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A B S T R A C T

For companies, it is crucial to promptly react to (even short-term) lack of resources, for guaranteeing the
continuity of the operations in business processes. This leads to the solution of a Resource Replacement Problem
(RRP) aimed at reassigning as many activities performed by resources that are no longer available to those that
are available. To this purpose, several aspects are considered simultaneously, e.g., resources skills, workloads
and other domain-specific constraints. In this paper, we propose an innovative hybrid approach for solving
RRP, combining mathematical optimization with organizational mining. In particular, logs of past process
executions are used to model a social network of resources by organizational mining techniques. Then, a
similarity measure among resources is derived and exploited along with run-time resource workload and
information on activities priority to formulate an Integer Linear Programming (ILP) model for reassigning the
activities of unavailable resources, minimizing the total reassignment cost. To efficiently solve RRP, a Large
Neighborhood Search based matheuristic is developed. Computational experiments show that the proposed
matheuristic outperforms the commercial solver used to solve the ILP model. A sensitivity analysis, on possible
variations of the input parameters and on the moves of the matheuristic, concludes the work.
1. Introduction

In organization management, resource replacement planning con-
sists in addressing short-term lack of workforce that may be due to
temporary or permanent unavailability of human (e.g., due to resig-
nation, illness) or technical (e.g., due to hardware failure) resources.
In a sense, the ability of a company to deal with the replacement
of resources that are no longer available, for carrying out certain
activities, becomes crucial to both ensure resilience and guarantee
continuity of operations in business processes. Several different aspects
have to be considered in the decision process like, for example, resource
skills, workloads as well as possible other domain-specific constraints.
In particular cases, such as emergency situations like a pandemic, the
number of such unavailable resources to replace could be significant.
As a consequence, the lack of a business continuity plan could lead to
the interruption of the entire system as the replacement of unavailable
resources becomes crucial especially for carrying out those activities
that could represent bottlenecks for the completion of others.

Traditional approaches in the literature for resource scheduling and
replacement planning address the problem typically through business
rules modeled by domain experts. However, nowadays information
systems are suitable to track and monitor every event occurring during
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a business process, such as what activities have been executed, when
and by whom. Therefore, it is possible performing more advanced kinds
of data-driven analysis, e.g., through process mining techniques.

This paper proposes a data-driven optimization-based approach for
addressing the problem of replacing resources, namely, the Resource
Replacement Problem (RRP). In the following, it is assumed to have a
set of resources, a subset of which has to be replaced since they are
temporary or permanently unavailable and a set of activities assigned
to the unavailable resources that have to be reassigned. Each resource
is characterized by some skills (e.g., it can perform all or a subset
of activities), a current workload (computed considering the workload
required by the activities it already manages) and a maximum workload
(i.e., the resource capacity). Each activity requires some skills to be
performed, takes up the capacity of the resource which is assigned
to and has a priority. These priorities depend on both the causal
relationships defined in the business process and other business rules
(e.g., a process instance related to a given order has to be executed
before another). Therefore, an activity cannot be executed before that
all the higher priority activities have been already performed. The
decisions taken by solving an RRP consist in reassigning the activities
of the unavailable resources to the available ones under both priority
vailable online 12 October 2023
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and workload constraints by minimizing the total reassignment cost.
Such a total cost takes into account both the reassignment costs and
the penalties due to those activities that remain unassigned. In par-
ticular, the reassignment costs are determined as a measure of both
the similarity between two resources, such that similar resources are
preferred, and workload balancing. In this paper we evaluate similarity
with respect to several aspects, namely how much the two resources
collaborate together, and the relative performance and experience on
the activity to be performed. Such information are derived by analyzing
past executions of business processes, and by modeling a sociogram,
i.e., a graph of social relations among resources in terms of handover
of work. An edge between resources A and B exists in the sociogram if,
within a process instance, after A has performed an activity the work
passes to B for the next activity.

On the basis of this information, the RRP is then modeled as
an Integer Linear Program (ILP) and a Large Neighborhood Search
matheuristic is also designed for efficiently solving it on medium-sized
and large-sized instances.

The contribution of the paper is multi-fold. For what concerns the
representation of social relations:

• we propose a novel definition of the sociogram modeling the han-
dover of work relation. Unlike existing models in the literature,
we explicitly represent the specific type of the transferred activity,
enabling a greater expressiveness. Furthermore, a novel handover
of work metric is introduced and compared with the others in the
literature;

• we define, on top of the sociogram, a measure of similarity among
resources by considering the degree of collaboration between two
resources, the performance and the experience of a resource to
perform a given activity.

Regarding the solution of the resulting RRP:

• we model the problem through Integer Linear Programming (ILP),
with the aim of deciding how to reassign the activities performed
by resources no longer available to those resources that are
available, that have the skills and that have a residual workload
sufficient to execute them. The objective function to minimize
takes into account the cost of reassigning those activities plus
possible penalties due to those activities that remain unassigned;

• we design a Large Neighborhood Search (LNS) based matheuristic
in order to efficiently address also medium-sized and large-sized
instances of RRP. To the best of our knowledge, this is the first
work in which the proposed matheuristic is designed for solving
an RRP;

• we perform a sensitivity analysis on possible variations of some
input parameters and on the moves implemented in the matheuris-
tic. We believe that the scientific community can take advantage
from these considerations for future implementations of such an
approach applied to similar decision problems.

The rest of this work is structured as follows: Section 2 reviews
elated work, whereas Section 3 presents a running example that is used
hroughout the paper. Section 4 introduces the preliminary terminol-
gy, a novel handover of work metric and the sociogram model. Sec-
ion 5 discusses the overall methodology for RRP. Section 6 describes
he ILP model proposed in order to select the best resource replace-
ent whereas Section 7 details the LNS-based matheuristic developed

n order to address efficiently large-sized instances of the problem.
umerical comparisons between the ILP model and the matheuristic
re discussed in Section 8. Finally, Section 9 concludes the work and
2

raws some future research directions worth of investigation. s
2. Related work

Resource replacement

The interest towards semi-automatic solutions supporting the as-
signment of resources to activities in organizations is witnessed by
the number of approaches that have been developed in recent years.
Allocating resources is often seen as an optimization problem. Indeed, a
variety of approaches have been comprehensively discussed in several
surveys on the topic (De Bruecker et al., 2015; Pufahl et al., 2021),
differing with respect to (a) the criterion/a to be optimized, (b) the
role of process model and the related information used to drive the
decision, and (c) the adopted solution technique. The majority of
work is reportedly focusing on process-oriented optimization, aimed
to find the resources that best fit the activity to replace, with a one
(activity)-to-one (resource) approach or a more complex one-to-many
or many-to-many allocation. This can be done either with a local or
a global perspective, in which different priorities of running process
instances (and related activities to perform) are considered. Other
possible measures to optimize include the process cost, the cycle time of
the process or the throughput. A different category of resource-oriented
approaches are aimed to balance workload, thus assigning an activity
not necessarily to the best-fitting resource, or to optimize the worklist
of to-do activities for each resource.

Depending on how the problem is modeled, different categories of
approaches can be devised. The simplest of them is based on rules,
e.g., constraints or manually-defined guidelines, that frequently allows
to find a feasible solution in less time than alternative approaches,
although with fewer guarantees on its quality. For example, Kumar
et al. (2002) argue that in the scenario of workflow processes there is
a dynamic trade-off between quality and performances, which should
be considered when assigning activities to resources (e.g., considering
approaching deadlines may enable to offer work to less qualified work-
ers). To this aim, such a work proposes a comprehensive mechanism
for activity allocation by defining a metric including the notions of
suitability, urgency, conformance and availability. However, such a
metric is manually defined from domain knowledge, whereas in our
approach metrics are derived from logs in a data-driven fashion. More
advanced logic programming rules are also proposed, for instance in
the form of Answer Set programming, to formally model dependencies
and conflicts across resources used to derive a feasible schedule (Havur
et al., 2016).

Among the works following a data-based inductive approach, sev-
ral data mining techniques are explored to derive rules for resource
ssignment, such as declarative mining, reinforcement learning, deci-
ion trees, association rules, or support vector machines (Liu et al.,
008). Instead, other works aim at supporting the allocation of ac-
ivities through modeling of social relations by Hidden Markov Mod-
ls (Yang et al., 2008), for instance; others include genetic algorithms
r meta-heuristics.

On the other hand, several literature contributions make use of
athematical programming to deal with the problem of assigning re-

ources to activities. Mathematical models are formulated to minimize
ycle time. For example, considering input/output of activities and
recedence, Hirsch and Ortiz-Peña (2017) formulate a Mixed Inte-
er Non-Linear Program and design a set of heuristics. It is worth
oting that they address a different problem than the one proposed
n the present work. In particular, they model the process operating
hase within the mathematical formulation and then, they directly
onsider the inputs and the outputs of each activity. It means that,
n their model, constraints ruling the collaboration mechanism among
esources are also imposed. Moreover, unlike our work, they plan and
chedule the activities without assuming that some resources may be
navailable. It means that they do not have resources with an already
ixed workload (i.e., resources that already have to perform a certain

et of activities). From the mathematical model perspective, unlike
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us, they assume that all the activities have to be assigned and their
objective (to minimize) is the maximum completion time. Arias et al.
(2018) propose a flexible system considering multiple criteria, such
as information from past executions of the process (e.g. frequency,
performance, quality), the required skills to perform each activity and
their resource workload. Then, an ILP model is formulated to allocate a
single resource to an activity and a heuristic is used for batch resource
recommendation. However, unlike our work, they do not address a re-
assignment problem. In fact, they do not take into account the priorities
among the activities as well as the similarity among the resources.
Finally, the proposed heuristic (named BPA2) is used for ranking the
resources for a specific activity in order to obtain a prioritized list of
the most suitable resources on an individual basis.

Xie et al. (2016) develop a dynamic task assignment approach for
minimizing the cycle time of business processes at the run-time stage.
They refer to an individual worklist model, where each resource has
a predefined list of assigned activities to perform. By relying on both
stochastic and queuing theory, for each resource, the system schedules
the activities to execute from the corresponding list. On the other hand,
a list of shared tasks can be dynamically assigned to idle resources
by role type. The problem they address is different from ours, as they
minimize the cycle time, by taking into account only the arrival rate of
the run-time requests for the tasks.

Finally, heuristic approaches are extensively used for their capa-
bility to balance solution quality and computational effort. As shown
in Pufahl et al. (2021), these solutions include a multitude of different
approaches. Among them, Cabanillas et al. (2013) propose a semantic-
based methodology in which the allocation of activities to resources
is performed considering the ranking of resources according to user-
defined preferences. However, the ranking mechanism does not apply
any mathematical optimization techniques. Instead, other contributions
are focused on minimizing cost or cycle-time of the process (e.g., Zhao
et al., 2017 which apply Particle Swarm Optimization or Huang et al.,
2012 which exploit Ant Colony Optimization).

