
25 August 2024

UNIVERSITÀ POLITECNICA DELLE MARCHE
Repository ISTITUZIONALE

Multi-perspective enriched instance graphs for next activity prediction through graph neural network /
Chiorrini, Andrea; Diamantini, Claudia; Genga, Laura; Potena, Domenico. - In: JOURNAL OF INTELLIGENT
INFORMATION SYSTEMS. - ISSN 0925-9902. - 61:1(2023), pp. 5-25. [10.1007/s10844-023-00777-1]

Original

Multi-perspective enriched instance graphs for next activity prediction through graph neural network

Publisher:

Published
DOI:10.1007/s10844-023-00777-1

Terms of use:

(Article begins on next page)

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of
copyrighted works requires the consent of the rights’ holder (author or publisher). Works made available under a Creative Commons
license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor’s
website for further information and terms and conditions.
This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the
published version.

Availability:
This version is available at: 11566/314348 since: 2024-05-24T09:55:04Z

This is the peer reviewd version of the followng article:

note finali coverpage

Springer Nature 2021 LATEX template

Multi-Perspective Enriched Instance Graphs

for Next Activity Prediction through Graph

Neural Network∗

Andrea Chiorrini1*, Claudia Diamantini1, Laura Genga2

and Domenico Potena1

1*Department of Information Engineering, Polytechnic University
of Marche, Via Brecce Bianche 12, Ancona, 60131, Marche, Italy.
2Department of Industrial Engineering and Innovation Sciences,

Eindhoven University of Technology, Groene Loper 3 ,
Eindhoven, 5612 AE, The Netherlands.

*Corresponding author(s). E-mail(s): a.chiorrini@pm.univpm.it;
Contributing authors: c.diamantini@univpm.it; l.genga@tue.nl;

d.potena@unvipm.it;

Abstract

Today’s organizations store lots of data tracking the execution of
their business processes. These data often contain valuable information
that can be used to predict the evolution of running process execu-
tions. The present paper investigates the combined use of Instance
Graphs and Deep Graph Convolutional Neural Networks to predict
which activity will be performed next given a partial process execu-
tion. In addition to the exploitation of graph structures to encode the
control-flow information, we investigate how to couple it with addi-
tional data perspectives. Experiments show the feasibility of the proposed
approach, whose outcomes are consistently placed in the top ranking then
compared to those obtained by well-known state-of-the-art approaches.

∗This version of the article has been accepted for publication, after peer review (when
applicable) and is subject to Springer Nature’s AM terms of use, but is not the Ver-
sion of Record and does not reflect post-acceptance improvements, or any corrections.
The Version of Record is available online at: http://dx.doi.org/10.1007/s10844-023-
00777-1

1

Springer Nature 2021 LATEX template

2 Enriched IG for Next Activity Prediction

Keywords: Process Mining, Predictive Process Monitoring, Next Activity
Prediction, Graph Neural Network, Instance Graph

1 Introduction

Predictive process monitoring (PPM) is an emerging field of process mining
whose aim is to predict how a running execution of a process will unfold up
until its completion (Maggi et al, 2014). PPM approaches can be used to pre-
dict different information on the process, such as the remaining completion
time or the probability of violating a set of constraints. In this work, we focus
on the next-activity prediction task. Given the current state of execution of a
process, the goal consists in predicting which activity will be executed next.
Being able to “look ahead” during a process execution can support the man-
agers in determining, for example, the best allocation of resources, or whether
to intervene to prevent undesired process outcomes. (Appice et al, 2019). A
recent trend emerging from the literature consists in the use of deep learning
architectures, which outperformed traditional machine-learning and model-
based approaches in several studies. Most of the previous work investigated
the use of architectures originally developed within the natural language pro-
cessing field (e.g., LSTM), thus exploiting the sequential nature of traces in
the event log. Some approaches also explored the use of architectures com-
monly used for image classification (e.g., CNN), proposing to use different trace
properties to build a multi-dimensional representation of a log resembling the
data structure of images. To the best of our knowledge, however, little atten-
tion has been paid to exploiting structural properties of a process execution
when generating a prediction. Process executions are characterized by (com-
plex) control-flow constructs, like concurrency, choices, and loops. However,
these structures are flattened in the event log, since traces only record the
sequence of executed activities, possibly with additional data properties. Con-
sequently, a single construct-flow can correspond in the event log to several
different sequences of events. For instance, a parallel construct involving two
or more activities can correspond to a number of sequences equal to all the
possible order permutations of the activities. This can make it challenging for a
sequential-based classifier to learn possible relations between high-level control-
flow constructs and the classification target, thus affecting its performance
(Evermann et al (2017a); Metzger and Neubauer (2018)).

Another relevant trend emerging from the literature consists in combin-
ing the control-flow information with additional data stored in the event log,
thus adopting a so-called multi-perspective view on process executions, which
has shown to boost classification performance significantly in previous studies
(Pasquadibisceglie et al (2021); Camargo et al (2019)). Indeed, in real-life pro-
cesses what to do “next” may depend not only on which activities have been
executed before but also on, for instance, which resources have been involved,
or on the kind of customers, and so on.

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 3

Elaborating upon these considerations, in this work we propose an
approach able to leverage the structure of the process executions for the pre-
diction, at the same time coupling it with additional data perspectives. Our
approach exploits knowledge from a process model, from which instance spe-
cific models are derived in the form of instance graphs, coupled with Deep
Graph Convolutional Neural Networks (DGCNN) to deal natively with the
prediction of the next activity from graph prefixes. The instance graphs are
then enriched with additional data derived from the event log. We focus on
the use of temporal features to characterize at which point of the execution
an activity occurs. In this respect, a main difference with respect to previ-
ous work is that the process structure is taken into account when computing
the time interval between an activity and its predecessor. We argue that this
is a more accurate way of computing the time intervals than considering the
interval between subsequent events in a trace. Hence, we expect that this rep-
resentation can better support the classifier in detecting temporal relations
among activities.

Summarizing, the main contributions of the present work are:

• We introduce a novel predictive process monitoring approach based on the
use of graph data structures to encode control-flow information explicitly
representing parallel constructs, coupled with the use of a deep learning
architecture tailored to work with graphs;

• We introduce an approach to enrich an instance graph to provide a multi-
perspective representation of a process execution. In particular, we discuss
how to use structural information to encode the time perspective of the
executed activities;

• We conduct a set of experiments on real-life event logs to show the
effectiveness of the approach with respect to a set of state-of-the-art
competitors.

A preliminary version of the approach presented in this paper has been
described in Chiorrini et al (2021). With respect to it, the present work
considerably extends the theoretical framework, improves and extends the
experimental comparison, and introduces a multi-perspective enrichment to
the Instance Graphs.

The rest of this paper is organized as follows. Section 2 provides an overview
of related work; Section 3 formalizes important concepts used thorough the
paper; Section 4 illustrates the proposed approach; Section 5 discusses the
experimental results; Section 6 draws some conclusions and delineates future
work.

2 Related Work

Predictive process monitoring made its appearance as a process mining task in
the first decade of the 2000s (Castellanos et al, 2006; Van Der Aalst et al, 2010),
receiving increasing attention in the latest years (Di Francescomarino et al,

Springer Nature 2021 LATEX template

4 Enriched IG for Next Activity Prediction

2018; Teinemaa et al, 2019; Marquez-Chamorro et al, 2018). Three kinds of
predictions can be considered (Di Francescomarino et al, 2018; Teinemaa et al,
2019): prediction of (typically continuous) measures of interest like the remain-
ing execution time, overall duration, or cost of an ongoing case (Van Der Aalst
et al, 2010, 2011), prediction of categorical values like the final outcome or class
of risk of a case (Teinemaa et al, 2019; Becker et al, 2014), predictions related
to the sequence of next activities that will be performed (Lakshmanan et al,
2015). In Polato et al (2018), the authors propose how to deal with more than
one of these tasks. As another dimension, approaches can be distinguished into
model-aware and model-agnostic. In model-aware approaches, predictions rely
on a formal process model, whereas model-agnostic approaches only consider
traces contained in the event log. Leveraging a process model allows to exploit
some form of control-flow information. On the other hand, when the model
describes the prescribed or most common behaviors, overlooking exceptions,
predictions for real executions may suffer from this abstraction. Furthermore,
other perspectives can be taken into account besides control-flow, like the time
or duration of events and resources performing activities.

