specifications, producer, 
model, and firmware version; hardware and software 
description; sampling rate and data transmission  

Testing device Commercial product, prototype, or lab device ANSI/CTA- 
2065 [127]   

Measurement 
setup 

Report room temperature and ambient lighting; sensor 
position; characteristic of eventual straps used, and 
contact pressure measured between skin and sensor 

ANSI/CTA- 
2065 [127] 

Recreate normal daily life conditions as much as 
possible  

Table 9 
Descriptive participant’s characteristics which should be reported.  

Participant selection and characteristics 

Selection of the most appropriate number of participants 
Verify the heterogeneity of the sample in terms of age, gender, skin tone, weight, 

height, BMI, wrist circumference, blood pressure 
Interview with all the participants before starting any tests  
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given device under test rather than to problems associated with the 
specific novel task). A good practice should also envisage preventive 
interviews with the subjects who will participate in the study. This is 
recommended for several reasons: i) to ensure the correct heterogeneous 
composition of the sample, ii) to collect any relevant information such as 
any particular pathology, medical treatment, or use of medications, 
which could potentially exclude the subject from being enrolled in the 
study, iii) to explain the subjects each protocol step and to inform them 
on the proper behaviours to be maintained (e.g. make natural move
ments and not talk during the test), iv) to let them sign any relevant 
document if needed, v) to verify the presence of any possible tattoo or 
skin spots in the measurement site, and vi) to ask the participants not to 
take any drugs or stimulants (e.g. coffee) that may affect the measure
ments in the hours preceding the study, if needed. 

4.2. Device characteristics and setup 

First, a reference device should be considered, such as an ECG or an 
electrode-based device accordingly to the CTA-2065 standard. Specif
ically, a chest strap for ECG could be used, allowing ease of use and 
robust stability even during different and intense physical activities. 

In general, hardware and software characteristics should be reported 
to describe the PPG-based testing device, if it is a commercial product. 
Thus, the manufacturer, the model, and the firmware update, as well as 
main information from the datasheet of the reference device, such as 
sampling rate, should be described in the study, as specified in Table 10. 
Then, the raw data provided by the device should be explained. 
Otherwise, if the testing device is a prototype, generic information as 
sampling rate could not be enough and hardware information should be 
provided in more detail, i.e. electronic components (such as filters) and 
the general layout of LED-PD disposition, as well as their characteristics 
(such as LED wavelengths). For completeness, exhaustive images should 
be illustrated to allow a deep understanding of the tested measurement 
device. Moreover, a detailed description of the data transmission mo
dality should also be reported. This includes specifying the type of 
protocol used in case of wireless transmission, or the presence of any 
cables that may affect the stability and adherence of the sensor to the 
skin, especially during physical activity, as well as any adopted pre
cautions to reduce this effect. 

In addition to report the devices characteristics, it is also important 
to describe the environmental conditions in which the test takes place. 
Specifically, it is recommended to report the room temperature and the 
type of ambient lighting, as well as any solutions adopted to shield the 
PD from ambient light. 

Another aspect that should be described is the fastening solution 
adopted to fix the sensor to the selected body location. This is particu
larly important when the sensor is placed on the terminal part of the 
limbs, such as on the wrist. Both the characteristics of the strap (e.g. 
width and elasticity), and the contact pressure with which the sensor is 
fastened to the subject, should be contemplated. While wearing the 

device, it is a good practice to avoid skin spots or tattoos, and to ask 
participant not to move any muscles, as it could cause a significant 
oscillation in the contact pressure. 

Once a thorough description of hardware and sensor positioning is 
provided, also a detailed description of the physical activity to be per
formed should be reported. The exercise program, which could be at rest 
or during a specific physical activity, should be designed by the exper
imenter accordingly to the expected aim of the study. Regardless the 
specific physical activity, it is important that the test recreates the 
normal daily life conditions as much as possible, asking the participants 
to perform all movements in the most natural way. 