Therefore, to the best of our knowledge, in the literature, there are
no works dealing with a reassignment problem like ours. It is worth
noting that, in a reassignment problem, a list of activities already
assigned to resources must exist. Moreover, in the literature, the goal
of an assignment problem is almost always to minimize cycle time.
Instead, in the RRP, the goal is to maintain at least the operations
efficiency defined in the assignment phase.

Resource profile modeling

Properly modeling resources is a necessary step for analyzing pro-
cesses from an organizational perspective in most of the replacement
approaches. Information on resources can be retrieved from either
models/process schemas (in a top-down approach), or data produced
by process execution (according to a bottom-up approach), although a
mix of the two approaches is frequently used.

An approach that is gaining increasingly popularity consists in
deriving information on resource capabilities and social relations from
logs of past process executions, through organizational mining tech-
niques (Song and van der Aalst, 2008). The task of discovering a
model from an event log means in this case to build a model of social
relations among organizational entities. Such a model may be aimed
to represent the current organizational structure or a social network
of communication or interaction in the organization (Van Der Aalst
et al., 2005). This can be analyzed through common Social Network
Analysis techniques (Wasserman and Faust, 1994). In this context,
several metrics have been devised to analyze different relations among
resources, including handover of work (transferring work between two
resources), subcontracting (a resource executed an activity in-between
two activities executed by another resource), the reassignment of an
activity to a resource and the cooperation of different resources on an
3

activity. In particular, Van Der Aalst et al. (2005) discuss several vari-
ants for each of the aforementioned metrics, defined according to which
specific aspects are considered (e.g., self-loops, causality) and present
a plugin for ProM (Van Dongen et al., 2005) implementing the metrics.
An extended set of metrics are proposed in Pika et al. (2017), includ-
ing aspects such as skills, productivity, utilization, and collaboration
patterns from event logs. Most of the organization mining approaches
focus on discovering groups of similar resources, by analyzing logs to
extract, for each of them, information on the performed activities and
then, modeling it through a matrix representation. Although a simple
yet effective way to represent information, the limitation to such two
dimensions may mean not taking context into account (e.g., under what
circumstances an activity has been performed).

Some exception to the mentioned approaches investigates alter-
native methods. For instance, an approach based on context-aware
resource profiling is proposed in van Hulzen et al. (2021), also con-
sidering case attributes and variables capturing the system state. The
method allows activities belonging to multiple profiles simultaneously,
discerning specialists from generalists.

On the other hand, in Appice (2018), a modified Louvain algorithm
is adopted, with the purpose to discover overlapping organization units
instead of the traditional discovery of disjoint resources. By considering
a windowed stream of events instead of a static event log, the approach
supports the analysis of the life cycle of the dynamic organization of a
business process.

Although with a different goal, namely enhancing a process from
the organizational perspective with information on roles, in Burattin
et al. (2013), social relations among resources are analyzed from event
logs. Given a process model and a log in input, the approach aims to
partition the set of activities of the process by roles. This partitioning
is performed by grouping originators (i.e., the resource transferring
work to another resource) in roles and associating activities with the
corresponding role.

In Lee et al. (2019), a metric is defined through process mining and
social network analysis, called Degree of Substitution, that is used to
quantify the overlap in the work experiences of human resources. The
goal is to select the most suitable replacement for a given unavailable
resource and activity to perform. The work makes an assumption
similar to ours, namely that a resource can be most effectively replaced
by another that either works on similar activities or has similar transfers
of work. In Schönig et al. (2016), an organizational mining framework
is proposed for the discovery of patterns related to resource assignment
using declarative process modeling languages based on rule templates.
Unlike our work, the approach is used only for describing, instead
of enacting, the resource replacement. Measures derived from joint
activities, capable to determine a profile based on how frequently a
resource performs specific activities, have also been investigated. For
instance, in Van Der Aalst et al. (2005), a joint activities matrix is
obtained with resources on rows and activities on columns. Various dis-
tance metrics are proposed, among which the Minkowski distance, the
Hamming distance and the Pearson’s coefficient. While the Minkowski
distance is only suitable when resources perform a comparable amount
of work, the others are more robust, with some adjustments when the
volume of work varies significantly (e.g., part-time versus full-time
workers). An approach similar to ours is followed by Conforti et al.
(2015), although the work has a different purpose, namely proposing a
recommendation system to support process participants to take a risk-
informed decision in choosing the next activity to execute out of a set
of assigned activities.

3. Running example

The example proposed in this section is related to the process to
repair telephones in a company and will be used throughout the paper.
Hereby, the process schema is represented as a Petri net (Peterson,
1977). In Petri nets, a transition represents a process activity, i.e., a task
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Fig. 1. The example process model, represented as a Petri net (transitions are shown as boxes and places as circles).
Table 1
Running example: event log for the repair process. Time unit is minute.

ID Trace

1 (A, James, 15), (B, Mark, 60), (C, James, 8), (D, Harrison, 25), (F,
Alec, 18), (G, Carrie, 9)

2 (A, Carrie, 12), (B, Harrison, 74), (E, Harrison, 79), (F, Peter, 17),
(C, James, 4), (G, James, 13)

3 (A, Carrie, 10), (B, Peter, 43), (D, Peter, 43), (F, Alec, 72), (C,
Carrie, 7), (E, Harrison, 115), (F, Alec, 20), (G, James, 14)

4 (A, James, 20), (B, Mark, 96), (C, James, 3), (D, Mark, 31), (F,
Alec, 209), (D, Alec, 53), (F, Peter, 23), (G, Carrie, 11)

that has to be performed within the process and that is interconnected
to other transitions through places which may contain zero or more
tokens. Transitions with multiples ingoing or outgoing places represent
AND gateways, whereas places with multiples ingoing or outgoing arcs
stand for XOR gateways. A transition is enabled if each input place,
i.e. a place that is linked in input to the transition, contains at least
one token. In this case, the transition can fire (i.e., the corresponding
activity can be performed). As a result, a token is consumed from
each input place and a token is placed in each output place. As such,
the distribution of tokens in the places of the Petri net defines what
transitions are enabled and therefore, describes the possible evolution
of the process. In Fig. 1, the Petri net for the example is shown, where
transitions are depicted through boxes, and places through circles. A
single token is placed in the Start place. The black box represents a
hidden transition which is used only for routing purposes.

At the beginning, the only activity that can be executed is Register,
as the only place with a token is the Start place. After the registration
of a repair request (A) is done, an analysis of defects is performed
(B). Then, the user is informed about the outcome (C) and the repair
subprocess is performed in parallel (in fact, after B each output place
contains a token). This is achieved by executing either a simple repair
(D) or a complex one (E), and is ended by a test to verify whether the
repair solved the issues (F). In the negative case, the repair subprocess
is re-executed (i.e., the token is moved before D and E). Finally, if the
test succeeds, the request is archived (G) and the process ends when
the token is in the End place. Six users are involved in the process.
In particular, James and Carrie can be assigned to the administrative
activities (A, C, G) whereas, Mark, Alec, Harrison and Peter to the
analysis, repair and test activities (B, D, E, F).

Each record in the log refers to a specific process instance (e.g., same
repairing process performed for different requests) and is a sequence of
events, each of which described in terms of performed activity, resource
and duration in a certain time unit, as shown in Table 1. It is worth
remarking that the control flows in the process model in Fig. 1 are
flattened in the log. For example, the XOR gateway between the two
repair activities (D and E) does not appear in the log because only one
of them is actually executed.

4. Representation model for resources and activities

In this section we introduce the terminology and a model of social
4

network for handover of work that is used in the rest of the paper.
4.1. Activities and resources

Hereby we refer to the term activity as a task (or portion thereof)
performed to achieve a goal, and to resource as any organizational
entity that is capable to perform some activities, including not only
personnel but more in general machines, software, agents.

Definition 1 (Event, Trace & Event Log). Let  be a set of activities
and  a set of resources. 𝑉 =  ×  is the set of possible events,
i.e., combinations of an activity and a resource. Given a resource 𝑟,
𝑉 (𝑟) ⊆ 𝑉 is the set of events in which 𝑟 can take part. A trace is a
possible sequence of events, where 𝐶 = 𝑉 ∗ is the set of all possible
traces. An event log  is a subset of all bags (multi-sets) over 𝐶 (Van
Der Aalst et al., 2005).

In real contexts, each event in an event log can be characterized by
a set of additional attributes. In our scenario, we consider at least the
case id to identify the process instance, the executed activity, the name
of the resource, the time needed for its execution. For convenience,
we introduce the function 𝜋𝑎(𝜎) which returns the set of activities
related to events of a trace 𝜎. In the following, we provide a detailed
characterization of activities and resources, in terms of average load
request for an activity, resource skills and load. All the measures
provided below are given with respect to a reference period, e.g., a
working day or week, that can be defined arbitrarily at the application
level.

Definition 2 (Average Load Request For Activities In A Reference Period).
Given an event log , an activity 𝑎𝑖 ∈ , a reference period 𝑝 = (𝑡0, 𝑡1)
where 𝑡0 and 𝑡1 are the starting and the ending timestamps respectively,
the average load request 𝜆(𝑎𝑖,, 𝑝) ∈ [0, 1] for 𝑎𝑖 in the reference period
𝑝 is computed as:

𝜆(𝑎𝑖,, 𝑝) =

∑

𝜎∈𝑝 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑎𝑖, 𝜎)
∑

𝜎∈𝑝 𝑛𝑢𝑚_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠(𝑎𝑖, 𝜎)
⋅

1
𝑙𝑒𝑛𝑔𝑡ℎ(𝑝)

Here, 𝑝 ⊆  is the subset of traces executed within the given
reference period 𝑝, execution_time(𝑎𝑖, 𝜎) is a function returning the total
execution time for all the occurrences of activity 𝑎𝑖 for a specific trace 𝜎,
while the function num_occurrences(𝑎𝑖, 𝜎) returns how many times the
activity 𝑎𝑖 occurred in 𝜎. Finally, the ratio is normalized by the length of
the reference period, computed as 𝑙𝑒𝑛𝑔𝑡ℎ(𝑝) = 𝑡1−𝑡0. The specific unit of
measurement to use for time and for the length of the reference period
(e.g., second, minutes) is left to implementation. The only requirement
is that the unit for the reference period and the execution time must be
the same (or must be scaled accordingly). In the following, whenever
not ambiguous, we refer to 𝜆𝑖 omitting the other parameters for clarity.

