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Highlights

• Explores a topic of social interest: developing technologies for ageing pop-

ulations

• Emphasises the connection of active assisted living and life-logging, unseen

to date

• Reviews literature from two standpoints: technologies used, and applica-

tion fields

• Covers recent years not covered by others, with an emphasis on 2016-

present

• Regards ethical implications of in-home devices, user-centred design and

acceptance
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Abstract

Providing support for ageing and frail populations to extend their personal au-

tonomy is desirable for their well-being as it is for the society at large, since

it can ease the economic and social challenges caused by ever-ageing developed

societies. Ambient-assisted living (AAL) technologies and services might be

a solution to address those challenges. Recent improved capabilities in both

ambient and wearable technologies, especially those related with video and lifel-

ogging data, and huge advances in the accuracy of intelligent systems for AAL

are leading to more valuable and trustworthy services for older people and their

caregivers. These advances have been particularly relevant in the last years

due to the appearance of RGB-D devices and the development of deep learning

systems. This article reviews these latest developments in the intersection of

AAL, intelligent systems, lifelogging, and computer vision. This paper provides

a study of previous reviews in these fields, and later analyses newer intelligent

techniques employed with different video-based lifelogging technologies in order

to offer lifelogging services for AAL. Additionally, privacy and ethical issues as-

sociated with these technologies are discussed. This review aims at facilitating
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the understanding of the multiple fields involved.

Keywords: Lifelogging, Computer vision, Human activity recognition,

Ambient-assisted living, Quantified self, Telecare, eHealth

2010 MSC: 00-01, 99-00

1. Introduction

The current situation in developed countries with the increase of ageing pop-

ulations is unsustainable in the long run unless technological and other remedies

are put in place. Since age is a factor for the decrease in personal autonomy and

the increase in health and social issues, costs associated with these will grow,5

thus putting pressure on health systems and both professional and informal

caregivers, with older people unable to receive assistance and having decreased

chances of leading an independent life, and becoming a burden to families and

the society at large due to lost working ours by caregivers (absenteeism) and

increased expenditures on healthcare providers, as stated by Rashidi & Mihai-10

lidis (2013). The European Union recognised the importance of this by funding

research directed towards ameliorating this situation and creating new technolo-

gies in the field of ambient –or active– assisted living (AAL), see Calvaresi et al.

(2017).

AAL systems aim at improving the quality of life and supporting indepen-15

dent and healthy living of older or/and impaired people by using information

and communication technologies at home, at the workplace and in public spaces.

AAL environments are embedded with a variety of sensors, either located in the

environment or worn by the user, that acquire data about the state of both

the environment and the individual and/or allow person-environment interac-20

tion. These data are processed using expert and intelligent systems in order to

provide advanced and personalised healthcare services.

Progress in wearable computing, with a myriad of products in the market

(e.g. wearable cameras and smart watches, wristbands and glasses), increased

functionality of mobile devices and apps for health and wellbeing, and easier25
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installation of more affordable home automation systems are supporting the de-

sign, development, and adoption of healthcare and assisted living services by

a larger population. For instance, lifelogging technologies may enable and mo-

tivate individuals to pervasively capture data about them, their environment,

and the people with whom they interact. Acquisition and processing of phys-30

iological signals (e.g. heart rate, respiratory rate, body temperature, and skin

conductance), motion, location, performed activities, images seen, and sounds

heard, are the basis for the provision of a variety of cutting-edge services to in-

crease peoples’ health, wellbeing, and independence. Examples of these services

include personalised healthcare, wellness monitoring (physical activity, dietary35

habits), support for people with memory impairments, social participation, mo-

bility, support to formal and informal caregivers, predictive systems (decline in

cognition, aggressive behaviours, fall prevention).

Recently, advances in intelligent systems and computer vision have led to

the use of cameras in AAL systems, as they provide richer sensory information40

than the traditional sensors employed in those systems to monitor people, e.g.,

magnetic sensors, presence sensors and pressure mats (Nguyen et al., 2016).

Video-based AAL systems usually employ conventional “third person” vision

systems, where the cameras are located in the environment. An alternative is

to mount a camera on the head or the torso of a person and record activities45

from an egocentric perspective, i.e. from the subject’s own point of view.