A timetable could be a useful tool in the description of the specific 
physical activity, allowing to detail and quantify the active phases of the 
test and the breaks. 

A detailed example is reported in Table 11, where a walking and a 
jogging activity lasting a total of 12 min are described. During the ac
tivities, subjects should refrain from using mobile devices, music 
players, books, or any external stimuli unless it is foreseen in the test 
protocol itself. 

4.3. Analysis of results 

Before proceeding with the analysis of the results, regardless of the 
signal processing strategy, a first step should be a visual inspection of the 
data provided by the reference ECG device and the device under test. 
Indeed, a purely qualitative analysis could provide indications about the 
quality of the data, highlighting any spike, damage, or loss of the signal 
that could lead the experimenter to exclude part of the dataset. The 
exclusion of data values must always be considered a delicate process, 
since removing non-legitimate values can lead even to significant vari
ations in the results, compromising their validity and interpretation. In 
any case, it should be reported the probable causes of data missing (e.g. 
non-adherence, device failure, connections, battery life) and how cor
rupted data were handled; it should also be reported the percentage of 
data availability for each participant and for all the participants for both 
reference and tested devices. All the remaining acquisitions should be 
included even if this reduces the agreement with the reference device. 
Once the dataset is considered suitable, it is possible to proceed, based 
on the collected data, with all the appropriate preprocessing steps (e.g. 
band-pass filtering, MA removal) to estimate the investigated parameter 
(e.g. HR) and determine whether or not the tested device is capable to 
produce physiological signals compatible to the reference device. To 
assess such an agreement, there are several approaches that may be 
adopted; however, it is not possible to be too prescriptive in considering 
a single approach as a standardized methodology, since each one is 
based on considerations and assumptions which are dependent on the 
specific type of test and on the boundary conditions. 

Nevertheless, the CTA-2065 standard suggests using the Mean Ab

Table 10 
Descriptive device characteristics and testing information that should be 
reported.  

Device characteristics and testing condition 

Reference device 
Sensor type and specification, producer, model and firmware version 
Data provided (e.g. raw data, R-R interval) and sampling rate 
Testing device 
Sensor’s producer, model and firmware version (if commercial product) 
Detailed hardware and software description (if a prototype or lab version) 
Sampling rate and data transmission 
Testing conditions 
Room light and temperature 
Sensor placement and fastening solution 
Contact pressure between the sensor and the skin  

Table 11 
Dynamic walking and jogging protocol reported in the CTA-2065 standard 
[127].  

Walking and jogging protocol 

1 min (0:00–1:00) standing quietly on treadmill 
1 min (1:00–2:00) walking at comfortable pace 
3 min (2:00–5:00) self-selected running speed of at least moderate intensity with 

minimal incline but not less than 0 % (i.e. between 0 % and 1 %) 
1 min (5:00–6:00) walking at comfortable pace 
2 min (6:00–8:00) at a running speed resulting in vigorous intensity 
2 min (8:00–10:00) at a running speed resulting in vigorous intensity at a higher speed 

than the previous stage 
1 min (10:00–11:00) walking at comfortable pace 
1 min (11:00–12:00) standing quietly on treadmill 
After 12 min has elapsed, data collection should end 

*During this test the participants shall be running/jogging in a natural style. 
Treadmill speed shall be brought from zero to the chosen speed while the 
participant is on the treadmill belt. 
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solute Percentage Error (MAPE) to determine how the physiological 
parameter extracted from the testing and reference device are close to 
each other, which can be calculated as follows [73]: 

MAPE =
100
N

⋅
∑N

i=1

(⃒
⃒
⃒
⃒
Rtest − Rref

Rref

⃒
⃒
⃒
⃒

)

where Rtest is the physiological parameter resulting from the testing 
device, Rref is the physiological parameter obtained from the reference 
device and N is the total number of samples across participants. 