By referring to the running example of Section 3, let us consider
activity D and a reference period of 8 h, i.e., 480 min. The activity
occurs 4 times, with execution times equal to 25 (case 1), 43 (case 3),
31 and 53 (case 4) min. The total execution time is therefore 152 min,
and the average execution time is 38 min. Finally, 𝜆 for activity D is
equal to 152

4 × 1
480 = 0.08. The evaluation of the execution time of an

occurrence of an activity depends on the information recorded in the
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event log. If both the starting and ending event have been recorded,
the execution time is given by the difference of the corresponding
timestamps. On the other hand, if only the starting event is recorded,
it can be obtained from the information on its duration, if available.
If this last is not reported, then execution time can be estimated by
the difference between the timestamp of the causally following event
and the event at hand (for details, we refer the reader to the discussion
reported below on the handover of work).

Resources can be characterized in terms of their skills (namely, the
activities that they performed in the past) and their workload. This last
is measured both as the current and maximum workload, as defined
below.

Definition 3 (Skills Of Resources). Given an event log  and a resource
𝑖 ∈ , the skills of 𝑟𝑖 is the set (𝑟𝑖) ⊆  of activities that 𝑟𝑖 performed

at least once in a trace of .

To make an example, from the event log in Table 1 we derive
(Mark) = {B, D} and (Harrison) = {B, D, E}.

Definition 4 (Workload Factors Of A Resource). Given a resource 𝑟𝑖 ∈ ,
𝜇𝑖 ∈ [0, 1] is the maximum workload for 𝑟𝑖, while 𝛾𝑖 ∈ [0, 1] is the
current workload factor of 𝑟𝑖, with 𝛾𝑖 < 𝜇𝑖.

While the latter refers to the current workload experienced by a
resource, the former typically refers to a certain reference period. For
instance, 𝛾𝐽𝑎𝑚𝑒𝑠=0.5 means that the resource James is currently expe-
riencing a workload of half its capacity (in the literature, sometimes
this notion is named resource availability, e.g., in Martin et al., 2020).
Usually, for a resource 𝑟𝑖 we can assume that 𝜇𝑖 is equal to 1, meaning
that it can be assigned to activities for the full working time, e.g., the
reference time may be set to 8 h for a working day. Given the possible
wide variety of policies on working times in different organizations,
the specific computation formula for 𝛾 is left to implementation. In this
work, we estimate the current workload for a resource considering the
working time within the time reference period at hand (i.e. the sum
of the load time for all the activities already performed in the period),
as well as the expected time to complete possible on-going activities.
Other data-driven approaches are proposed in the literature and may
be adapted for the present scenario. For example, in Martin et al.
(2020), the authors consider also concurrent activities and intermediate
interruptions (e.g., due to a break) in the definition of an availability
calendar.

4.2. Handover of work

Among the various social relations that can be recognized in an
event log between two resources, we focus here on relations of possible
causality, and specifically on handover of work. Within a case, there is
a handover of work from a resource 𝑟1 to a resource 𝑟2 if there are
two subsequent activities 𝑎1 and 𝑎2 where 𝑎1 is completed by 𝑟1 and 𝑎2
by 𝑟2. The metric can be defined and computed in multiple ways (Van
Der Aalst et al., 2005), according to:

• the degree of causality, i.e., the length of the handover. This can
either be direct (the second activity directly follows the first in
the trace) or indirect if the length is larger than 1;

• the existence of multiple successions from a resource to itself
(multiple self-transfer);

• the kind of succession: it is possible to consider either arbitrary
transfer of work between two subsequent events in a trace or
casual dependency between two activities in a trace. A pro-
cess typically includes some parallel activities, but all events are
recorded in a trace as a sequence. Hence, in order to identify
parallel events within a trace, one needs to know which are the
dependencies, or causal relations, existing between the activities
of the process. A process model is needed in this case.
5

t

We provide in the following the definition of causal relation, from
which we define handover of work.

Definition 5 (Causal Relation). A Causal Relation (CR) is a relation on
the set of activities, i.e., 𝐶𝑅 ⊆ ×. Given 𝑎1, 𝑎2 ∈ , 𝑎1 → 𝑎2 denotes
that (𝑎1, 𝑎2) ∈ 𝐶𝑅

Elements of CR represent the order of execution for a pair of
activities and is derived from a process model. X → Y states that Y
cannot be executed until X is terminated (the execution of Y depends
on the execution of X). With reference to the case 3 in the example
of Section 3, between events (A,Carrie) and (B,Peter) there is a direct
and causal succession, while between (F,Alec) and (C,Carrie) there is
a direct but arbitrary succession. Indeed, if we compare the log to the
process model in Fig. 1, there is a causal relation A→B, but this does
not hold between activities F and C.

In this work, we refer to the handover of work relation (1) by
ignoring self-transfers, (2) by considering indirect succession and (3)
causal relation, i.e., we take into consideration succession between
activities, with any length, only if aligned to the process model. The
reason behind (1) is that the research question of the work is related to
resource replacement, for which considering handover from the same
resource is not helpful. The reason of (2) and (3) is related to the
need to correctly identify handover of work in real processes and avoid
spurious relations. To detect causal relations, we rely on the approach
discussed in Diamantini et al. (2016), which enables to make causal
relations between events in a trace explicit. This is done by translating
a trace in an instance graph (van Dongen and van der Aalst, 2004),
where nodes represent events of the trace, while each edge represents a
direct succession between two events, such that a causal relation among
the corresponding activities holds. It is worth noting that a process
model, if not available, can be discovered through process discovery
algorithms, e.g., alpha miner, heuristic miner, inductive miner.

In the following, we define the function and the formula for com-
puting the metric.

Definition 6 (Handover of Work). Given 𝑟1, 𝑟2 ∈ , 𝑎𝑥 ∈ (𝑟1), 𝑎𝑦 ∈
(𝑟2), an event log , a process model  , a set of Causal Relations 𝐶𝑅
derived from  , and a trace 𝜎 ∈ , the function 𝑟1 ⊗𝜎

𝑎𝑥 ,𝑎𝑦
𝑟2 returns

how many times 𝑟1 and 𝑟2 executed respectively activity 𝑎𝑥 ∈ 𝜋𝑎(𝜎)
and 𝑎𝑦 ∈ 𝜋𝑎(𝜎) such that (𝑎𝑥, 𝑎𝑦) ∈ 𝐶𝑅. For the whole event log , the
function is computed as:

𝑞𝑥𝑦 = 𝑟1 ⊗

𝑎𝑥 ,𝑎𝑦

𝑟2 =
∑

𝜎∈
𝑟1 ⊗

𝜎
𝑎𝑥 ,𝑎𝑦

𝑟2

Finally, the metric handover of work between 𝑟1, 𝑟2 for activities
𝑎𝑥, 𝑎𝑦 in  is computed as:

ℎ𝑥𝑦 = 𝑟1 ⊙

𝑎𝑥 ,𝑎𝑦

𝑟2 = 𝑟1 ⊗

𝑎𝑥 ,𝑎𝑦

𝑟2∕
(

∑

𝑟𝑖∈𝑅

∑

𝑟𝑗∈𝑅
𝑟𝑖 ⊗


𝑎𝑥 ,𝑎𝑦

𝑟𝑗
)

The metric is computed for a pair of resources 𝑟1, 𝑟2 and with
respect to a pair of activities 𝑎𝑥, 𝑎𝑦 by dividing the total number of
proper causal succession (with no self-transfer) by the total number
of causal succession of 𝑎1, 𝑎2 between any two resources 𝑟𝑖, 𝑟𝑗 , with
𝑖 ≠ 𝑗. In other terms, the metric evaluates how peculiar the relation
between two resources in the execution of such two activities is. It
is worth considering that by dividing for the total number of causal
successions, infrequent relations will be taken into account too. For
instance, considering the example in Section 3, given the resources
James and Carrie, and the activities C and G, 𝐽𝑎𝑚𝑒𝑠 ⊙

𝐶,𝐺 𝐶𝑎𝑟𝑟𝑖𝑒 =
2
4 =

0.5, because the causal succession between them happens 2 times (case
and case 4), but the causal succession of C and G between any two

esources occurs 4 times.
This information can be represented as a handover matrix, that is

matrix 𝑁 × 𝑁 , where 𝑁 ≤ || is the number of active resources
i.e., resources that executed at least 1 activity in the event log). Given
wo resources 𝑟 , 𝑟 ∈  active in , the cell (𝑖, 𝑗) of the handover matrix
𝑖 𝑗
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Table 2
Running example: handover matrix.

James Marc Carrie Harrison Alec Peter

James (A, B, 0.5, 2) (C, G, 0.5, 2)

Mark (B, C, 0.5, 2) (B, D, 0.3, 1) (D, F, 0.25, 1)

Carrie (C, G, 0.25, 1) (A, B, 0.25, 1) (A, B, 0.25, 1)

Harrison (B, C, 0.25, 1) (D, F, 0.25, 1)
(E, F, 0.5, 1)

(E, F, 0.5, 1)

Alec (F, G, 0.25, 1) (F, G, 0.25, 1) (F, E, 1.0, 1) (D, F, 0.25, 1)

Peter (F, G, 0.25, 1) (B, C, 0.25, 1)
(F, G, 0.25, 1)

(D, F, 0.25, 1)
includes a tuple (𝑎𝑥, 𝑎𝑦, ℎ𝑥𝑦, 𝑞𝑥𝑦), with 𝑎𝑥 ∈ (𝑟𝑖) and 𝑎𝑦 ∈ (𝑟𝑗 ), if
and only if ℎ𝑥𝑦 > 0. In Table 2, we report the handover matrix for
the running example.

From the matrix, a sociogram can be defined, i.e., a graph of social
relations where nodes represent resources and there exists an edge
linking two nodes if a certain social relation is recognized between
them. We refer to the following definition of a sociogram as a labeled
multidigraph, i.e., a directed multigraph where two nodes may be
linked by multiple labeled edges.

Definition 7 (Sociogram). Given a 𝑁 × 𝑁 handover matrix 𝑀 , a
sociogram 𝐺 is defined as an 8-tuple 𝐺 = (𝛴, 𝛴𝐸 ,, 𝐸, 𝑠, 𝑡,𝓁,𝓁𝐸 )
where

•  is the finite set of 𝑁 nodes representing resources and 𝐸 is a
set of arcs representing a handover of work relation;

• 𝛴 and 𝛴𝐸 are finite alphabets of the available vertex and
arc labels, 𝑠∶𝐸 →  and 𝑡∶𝐸 →  are two maps indicating the
source and target vertex of an arc;

• 𝓁 ∶ → 𝛴 and 𝓁𝐸 ∶𝐸 → 𝛴𝐸 are two maps describing the label-
ing of the vertices and arcs.