According to Selke (2016, Ch. 1) lifelogging is understood as different types

of digital self-tracking and recording of everyday life. The term is often used

interchangeably with others such as self-tracking or quantified self (QS). Yet,

normally, the latter is used to refer to the movement of people who monitor50

themselves or log their lives. More in depth, lifelogging means capturing human

life in real time by recording physiological as well as behavioural (activity)

data and store them for knowledge extraction at a later stage, which allows self-

archiving, self-observation and self-reflection. Technologies used tend to be non-

intrusive, such as miniature cameras and other sensors (wearable computing,55

smart watches) with real-time data transfer and ubiquitous access. Another
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feature of lifelogging is that it is a continuous process that requires no user

interaction. Data collection is always on. In the context of AAL, sensors used

for lifelogging can also be ambient-installed as opposed to wearable sensors, for

instance, video surveillance or other cameras installed in nursing or smart homes60

to monitor and support older and frail people (Jalal et al., 2014). Furthermore,

the data collection performed by users about their habits, shared with other

stakeholders (caregivers, medical practitioners) is key to provide assistive means

for improved, long-lasting independent living.

Most lifelogging technologies have ethical implications, and may have low65

user acceptance if the users are not involved in the process. Living labs have

been proposed (Bygholm & Kanstrup, 2015; Queirós et al., 2015) as a means

to reach a better understanding of user needs, as well as to lower prospective

users’ resistance that hinder the development and deployment of very much

needed technologies for the ageing populations in developed countries. Most70

existing resistance has to do with ethical concerns of mass surveillance and lack

of privacy (Bygholm & Kanstrup, 2015; Arning & Ziefle, 2015; Padilla-López

et al., 2015).

This paper presents a literature review of the latest advances in the conflu-

ence of these three fields, namely computer vision (CV), AAL, and lifelogging.75

That is, it explores existing video-based technologies in the context of AAL with

a focus on methods whose outputs can be assembled together in order to create

a lifelog for the user, who can then share it, at their discretion, with the medi-

cal practitioners, social workers, and caregivers of their choice. We have carried

out an exhaustive search in Google Scholar (GS) of the literature in these areas,80

analysing previous reviews, and identifying those more recent relevant works.

Most of these reviewed works are within the period of 2015 to present, with a

focus on 2017–present. Some works are outside of this temporal scope due to

their relevance or if they are precursors of current methods. Figure 1 shows the

distribution of reviewed papers according to the year they were published. It is85

worth noting that the GS tool provides both relevant (i.e. peer-reviewed) results

from other sites such as IEEE Explore, ScienceDirect (SD), and Web of Science
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Table 1: Search keywords and inclusion criteria

Topics covered:† (human) action/activity recognition,

(human) behaviour understanding/analysis,

gait analysis, fall detection,

physiological signal monitoring

Keywords used: action recognitiona, activity recognitiona,

behaviour understandinga, or analysisa,b;

gait analysisb, fall detection, or prevention;

physiological signalc; AAL ambient survey

AAL ambient review; CNNd, convolutionald,

deep learningd, neurald

Temporal scope: 2015–present (with focus on 2017–present)

exceptions: precursors or otherwise relevant

Inclusion criteria: peer-reviewed works (from IEEE, WoS, SD, etc.)

exceptions: datasets, tools, challenges, or surveys

†: all video-based, i.e. using computer vision.

a: With and without ‘human’, as some authors use variations.

b: With and without ‘video’ and ‘vision’ to find more video-based methods.

c: Always with ‘computer vision’ or ‘from video’ to get relevant results.

d: These terms used only in combination to previous ones to find more DL-based methods.

(WoS), among others; as well as non-reviewed or self-archived works. Table 1

provides a summarisation of inclusion criteria, as well as search keywords used,

with the aim of search reproducibility.90

The remainder of this paper is organised as follows: Section 2 presents and

analysis of previous reviews that focus on all, or at least several, of the top-

ics addressed in this paper. Section 3 reviews the different technologies and

techniques that are employed in video-based lifelogging for AAL applications,

which are presented in Section 4. Section 5 analyses some works dealing with95

privacy and ethical issues, which hinder user acceptance of these technologies

and services. Finally, Section 6 summarises the main outcomes of this review.

6
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Figure 1: Distribution of all papers reviewed in the present work (all references) according to

publication year. Please note year 2019 is ongoing at the time of writing.