For what concerns the next-activity(ies) prediction task, few proposals
rely on some kind of process model in combination with traditional machine
learning techniques. Lakshmanan et al (2015) adopts both a process mining
algorithm to discover a general process model and decision trees to calculate
transition probabilities from a given activity to neighboring activities from
instance specific data, so as to define an instance-specific probabilistic process
model for each process execution. Assuming a Markov property for processes,
the approach does not consider the path information of previously executed
activities to train decision trees, but only data that is progressively produced
during the execution of the process starting from the first task. Path infor-
mation is instead explicitly represented in the approach proposed by Unuvar
et al (2016), which proposes different encoding models to represent the par-
allel branch each activity belongs to, derived from the overall process model
using token-replay principles. Polato et al (2018) relies on annotated transi-
tion systems, where (Näıve Bayes) classifiers and (∈-SVR) regressors are used
for annotations to predict remaining time and the sequence of next activities.
Authors introduce a notion of similarity among the states of the transition sys-
tem to deal also with non-fitting traces, taking into account also the issue of
non-stationary processes. A different approach to deal with event logs involving
exceptional behaviors has been proposed by Ceci et al (2014), which employs
sequential pattern mining techniques to derive partial process models that
are then used to train classification or regression models. Becker et al (2014)
introduces a framework to mine probabilistic finite automata from data by
grammatical inference.

Recently, Deep Learning techniques have gained increasing interest in pre-
dictive process monitoring (see Rama-Maneiro et al (2021) for a recent survey).
The approaches rely upon the power of deep architectures to build complex
features and on the success of recurrent architectures in processing sequential

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 5

data, like log traces are. Hence the majority of approaches are model-agnostic.
For what concerns the next-activity prediction, Long Short-Term Memory
(LSTM) is one of the first and most adopted architectures (Evermann et al,
2017b; Tax et al, 2017; Camargo et al, 2019). LSTM trained with a Genera-
tive Adversarial Nets learning scheme has also been proposed (Taymouri et al,
2020), tackling the lack of sufficient training data that often impact perfor-
mances. An alternative approach is that of Pasquadibisceglie et al (2020) where
it is proposed to transform traces into image-like data, thus unleashing the
full potential of Convolutional Neural Networks (CNN). Although more tra-
ditional Deep Learning architectures like Multi Layer Perceptrons have been
largely overlooked, in Venugopal et al (2021) experiments demonstrate that
they can achieve good performance on some datasets. Other approaches like
reinforcement learning or transformers have also been experimented (Chior-
rini et al, 2020; Philipp et al, 2020). In all these proposals, different learning
architectures, different input data encodings and attributes characterize the
approaches. However, a common feature is the inherently sequential struc-
ture of inputs and the consequent inability to fully capture the structure of
process executions. Few previous studies have proposed to encode structural
information from the process model for Recurrent Neural Network models.
For example, Di Francescomarino et al (2017) proposes an approach which
first detects loops in log traces and then uses this information to improve the
results of a LSTM-based next-activity classifier. Their approach also allows
to incorporate domain knowledge related to execution constraints. A different
strategy to take the process structure into account within the next-activity
classification task consists in using graphs, which provide a convenient means
to represent processes (van Dongen and van der Aalst, 2004; van der Aalst
et al, 2003). A proposal to directly process graphs to predict the next activity
has been done by Venugopal et al (2021). This approach has some similarities
with the present proposal. First of all, it adopts a process discovery approach
(inductive mining with Directly-Follows Graphs) for building a model of the
process. Second, it adopts a Graph Convolutional Neural Network (GCNN)
to learn the prediction. With respect to Venugopal et al (2021), the present
paper adopts a different, instance-specific, graph model in the form of Instance
Graph, managing also non-fitting traces. Furthermore, in Venugopal et al
(2021) the network architecture is composed of a single graph convolutional
layer followed by two fully connected layers, while in the present paper a vari-
ation of the Deep Graph Convolutional Neural Network (DGCNN) of Zhang
et al (2018) is exploited. As another difference, if many events in a trace cor-
respond to the same activity, only the features of the most recent event are
retained in Venugopal et al (2021), whereas the Instance Graphs adopted in
this work can present the same activity more than once.

3 Preliminaries

In this section, we introduce some core definitions used throughout the paper.

Springer Nature 2021 LATEX template

6 Enriched IG for Next Activity Prediction

Fig. 1: Petri net mined with the Inductive Miner from the Helpdesk event log.
Transition labels are displayed below each transition, while inside each square
there is the corresponding acronym.

Definition 1 (Labeled Petri Net) A labeled Petri net is a tuple (P, T, F,A, ℓ) where
P is a set of places, T is a set of transitions, F ⊆ (P × T) ∪ (T × P) is the flow
relation connecting places and transitions, A is a set of labels for transitions, and
ℓ : T ↛ A is a partial function that associates a label with a subset of the transitions
in T . Transitions not associated with any label are called invisible transitions.

Figure 1 shows the Petri net obtained from a real-life process concerning the
ticketing management process of the help desk of an Italian software company1.

Transitions represent process activities, namely well-defined tasks that have
to be performed within the process, and places are used to represent states.
Invisible transitions do not correspond to process activities and are used for
routing purposes. We indicate the set of invisible transitions as TH ⊆ T .

Specific executions of a process, so-called process instances, are typically
recorded in logs. More precisely, the execution of an activity generates an
event, which is a complex entity characterized by a set of properties.

Definition 2 (Event, Trace, Log) Let AL be the set of all activity names, C be
the set of all case (aka, process instance) identifiers, H be the set of all timestamps,
U a set of variable values, V a set of variable names. An event e = (a,D, c, i, t) ∈
AL × (V ̸→ U) × C × N × H is a tuple consisting of an executed activity a ∈ AL,
a function D which assigns a value to some process variables (possibly all of them),
a case identifier c ∈ C and a number i ∈ N. A case corresponds to a single process
execution; the number i identifies the position of the event within the sequence of
events that occurred within a case. The set of events is denoted by E . An event trace
σL ∈ E∗ is a sequence of events with the same case id. An event log is a multi-set
of event traces L.

Table 1 shows an excerpt of the event log for the Helpdesk process men-
tioned above. Through this paper, we will use the notation act(e), case(e),
pos(e), time(e), and var name(e) to refer to, respectively, the activity, the
case id, the position in the sequence, the timestamp and the attribute named

1https://data.mendeley.com/datasets/39bp3vv62t/1

https://data.mendeley.com/datasets/39bp3vv62t/1

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 7

Case ID Activity Timestamp
Case 2 Start 03/04/2012 16:55
Case 2 Assign seriousness 03/04/2012 16:55
Case 2 Take in charge ticket 03/04/2012 16:55
Case 2 Resolve ticket 05/04/2012 17:15
Case 2 End 05/04/2012 17:15
Case 3 Start 29/10/2010 18:14
...

Table 1: Excerpt from the HelpDesk event log

var name of an event e. For instance, let e2 be the second event in Table 1;
act(e2) is “Assign seriousness”, while time(e2) is “03/04/2012 16:55”. Here
we also introduce the projection operator πAtt(x), which is used to build the
projection of a tuple x on a subset of its attributes Att. For instance, given an
event ei we can define the projection πAL,C,N(ei) = (act(ei), case(ei), pos(ei)).
With a slight abuse of notation, we extend this operator to traces as follows:
πAL,C,N(σi) = ⟨πAL,C,N(e1), . . . , πAL,C,N(en)⟩.
Definition 3 (Prefix trace) A prefix of length k of a trace σ = ⟨e1, e2, . . . en⟩ ∈ E∗,
is a trace pk(σ) = ⟨e1, e2, . . . ek⟩ ∈ E∗ where k ≤ n.