In the following, for the sake of simplicity, we refer to a sociogram
𝐺 as a tuple 𝐺 = (, 𝐸), with 𝐸 as a multi-set of arcs. Each arc
𝑒 ∈ 𝐸 will be shortly represented as a tuple 𝑒 = (𝑟𝑖, 𝑟𝑗 , (𝑎𝑥, 𝑎𝑦, ℎ𝑥𝑦, 𝑞𝑥𝑦))
linking two nodes 𝑟𝑖, 𝑟𝑗 ∈ , being 𝑟𝑖 the source and 𝑟𝑗 the target
of 𝑒, and (𝑎𝑥, 𝑎𝑦, ℎ𝑥𝑦, 𝑞𝑥𝑦) the arc label. For convenience, we intro-
duce 𝜉ℎ(𝑟𝑖, 𝑟𝑗 , 𝑎𝑥) = {ℎ𝑥𝑦 ∶ ∃𝑎𝑦,∃𝑒 = (𝑟𝑖, 𝑟𝑗 , (𝑎𝑥, 𝑎𝑦, ℎ𝑥𝑦, 𝑞𝑥𝑦)) ∈ 𝐸}
which returns the values of handover of work between 𝑟𝑖 (after 𝑎𝑥
has been completed), and 𝑟𝑗 , and 𝜉𝑞(𝑟𝑖, 𝑟𝑗 , 𝑎𝑥) = {𝑞𝑥𝑦 ∶ ∃𝑎𝑦,∃𝑒 =
(𝑟𝑖, 𝑟𝑗 , (𝑎𝑥, 𝑎𝑦, ℎ𝑥𝑦, 𝑞𝑥𝑦)) ∈ 𝐸} which returns the numbers of times 𝑎𝑥
has been executed by 𝑟𝑖. Furthermore, the set 𝐺𝑟𝑖 (𝑎𝑥) = {𝑟′ ∈  ∶
∃(𝑟𝑖, 𝑟′, (𝑎𝑥, 𝑎𝑦, ℎ𝑥𝑦, 𝑞𝑥𝑦)) ∈ 𝐸} is introduced to return the subset of
resources for which an handover of work relation from 𝑟𝑖, after com-
pleting 𝑎𝑥, exists. The sociogram for the running example (Section 3)
is shown in Fig. 2.

It is worth noting that the definition of sociogram we give is differ-
ent from what is typically given in the organizational mining literature.
Indeed, we refer to a labeled multidigraph with multiple edges between
two nodes. This enables a greater expressiveness as we can encode not
only the handover of generic work between two resources, but we also
take into account which specific tasks one resource has handed over
the other.

5. Resource replacement

This section is devoted to present the general methodology followed
in this work. As shown in Fig. 3, we assume an organization relying
on a Business Process Management system with monitoring capabilities
of process execution. Data on executed activities are collected during
the process execution phase and stored in an event log, which is then
analyzed and elaborated through organizational mining techniques to
derive the sociogram as described in Section 4. Furthermore, informa-
tion is extracted from the system on the status of resource workload
6

Fig. 2. Sociogram for the running example.

and priorities of activities (run-time workload). This information and
the sociogram are used to drive the resource replacement. It is aimed
to return the set of selected resources to replace the unavailable ones
and their allocation to activities, taking into account the current load
status of resources and domain-based constraints.

In the following, we describe the statement of RRP.
Statement of RRP Given a sociogram 𝐺 = (, 𝐸), let 𝑅′ ⊆  be a set

of unavailable resources that must be replaced. For every unavailable
resource 𝑟𝑗 ∈ 𝑅′, let 𝑇𝑟𝑗 = {𝑎1,… , 𝑎ℎ} be a multi-set of activities
assigned to 𝑟𝑗 that must be reassigned to some other resources. For
every available resource 𝑟𝑖 ∈ 𝑅̂ =  ∖ 𝑅′, let 𝛾𝑖 be its workload factor,
𝜇𝑖 be its maximum workload factor and (𝑟𝑖) be its skills. The problem
is to determine a set of resources {𝑟1,… , 𝑟𝑛} ⊆ 𝑅̂ that is collectively
capable to replace resources in 𝑅′ to perform their activities under a
set of requirements, as follows:

• affinity : resources that are more compatible to those to replace are
preferred. Affinity takes into account handover of work relations,
capabilities of resources, performance and experience;

• availability : a resource can be selected only if its residual work-
load (i.e., the difference between the maximum and the current
workloads) is enough to perform the requested activities;

• load-balancing : resources with a high residual workload are pre-
ferred over those with a low residual one, to improve load-
balancing of resources;

• priority : in order to assign an activity with a given priority, all
activities with a higher priority must be assigned.
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Fig. 3. Overview of the resource replacement methodology.
5.1. Cost factors

Given a resource 𝑟𝑖 ∈ 𝑅̂ which is a candidate to replace 𝑟𝑗 ∈ 𝑅′

to perform the activity 𝑎𝑘 ∈ 𝑇𝑟𝑗 , we define a cost factor 𝑐𝑖𝑗𝑘, aimed at
weighting the assignment of the activity to 𝑟𝑖 based on its affinity with
𝑟𝑗 and its residual workload 𝜇𝑖 − 𝛾𝑖. The cost factor 𝑐𝑖𝑗𝑘 is defined as
follows:

𝑐𝑖𝑗𝑘 = 𝜓(1 − 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘)) + (1 − 𝜓)(1 −
𝜇𝑖 − 𝛾𝑖
𝜇𝑖

) (1)

where 𝜓 ∈ [0, 1] weighs the contribution of affinity and workload in
determining cost. In particular, the second component (1 − 𝜇𝑖−𝛾𝑖

𝜇𝑖
) is

equal to 0 when the resource 𝑟𝑖 is fully available (i.e., the current work-
load 𝛾𝑖 = 0). Conversely, when the resource is completely unavailable
(i.e., 𝛾𝑖 = 𝜇𝑖), the second component of (1) is equal to 1. As for the first
component of (1), 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) measures the similarity between 𝑟𝑖 and
𝑟𝑗 as follows:

𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) = 𝜔1 ⋅ 𝑐𝑜𝑙𝑙(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) + 𝜔2 ⋅ 𝑝𝑒𝑟𝑓 (𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) + 𝜔3 ⋅ 𝑒𝑥𝑝(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘)

The function 𝑠𝑖𝑚(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) returns the degree of affinity between
the two resources on the basis of (1) the collaborations that have
been established to perform the activity 𝑎𝑘 (i.e., 𝑐𝑜𝑙𝑙(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘)), (2)
the speed with which 𝑎𝑘 has been performed (i.e., 𝑝𝑒𝑟𝑓 (𝑟𝑖, 𝑟𝑗 , 𝑎𝑘)) and
(3) the experience gained by the two resources in carrying out the
activity (i.e., 𝑒𝑥𝑝(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘)). User parameters 𝜔1, 𝜔2, 𝜔3 ∈ [0, 1], such
that 𝜔1 + 𝜔2 + 𝜔3 = 1, are introduced to weigh the three similarity
factors.

In details, 𝐺𝑟𝑖 (𝑎𝑘) and 𝐺𝑟𝑗 (𝑎𝑘) (see Section 4) are the sets of resources
with whom respectively 𝑟𝑖 and 𝑟𝑗 have collaborated (through handover
of work) to perform the activity 𝑎𝑘.

Let ℎ̂(𝑟𝑥, 𝑟𝑦, 𝑎𝑗 ) = 1
|𝜉ℎ(𝑟𝑥 ,𝑟𝑦 ,𝑎𝑗 )|

⋅
∑

ℎ𝑖∈𝜉ℎ(𝑟𝑥 ,𝑟𝑦 ,𝑎𝑗 ) ℎ𝑖 be the average han-
dover of work between 𝑟𝑥, executing 𝑎𝑗 , and 𝑟𝑦. Finally, we introduce
the function 𝛿(𝑥) which returns 𝑥 if 𝑥 ≤ 1, 1 otherwise. The 𝑐𝑜𝑙𝑙 function
is defined as:

𝑐𝑜𝑙𝑙(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
|𝐺𝑖𝑗 (𝑎𝑘)|

⋅
∑

𝑟′∈𝐺𝑖𝑗 (𝑎𝑘)
𝛿
ℎ̂(𝑟𝑖, 𝑟′, 𝑎𝑘)
ℎ̂(𝑟𝑗 , 𝑟′, 𝑎𝑘)

, if |𝐺𝑟𝑗 (𝑎𝑘)| > 0

ℎ̂(𝑟𝑗 , 𝑟𝑖, 𝑎𝑘), if |𝐺𝑖𝑗 (𝑎𝑘)| = 0
0, otherwise.

where 𝐺𝑖𝑗 (𝑎𝑘) = 𝐺𝑟𝑖 (𝑎𝑘) ∩ 𝐺𝑟𝑗 (𝑎𝑘). The function 𝑐𝑜𝑙𝑙 ranges in [0, 1],
returning 0 when the two resources do not share any collaborations, 1 if
𝑟𝑖 interacts with all collaborators of 𝑟𝑗 with the same handover of work.
The 𝑐𝑜𝑙𝑙 function is introduced under the assumption that replacing a
resource with someone acquainted to work in the same team and with
similar handover relations is preferable.
7

The 𝑝𝑒𝑟𝑓 (𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) function compares the time taken by the two
resources to carry out 𝑎𝑘. Let 𝑡𝑟𝑖 and 𝑡𝑟𝑗 be the average time respectively
taken by 𝑟𝑖 and 𝑟𝑗 to perform 𝑎𝑘, the 𝑝𝑒𝑟𝑓 function is defined as

𝑝𝑒𝑟𝑓 (𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) = 𝛿

(

𝑡𝑟𝑗
𝑡𝑟𝑖

)

.

The 𝑝𝑒𝑟𝑓 function ranges in [0, 1]; values close to 0 mean that 𝑟𝑗 is
much faster than 𝑟𝑖. When 𝑟𝑖 is on average faster than 𝑟𝑗 , assigning 𝑎𝑘
to 𝑟𝑖 is also better than having it performed by 𝑟𝑗 , hence the value of
𝑝𝑒𝑟𝑓 is set to the maximum. The average times to perform an activity,
if not available in the event log, can be estimated from the model by
considering the difference in time between two causally related events.

Finally, the 𝑒𝑥𝑝(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) function compares the experience of the
two resources to perform 𝑎𝑘, computed as the number of times the
resource has carried out the activity (𝑞𝑟𝑖 (𝑎𝑘) and 𝑞𝑟𝑗 (𝑎𝑘) respectively).
The 𝑒𝑥𝑝 function is defined as

𝑒𝑥𝑝(𝑟𝑖, 𝑟𝑗 , 𝑎𝑘) = 𝛿

(

𝑞𝑟𝑖
𝑞𝑟𝑗

)

,

where 𝑞𝑟′ (𝑎𝑘) =
∑

𝑟𝑥∈𝐺𝑟′ (𝑎𝑘)
𝜉𝑞(𝑟′, 𝑟𝑥, 𝑎𝑘). This function ranges in [0, 1].

Values close to 0 mean that the experience of 𝑟𝑖 is much smaller than
that of 𝑟𝑗 , while the function takes the maximum value when the
experience of 𝑟𝑖 is greater than or equal to that of 𝑟𝑗 .