2. Analysis of previous reviews

Previous reviews exist, as summarised in Table 2, but some are limited in

scope in different ways. For instance, Chaaraoui et al. (2012) is a review on100

human behaviour analysis for AAL up to 2012, and Aggarwal & Xia (2014)

from 2014 is a review of human action recognition from 3D data. They are

included in this work for the sake of completeness and interest. The survey

by Kong & Fu (2018) is much more recent, however it is also limited in scope

to action recognition. Another recent survey, by Viana et al. (2019) is limited105

in scope to bibliometric analysis, that is, by evaluating merely the publication

trends on the topic of AAL, by year, country, and other such non-technical di-

mensions. Conversely, Sathyanarayana et al. (2018) is a very complete, broader

scope review, however it covers only works up to 2015. Yet, many advances have

occurred since then, like new or renewed efforts in machine learning: sparse cod-110

ing, deep learning, etc. as well as camera improvements and larger datasets, or

the ability to use synthetic data while retaining good generalisation in real-world
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scenarios. Regarding other more recent reviews: most are vision-based, or have

a strong focus on video-based methods additionally to other sensors. There

are some exceptions, which are marked accordingly on the table. For instance,115

Dı́az Rodŕıguez et al. (2014) classify works into either data-driven (inductive

learning) or knowledge-based (i.e. using ontologies or other hierarchical struc-

tures), but covers the former only in a very broad manner, to then focus on the

latter, providing a review of existing ontologies for human activity description.

Another example is found in Erden et al. (2016), in which the authors consider120

ambient-assisted living mostly as fall detection, and thus constrain the problem

of action or activity recognition to body pose detection, since most methods in

their review consist of the same three classes (i.e. falling, standing, lying). This

review aims to be broader in scope, and thus include methods for AAL that can

be useful for the purposes of lifelogging.125

Examples of broader field reviews in AAL also exist (Rashidi & Mihailidis,

2013; Planinc et al., 2016; Calvaresi et al., 2017; Leo et al., 2017; Prati et al.,

2019). These focus more on the assistive technologies, and living tools that AAL

can provide. For instance, in Rashidi & Mihailidis (2013), AAL tools for older

adults are presented, the focus on tools means these are not necessarily methods130

at the research level, but also commercial solutions that can be found in the

market. Furthermore, the authors identify the challenges brought forward by

an ageing society, namely: increase in diseases, higher health costs, insufficient

number of caregivers, more dependency, and larger impacts on society. This last

item refers to the economic disruption caused by absenteeism and lost working135

hours of informal caregivers which are often relatives of the person needing

support. Solutions are divided into either ‘tools and technology’, or ‘applications

and algorithms’. The tools presented include smart homes, wearables, as well

as assistive robotics. On the algorithms, the authors focus on recognition of

activities of daily living (ADLs), ”one of most important components of AAL.”140

It further divides the task of ADL recognition (or more broadly human activity

recognition –HAR–), into methods using wearable sensors, ambient sensors and

vision. Furthermore, this review includes a section on cognitive orthotics, i.e.

8
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Table 2: Previous and recent reviews

Year Surveys Topics covered

2012 Chaaraoui et al. (2012) – Activity recognition (HAR/HBA) for AAL

2013 Rashidi & Mihailidis

(2013)

– Living tools

2014 Aggarwal & Xia (2014) – Activity recognition (HAR) from 3D data

Dı́az Rodŕıguez et al.

(2014)3

– Ontologies for human activity description

2015 Betancourt et al. (2015) – Evolution of first person vision methods

Bygholm & Kanstrup

(2015)1

– Lack of human-centeredness, acceptance

Mukhopadhyay (2015)2 – Activity monitoring from wearable sensors

Padilla-López et al.

(2015)

– Privacy, user experience, acceptance

Queirós et al. (2015)1 – Usability, accessibility, acceptance

2016 Erden et al. (2016) – Fall detection (using PIR sensors, or images)

Hamm et al. (2016) – Fall prevention, detection, injury reduction

Nguyen et al. (2016) – Ego-vision ADL recognition (HAR)

Planinc et al. (2016) – Vision-based methods for AAL applications

2017 Calvaresi et al. (2017) – Systematic review on AAL domain

Han et al. (2017) – Space-time skeletal 3D representations (for HAR)

Herath et al. (2017) – Activity recognition review, including some DL-based

Khan & Hoey (2017) – Fall detection (discussion on fall data availability)

Leo et al. (2017) – Vision for assistive technology

Rajagopalan et al.