For example, let us indicate with σ1 the trace involving the events
with case id Case 2 in Table 1. The prefix of length 3 of σ1 is p3 =
⟨(Start, {},Case 2, 1, 03/04/2012 16:55), (Assign seriousness, {},Case 2, 2,
03/04/2012 16:55), (Take in charge ticket, {},Case 2, 3, 03/04/2012 16:55)⟩.
Note that, in this example, the function D corresponds to an empty set, since
we don’t have any additional data attributes in the log.

A well-known issue of log traces is that events are logged in a trace accord-
ing to the timestamp of the corresponding activities, thus hiding possible
concurrency among activities. To address this issue, log traces can be converted
in so-called Instance Graphs (Diamantini et al, 2016). These are directed,
acyclic graphs which represent the real execution flow of process activities.

Definition 4 (Instance Graph) Let σ = ⟨e1, . . . , en⟩ ∈ L be a trace and let σ′ =
πAL,N(σ) be its projection on the activity and position sets. Let the causal relation
CR ⊆ A × A be a relation defining the expected order of execution of each pair of
activities in the process recorded in L. Hereafter a1 →CR a2 denotes that (a1, a2) ∈
CR. An Instance Graph (or IG) γσ of σ is a directed acyclic graph (E,W) where:

• E = {e ∈ σ′} is the set of nodes, corresponding to the events occurring in σ′;
• W = {(eh, ek) ∈ E × E | h < k ∧ act(eh) →CR act(ek) ∧ (∀eq ∈ E(h <
q < k ⇒ act(eh) ̸→CR act(eq)) ∨ ∀ew ∈ E (h < w < k ⇒ act(ew) ̸→CR

act(ek)))} is the set of edges;

A causal relation can be determined, for instance, by using a priori
domain knowledge, or it can be extracted from an event log recording process
executions. We will discuss our strategy to determine CR in Section 4.1.

Similarly to what we have done for trace and trace prefixes, starting from
the definition of IGs we can introduce the notion of Graph prefix.

Springer Nature 2021 LATEX template

8 Enriched IG for Next Activity Prediction

(a) (b)

Fig. 2: IG for σ1 (a) and its prefix of length 3 (b)

Definition 5 (Prefix Instance Graph (prefix-IG)) Let (E,W) be the instance graph

of some trace σ. Let Ẽk be the set of events in the prefix trace pk(σ) of size k. We

define the prefix instance graph of size k of σ as the graph pk((E,W)) = (Ẽk,W ∩
(Ẽk × Ẽk)). Informally, a graph prefix pk(gj) is a subgraph of gj involving only k
nodes of gj , i.e., nodes included in the corresponding trace prefix.

Example 1 Consider σ1 and the set CR derived from the Petri net in Figure 1. In
Figure 2, Figure 2a shows the IG corresponding to the trace, while Figure 2b shows
its prefix of length 3. For the sake of simplicity, we only use activity acronyms to label
the graph nodes rather than showing the index and the complete names. We will
adopt the same simplification when drawing IGs throughout the rest of the paper.

4 Methodology

This work introduces a novel approach to tackle the next-activity prediction
challenge. Formally, this problem corresponds to learning a classifier able to
label a prefix trace with the activity to be executed next.

Figure 3 shows the proposed approach. Given an event log and its pro-
cess model expressed as a Petri net, the approach i) represents each trace
with its corresponding Instance Graph (IG), ii) enrich the built IG with addi-
tional perspectives regarding the sequential execution and, when available,
additional event attributes, and iii) process such IGs through graph neural
networks, designed to work with graph data structures, to train a classifier to
perform the next-activity prediction task. The approach used to build the IGs
is robust against the possible presence of outliers or anomalous behaviors. In
other words, even in the presence of anomalous behaviors the approach returns
instance graphs without structural anomalies and that provide a high-quality
model for the corresponding process behaviors. The set of instances graphs
is then used to train the graph neural network. For the classifier, among the
various architectures proposed in the literature, we chose to adopt the Deep

Fig. 3: The BIG-DGCNN methodology pipeline

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 9

(a) IG built for trace σ2 (b) Repaired IG built for trace σ2

Fig. 4: IG repair examples

Graph Convolutional Neural Network (DGNN) (Zhang et al, 2018). In the fol-
lowing, we will refer to our methodology as Multi-BIG-DGCNN. The following
subsections delve into each step of the approach.

4.1 Building Instance Graphs

This step takes as input an event log L and a Petri net P = (P, T, F,A, ℓ) and
converts each sequential trace in the event log into an Instance Graph. It should
be noted that we assume to have a single starting and a single ending activity
for each process execution. This is necessary to ensure that possible parallelism
at the beginning or at the end at the execution can be properly modeled. This
constraint, however, does not pose a significant limitation to the applicability
of the approach. It is always possible, if necessary, to apply a simple data
preprocessing procedure to the log and to the model to introduce artificial start
and end activities. As regards the process model, this can be either provided
by a domain expert or extracted by a process discovery algorithm.

To generate the IGs, in this paper we refer to the Building Instance Graph
(BIG) algorithm proposed in Diamantini et al (2016), which is able to handle
traces that do not conform to the model. BIG is a two-step algorithm. First,
an IG is built for each trace as in Definition 4. Here, CR is extracted from
the input Petri net as follows. We define the direct path relation for P as the
relation dp = {(t1, t2) ∈ T ×T | ∃p ∈ P s.t. (t1, p) ∈ F ∧ (p, t2) ∈ F}. It should
be noted that t1, t2 can be either transitions with or without labels (i.e., hidden
transitions). In this setting, a1 →CR a2 if and only if ∃t1, t2 ∈ T : l(t1) = a1 ∧
l(t2) = a2 ∧ ((t1, t2) ∈ dp ∨ (∃s = ⟨th1

, . . . , thn
⟩ s.t. each thi

∈ TH ∧ (t1, th1
) ∈

dp ∧ (thn
, t2) ∈ dp ∧ ∀i ∈ {1, . . . , n − 1}(thi

, thi+1
) ∈ dp)). Informally, each

element of CR corresponds to a connection between two labelled transitions
in P, where the first one generates one of the input tokens for the second one,
disregarding possible (hidden) transitions occurring in between.

In the presence of noncompliant events, however, this procedure generates
anomalous, low-quality IGs. As an example, let us consider the following trace2

σ2 = ⟨(1, S), (2, SI), (3, AS), (4, TC), (5,W), (6, E)⟩. This trace is not compli-
ant with respect to the model in Figure 1 since the activity SI is executed
before AS and the activity RT is missing. Figure 4a shows the IG built for this
trace according to Definition 4. The anomalies mentioned above led to generate

2For the sake of simplicity, we directly show the projected trace obtained by another trace from
the Helpdesk log. Furthermore, for the sake of readability, we only use activity acronyms.

Springer Nature 2021 LATEX template

10 Enriched IG for Next Activity Prediction

a disconnected graph, since W and TC should both be linked to RT . Further-
more, connections among nodes do not reflect the temporal order of occurrence
of the events, in particular for SI. In terms of semantics, these models over-
generalize the process behavior. For example, the only execution constraint for
SI is to be executed before W . Even worse, activities of each part of the dis-
connected graph can be executed in any order with respect to the activities of
the other part. To deal with the issues mentioned above, in Diamantini et al
(2016) an IG repairing procedure is applied to IGs corresponding to anoma-
lous traces, which transforms them into graphs capable of also representing
the anomalous traces without over-generalizing. First, anomalous traces (and,
hence, IGs) are recognized in the event log by means of a conformance check-
ing technique (Adriansyah et al, 2011). Then, tailored rules are applied for
repairing IGs with deleted and inserted events. For deleted events, the repair-
ing consists in identifying the nodes which should have been connected to the
deleted activity and properly connecting them. For the insertion repairing, we
have to change the edges connecting the nodes corresponding to the event(s)
before and the event(s) after the inserted event to connect such nodes with
the node corresponding to the inserted event in the graph, taking into account
the causal relations among its predecessors and successors in the trace.