5.2. Priority of activities

As mentioned in the previous section, a requirement of the approach
is to take into account priority of activities to replace. In this context,
we model priority as a process-dependent function that defines a total
order over the set of activities to replace. In particular, we assume that
every activity has a priority value depending on (a) the process instance
in which it is expected to be executed and (b) its position within the
process. In particular:

• every process instance has a different priority, according to busi-
ness rules. For such a reason, given two process instances 𝑋 and
𝑌 with 𝑋 having a higher priority, for all activities 𝑎𝑥 in 𝑋 and
𝑎𝑦 in 𝑌 , priority of 𝑎𝑥 is higher than that of 𝑎𝑦.

• every activity has a priority depending on its position within a
process instance. Given a Casual Relation 𝐶𝑅 defined on a process
schema, given two activities 𝑎𝑥, 𝑎𝑦 belonging to the same process
instance, such that (𝑎𝑥, 𝑎𝑦) ∈ 𝐶𝑅, then priority of 𝑎𝑥 is higher than
priority of 𝑎𝑦.

In the following we define priority as a function associating each
activity to replace to a priority value.
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𝑅

1
1
1
1
1
1
1
1
1

Definition 8 (Priority Function). Given a set of resources to replace
′ ⊆ , and, for each 𝑟𝑗 ∈ 𝑅′, the set of activities 𝑇𝑟𝑗 , 𝑃 ∶  × → N

is a bijective function mapping a pair ⟨𝑟𝑗 , 𝑎𝑘⟩ to a unique non-negative
integer representing its priority.

As such, 𝑃 produces a total order over the set of all pairs {⟨𝑟𝑗 , 𝑎𝑘⟩ ∶
𝑟𝑗 ∈ 𝑅′, 𝑎𝑘 ∈ 𝑇𝑟𝑗 }. The specific priority value, given to each process
instance, is domain-dependent and therefore, left to implementation.
Given a resource to replace 𝑟𝑗 ∈ 𝑅′ and an activity to replace 𝑎𝑘 ∈ 𝑇𝑟𝑗 ,
in the following, we refer to 𝑃𝑘 as to the set of pairs 𝑝 ∈ 𝑃 with a
priority higher than that of ⟨𝑟𝑗 , 𝑎𝑘⟩, i.e. 𝑃𝑘 = {⟨𝑟𝑥, 𝑎𝑦⟩, 𝑟𝑥 ∈ 𝑅′, 𝑎𝑦 ∈ 𝑇𝑟𝑥
: 𝑃 (⟨𝑟𝑥, 𝑎𝑦⟩) > 𝑃 (⟨𝑟𝑗 , 𝑎𝑘⟩)}.

6. An integer linear programming model

We mathematically formulate RRP through ILP with the aim of
reassigning the activities of the unavailable resources at the minimum
total cost. A penalty is also paid if an activity remains unassigned. The
problem is modeled on the sociogram 𝐺 = (, 𝐸) by introducing the
decision variable 𝑥𝑖𝑗𝑘,∀𝑟𝑖 ∈ 𝑅̂, 𝑟𝑗 ∈ 𝑅′, 𝑎𝑘 ∈ 𝑇𝑟𝑗 , that is equal to 1
if the resource 𝑟𝑖 is selected for replacing the resource 𝑟𝑗 in order to
perform the activity 𝑎𝑘, 0 otherwise. For the sake of simplicity, in the
following formulation, we refer each activity as well as each resource
only through its subscript.

𝑚𝑖𝑛
(

∑

𝑗∈𝑅′

∑

𝑘∈𝑇𝑗

∑

𝑖∈𝑅̂∶𝛼𝑖𝑘=1

(𝑐𝑖𝑗𝑘 −𝑀𝑘)𝑥𝑖𝑗𝑘
)

(2)

∑

𝑖∈𝑅̂∶𝛼𝑖𝑘=1

𝑥𝑖𝑗𝑘 ≤ 1, ∀𝑗 ∈ 𝑅′, 𝑘 ∈ 𝑇𝑗 (3)

∑

𝑗∈𝑅′

∑

𝑘∈𝑇𝑗∶𝛼𝑖𝑘=1
𝜆𝑘𝑥𝑖𝑗𝑘 + 𝛾𝑖 ≤ 𝜇𝑖,∀𝑖 ∈ 𝑅̂ (4)

∑

𝑖∈𝑅̂∶𝛼𝑖𝑘=1

𝑥𝑖𝑗𝑘 ≤

∑

𝑖∈𝑅̂
∑

𝑗′∈𝑅′
∑

⟨𝑟𝑗′ ,𝑎𝑘′ ⟩∈𝑃𝑘∶𝛼𝑖𝑘=1
𝑥𝑖𝑗′𝑘′

|𝑃𝑘|
,∀𝑗 ∈ 𝑅′, 𝑘 ∈ 𝑇𝑗 (5)

𝑥𝑖𝑗𝑘 ∈ {0, 1} (6)

The objective function (2) to minimize takes into account the total cost
of assigning the activities of unavailable resources and the penalty (𝑀𝑘)
to pay for each activity 𝑎𝑘 remained unassigned. Indeed, since we want
to incentive the reassignments of all activities, in the objective function,
the cost of each activity reassigned is reduced by the related penalty to
pay in case it remains unassigned. It is worth noting that the specific
value given to penalties is defined at application level and depends on
the relative importance given to each activity to assign.

Constraints (3) impose that, for a given resource 𝑟𝑗 ∈ 𝑅′, each
activity is assigned to only one resource of 𝑅̂. The parameter 𝛼𝑖𝑘
indicates that the resource 𝑟𝑖 ∈ 𝑅̂ is able to perform the activity
𝑎𝑘 ∈ 𝑇𝑟𝑗 . In particular, it takes the value 1 if 𝑎𝑘 ∈ (𝑟𝑖), 0 otherwise.
Constraints (4) assure that the availability requirement is satisfied.
Indeed, the assignment of a set of activities to 𝑟𝑖 ∈ 𝑅̂ is possible only if
the sum of the load requested for each of these activities (i.e., 𝜆𝑘) and
the current workload 𝛾𝑖 is less than or equal to the maximum workload
𝜇𝑖. Constraints (5) guarantee that a lower priority activity cannot be
assigned if all the higher priority activities are not assigned yet, thus
satisfying the priority requirement. In particular, 𝑃𝑘 denotes the set of
activities with a priority greater than 𝑎𝑘. Indeed, the larger the instance
to be solved, the greater the number of these constraints depending on
both the number of resources to replace and the number of activities to
assign. Finally, constraints (6) define the binary nature of the decision
8

variables.
7. An LNS-based matheuristic

The solution of the ILP model, discussed in the previous section,
may require a relatively high computational effort, especially when
dealing with both medium-sized and large-sized instances of RRP.
Therefore, in this section, we describe a Large Neighborhood Search
(LNS) based matheuristic, designed to efficiently address both medium-
sized and large-sized instances of the problem in reasonable computa-
tional times.

LNS is a metaheuristic proposed by Shaw (1998) and successfully
used in several application contexts (Pisinger and Ropke, 2019). The
main idea is that, starting from an initial solution, its quality is pro-
gressively improved through destroy and repair procedures (hereafter,
referred as moves). The neighborhood to explore is then defined through
the moves implemented in both the destroy and the repair phase.
Then, the current solution is iteratively partially destroyed through
the destroy moves and then, rebuilt by the repair ones. Usually, both
the destroy and the repair moves are heuristic methods. For exam-
ple, Åstrand et al. (2020) develop an LNS in order to quickly find
high-quality schedules for the underground mine scheduling of mo-
bile machines. Wolfinger (2021) show the good performances of the
LNS designed for solving the Pickup and Delivery Problem with Time
Windows, Split Loads and Transshipments, compared to other solution
approaches. Finally, very recently, Şafak and Erdoğan (2023) propose
an LNS for solving the Container Loading Problem and show the quality
of its solutions, on a set of benchmark instances, compared to the
state-of-the-art solution approaches.

However, LNS has been also used in a matheuristic framework,
e.g., in Grenouilleau et al. (2020) for solving a home care schedul-
ing with predefined visits and in Assunção and Mateus (2021), for
addressing the Steiner team orienteering problem. In some works, the
repair phase is fed to a solver for solving a mathematical programming
formulation (e.g., Rastani and Çatay, 2023). In this work, we follow
this option as detailed in Algorithm 1.

Algorithm 1 LNS-based matheuristic
Input:

initial temperature 𝑇0,
number of removed assignments 𝛼,
cooling factor 𝛽,
total time limit 𝑇𝑇 ,
time limit of each repair phase 𝑇𝑅,
set of resources to replace 𝑅′,
set of resource available 𝑅̂,
set 𝑇̄ containing, for each 𝑗 ∈ 𝑅′, the set of its activities 𝑇𝑗

Output: best solution found 𝑠𝑜𝑙𝑏𝑒𝑠𝑡

1: Current solution 𝑠𝑜𝑙𝑐𝑢𝑟𝑟 ∶=InitSol(𝑅′, 𝑅̂, 𝑇̄ );
2: Current temperature value 𝑇 𝑐𝑢𝑟𝑟 ∶= 𝑇0;
3: Best solution 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 ∶= 𝑠𝑜𝑙𝑐𝑢𝑟𝑟;
4: while !Stop(TT) do
5: Solution 𝑠𝑜𝑙′:=Destroy(𝑠𝑜𝑙𝑐𝑢𝑟𝑟, 𝛼);
6: 𝑠𝑜𝑙′ ∶=Repair(𝑠𝑜𝑙′, 𝑇𝑅);
7: if Cost (𝑠𝑜𝑙′) < Cost (𝑠𝑜𝑙𝑐𝑢𝑟𝑟) then
8: 𝑠𝑜𝑙𝑐𝑢𝑟𝑟 ∶= 𝑠𝑜𝑙′;
9: if Cost (𝑠𝑜𝑙′) < Cost (𝑠𝑜𝑙𝑏𝑒𝑠𝑡) then
0: 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 ∶= 𝑠𝑜𝑙′;
1: end if
2: else
3: if Accept(𝑠𝑜𝑙′, 𝑇 𝑐𝑢𝑟𝑟) then
4: 𝑠𝑜𝑙𝑐𝑢𝑟𝑟 ∶= 𝑠𝑜𝑙′;
5: 𝑇 𝑐𝑢𝑟𝑟 ∶= 𝛽 × 𝑇 𝑐𝑢𝑟𝑟;
6: end if
7: end if
8: end while

The proposed solution approach receives the set of resources to
replace (𝑅′), the set of available resource (𝑅̂) and the set of activities
to be performed by each resource to be replaced (𝑇̄ ). Moreover, the
algorithm takes as input an initial value of the temperature parameter
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𝑇0 and the decreasing percentage of the temperature (i.e., the cooling
factor) 𝛽, used in a Simulated Annealing based acceptance criterion.