(2017)

– Fall prediction and prevention

Cippitelli et al. (2017) – Fall detection from RGB-D and radar

Wu et al. (2017) – Activity recognition (using deep learning)

2018 Abdallah et al. (2018) – Activity recognition with evolving data steams (DL)

Antunes et al. (2018) – Activity recognition (of healthcare professionals)

Faust et al. (2018)2 – Physiological signal applications (DL-based)

Kong & Fu (2018) – Activity recognition (some DL-based) and prediction

Sathyanarayana et al.

(2018)4

– Fall detection, activity, sleep, vital signs, facial cues

Thevenot et al. (2018) – Medical diagnosis from faces

2019 Prati et al. (2019) – Video surveillance (incl. health), wearable sensors

Viana et al. (2019) – AAL bibliometric review

1 Non-technical, from social sciences, medical.

2 Use other sensors (non-vision).

3 Knowledge-based, ontologies.

4 N.B. This review has been available online since 2015. Does not cover 2015–2018.
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tools aimed at helping with cognitive decline. In this section it links with

lifelogging using camera-collected pictures, which are useful as a retrospective145

memory aid. Another such review is that of Planinc et al. (2016), which presents

‘computer vision’-based (CV) methods for AAL applications. Depending on the

technologies used, it divides video-based (RGB) methods into HAR or human

behaviour analysis (HBA), fall detection, tele-rehabilitation, gait analysis (for

fall prevention among others), and physiological signal monitoring. In the case150

of video and depth (using RGB-D devices), applications identified are: fall

detection, rehabilitation, serious gaming (also coined as exergaming (Hamm

et al., 2016; Vaziri et al., 2017)), pose analysis, gesture-based interfaces, and

robotics. Another example can be found in Calvaresi et al. (2017), in it the

authors criticise the lack of user need-centred reviews, as most are focused on155

technology. They also insist on the lack of ‘need coverage’ by solutions, that

is, how proposed methods are able to cover, or cater for, a specific need. They

attribute it to either lack of interest in need coverage (i.e. most papers are

centred around one method), or insufficient need analysis when adapting an

existing technology to an AAL scenario, or failing to explicitly analyse need160

coverage by using general evidence from related fields. Finally, authors raise

the need for rigorous evaluation and validation of AAL solutions, and also the

need to better understand relationship of users’ needs and proposed solutions

(i.e. ‘need coverage’ mentioned above). The most recent, Prati et al. (2019)

performs a historical review of intelligent video surveillance (IVS), and continues165

with wearable sensor networks (WSNs) for activity recognition. Only the last

section of this paper presents some recent advancements in the use of IVS for

health and care. Namely, three applications are briefly discussed: AAL, patient

monitoring, and physiological signal measurement.

In a broader sense, this ‘need coverage’ is related to user-centred design,170

which entails other aspects such as privacy and user acceptance (Bygholm &

Kanstrup, 2015; Padilla-López et al., 2015; Queirós et al., 2015). In Bygholm

& Kanstrup (2015), a broad analysis of the AAL field is presented from the

perspective of technologies and applications, but also from the experiences of

10
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users, the successes and challenges. One criticism is that existing methods lack175

real-world applicability due to the complexity of humans and their behaviours,

which might be overseen. The paper concludes that research methods compris-

ing a close co-operation among researchers and users is key, and propose the

use of living labs for trans-disciplinary work to be carried out among all stake-

holders. Similar conclusions are reached in Queirós et al. (2015): usability and180

accessibility are heavily dependent on a good communication between designers

and users, and therefore user-centred design in general, and living laboratories

in particular are seen as a promising way to achieve this goals. The authors

also point out that interoperability and compatibility among different tools is

also important to improve and generate new solutions that provide better us-185

ability to final users. Finally, Padilla-López et al. (2015) analyse another aspect

of concern for the acceptance of AAL technologies, that is, privacy. The au-

thors present different privacy preservation methods, looking at privacy from

different dimensions (enumerated as a list of questions about the data and its

processing), methodologies (e.g. the most common being data redaction), and190

presenting different image filtering, encryption and de-identification, etc. They

also discuss privacy at different stages of processing from a data security point

of view. Finally, they classify existing methods according to the proposed di-

mensions.