Figure 4b shows the outcome of the repairing procedure for the IG cor-
responding to σ2. The repairing of the deletion of RT has been realized by
connecting its predecessors W and TC with its successor E while the inserted
event SI has been connected to the events occurring before/after the anoma-
lous event in the event log. It should be noted that two main forces are driving
the repairing procedures. On the one hand, we want to obtain a representation
as precise as possible of the occurred anomaly, limiting the number of behav-
iors represented by the repaired IG. On the other, we want to preserve the
concurrency relations described by the model. For this reason, the insertion of
the event SI after S is repaired by connecting SI to both the causal successors
of S3. It is worth noting that during the repairing procedure, the original set
CR is extended to include all the pairs of activities linked by edges added or
modified during the repairing procedure. Therefore, while the repaired graphs
do not fulfil Definition 4 with respect to the original casual relation set, they
fulfil the definition according to the extended set. Note that in the following
steps of the methodology, the extended set will be used.

We would like to point out that the repairing procedure is an essential
component of the BIG algorithm. Without the repairing, the presence of even
few non-compliant events in a trace can lead to disconnected graphs and/or
graphs with a high degree of parallelism, which can hide temporal relations
among process activities. These graphs are likely to hamper the performance
of the classifier; therefore, we advocate that not-repaired IGs should not be
used to train the classifier.

3Note that for deviations occurring within parallel constructs other repair configurations are
available, e.g., by adding an additional parallel branch involving the inserted activities. Refer to
Diamantini et al (2016) for additional details.

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 11

E W Label
p2(g) {(1, S), (2, SI)} {((1, S), (2, SI))} AS
p3(g) {(1, S), (2, SI), (3, AS)} {((1, S), (2, SI)), ((2, SI), (3, AS))} TC

Table 2: prefix-IG of lenght 2 and 3 extracted from the IG in Figure 4b

.

4.2 Data Encoding

This step aims to build a labeled prefix-IG dataset, enriched with additional
data perspectives derived from the event log and can be further split into two
phases. First, we extract all the prefix-IGs from the set of IGs derived at the
previous step. Then, we enrich the prefixes according to the set of perspectives
that we want to consider for the analysis. Both steps are detailed below.

4.2.1 Prefix-IG generation

Given the set of n Instance Graphs IG, the goal of this step is to build the
dataset S = {(pi(gj), al)} where pi(gj) = (Ep,Wp) is a prefix-IG of length i
of a graph gj = (Ej ,Wj), i ∈ [1, ∥Ej∥ − 1] and al corresponds to the next
activity of the partial execution described by pi(gj). It is straight to see that
from each IG, we produce N − 1 pairs of S.

The building of the prefix-IG set is realized by using the total order of the
events in the trace. Indeed, recall that each node in an Instance Graph corre-
sponds to an event in the corresponding trace (see Definition 4). Therefore, it
is possible to link each node in an IG to a progressive index representing the
position of the corresponding event in the trace. This index determines the
order of the nodes, which we use to progressively build the prefix-IG set.

In particular, given an IG g, the graph prefix p2(g) is obtained by selecting
the first two nodes and the edge(s) between them. This prefix is labelled with
the activity of the event in position 3. The next prefix is then derived by
extending p2(g) with the node of index 3 and the edges connecting it to p2(g).
The associated label is the activity of the event in position 4. The procedure
is repeated until the activity corresponding to the last node of the graph is
selected as the label. As an example, let us consider the trace σ1 introduced in
Section 3, whose IG g is reported in Figure 4b. Table 2 shows two prefix-IGs
extracted by g, of length 2 and length 3, respectively.

4.2.2 Multi-Perspective Prefix-IG Enrichment

The prefix-IGs built at the previous step model the activity name and the
corresponding causal relations for each event of a process execution. This step
aims at enriching the prefix-IGs in order to incorporate additional data per-
spectives. In practice, this is realized by linking each node of each prefix-IG
with the set of features which the analyst wants to take into account for the pre-
diction. Formally, let M be the set of perspectives (aka, features) chosen by the
analyst for the prediction, G be the set of feature values and V al M : M −→ 2G

the function defining the values admissible for each feature. Given the set

Springer Nature 2021 LATEX template

12 Enriched IG for Next Activity Prediction

of IG-prefixes S built at the previous step, the goal is to build the dataset
S

′
= {(p′i(gj), al)}, where p′i(gj) = (Ep,Wp, V al M) is a Multi-Perspective

Enriched prefix-IG of lenght i of a graph gj = (Ej ,Wj), i ∈ [1, ∥Ej∥ − 1].
We consider two sets of features; direct features, corresponding to data

attributes stored in the event log, and indirect features, derived from the infor-
mation available in the trace. Note that the set of direct features corresponds
to the set D introduced in Definition 2; therefore, D ⊂ M . For the indirect
features, we are especially interested to time-related features, which are used
to encode information about the sequential execution order of the traces from
which the IGs have been extracted.

The use of this kind of information has been previously used in literature
(Tax et al, 2017; Pasquadibisceglie et al, 2020). However, thanks to the use of
instance graphs in place of log traces, in our framework the temporal intervals
are computed for each activity with respect to its causal predecessor rather
than with respect to the preceding activity in the sequence. We argue that such
computation provides a more accurate representation of what actually hap-
pened within the process execution, thus providing more robust information
to be used for the prediction in place of the sequence-based features. These
features are defined as follows. Let CR be the causal relation defined among
the activities of the event log L4. Let us consider the prefix pi(gj) ∈ S and let
us indicate with ni the node corresponding to the event at the i− th position
in the trace corresponding to gj . With a slight abuse of notation, in the fol-
lowing we use act(ni), time(ni) to indicate the activity and the timestamp of
the event ei. This is justified by the fact that for each node of each prefix-IG
there exists a unique mapping to the position of the event of the corresponding
trace, from which the corresponding information can be accessed.

The first temporal feature we define is ∆tni
, which represents the time

between the current event and its predecessor in the graph. For all nodes ni,
let predni

= {nj | (act(nj), act(ni)) ∈ CR} denote the set of all nodes that
are causal predecessors of ni. We define

∆tni
=

{
0 if predni = ∅
minnj∈predni

time(ni)−time(nj)
∆maxe

otherwise

where time(ni) is the timestamp of the event at index i, and ∆maxe
is

the maximum interval between consecutive nodes. In addition to ∆tni
, we use

two other temporal features. The first one represents for each event the time
it occurred with respect to the start of the process. The other feature allows
us to take into account at which point an activity has occurred with respect
to the corresponding working week (i.e, since midnight on previous Sunday).
This can provide valuable information for the classifier, since activities of a

4Note that in our framework we use the extended causal relation obtained from the BIG
repairing procedure.

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 13

E W V al M Label
p′2(g) {(1, S),(2, SI)} {((1, S), (2, SI))} {(1, {∆tni

=0, tdni
=0, twni

= 0.27}), AS

(2{∆tni
= 0,tdni

=0,twni
= 0.27})}

p′3(g) {(1, S), (2, SI), {((1, S), (2, SI)), {(1, {∆tni
= 0, tdni

=0,twni
=0.27}), TC

(3, AS)} ((2, SI), (3, AS))} (2, {∆tni
= 0, tdni

= 0, twni
=0.27}),

(3, {∆tni
= 0, tdni

= 0, twni
= 0.27})}

Table 3: Enriched prefix-IG of lenght 2 and 3 extracted from g.

business process are likely to be carried out within office hours. Formally:

tdni
=

time(ni)− t
0

∆maxt

; twni
=

time(ni)− tw0

∆tw

where tw0
is the timestamp of the last passed Sunday midnight, and t

0

is the start timestamp of the process. ∆tw is the amount of time in a week,
while ∆maxt

is the maximum trace duration. Note that ∆tw, ∆maxe
and ∆maxt

are normalization factors computed on the entire event log to make features
varying in the range [0, 1], as it improves the performance of the network.