he parameters 𝛼 and 𝑇𝑅 indicate the percentage of assignments to
emove in the destroy phase and the maximum time given to the
olver in the repair phase, respectively. The algorithm returns the
est solution 𝑠𝑜𝑙𝑏𝑒𝑠𝑡 found within a maximum time limit 𝑇𝑇 chosen
s a stopping criterion (Step 4). The initial solution is found through
greedy algorithm (Step 1) that tries to assign the activities of the

navailable resources to those resources that can perform them at the
inimum cost. The initial solution found is feasible with regard to

he constraints of the problem, i.e., according to load and priority
onditions. In particular, Algorithm 2 details the routine InitSol(). First,
he set of possible triplets {⟨𝑖, 𝑗, 𝑘⟩| ∀𝑖 ∈ 𝑅̂, 𝑗 ∈ 𝑅′, 𝑘 ∈ 𝑇𝑗 , 𝛼𝑖𝑘 = 1}, is

sorted by non-decreasing assignment costs (Step 1). At each iteration,
the procedure adds a triplet to the initial solution 𝑆𝑜𝑙0 only if it meets
the load (4) and priority (5) constraints. These two conditions are ver-
ified by functions FeasibleLoad() and FeasiblePriority(), respectively
(Steps 10–14). If a triplet does not meet the criterion on load, it will be
discarded. Instead, if it does not meet the criterion on priority, it will
be put in the set 𝑇 𝑑𝑒𝑙 for being further verified (Step 16). Indeed, triples
re chosen according to a cost criterion and, then, this order may not
ecessarily respect the priorities among activities. For instance, let us
ssume that (1) activity 𝑘1 has a higher priority than 𝑘2, (2) a triplet
ith 𝑘2 has a lower cost than a triplet with 𝑘1 and (3) the two triplets

meet the load criterion. At the first execution of the loop (from Step
9 to Step 21), the triplet with 𝑘2 will be put in 𝑇 𝑑𝑒𝑙 because it does
not meet the priority constraint and the one with 𝑘1 in 𝑆𝑜𝑙0. Then, in
he second execution of the loop, the triplet with 𝑘2 will respect the
riority constraint and will also be placed in 𝑆𝑜𝑙0. The procedure ends
hen either no more feasible triplets can be added to the initial solution
r there are no other triplets to be analyzed (Steps 22–23). It is worth
emarking that 𝑭 𝒊𝒓𝒔𝒕(𝑇 𝑠𝑜𝑟𝑡) (Steps 6 and 12) returns the triplet having
he lowest assignment cost in the set 𝑇 𝑠𝑜𝑟𝑡.

Moreover, in order to improve the quality of the initial solution, we
mplement a local search that assures exploring a large neighborhood
f it by randomly removing 2×𝛼 assignments. Then, a re-optimization is
erformed, with a time limit equal to 2×𝑇𝑅, by solving the mathemat-
cal model (2)–(6) in which only the decision variables associated with
he maintained assignments are fixed. In each iteration of Algorithm
, the procedure Destroy(𝑠𝑜𝑙𝑐𝑢𝑟𝑟, 𝛼) destroys the current solution 𝑠𝑜𝑙𝑐𝑢𝑟𝑟
Step 5). In other words, such a procedure selects a subset 𝐴̂ of the
riplets ⟨𝑖, 𝑗, 𝑘⟩ such that the corresponding x-variables are equal to 1 in
𝑜𝑙𝑐𝑢𝑟𝑟. And, it sets to zero the x-variables of the triplets ⟨𝑖, 𝑗, 𝑘⟩ ∈ 𝐴̂. The
ubset 𝐴̂ is determined by invoking one of the following two remove
oves: 𝑐𝑜𝑠𝑡_𝑟𝑒𝑚𝑜𝑣𝑒 and 𝑟𝑎𝑛𝑑𝑜𝑚_𝑟𝑒𝑚𝑜𝑣𝑒. The former removes 𝛼 assign-
ents chosen with a probability that depends on the assignment cost.

n particular, the higher the assignment cost the higher the probability
f being removed. Instead, the 𝑟𝑎𝑛𝑑𝑜𝑚_𝑟𝑒𝑚𝑜𝑣𝑒 randomly chooses 2 × 𝛼
ssignments to be removed. This move has been designed in order to
ossibly follow a new search direction and to properly shake the current
olution. In each iteration, the remove move is randomly chosen.
hen, the algorithm repairs the destroyed solution (Step 6) by solving
he mathematical model (2)–(6) in which some decision variables are
lready fixed, corresponding to those that have not been removed in
he destroy phase. In order to limit the computational time of the repair
hase, the time limit 𝑇𝑅, given to the solver, depends on the type of
ove chosen in Step 5 and in any case, it is only a very small percentage

f the total time limit of the whole procedure. In particular, since in
he 𝑟𝑎𝑛𝑑𝑜𝑚_𝑟𝑒𝑚𝑜𝑣𝑒 move twice as many assignments are removed, the
ime limit given to the solver is double, i.e., 2 × 𝑇𝑅. In Section 8.3 we
ill show experimentally the validity of this choice. If the new solution

ound after a destroy and a repair move is better than the current one,
he current solution is replaced by it (Steps 7–8). In addition, if the
ew solution is also better than the best one, the latter is replaced by
t (Steps 9–10). Otherwise, the Accept procedure (Step 13), borrowed
9

rom the Simulated Annealing meta-heuristic, is applied in order to M
Algorithm 2 InitSol(𝑅′, 𝑅̂, 𝑇̄ )
Input:

set of resources to replace 𝑅′,
set of resources available 𝑅̂,
set 𝑇̄ containing, for each 𝑗 ∈ 𝑅′, the set of its activities 𝑇𝑗

Output: initial solution 𝑠𝑜𝑙0

1: Let 𝑇 𝑠𝑜𝑟𝑡 ∶= {⟨𝑖, 𝑗, 𝑘⟩| ∀𝑖 ∈ 𝑅̂, 𝑗 ∈ 𝑅′, 𝑘 ∈ 𝑇𝑗 , 𝛼𝑖𝑘 = 1} be the set of triplets
sorted by non-decreasing assignment costs 𝑐𝑖𝑗𝑘

2: Let 𝜇𝑖 ∶= 𝜇𝑖 − 𝛾𝑖 be the residual workload ∀𝑖 ∈ 𝑅̂
3: 𝑆𝑜𝑙0 ∶= ∅
4: 𝐸𝑥𝑖𝑡 ∶= 𝐹𝐴𝐿𝑆𝐸
5: while !𝐸𝑥𝑖𝑡 do
6: ⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩ ∶= First (𝑇 𝑠𝑜𝑟𝑡)
7: 𝐹𝑜𝑢𝑛𝑑 ∶= 𝐹𝐴𝐿𝑆𝐸
8: 𝑇 𝑑𝑒𝑙 ∶= ∅
9: while ⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩ ≠ 𝑛𝑢𝑙𝑙 do

10: if FeasibleLoad(⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩) then
11: if FeasiblePriority(⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩) then
12: 𝜇𝑖∗ ∶= 𝜇𝑖∗ − 𝜆𝑘∗
13: 𝑆𝑜𝑙0 ∶= 𝑆𝑜𝑙0

⋃

{⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩}
14: 𝐹𝑜𝑢𝑛𝑑 ∶= 𝑇𝑅𝑈𝐸
15: else
16: 𝑇 𝑑𝑒𝑙 ∶= 𝑇 𝑑𝑒𝑙

⋃

{⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩}
17: end if
18: end if
19: 𝑇 𝑠𝑜𝑟𝑡 ∶= 𝑇 𝑠𝑜𝑟𝑡 ⧵ ⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩
20: ⟨𝑖 ∗, 𝑗 ∗, 𝑘 ∗⟩ ∶= First (𝑇 𝑠𝑜𝑟𝑡)
21: end while
22: if (!Found ∨ 𝑇 𝑑𝑒𝑙 = ∅) then
23: 𝐸𝑥𝑖𝑡 ∶= 𝑇𝑅𝑈𝐸
24: end if
25: 𝑇 𝑠𝑜𝑟𝑡 ∶= 𝑇 𝑑𝑒𝑙

26: end while

overcome local optimum (see Ropke and Pisinger, 2006 and Schrimpf
et al., 2000). In particular, let 𝑣𝑎𝑙, 𝑓 ′ and 𝑓 be, respectively, a number
randomly generated between 0 and 1, the objective function of the
solution 𝑠𝑜𝑙′ and the best incumbent found so far. If 𝑒−

(𝑓 ′−𝑓 )
𝑇 𝑐𝑢𝑟𝑟 > 𝑣𝑎𝑙, the

ew solution 𝑠𝑜𝑙′ is accepted and then, the best solution found so far
𝑜𝑙𝑐𝑢𝑟𝑟 is replaced by it (Step 14). The value of the temperature 𝑇 𝑐𝑢𝑟𝑟 > 0
s decreased every iteration through the cooling rate 𝛽 ∶ 0 < 𝛽 < 1 (Step
5).

. Experiments

This section describes the experimentations that have been carried
ut to evaluate the performance of the proposed approach:

• the first experiment, discussed in Section 8.1, is focused on the
evaluation of the execution time for the sociogram creation;

• the second set of experiments, discussed in Section 8.2, are aimed
to provide a comparison between the ILP model and the LNS-
based matheuristic for medium-sized and large-sized problems.

.1. Evaluation of sociogram creation

In this section, we refer to the real-life dataset published for the
PI Challenge 2012 (https://www.win.tue.nl/bpi/doku.php?id=2012:
hallenge), that was generated by a Dutch Financial Institute. The event
og contains 262 200 events in 13 087 traces referring to an application
rocess for personal loan, recorded from October 1st, 2011 to March
4th, 2012.

As mentioned before, the methodology proposed in this paper re-
uires a conform event log (i.e., such that all traces are 100% fitting
ith the model). Given that the model was not available with the
ataset, a process model has been discovered through the Heuristic
iner (Weijters et al., 2006) plugin in ProM (Van Dongen et al., 2005).

https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
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Fig. 4. Sociogram creation time for event logs with increasing number of events.

hen, a preliminary conformance checking step has been performed
nd non-fitting traces have been filtered out, resulting in a number of
974 traces and 47 634 events after the filtering. Each trace includes
n average number of 6 events, ranging from a minimum of 3 to a
aximum of 41 and corresponding to 8 activity names. Finally, the

otal number of resources are 62.
In the following, we report an experiment aimed at analyzing

fficiency in terms of running time needed for the creation of the
ociogram. The experiment has been carried out on Linux Ubuntu 18.04
TS 64-bit running on a 4-core 2.2 GHz processor with 16 GB RAM. The
ociogram creation has been implemented in Java.