As identified in broad-scope reviews above, in addition to HAR or ADL195

recognition, another important field in AAL is fall detection and fall prevention

(e.g. via gait analysis) (Hamm et al., 2016; Khan & Hoey, 2017; Rajagopalan

et al., 2017; Sathyanarayana et al., 2018). In Hamm et al. (2016), the authors di-

vide interventions depending on whether the patients have already experienced

a fall, and therefore have pre-fall, and post-fall interventions. From the technol-200

ogy point of view, it does not focus on video-based sensors, but discusses about

the advantages of re-purposing ambient-installed cameras for fall prevention.

Another survey on the field of fall detection is that of Khan & Hoey (2017).

They analyse different fall detection techniques from the perspective of data

availability, that is, they propose a taxonomy to classify the existing literature205

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

as either providing datasets where falls are sufficiently represented, or otherwise

being rare or non-existent events in the training data. Methods vary for the

three categories: well-represented fall data use multi-class classifiers and similar

approaches, whereas unbalanced datasets require sampling and semi-supervised

techniques; finally, datasets where falls are not present at all are used in systems210

that learn a normal walking pattern and detect falls as abnormal deviations from

the common pattern. By contrast, Rajagopalan et al. (2017) propose a review

that is more focused on challenges identified in the literature that concern the

end-user, namely: performance in real-life conditions, acceptance (e.g. techno-

logical intrusiveness), security and privacy concerns, and energy optimisation215

of sensors (i.e. battery life). The literature reviewed in (Rajagopalan et al.,

2017) includes both video- and ‘wearable sensor’-based approaches. Finally, al-

though the work in Sathyanarayana et al. (2018) is a general review of patient

monitoring techniques using vision, it is worth mentioning here due to the sec-

tion dedicated to fall detection, including methods from monocular as well as220

multiple-camera systems, datasets for fall detection and a dedicated discussion

on the topic.

Two reviews focus on egocentric vision (Betancourt et al., 2015; Nguyen

et al., 2016), which consists in the use of outward-looking cameras worn by the

users to identify and track the performance of their ADLs, or analyse their ex-225

ercise level (e.g active versus sedentary patterns), or walking performance (e.g.

irregular gait might indicate deterioration of physical condition, and used for

early prevention of falls). Nguyen et al. (2016), presents some of its advantages

such as non-occluded view of the ongoing activity, since hand manipulation of

objects can be paramount for ADL classification tasks which ambient-installed230

cameras cannot reach to see due to distance and body occlusion. They also

present a review of ADL recognition (subset of HAR) and provide a classifi-

cation of egocentric vision activity recognition methods as either object-based

or motion-based (more on Sec. 3.2.2, wearable or first-person vision). On the

other hand, Betancourt et al. (2015) presents a historical evolution of the field235

of first person vision methods. It explores different camera models, and how

12
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applications (i.e. computer vision tasks provided by these devices) have been

also evolving, i.e. with more papers showing object and activity recognition in

the years closer to this end of their temporal scope (up to 2014). It presents

multiple timelines with the evolution of different aspects of egocentric vision240

(e.g. release of devices, key methods, main task of the method).

Although the focus of this review is in purely video-based techniques, several

reviews exist that use cameras as an adjunct to, or combined with other sen-

sors. A review showing the diversity of sensors that are available and methods

to exploit the data provided by them can be found in Mukhopadhyay (2015),245

where the authors explore many different types of sensors that can be interest-

ing as these allow to capture patients’ temperature, heart rate, brain activity,

muscular motion and other data. Sensors explored include: temperature, heart

rate monitoring (via photoplethysmography or PPG, sound-based, or based on

changes in face brightness (Wu et al., 2012)), accelerometers (mainly for HAR250

and fall detection), as well as some more exotic sensors such as textile patches

for the skin that can detect internal activities in the body such as breathing

and heart rate, but also hand gesture recognition, swallowing and gait analysis;

or sodium ion detectors in the sweat that could reveal electrolyte imbalance or

dehydration. In (Faust et al., 2018), the authors focus on four main types of255

physiological sensors, namely: electromyogram (EMG), electroencephalogram

(EEG), electrocardiogram (ECG), and electrooculogram (EOG). A mixture of

vision and non-vision sensors with a focus on fall detection using passive infrared