Once the direct features have been selected from the event log and the
indirect ones have been computed, we compute the mapping function V al M
for each node of each prefix, thus generating the dataset S

′
.

As an example, Table 3 shows the prefixes discussed above enriched with
the temporal features. Note that since the first three events of σ1 all have the
same timestamps, the temporal features are all the same for these prefixes.

The final processing step consists in transforming the feature set in the
format requested by the classifier. In particular, the Deep Convolutional Neu-
ral Network we select for our architecture takes in input a vector FV =
[FVe, FVW , Label] where:

• FVe = {fv1, . . . , fvn} where fvi corresponds to a feature vector describing
one node of the graph, i.e., fvi ∈ AL × V al M . Note that we exploit the
one-hot encoding to encode both the name of the activity and the possible
categorical features in M .

• FVW = {(i, j) | 1 ≤ i, j ≤ |FVe|} is a set of tuples corresponding to the set
of the edges of the graph;

• Label corresponds to the classification label associated to the graph.

4.3 Deep Graph Convolutional Neural Network

As model architecture to perform the next-activity prediction we use a Deep
Graph Convolutional Neural Network (DGCNN) proposed in Zhang et al
(2018). The DGCNN is composed of three sequential stages. First it has sev-
eral graph convolutional layers which extract the features from the nodes local
substructure and define a consistent vertex ordering. Second it has a Sort-
PoolingLayer which sorts the vertex features according to the order defined in
the previous stage, selecting the top nodes. In this way the dimension of the

Springer Nature 2021 LATEX template

14 Enriched IG for Next Activity Prediction

input is unified. At last, a 1-D convolutional layer and a dense layer take the
obtained representation to perform predictions.

The graph convolutional layer adopted by DGCNN is represented by the
following formula:

Z = f(D̃−1ÃXW) (1)

where Ã = A + I is the adjacency matrix (A) of the graph with added
self-loops(I), D̃ is its diagonal degree matrix with D̃ii =

∑
j Ãij , X ∈ Rn×c is

the graph nodes information matrix (in our case the one-hot encoding of the
activity labels associated to the nodes), W ∈ Rc×c′ is the matrix of trainable
weight parameters, f is a nonlinear activation function, and Z ∈ Rn×c′ is the
output activation matrix. In the formulas, n is the number of nodes of the input
graph (in our case, the graph prefix), c is the number of features associated to
a node, and c′ is the number of features in the next layer tensor representation
of the node.

In a graph, the convolutional operation aggregates node information in local
neighborhoods so to extract local structural information. To extract multi-scale
structural features, multiple graph convolutional layers (eq. 1) are stacked as
follows:

Zk+1 = f(D̃−1ÃZkW k) (2)

where Z0 = X, Zk ∈ Rn×ck is the output of the kth convolutional layer, ck
is the number of features of layer k, and W k ∈ Rck×ck+1 maps ck features to
ck+1 features.

The graph convolutional outputs Zk, k = 1, ..., h are then concatenated in

a tensor Z1:h := [Z1, ..., Zh] ∈ Rn×
∑h

1 ck which is then passed to the Sort-
PoolingLayer. It first sorts the input Z1:h row-wise according to Zh, and then
returns as output the top m nodes representations, where m is a user-defined
parameter. This way, it is possible to train the next layers on the resulting
fixed-in-size graph representation.

In the original proposal the DGCNN includes a 1-D convolutional layer,
followed by several MaxPooling layers, one further 1-D convolutional layer fol-
lowed by a dense layer and a softmax layer. In the present paper we simplify the
architecture leaving only one 1-D convolution layer with dropout (Srivastava
et al, 2014) followed by a dense and a softmax layer. This is because the pro-
cess mining domain tend to present smaller graphs in comparison with those
of typical application domains of graph neural networks (Wu et al, 2021). For
further information we refer the interested reader to Zhang et al (2018).

5 Experiments

This section describes the experiments we carried out on multiple real-world
datasets to assess the performance of our approach w.r.t. state-of-the-art com-
petitors. We first provide a description of the experimental set-up, the selected
datasets and the competitors. Then, we discuss the obtained results.

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 15

5.1 Experimental Setup

We compared our approach against a set of representative competitors from
the literature. In particular, we chose one representative of neural network
architecture per type used in next-activity prediction in previous work, namely,
LSTM, CNN, MLP, and GCNN. The criteria used to select the competitors
were:

• the availability of the source code to reproduce the experiments,
• a claim of good performance on one or more benchmark datasets commonly
used in literature,

• the absence of a particular encoding mechanism apart from those necessary
to apply their architecture.

When in doubt, we selected the most acknowledged paper on the basis of
citations and place of publication. On the basis of these criteria we selected:

• Venugopal et al (2021) for MLP,
• Venugopal et al (2021) for GCNN (specifically the Laplacian binary),
• Pasquadibisceglie et al (2020) for the CNN,
• Tax et al (2017) for the RNN (LSTM to be specific).

We highlight that for Tax et al (2017) we had to reimplement the code since
it was too outdated w.r.t. the used python modules. Also, for the GCNN
proposed in Venugopal et al (2021), we had to add to the adjacency matrix
self-loops in order to guarantee its invertibility with every dataset, as done
in other cases in the literature (Zhang et al, 2018). Finally, we remark that
for each competitor we used the hyper-parameters search methods provided
in their code or, when not available, their claimed best hyper-parameters. If
neither was available, we used the parameters provided by their code.

5.1.1 Dataset

For our experiments, we selected some of the benchmark datasets commonly
used in literature, whose characteristics are reported in Table 4.

The Helpdesk dataset (Verenich, 2016) contains traces from a ticketing
management process of the help desk of an Italian software company.

The BPI12 dataset (van Dongen, 2012) tracks personal loan applications
within a global financing organization. The event log is a merge of three parallel
sub-processes. We considered both the full BPI12 and the BPI12W sub-
process, related to the work items belonging to the application. We retained
only the completed events in the two logs, as done in previous work.

The BPI20 dataset(van Dongen, 2020) is taken from the reimbursement
process at TU/e. The data is split into travel permits and several request types
from which we selected four datasets. Requests for Payment (RfP) sub-log con-
tains cost declaration referred to expenses that should not be related to trips.
Travel Permit (TP) includes all related events of travel permits declarations

Springer Nature 2021 LATEX template

16 Enriched IG for Next Activity Prediction

Table 4: Overview of benchmark dataset. |σ| represents the trace length.

Dataset N.traces Tot.events N.act.types Min |σ| Max |σ| Avg |σ|
Helpdesk 3804 13710 9 1 14 3
BPI12W 9658 72413 6 1 74 20
BPI12 13087 262200 23 3 175 38
RfP 6886 50568 21 1 20 7
TP 7065 86581 51 3 90 12
ID 6449 72151 34 3 27 11

Prepaid 2099 18246 29 1 21 9

and travel declarations. International Declarations (ID), contains events per-
taining to international travel expense claims. Prepaid Travel Cost (PrePaid)
contains events pertaining to travel expense claims for prepayment. In all four
latter datasets, the resource performing the activity is included in the activity
itself, thus producing a lot of different activity types.

We tested all the methods using the same 67%-33% train-test split (of
chronologically ordered traces) for every dataset.