.1.1. Experimental setup
The experiment has been performed by analyzing how the so-

iogram creation time varies with (1a) the size of the event log and
1b) the number of resources in a log.

As for test (1a), starting from the dataset 𝐷 obtained after the
filtering, 9 additional datasets (𝐷1,… , 𝐷9) have been generated, each
containing a given percentage of the overall events, ranging from 10%
to 90%. The selection has been performed randomly for each dataset,
avoiding breaking traces. On the other hand, for the test (1b), we have
generated for each 𝐷𝑖 three additional datasets 𝐷𝑖,25, 𝐷𝑖,50 and 𝐷𝑖,75,
each containing respectively the 25%, 50% and 75% of resources in 𝐷𝑖.
These datasets have been generated by artificially reducing the number
of resources but keeping the same number of traces and events.

8.1.2. Results and discussion
Results of test (1a) are shown in Fig. 4, where the time to build the

sociogram for datasets 𝐷1,… , 𝐷9 and 𝐷 are reported. A quadratic trend
(with correlation R=0.99) can be clearly identified. This is due to the
time needed to align each trace to the model, after which the sociogram
can be computed in (𝑛) steps, where 𝑛 is the number of events in the
log.

In Fig. 5, we represent the sociogram creation time for several
datasets, each containing an increasing number of resources (i.e., per-
centage of resources with regard to the original event log). For each
test, an almost linear (or even slightly sublinear in some cases) trend
can be identified.

According to the above results, it is evident that the creation of
the sociogram is a demanding phase. It is worth noting that, while
the resource replacement phase is to be executed at need, a sociogram
should only be updated when the model of interaction of resources
changes. This means that, since the event log grows incrementally
(traces can only be added), it is possible to devise a refresh procedure
for a sociogram that takes into account only the most recent traces,
i.e. those generated after the last refresh. As such, the sociogram model
10

can be updated incrementally on a regular basis or at need. f
Fig. 5. Sociogram creation time (in minutes) for event logs with an increasing number
of resources (from 25% to 100% of the original event log), for logs with various sizes.

8.2. Comparison between the ILP model and LSN-based matheuristic

8.2.1. Experimental setup
The experiment is based on the execution of the ILP model and the

LSN-based matheuristic on a set of problem instances of increasing size,
synthetically generated from the same dataset.

The dataset is inspired to the case study and consists of a log
including 1040 traces and 7280 events. Each trace includes 7 events on
average, ranging from 6 to 8 and representing 7 distinct activities. The
number of resources is 120. The reason for introducing an additional
event log is that the dataset used in Section 8.1 cannot be directly used
to evaluate the resource replacement approach, as it does not contain
relevant information (e.g., workload, missing resources). Moreover, we
want to analyze a realistic scenario of a medium–large company, where
the number of resources and number of activities to be performed by
each resource are higher than the values reported in such an event
log. Furthermore, our goal is to compare the ILP model and the LNS-
based matheuristic as the complexity varies. We would like to point
out that although the chosen dataset is synthetic, this does not affect
the significance of the results and their applicability to a real context.
In fact, the problem instance depends on the sociogram rather than
on the chosen process model. For each causal relation (𝑎𝑖, 𝑎𝑗 ) in the
process model, there will be as many arcs in the sociogram as for each
pair of resources assigned to 𝑎𝑖 and 𝑎𝑗 respectively. Thus, even simple
processes and logs with few traces can generate complex problem
instances. The size of the log only affects the accuracy with which the
sociogram weights are calculated.

Given the set of resources , the set  of activities, a number 𝑁𝑟
f resources to replace, and a number 𝑁𝑎 of activities for each missing

resource, a problem instance is generated by a problem instance creator
script through the following procedure:

• initialize the list of activities and list of resources from the log;
• randomly select 𝑁𝑟 resources to replace from the resource list.

The remaining (|| −𝑁𝑟) resources are considered available;
• for each selected resource:

– randomly select 𝑁𝑎 activities from the activity list. The
selection can contain duplicated activities, that represent
multiple occurrences of the same activity in the same or in
different process instances;

– for each selected activity to replace: assign it a random
priority from [0, 𝑁𝑟 ∗ 𝑁𝑎) that has not been previously
assigned (each activity to replace will have a unique priority
number able to define a total order over the set of activities
to replace).

The problem instance was then created by defining a variable
or each available resource 𝑟 and each activity 𝑎 to replace that is
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Table 3
Problem instances features.

Problem instance 𝑁𝑟 𝑁𝑎 Total possible assignments

S1, S2 10 10 100
S3, S4 10 15 150
S5, S6 15 10 150
S7, S8 15 15 225

M1, M2 20 20 400
M3, M4 20 25 500
M5, M6 25 20 500
M7, M8 20 30 600
M9, M10 30 20 600

L1, L2 25 25 625
L3, L4 30 25 750
L5, L6 25 30 750
L7, L8 30 30 900

compatible with 𝑟, i.e., 𝑎 ∈ (𝑟). Factors such as capability of resources
and average load request for activities were extracted from the event
log. Cost factors 𝑐 were pre-computed from the sociogram and the
log for any triple (i-th available resource, 𝑗th resource to replace,
𝑘th activity to replace) to speed up the problem instance generation
process. Parameter 𝜔1 was set to 0.5, while parameters 𝜔2 and 𝜔3 were
set to 0.25 to weight more the collaboration factor. Parameter 𝜓 was
set to 0.5. It should be noted that the sociogram is calculated only once
and is not dependent on problem instances. The maximum workload
was set to 1 for all resources, whereas the current workload factor for
each resource was derived from the event log.

Following the above procedure, we generated a number of problem
instances by varying parameters 𝑁𝑟 and 𝑁𝑎 from 20 to 30 with step
5. Therefore, the number of total possible assignments, given by 𝑁𝑟 ∗
𝑁𝑎, ranges from 400 to 900. We generated two problem instances
for each pair 𝑁𝑟, 𝑁𝑎, resulting in a total of 18 problem instances as
summarized in Table 3. Problem instances were classified as medium-
sized if the number of possible assignments is up to 600 (𝑀1 −𝑀10),
large-sized otherwise (𝐿1 − 𝐿8). The choice of this problem instance
size is motivated by the fact that the ILP model can solve RRP to opti-
mality on small-sized problem instances, up to 150–200 total possible
assignments. However, on larger problem instances, it usually does not
terminate within the CPU time limit, which was set to 2 h. For the sake
of completeness, we also generated a set of small-sized instances with
𝑁𝑟, 𝑁𝑎 ∈ {10, 15} (𝑆1 − 𝑆8).

For each problem instance, the model was solved with a time of
7200 s and the penalty 𝑀𝑘 was set to 100 for each activity. As for the
matheuristic, we used ParamILS (Hutter et al., 2009) to automatically
configure the parameters. The range of values tested for each parameter
is: 𝛼 from 0.2 to 0.7 with step 0.05, 𝑇𝑅 ∈ {25, 50, 100, 150, 200}, 𝑇0
from 50 to 500 with step 50 and 𝛽 from 0.01 to 0.05 with step 0.01. We
ran ParamILS on the three sizes of problem instances independently,
obtaining as the best configuration: 𝛼 = 0.45, 𝑇0 = 300 and 𝛽 = 0.03 for
each type of instance; 𝑇𝑅 = 100 for large-sized problem instances and
𝑇𝑅 = 50 for small-sized and medium-sized problem instances. We set
𝑇𝑇 = 7200 for all instances for comparison purposes.

The experiments were carried out on a 4-core 2.39 GHz processor
with 32 GB RAM. The matheuristic was implemented in Java, and the
ILP model was solved through IBM ILOG CPLEX API (version 20.1).

8.2.2. Results and discussion
In order to compare the performances of the two proposed ap-

proaches on different instances,the results are presented in terms of
gain of the matheuristic over the model on the problem instance 𝑖 as:

𝑔𝑎𝑖𝑛(𝑖) =
𝐹𝑂𝑚ℎ(𝑖) − 𝐹𝑂𝑚(𝑖)

𝑚𝑖𝑛(𝐹𝑂𝑚ℎ(𝑖), 𝐹𝑂𝑚(𝑖))
⋅ 100

where 𝐹𝑂𝑚ℎ(𝑖) and 𝐹𝑂𝑚(𝑖) are the values of the objective function
achieved on the problem instance 𝑖 by the matheuristic and the ILP
11
Table 4
Comparison between the ILP model and the matheuristic.
Problem instance Gap 𝑔𝑎𝑖𝑛𝑏𝑒𝑠𝑡 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 𝑡𝑖𝑚𝑒𝑇 𝑜𝐵𝑒𝑠𝑡𝑎𝑣𝑔 (s)

S1 0.000 0.000 0.000 2.24
S2 0.000 0.000 0.000 2.39
S3 0.000 0.000 0.000 6.11
S4 0.000 0.000 0.000 7.56
S5 0.000 0.000 0.000 3.67
S6 0.000 0.000 0.000 3.87
S7 0.000 0.000 0.000 10.88
S8 0.000 0.000 0.000 11.10

M1 0.050 0.000 0.000 731.92
M2 0.008 0.000 0.000 482.86
M3 0.001 0.000 0.000 2,803.79
M4 0.001 0.000 0.000 476.66
M5 0.032 0.003 0.001 4,379.76
M6 0.050 0.000 0.000 763.47
M7 0.054 0.002 0.000 5,784.27
M8 0.036 0.002 0.002 2,722.41
M9 0.189 0.001 0.001 4,215.34
M10 0.093 1.238 1.238 3,932.59

L1 0.054 1.143 1.143 2,454.41
L2 0.032 0.001 −0.046 5,579.87
L3 0.294 1.126 1.125 5,348.27
L4 0.248 0.278 0.278 5,707.17
L5 0.104 0.591 0.589 5,792.46
L6 0.133 0.004 0.004 5,230.81
L7 0.297 3.845 3.738 6,226.43
L8 0.221 1.032 0.561 5,312.98

model, respectively. Positive values of gain correspond to an advantage
of the matheuristic over the model, and the gain gives the percentage of
objective function reduction achieved by it. Vice versa, negative values
indicate a loss in performance of the matheuristic, and the gain gives
the percentage of objective function reduction achieved by the model.

Table 4 reports gains computed by considering both the average
values of the objective function achieved by the matheuristic (𝑔𝑎𝑖𝑛𝑎𝑣𝑔)
and the best value (𝑔𝑎𝑖𝑛𝑏𝑒𝑠𝑡) over 10 runs. The table also reports the
𝐺𝑎𝑝 produced, in the time limit of 7200 seconds, by CPLEX for the
ILP model. Finally, the time in seconds required by the matheuristic
to reach the best solution averaged over the 10 runs (𝑡𝑖𝑚𝑒𝑇 𝑜𝐵𝑒𝑠𝑡𝑎𝑣𝑔) is
lso shown.