(PIR) sensors (constrained vision equating or reducing AAL to only fall detec-

tion, though, as said) can be found in Erden et al. (2016). From the reviews that260

explore video-based methods, it can be seen that most of them explore human

activity recognition or behaviour analysis (Aggarwal & Xia, 2014; Chaaraoui

et al., 2012; Han et al., 2017; Herath et al., 2017; Kong & Fu, 2018; Wu et al.,

2017; Abdallah et al., 2018). This can be justified by the fact that HAR is

considered an essential part of AAL (Calvaresi et al., 2017; Rashidi & Mihai-265

lidis, 2013) and therefore receives more attention from researchers. Also, human

activity recognition requires fine-grained data, as coarser methods for HAR or

13
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Figure 2: Example of Eulerian video magnification of subtle changes by Wu et al. (2012). The

bottom row shows how the method makes heart rate visible to the naked eye (reproduced

from (Wu et al., 2012)).

context awareness based on wearable or ambient sensors (contact, radio) can

be limited (Antunes et al., 2018). Other fields of AAL such as health moni-

toring and diagnostics (tele-health) rely mostly on other sensors, as these are270

considered to be less error-prone and/or have undergone approval from regula-

tory medical agencies (Faust et al., 2018). The survey in Abdallah et al. (2018)

seems to be the most recent one on the field of HAR, and the rapid evolution of

this field is made evident by the fact that their survey focuses on evolving data

streams, i.e. real-time video with non-delimited markers of activity start or end.275

However, in recent years, with video magnification of subtle changes by Wu et al.

(2012) (see example in Figure 2), and superresolution methods McDuff (2018),

as well as deep learning (as seen next), it has been possible to develop purely

video-based methods for patient monitoring (Sathyanarayana et al., 2018), in-

cluding: physiological signal monitoring, diagnostics (Thevenot et al., 2018). A280

notable commercial example is OxeHealth’s OxeCam1 (Oxford, United King-

dom) to monitor older people in care facilities including heart rate and breath

monitoring.

The advent (or rather rebirth) of neural networks and deep learning (DL)

1https://www.oxehealth.com/solution (accessed: November 2018)
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have marked the start of a “new era” in many fields including computer vision.285

As a related field, AAL does not scape this trend either. The review of Herath

et al. (2017) seems one of the first to add a review of ‘deep learning’-based

methods specific to the field of human action recognition (also (Calvaresi et al.,

2017) mentioned above). However, the section dedicated to these methods is

only one of the many in their review, which in its historical review, goes back to290

classical methods of the 90s and early 00s. Another example is Han et al. (2017),

which also devotes a section to ‘deep learning’-based representation learning (as

a means to avoid manual feature crafting), however only a handful of methods

are presented under this section, due to the novelty of the application of such

techniques in the field of action recognition. A similar situation is observed295

in Kong & Fu (2018), which includes DL-based methods for activity recognition,

within a review that also explores prediction methods. In that sense, Wu et al.

(2017) seem to be the first to have a review that is fully dedicated to DL-based

HAR methods. In contrast, there are modern reviews that do not cover works

related to DL, such as (Calvaresi et al., 2017), this is due to the period covered300

at the time of writing (their review only covers years 2007–2013). To this point,

most reviews covering DL-based methods are related to activity recognition.

This might be due to the fact that DL methods have initially been applied in

computer vision and natural language processing tasks, to only later percolate

into other fields (Faust et al., 2018). Faust et al. (2018) suggest exactly this,305

and propose a review of DL-based methods for physiological signal applications.

Nonetheless, their review does not cover vision-based methods.

Finally, some of the reviews explored are done from a systematic review

perspective (Antunes et al., 2018; Bygholm & Kanstrup, 2015; Calvaresi et al.,

2017). Following this methodology, one starts by setting some main research310

questions. For the present review, such questions would be the following:

• Which video-based AAL technologies can be used for lifelogging?

• How can these technologies translate into lifelogging applications for

older and frail people?
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• Are there any other aspects of these technologies (such as ethical consid-315

erations, privacy issues, legal background, etc.) that are debatable? How

can these be countered?