5.1.2 Parameter settings

The presented methodology involves two algorithms requiring the setting of
parameters: the infrequent Inductive Miner (iIM) (Leemans et al, 2014), used
to extract the process model from a given event log, and the DGCNN. The
iIM builds the model after filtering out infrequent behaviours according to a
noise threshold. We changed the noise threshold in steps of 10% from 0% to
100% and selected the smallest noise threshold that granted at least a 90%
fitness (i.e., how much the discovered model can accurately reproduce the cases
recorded in the log5). Using this criterion, the obtained models are capable of
representing the vast majority of traces while still maintaining a good degree
of generalization, thus providing a favorable setting for the classification task.

Regarding the parameters of the DGCNN, we set the number of 1-D con-
volutional layers to one, followed by a dense layer, both with 64 neurons.We
used ADAM (Kingma and Ba, 2015) as optimization algorithm and trained
the network for 100 epochs with an early stopping. We used as loss function
the categorical cross entropy, a fixed batch size of 64 and a fixed dropout
percentage of 0.1. For all datasets, we varied the following parameters:

• the number of nodes selected by the SortPooling layer (m), in {3,5,7,30}
• the number of stacked graph convolutional layer (h), in {2,3,5,7}
• the initial learning rate (lr), in {10−2, 10−3, 10−4}

The configurations that provide the best performance reported as (m,h, lr)
are (7,3,10−4), (7,2,10−4), (7,3,10−2), (7,3,10−2), (7,3,10−2), (7,3,10−3),
(7,3,10−3), respectively for Helpdesk, BPI12W, BPI12, BPI20 RfP, BPI20 TP,
BPI20 ID, BPI20 PrePaid. For all datasets, the best number of selected nodes
is always 7. The most reasonable cause for this behaviour is that for all dataset

5Here we refer to the state-of-the-art notion of fitness proposed by Adriansyah et al (Adriansyah
et al (2011))

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 17

the number of samples with a prefix shorter than 8 is the vast majority. We
also notice that this explanation also holds for the small number of stacked
graph convolutional layers. All the experiments have been performed using
either pytorch geometric (Fey and Lenssen, 2019) with torch version 1.10.0 or
tensorflow 2.5 (Abadi et al, 2015), on an NVIDIA GeForce GTX 1080 GPU,
a Intel(R) Core(TM) i7-8700K CPU@3.70GHz, and a 32 GB RAM.

5.1.3 Evaluation metrics

To compare the results obtained by the tested classifiers, we exploit two metrics
widely used for classification tasks, namely accuracy and F1 score.

The accuracy measures the proportion of the correctly classified samples
out of all samples, i.e., Accuracy = T

N , where N is the number of samples
and T is the sum of all the samples correctly classified. The overall F1 score
is computed as the weighted average of the F1 scores computed for each class,
weighted w.r.t. the corresponding number of samples. The F1 score for each
class F1i is computed as the harmonic mean of precision and recall for class i,
i.e. F1i =

Pi·Ri

Pi+Ri
. The precision Pi is computed as Pi =

TPi

TPi+FPi
and the recall

Ri is computed as Ri =
TPi

TPi+FNi
.TPi is the number of i-class samples correctly

classified, FPi corresponds to the number of samples wrongly classified as class
i (aka, false positives); while FNi corresponds to the number of samples of
class i wrongly classified as some other class (aka, false negatives).

Moreover, we evaluate the Average Ranking (AR), the Success Rate Ratio
Ranking (SRR) and the ranking (R) (Brazdil and Soares, 2000). The former
is simply the average of ranks achieved by a given approach on all datasets.
The SRR shows the success rate ratio of approach i, and it is measured by
first calculating the average of accuracy (F1 score) ratios on all k datasets

SRRi,j = (
∑k

1 SRRk
i,j)/k, where SRRk

i,j = Accki /Acckj (F1ki /F1kj) is the ratio
of accuracies (F1) achieved by approaches i, j on dataset dk. The SRR of the
approach i (SRRi) is then obtained as SRRi =

∑
j SRRi,j/(m− 1), where m

is the number of competitor approaches. Finally, R is the ranking computed
over the SRR.

5.2 Results

Table 5 reports the results achieved by each approach over the tested datasets.
The best values for each dataset are highlighted in bold. To assess the impact of
the enrichment phase on the classification performance, we tested two versions
of our approach, i.e., the one exploiting only the control-flow information (BIG-
DGCNN) and the one exploiting the enriched IGs (Multi-BIG-DGCNN).

The first interesting insight is that considering multiple perspectives is
overall beneficial for classification performance. In fact, Multi-BIG-DGCNN is
consistently better than BIG-DGCNN over all tested datasets. The strongest
differences can be observed in BPI12, which shows improvements in accuracy
and the F1 score respectively of 3.19% and 2.81%, and in the ID dataset,
where the accuracy and the F1 score improved of, respectively, 14.72% and

Springer Nature 2021 LATEX template

18 Enriched IG for Next Activity Prediction

Table 5: Comparison results; measured accuracy and F score.

Dataset
Approach Helpdesk BPI12W BPI12 RfP TP ID PrePaid

Multi-BIG-DGCNN
Acc 86.15% 71.32% 76.09% 90.64% 78.50% 88.44% 85.80%
F1 83.19% 69.89% 71.12% 87.51% 76.13% 86.28% 83.90%

BIG-DGCNN
Acc 85.18% 70.85% 72.90% 90.03% 78.29% 73.72% 85.61%
F1 82.93% 69.06% 68.31% 87.16% 76.08% 70.63% 83.14%

GCNN
Acc 80.42% 64.75% 60.92% 88.16% 61.33% 81.74% 79.52%
F1 76.73% 59.77% 58.95% 86.05% 60.12% 78.05% 76.44%

MLP
Acc 82.16% 66.17% 71.80% 89.81% 76.83% 86.82% 85.38%
F1 77.45% 62.11% 66.07% 87.38% 74.61% 84.31% 84.56%

CNN
Acc 85.02% 66.36% 78.45% 89.11% 82.52% 88.89% 85.93%
F1 82.13% 63.48% 75.92% 85.62% 80.23% 86.18% 83.65%

LSTM
Acc 74.49% 66.08% 79.06% 90.24% 76.89% 87.96% 82.65%
F1 72.13% 61.61% 75.48% 86.72% 72.60% 84.93% 79.74%

Table 6: Literature comparison, rankings

Approach
Accuracy F1

AR SRR R AR SRR R
Multi-BIG-DGCNN 1.50 1.248 1 1.43 1.255 1

BIG-DGCNN 2.88 1.206 5 2.88 1.210 3
GCNN 5.00 1.113 6 4.75 1.110 6
MLP 3.75 1.207 3 2.88 1.203 4
CNN 2.00 1.246 2 2.38 1.253 2
LSTM 3.25 1.206 4 3.88 1.198 5

15.65%. These results suggest that the set of features used for the enrichment
have strong predictive capabilities for these two datasets. On the other hand,
focusing on the pure workflow perspective, we can state that BIG-DGCNN is
a better approach than GCNN.

Moving to the comparison with the competitors, Multi-BIG-DGCNN
achieves best results in terms of F1 score on five datasets out of seven. In
Helpdesk, BPI12W and RfP Multi-BIG-DGCNN also achieves the best accu-
racy performance. CNN turns out to be the best on TP and achieves the best
accuracy values on ID and Prepaid, whereas LSTM is the best on BPI12. Over-
all, considering the F1 score, it seems that Multi-BIG-DGCNN shows a better
consistency over all datasets. To demonstrate this, we report in Table 6 the
overall comparison expressed in terms of AR, SRR and R for both accuracy
and F1 score figures of merit. We observe that, for what concerns AR, Multi-
BIG-DGCNN is the best approach, followed by CNN and then BIG-DGCNN
and LSTM. It also turns out to be the best approach according to the SRR
metrics, though values show that it is basically comparable with CNN. Consid-
ering that the CNN encodes a richer set of aggregated temporal features than
Multi-BIG-DGCNN, results are encouraging and demonstrate the viability of
instance graphs processed by DGCNN, since this kind of information may also
be added when deemed useful for prediction purposes.