From Table 4, it turns out that the advantage of the matheuristic
rows as the complexity of the problem instance increases. First, one
an note that our matheuristic always finds the optimal solution, cer-
ificated by CPLEX solving the ILP model, on the small-sized instances.
n this set of instances, our solution approach requires an average time

o best that is comparable to the time needed to CPLEX (5.98 s of the
ormer versus 5.57 s of the latter). Second, it is worth noting that the
LP model is never solved to optimality by CPLEX even in 7200 seconds
n all the other problem instances, i.e., the medium-sized and large-
ized ones. In particular, on the medium-sized problem instances, the
verage Gap is equal to 0.051, whereas, on the large-sized problem in-
tances, it is 0.173. Indeed, on average, the gain for large-sized problem
nstances (0.924 for 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 and 1.002 for 𝑔𝑎𝑖𝑛𝑏𝑒𝑠𝑡) is greater than the
ain achieved on medium-sized problem instances (0.124 for 𝑔𝑎𝑖𝑛𝑎𝑣𝑔
nd 0.125 for 𝑔𝑎𝑖𝑛𝑏𝑒𝑠𝑡). The increase in gain with respect to the number
f possible assignments is even more evident in Fig. 6, where the gains
f problem instances with same 𝑁𝑎 and 𝑁𝑏 have been averaged. It
an be seen that up to about 750 total possible assignments, the two
urves are almost identical; then, they differ markedly. This indicates
hat the variability of solutions up to 750 is low and solutions are
ndependent of the run, and, therefore, of the initialization. Clearly, for
ore complex situations, where the solution space is larger, the greedy
euristic fails to determine a good quality initial solution. Hereafter, we
ocus only on medium-sized and large-sized problem instances, where
PLEX fails to certify the optimum.

It is noteworthy that in the 6 cases where the two methods tie (5
f 𝑔𝑎𝑖𝑛 is considered), the matheuristic obtains the best result in
𝑏𝑒𝑠𝑡
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Fig. 6. Gain Vs. number of possible assignments.

Fig. 7. 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 of the matheuristic over large-sized problem instances, varying TT.

by far less time than the model. Indeed, in these cases, the average
time to achieve the best result ranges from 6.67% to 38.89% of that
required by the ILP model, except for problem instance M7 where it is
5784 seconds. Fig. 7 shows the 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 achieved by the matheuristic
over large-sized problem instances as it varies with the time limit
(TT). Whatever TT, in these experiments, the 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 is calculated by
considering a time limit of 7200 s for the model, thus penalizing
the matheuristic. In about 63% of cases, the matheuristic achieves a
positive gain in a maximum time of 30 min.

In Table 5, we report the number of activities the model was able to
assign to available resources, and the number of assignments returned
by the matheuristic averaged over the 10 runs with also standard
deviations reported in brackets. In most of the medium-sized problem
instances, the two approaches return the same number of assignments.
Instead, in most of the large-sized problem instances, the matheuristic
is able to allocate more activities than the model. Clearly, on 𝐿2, where
the matheuristic performs worse on average, the number of assignments
in the solution found by the model is greater than that in the solution
of the matheuristic.

The Wilcoxon Signed Rank Sum Test (Wilcoxon, 1945) is performed
to check the null hypothesis that neither approach is better than the
other in terms of objective function on medium-sized and large-sized
instances. The test is performed both on 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 and 𝑔𝑎𝑖𝑛𝑏𝑒𝑠𝑡. In the
worst-case scenario, where we consider 𝑔𝑎𝑖𝑛𝑎𝑣𝑔 , the two approaches
return the same results on 6 problem instances and the matheuristic
outperforms the model on 11 of 12 remaining problem instances. When
12

𝑔𝑎𝑖𝑛𝑏𝑒𝑠𝑡 is taken into account, the matheuristic performs better than the t
Table 5
Number of assignments in the solutions provided by the two approaches.

Problem instance ILP Model LNS-based Matheuristic
No. of assignments Average no. of assignments

M1 326 326.0 (0.00E+00)
M2 301 301.0 (0.00E+00)
M3 478 478.0 (6.10E−06)
M4 361 361.0 (0.00E+00)
M5 420 420.0 (0.00E+00)
M6 426 426.0 (0.00E+00)
M7 459 459.0 (0.00E+00)
M8 463 463.0 (0.00E+00)
M9 381 381.0 (0.00E+00)
M10 398 403.0 (0.00E+00)

L1 436 441.0 (0.00E+00)
L2 420 419.8 (6.00E−01)
L3 352 356.0 (0.00E+00)
L4 361 365.0 (0.00E+00)
L5 347 349.0 (0.00E+00)
L6 314 316.0 (0.00E+00)
L7 352 365.6 (8.00E−01)
L8 386 388.2 (1.94E+00)

model on 13 problem instances and returns the same value of the model
in the remaining 5 problem instances. The null hypothesis is rejected
in both cases, with significance levels of 99.25% (𝑝-value = 0.0076)
and 99.85% (𝑝-value = 0.0015), for the average and the best gains,
respectively.

Some managerial insights can be also provided from the solutions
obtained. Regarding the activity to reassign, the percentage replacement
degree (i.e., the ratio between the number of reassigned activities and
the number of activities to replace) can be computed, giving us a
measure of the quality of the solutions found. For example, considering
the instance named 𝑀1, the percentage replacement degree for each
ctivity is on average equal to 81.50% meaning that almost all the
ctivities have been reassigned to the available resources (i.e., 326
ctivities over 400). Moreover, on this instance, one can also observe
hat all the 326 reassigned activities have higher priority than those
hat have not been reassigned. Regarding the resources available to
eplacements, one can compute the residual workload for each of them
fter the new reassignments are made. This way, the manager can easily
dentify the most critical resources (i.e., those that are used for almost
ll of their residual workload) and then he/she can decide whether it
s appropriate to invest more in them (e.g., to pay overtime hours) or
n acquiring new resources with the same skills.

.3. Sensitivity analysis on the moves of the LNS-based matheuristic

This section aims at discussing a sensitivity analysis on the designed
oves in the LNS-based matheuristic. First, we analyze the solutions

btained with only one move at time, compared to the solutions
etected when both the moves are used. To this purpose, we executed
0 run for each of the two cases on all the medium-sized and the
arge-sized instances.

The results confirm that using both the moves instead of only one
f the two helps finding better solutions on average. In particular,
n the medium-sized instances the average of the gains when only
he cost_remove move and only the random_remove move are used in
he destroy step are 0.67% and 0.42%, respectively. These gains be-
ome higher on the large-sized instances, being 1.99% and 3.04%
espectively with only the cost_remove move and the random_remove
ove.

Another performed analysis is related to the two input parameters of
he random_removemove, i.e., the number of assignments to remove and
he time to repair after this move is applied. In the proposed approach,
hey are respectively 2𝛼 and 2𝑇𝑅. It means that we are always removing

wice as many assignments as removed in the cost_remove move, and
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:

we are always giving the solver twice as much time to repair the
destroyed solution. This choice is first motivated by the fact that the
random_remove move was designed with the aim of shaking as much
as possible the current solution. To experimentally evaluate our design
choice, we analyze the sensitivity of the solutions by varying these
values. For this reason, we consider also these three possible cases in
the random_remove move:

• removing 𝛼 assignments, with a time to repair equals to TR (case
denoted as (𝛼, 𝑇𝑅));

• removing 2𝛼 assignments, with a time to repair equals to TR (case
denoted as (2𝛼, 𝑇𝑅));

• removing 𝛼 assignments, with a time to repair equals to 2TR (case
denoted as (𝛼, 2𝑇𝑅));

We compare each of them with the base case, i.e., the case in which
we remove 2𝛼 assignments with a time to repair equals to 2TR,
i.e., (2𝛼, 2𝑇𝑅). For each instance and for each of these three cases,
we compute the average gain with regard the base case. Then, we
average the gains on the medium-sized instances and on the large-sized
instances. The computational results confirm that the base case out-
performs the other three cases. In particular, on the medium-sized in-
stances, the average gains are not very significant, being 0.006%, 0.099%
and 0.002%, respectively, with (𝛼, 𝑇𝑅), (2𝛼, 𝑇𝑅), (𝛼, 2𝑇𝑅). Instead, these
gains become more significant considering the large-sized instances on
which they are 0.079%, 0.052% and 0.040%, respectively, with (𝛼, 𝑇𝑅),
(2𝛼, 𝑇𝑅), (𝛼, 2𝑇𝑅). In the experiments with large-sized instances, we
note that the worst configuration is (𝛼, 𝑇𝑅), indicating that an increase
in both TR and alpha is useful in the random_removemove. Furthermore,
whatever the instance size, the results indicate that when we remove
twice as many assignments as the cost_remove move, the same 𝑇𝑅 as
in cost_remove move is not sufficient. As a matter of fact, considering
only the times taken by the random_remove move in the base case, it can
be seen that on average it takes 199.48 s on the large-sized instances
and 95.83 s on the medium-sized instances, confirming that a double
TR is necessary. Indeed, after the random_remove move, on average,
only 10.19% and 2.13% of the ILP models are solved to optimality,
respectively, considering medium-sized and large-sized instances.

9. Conclusion

In this work, we proposed a data-driven approach to support re-
source replacement in organizations, based on a notion for handover
of work that is capable to model collaboration among resources on
the basis of causal relations between activities. The solution of such
a problem becomes crucial in order to guarantee continuity in the
business process. The proposed approach exploits event logs of past
process executions and takes into account also run-time resource work-
load and load-balancing. Although we referred mostly to human-centric
processes in both the case study and the experimentation, the approach
is general enough to be applied in cases where a mix of users and
machines cooperate together, provided additional constraints on which
resources cannot be selected for replacement. Then, we formulated the
Resource Replacement Problem (RRP) through ILP, in order to select
the available resources for performing the activities already assigned to
the unavailable resources, at the minimum total cost, under both the
workload and the priority constraints. In order to efficiently address
RRP on medium-sized and large-sized problem instances, we also de-
signed a Large Neighborhood Search based matheuristic. Experimental
results, obtained on a set of real-alike problem instances, showed the
effectiveness of the proposed matheuristic. In fact, it outperforms the
ILP model on average, even concerning the solution quality in the cases
in which the latter reaches the CPU time limit given to the solver
(i.e., two hours). In addition, the sensitivity analysis performed on the
moves designed in the proposed matheuristic confirmed the need of
having all of them for detecting good quality solutions.

As future work, we plan to extend the sociogram to take into
account further social relations among resources, that can be retrieved
13
from event logs, e.g., subcontracting or cooperation, as well as from
other data sources, e.g., enterprise social networks. We also plan to
develop further applications, including analyses of what-if scenarios
and evaluation of robustness to critical situations, to provide a measure
of organization resilience.
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