3. Technologies and techniques

This section explores different technologies and techniques that are available

in the literature that can help provide the different applications that will be320

reviewed in Section 4. Machine learning (ML) techniques are at the core of

most video-based solutions (with a few exceptions), especially for more complex

scenarios such as human activity recognition (HAR). Another very important

aspect of developed systems is the number, layout, and type of cameras used.

These are two of the most important dimensions in which works can be classified325

from a technical perspective. Therefore the section is divided into two subsec-

tions: first, machine learning techniques commonly used in reviewed papers will

be analysed; then, camera arrangements (single, multiple, etc.) and modalities

(RGB, depth, etc.) will be explored.

3.1. Machine learning techniques330

Within machine learning techniques, it is worth mentioning the trend to-

wards more DL-based methods. This is especially true for activity recognition,

and that is why this section will mostly include works using DL, but also oth-

ers that use different trends in ML techniques. With regards to the former,

Herath et al. (2017) classify DL-based methods into four categories: spatio-335

temporal networks, multiple stream networks, deep generative networks, and

temporal coherency networks. For action recognition (a subset of classification

tasks) the two first categories are more relevant; also most reviewed works can

be classified into either of these two. Spatio-temporal networks include exten-

sions to convolutional neural networks (CNNs, (LeCun et al., 1990; Krizhevsky340

et al., 2012)) that take into account temporal information: 3D-CNNs in which

convolutional blocks have been augmented to work with 3D blocks of XY T
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pixel colour information using 3D convolutions (Ji et al., 2013) (using stacked

frames as input), usually with motion information as an additional input chan-

nel at the input layer, such as an optical flow (Herath et al., 2017; Rahmani345

& Mian, 2016). In the work of Tran et al. (2018) the authors explore the idea

that full 3D convolutions may be more conveniently approximated by a 2D

convolution followed by a 1D convolution, decomposing spatial and temporal

modeling into two separate steps. They therefore propose an alternative to 3D

convolutions named R(2 + 1)D which they state have the advantages of being350

able to learn more complex functions (due to additional rectified linear units –

ReLUs–), and also easier optimization during training. Temporal extensions to

CNNs also include temporal pooling (Yue-Hei Ng et al., 2015). Spatio-temporal

networks also include recurrent neural networks (RNNs) using long short-term

memory (LSTM) blocks (Hochreiter & Schmidhuber, 1997), as well as hybrid355

CNN-LSTM networks. Multiple stream networks include those that train colour

(RGB) and motion (e.g. optical flow) information in parallel ’subnetworks’ that

are connected at the decision-making fully-connected layers via their softmax

scores (Simonyan & Zisserman, 2014), or earlier, which is shown beneficial (Fe-

ichtenhofer et al., 2016).360

Table 3 shows the machine learning (ML) techniques most commonly used

in the reviewed works. As can be observed, most recently published methods

tend more towards the use of ‘deep learning’-based methods. Among these, fully

convolutional neural networks, or those with only 1–3 fully-connected (FC) lay-

ers on the top for classification are still very widely used (Ding et al., 2017;365

Elhayek et al., 2015; Fan et al., 2015; Liu et al., 2017a; Ma et al., 2017; Park

et al., 2016; Solbach & Tsotsos, 2017; Toshev & Szegedy, 2014; Varol et al.,

2017; Wang et al., 2016) (publication years ranging from 2014–present), which

is also confirmed by recent reviews (Faust et al., 2018). However, as stated

in (Herath et al., 2017), with 3D spatio-temporal extensions of CNNs it is dif-370

ficult to determine which number of frames should be ideal during training.

In this sense, hybrid spatio-temporal networks with CNNs connected to RNNs

using LSTM blocks seem to be gaining momentum as more methods appear
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that rely on this or similar approaches (Abebe & Cavallaro, 2017b,c; Liu et al.,