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 19

It is also worth noting that the BPI12W dataset, where both our
approaches obtained the biggest improvement with respect to the second best
approach, is also the dataset with the highest percentage of activities in a short
loop, which is known to be a difficult situation for next-activity prediction. A
reasonable explanation for this result is that the graph convolution mechanism
is naturally robust to such repetitions since it can aggregate the information
of nearby nodes, which is exactly the scenario we have when a specific activity
is repeated several times.

In addition to analyze the overall behavior of the approach, we are also
interested in understanding how it varies among the different prefix sizes.
Figure 5 shows the trend of the F1 score with respect to the different prefix
lengths across all the datasets. We compare the performance of Multi-BIG-
DGCNN (blue line) against those of LSTM (orange line). We chose to compare
these two approaches because the LSTM approach proposed by Tax et al. is
the one with the set of features more similar to ours. The main differences are
that we consider for each event the time w.r.t. the start of the process, rather
than within the day (i.e., w.r.t. midnight) and that we consider causal relations
in computing temporal intervals between an event and its successor(s), rather
than considering subsequent events in the trace (see Section 4.2.2). Therefore,
we can reasonably assume that differences in performance are likely to be due
either to the different architectures employed, i.e., sequential vs graph-based,
or to the explicit use of information on the process structure in the feature set.
In addition to the F1 score performance, in the figures a red, dotted line shows
how the sample size varies with the increase of the prefix length. To provide
some additional insights on the size of the sample set for the different pre-
fix lengths, a vertical, dotted black line is placed to separate results obtained
on prefix lengths with at least ten samples (on the left of the line), to those
obtained on fewer samples (on the right of the line).

In the following, we focus the discussion on the prefixes on the left of the
black line, i.e., prefixes involving at least ten samples. This is justified by the
fact that for prefix lengths involving a very scarce number of samples, even a
difference of a few samples classified correctly or incorrectly can deeply impact
the results. Note that most of the F1 score plots in Figure 5 show a very
unstable result in the neighborhood of the black line for both classifiers, which
seems to confirm that a limit of 10 is reasonable for these datasets.

The figure shows that Multi-BIG-DGCNN usually performs close to or
higher than LSTM on the shorter prefixes; however, the performance get worse
for longer prefixes. Since the shorter prefixes correspond to the higher num-
ber of samples, outperforming the competitor in the shorter prefixes allows
Multi-BIG-DGCNN to obtain a higher accuracy than LSTM in the correspond-
ing dataset. An exception is represented by the dataset BPI12, where LSTM
obtains comparable or better results along all the prefix lengths, which indeed
results in a higher overall average accuracy as shown in Table 5.

Springer Nature 2021 LATEX template

20 Enriched IG for Next Activity Prediction

0 2 4 6 8 10 12 14
Prefix length

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
sc

or
e

0

200

400

600

800

1000

1200

Sa
m

pl
es

Multi-BIG-DGCNN
LSTM
#samples

(a) Helpdesk

0 10 20 30 40 50
Prefix length

0

1

F1
sc
or
e

0

500

1000

1500

2000

2500

3000

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(b) BPI12W

0 10 20 30 40 50 60 70
Prefix length

0.48

0.54

0.60

0.66

0.72

0.78

0.84

0.90

0.96

1.02

F1
sc

or
e

0

1000

2000

3000

4000

Sa
m

pl
es

Multi-BIG-DGCNN
LSTM
#samples

(c) BPI12

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Prefix length

0

1

F1
sc
or
e

0

500

1000

1500

2000

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(d) RfP

0 10 20 30 40 50
Prefix length

0

1

F1
sc
or
e

0

500

1000

1500

2000

2500

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(e) TP

0 5 10 15 20 25
Prefix length

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F1
sc
or
e

0

250

500

750

1000

1250

1500

1750

2000

Sa
m
pl
es

Multi-BIG-DGCNN
LSTM
#samples

(f) ID

0 2 4 6 8 10 12 14 16 18
Prefix length

0.40

0.48

0.56

0.64

0.72

0.80

0.88

0.96

F1
sc

or
e

0

100

200

300

400

500

600

700

Sa
m

pl
es

Multi-BIG-DGCNN
LSTM
#samples

(g) Prepaid

Fig. 5: F1 score of Multi-BIG-DGCNN and LSTM on the tested datasets
plotted against the prefix lengths, together with the number of samples.

The reason for the worsening in performance of Multi-BIG is unclear. A
hypothesis can be related to the fact that the Deep Graph Convolutional Neu-
ral Network need more samples to train. Another justification can be found in
the architectural properties of the DGCNN. These networks determine which
nodes are the most important for the prediction exploiting the information
gained during the convolutional layers adopted during the training. In doing
so, for the analyzed datasets it is reasonable that the network gives higher
importance to nodes belonging to the shorter prefixes, since they are the most
frequent and the most relevant ones for the overall prediction performance.
However, this nodes are also the least informative ones for the longer, less
frequent prefixes, with the result of a drop in performances.

6 Conclusions

The paper has presented BIG-DGCNN, a model-aware neural approach to
address the task of next activity prediction. The model allows to represent
process instances in the form of Instance Graphs, thus maintaining informa-
tion about parallel activities that is missed in the traces recorded in event

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 21

logs. Graphs are then natively processed by Deep Convolutional Graph Neural
Networks to synthesize a classification model able to predict the next activ-
ity given a prefix of any length. The adoption of BIG allows to build sound
Instance Graphs even for non-fitting traces and makes the approach suit-
able also for unstructured processes. Furthermore, an extension is proposed
which enriches the Instance Graph with additional data perspectives. The
comparison with state-of-the-art literature highlights that BIG-DGCNN shows
promising performance, especially considering that competitor approaches all
take into account some data perspective, whereas BIG-DGCNN only encodes
control-flow information. Endowing BIG-DGCNN with temporal information
and resource information when available, it demonstrates to favourably com-
pare to other approaches. However, since the tested competitors use different
encodings, the results do not clarify which part of the performance is due to
the neural architecture and which one to the encoding method adopted. In
the future, we intend to design an experimental plan to separate and further
investigate the impact of each element.

Further analysis of the performance trend with respect to the prefix length
enlighten an interesting difference with respect to the LSTM architecture, that
is the decay of performance on longer prefixes. This suggests to investigate
further improvements of the approach, namely to train different networks for
the different prefixes, to implement a GAN learning scheme in order to deal
with the limited number of training samples for longer prefixes, or to adopt
resampling or other imbalanced learning techniques.

7 Statements and Declarations

7.1 Ethical Approval and Consent to participate

Not applicable.

7.2 Consent for publication

All authors agree with the content and give explicit consent to submit.

7.3 Data Availability Statement

All datasets used in this paper to support the findings are publicly available.
Links are reported in the bibliography.

7.4 Conflict of Interests

The authors have no financial or proprietary interests in any material discussed
in this article.

7.5 Funding

No funding was received for conducting this study.

Springer Nature 2021 LATEX template

22 Enriched IG for Next Activity Prediction

7.6 Authors’ contributions

Conceptualization: all authors; Methodology: all authors; Formal analysis and
investigation: Andrea Chiorrini; Writing - original draft preparation: Andrea
Chiorrini, Claudia Diamantini, Laurea Genga; Writing - review, editing and
final approval: all authors; Supervision: Claudia Diamantini.