The standard also suggests reporting the mean and standard devia
tion of the physiological parameter for each (both from the testing and 
reference device) and for all the participants. Other metrics widely used 
are the absolute error and its standard deviation, the average relative 
error, and the Pearson’s correlation coefficient [262]. 

Kottner and colleagues [257] affirm that a single measure agreement 
provides only limited information; thus, they recommend to report a 
combination of coefficients and a graphical method which could be a 
powerful approach to provide useful information about the distribution 
score. In this direction, the Bland-Atman plot [130] is widely used and 
preferred to the Pearson’s correlation coefficient, being sensitive to a 
linear movement of all the observations [245]. Plus, the Bland-Altman 
plot can highlight both under and overestimation, considering both 
the mean overall difference among individuals and participants and 
showing any possible missing data. Using Bland-Altman plots, the limits 
of agreement and the ratio between half the 95 % confidence interval for 
the difference and the mean of the averaged values have also been 
employed as metrics for agreement between two measures [263]. 

Although a tested device is generally considered accurate if the 
MAPE is ≤10 % [264], caution must be taken in defining a device as 
accurate for a given parameter in a specific context of use (given that the 
test conditions undoubtedly influence the measurement results). Spe
cifically, it must always be considered that it is not easy to recreate tests 
that perfectly match spontaneous gestures in normal daily life. The re
sults should be compared with those of different studies under similar 
test conditions, to check whether different groups of experts come to the 
same conclusions, providing justifications and considerations in the 
conclusion of a study. Moreover, based on the topics covered in this 
article, an important effort from the authors should be to interpret the 
data in relation and in terms of the different influencing parameters, 
trying to correlate the results to each possible variable and providing 
indications on how a given parameter may have influenced the results 
and which action would be appropriate to improve the results for future 
studies. Also, sensitivity analysis could help in understanding which 
factors have a higher impact on the measurement results. Finally, it 
would be helpful to make data and algorithms available in publicly 
accessible databases [265,266]. 

5. Conclusion 

The recent growth of interest in wearable technologies has led to a 
significant increase in scientific studies aimed at evaluating the perfor
mance of PPG sensors in the detection of different physiological pa
rameters for health status monitoring, contributing to prevent the 
worsening of health conditions and adverse events. However, the high 
sensitivity of these optical sensors to various external influencing pa
rameters, both environmental and subject dependent, highlights a poor 
reproducibility and comparability of the results and a lack of validity 
and reliability of the protocols chosen for their testing and validation. 
This may depend on different reasons, such as the lack of procedural 
information, the improper planning of the tests, or the inadequate se
lection of the test population. Nevertheless, the main reason is the poor 
consideration of the different influencing parameters, whose can still be 
partly shielded or compensated, even if a large part cannot be controlled 
or discharged from the signal. 

The lack of a standardized methodology and the unsuitability of the 

GUM has emphasized this issue, which therefore does not allow the 
performance of these sensors to be uniquely defined, thus limiting their 
application for clinical use. Indeed, it is necessary to be able to properly 
assess the agreement and reliability of different tests and to have a 
unique classification method. 

This review follows the request of the scientific community to pro
mote behavioural indications in evaluating the performance of PPG 
sensors in different conditions, hence highlighting a series of best 
practices and recommendations to be adopted in PPG-based sensors 
metrological characterization. Thus, based on different proposals that 
are emerging both from literature and manufacturers, this work sum
marizes and reports a general set of guidelines to allow uniformity and 
comparability of different results. Specifically, the clear steps and pre
cautions mentioned in this work are relatively easy to adopt and can be 
used in a large variety of studies. For these reasons, a methodological 
rigor in the execution of the tests should be encouraged, to prevent 
ambiguous or incorrect quantifications of the performance of the PPG 
sensors. Indeed, as the future of (tele)medicine lies in the metrological 
quality of the measurements, this is an issue that needs to be addressed 
in the short term. 
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