References

Abadi M, Agarwal A, Sutskever I, et al (2015) TensorFlow: Large-scale
machine learning on heterogeneous systems. URL https://www.tensorflow.
org/, software available from tensorflow.org

Adriansyah A, van Dongen BF, van der Aalst WM (2011) Conformance
checking using cost-based fitness analysis. In: 2011 ieee 15th international
enterprise distributed object computing conference, IEEE, pp 55–64

Appice A, Di Mauro N, Malerba D (2019) Leveraging shallow machine learning
to predict business process behavior. In: 2019 IEEE International Conference
on Services Computing (SCC), IEEE, pp 184–188

Becker J, Breuker D, Delfmann P, et al (2014) Designing and implementing
a framework for event-based predictive modelling of business processes. pp
71–84

Brazdil PB, Soares C (2000) A comparison of ranking methods for classifica-
tion algorithm selection. In: López de Mántaras R, Plaza E (eds) Machine
Learning: ECML 2000. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
63–75

Camargo M, Dumas M, González-Rojas O (2019) Learning accurate LSTM
models of business processes. In: Proceedings of the 17th International
Conference on Business Process Management (BPM’19), Lecture Notes in
Computer Science, 11675, pp 286–302

Castellanos M, Salazar N, Casati F, et al (2006) Predictive business oper-
ations management. International Journal of Computational Science and
Engineering 2(5-6):292–301

Ceci M, Lanotte PF, Fumarola F, et al (2014) Completion time and next activ-
ity prediction of processes using sequential pattern mining. In: International
Conference on Discovery Science, Springer, pp 49–61

Chiorrini A, Diamantini C, Mircoli A, et al (2020) A preliminary study on the
application of reinforcement learning for predictive process monitoring. In:
Proceedings of 2nd International Conference on Process Mining (ICPM20),
Lecture Notes in Business Information Processing

https://www.tensorflow.org/
https://www.tensorflow.org/

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 23

Chiorrini A, Diamantini C, Mircoli A, et al (2021) Exploiting instance graphs
and graph neural networks for next activity prediction. In: Process Mining
Workshops, Lecture Notes in Business Information Processing

Di Francescomarino C, Ghidini C, Maggi FM, et al (2017) An eye into the
future: leveraging a-priori knowledge in predictive business process monitor-
ing. In: International conference on business process management, Springer,
pp 252–268

Di Francescomarino C, Ghidini C, Maggi FM, et al (2018) Predictive process
monitoring methods: Which one suits me best? In: Weske M, Montali M,
Weber I, et al (eds) Business Process Management. Springer International
Publishing, Cham, pp 462–479

Diamantini C, Genga L, Potena D, et al (2016) Building instance graphs for
highly variable processes. Expert Systems with Applications 59:101–118

van Dongen B (2012) BPI Challenge 2012. https://doi.org/10.4121/uuid:
3926db30-f712-4394-aebc-75976070e91f, URL https://data.4tu.nl/articles/
dataset/BPI Challenge 2012/12689204

van Dongen B (2020) Bpi challenge 2020. https://doi.org/10.4121/uuid:
52fb97d4-4588-43c9-9d04-3604d4613b51

van Dongen BF, van der Aalst WMP (2004) Multi-phase process mining:
Building instance graphs. In: Atzeni P, Chu W, Lu H, et al (eds) Concep-
tual Modeling – ER 2004. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp 362–376

Evermann J, Rehse JR, Fettke P (2017a) Predicting process behaviour using
deep learning. Decision Support Systems 100:129–140

Evermann J, Rehse JR, Fettke P (2017b) Predicting process behaviour using
deep learning. Decision Support Systems 100:129 – 140. Smart Business
Process Management

Fey M, Lenssen JE (2019) Fast graph representation learning with PyTorch
Geometric. In: ICLR Workshop on Representation Learning on Graphs and
Manifolds

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Pro-
ceedings of the 3rd International Conference on Learning Representations
(ICLR 2015)

Lakshmanan G, Shamsi D, Doganata Y, et al (2015) A markov prediction
model for data-driven semi-structured business processes. Knowledge and
Information Systems 42(1):97–126

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

Springer Nature 2021 LATEX template

24 Enriched IG for Next Activity Prediction

Leemans SJJ, Fahland D, van der Aalst WMP (2014) Discovering block-
structured process models from incomplete event logs. In: Ciardo G, Kindler
E (eds) Application and Theory of Petri Nets and Concurrency. Springer
International Publishing, Cham, pp 91–110

Maggi FM, Francescomarino CD, Dumas M, et al (2014) Predictive monitoring
of business processes. In: International conference on advanced information
systems engineering, Springer, pp 457–472

Marquez-Chamorro A, Resinas M, Ruiz-Cortes A (2018) Predictive monitoring
of business processes: A survey. IEEE Transactions on Services Computing
11(6):962–977

Metzger A, Neubauer A (2018) Considering non-sequential control flows for
process prediction with recurrent neural networks. In: 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
IEEE, pp 268–272

Pasquadibisceglie V, Appice A, Castellano G, et al (2020) Predictive process
mining meets computer vision. In: ”Business Process Management Forum
(BPM’20), Lecture Notes in Business Information Processing, pp 176–192

Pasquadibisceglie V, Appice A, Castellano G, et al (2021) A multi-view
deep learning approach for predictive business process monitoring. IEEE
Transactions on Services Computing

Philipp P, Jacob R, Robert S, et al (2020) Predictive analysis of business
processes using neural networks with attention mechanism. pp 225–230

Polato M, Sperduti A, Burattin A, et al (2018) Time and activity sequence
prediction of business process instances. Computing 100(9):1005–1031

Rama-Maneiro E, Vidal J, Lama M (2021) Deep learning for predictive busi-
ness process monitoring: Review and benchmark. IEEE Transactions on
Services Computing

Srivastava N, Hinton G, Krizhevsky A, et al (2014) Dropout: A simple way to
prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

Tax N, Verenich I, La Rosa M, et al (2017) Predictive business process
monitoring with lstm neural networks. In: Advanced Information Systems
Engineering. CAiSE 2017. Lecture Notes in Computer Science, vol 10253,
pp 477–492

Taymouri F, Rosa ML, Erfani S, et al (2020) Predictive business process mon-
itoring via generative adversarial nets: The case of next event prediction. In:
Fahland D, Ghidini C, Becker J, et al (eds) Business Process Management.

Springer Nature 2021 LATEX template

Enriched IG for Next Activity Prediction 25

Springer International Publishing, Cham, pp 237–256

Teinemaa I, Dumas M, Rosa M, et al (2019) Outcome-oriented predictive pro-
cess monitoring: Review and benchmark. ACM Transactions on Knowledge
Discovery from Data 13(2)

Unuvar M, Lakshmanan GT, Doganata YN (2016) Leveraging path informa-
tion to generate predictions for parallel business processes. Knowledge and
Information Systems 47(2):433–461

van der Aalst W, van Dongen B, Herbst J, et al (2003) Workflow mining: A
survey of issues and approaches. Data & Knowledge Engineering 47(2):237–
267

Van Der Aalst W, Pesic M, Song M (2010) Beyond process mining: From
the past to present and future. Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 6051 LNCS:38–52

Van Der Aalst W, Schonenberg M, Song M (2011) Time prediction based on
process mining. Information Systems 36(2):450–475

Venugopal I, Tollich J, Fairbank M, et al (2021) A comparison of deep learning
methods for analysing and predicting business processes. In: Proceedings of
International Joint Conference on Neural Networks, IJCNN

Verenich I (2016) Helpdesk. https://doi.org/10.17632/39bp3vv62t.1

Wu Z, Pan S, Chen F, et al (2021) A comprehensive survey on graph neural
networks. IEEE Transactions on Neural Networks and Learning Systems
32(1):4–24

Zhang M, Cui Z, Neumann M, et al (2018) An end-to-end deep learning archi-
tecture for graph classification. In: Proceedings of the AAAI conference on
artificial intelligence

https://doi.org/10.17632/39bp3vv62t.1

	Introduction
	Related Work
	Preliminaries
	Methodology
	Building Instance Graphs
	Data Encoding
	Prefix-IG generation
	Multi-Perspective Prefix-IG Enrichment

	Deep Graph Convolutional Neural Network

	Experiments
	Experimental Setup
	Dataset
	Parameter settings
	Evaluation metrics

	Results

	Conclusions
	Statements and Declarations
	Ethical Approval and Consent to participate
	Consent for publication
	Data Availability Statement
	Conflict of Interests
	Funding
	Authors' contributions