2016a; Núñez et al., 2018; Shahroudy et al., 2016a; Wang et al., 2017b; Zhu375

et al., 2016) (publication years ranging 2016–present), although the number of

publications is still lower than CNN-based methods. Another trend is the use

of dynamic images, which are not included in Herath et al. (2017) and are a

type of spatio-temporal template from a video, similar to motion history and

energy images (MHI/MEI), but using rank pooling as part of a convolutional380

network (Bilen et al., 2016). The resulting 2D action summaries can be ob-

served in Figure 3. Similarly, Pham et al. (2018) propose an action summary

image based on temporal 3D skeleton information retrieved from RGB-D sen-

sors. If DL-based techniques abound, the opposite can be said of techniques

using more classical or non-neural approaches. Another recent trend has been385

to learn sparse representations (Wright et al., 2010), in which vocabulary of

distinctive object parts is automatically constructed from a set of sample im-

ages of object classes. New images are then represented using parts from this

vocabulary, together with spatial relations observed among the parts. All this

while minimising the number of parts used to describe each new pattern (i.e.390

which makes the feature vector sparse, hence the name). Yet, not many works

were found when performing literature database searches, e.g. (Shahroudy et al.,

2016b; Chen et al., 2016; Theodorakopoulos et al., 2014). In Rahmani & Mian

(2016) a hybrid approach is presented: the method uses CNNs for feature ex-

traction, and then sparse representations to learn discriminative neuron-sets for395

each action.

Another interesting trend in machine learning, and specifically in DL-based

techniques is that of using synthetic data (Bochinski et al., 2016; Rahmani &

Mian, 2016; Varol et al., 2017). Since neural networks generally require larger

than usual datasets, or rather, that such dataset provide a much larger benefit400

in terms of accuracy as the model will generalise better, simulated but realistic

data is provided to the model during the training stage. Simulated data enables

the generation of a large collection of pose variations, as a similar approach

to data augmentation, but with almost-infinite possibilities. Also it allows to
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Figure 3: Summarisation of actions by means of dynamic images (reproduced from (Bilen

et al., 2016)). From left to right and top to bottom: “blowing hair dry”, “band marching”,

“balancing on beam”, “golf swing”, “fencing”, “playing the cello”, “horse racing”, “doing

push-ups”, and “drumming”.

collect data samples that might be very unusual (e.g. in fall detection systems405

positives tend to be a minority case (Khan & Hoey, 2017), for instance 30 in-

stances in 17 months of data (Vlaeyen et al., 2013)), and thus datasets can be

more balanced with regards to positive and negative samples. It is also useful

to ease the burden (economic, temporal) of large data collections, that need to

consider many scenarios and be unbiased. Also, because data has been gener-410

ated, ground truth is automatically available, therefore it also eases the burden

of ground truth labelling. Quality is therefore paramount, as non-realistic or

untransferable (i.e. unfit for transfer learning) samples will lead to failure of the

learnt model when dealing with real-world input during deployment (Baldewi-

jns et al., 2016; Martinez-Gonzalez et al., 2018). For instance, Rahmani &415

Mian (2016) use 3D human models to generate simulated depth data of actors

performing different actions. Varol et al. (2017) present Surreal, a synthetic

dataset of human poses for action recognition: it contains realistic images of

people, along with synthetic depth and body part segmentation. They prove

that a CNN trained on their large-scale dataset is able to provide accurate420

depth estimation and human part segmentation in real RGB images. Unrelated
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to AAL, but also worth mention, are Bochinski et al. (2016) who propose to use

a realistic videogame engine for the generation of a dataset of humans, vehicles

and animals, which is then used on a real-world data classifier installed on a

surveillance camera.425

A current trend, and one that might be still worth exploring further is that of

two-stream or multi-stream networks. Recent works using this type of networks

are popular (Ma et al., 2018; Tu et al., 2018; Choutas et al., 2018). Specifically,

the current trend is to apply each stream to focus on a small region, body part,

or joint, as is done by Ma et al. (2018), where six streams are used to follow430

relevant body parts. Choutas et al. (2018) propose a pose-time representation

based on a temporal joints representation, which is fed to a n-stream CNN.

Similarly, Tu et al. (2018) propose a multi-stream network to follow salient

(moving) human body regions, as focusing on those yields better results.

To conclude, the results regarding the preference of one type of architectures435

(i.e. classical CNNs, n-stream networks, or residual networks), over the other

(i.e. recurrent variants: RNNs, with LSTMs or similar) is not clear. Indeed,

to answer this question Ma et al. (2019) perform a series of tests to compare

these two families of neural networks. Admitting that multi-stream networks

have contributed to a significant progress in human action recognition in recent440

years, they propose a strong baseline two-stream CNN using a residual net-

work (ResNet-101). Given their results, the authors then propose two different

network architectures to further integrate spatio-temporal information: either

an extension to RNNs using temporal segments, or an Inception-style tempo-

ral convolutional network. Their results show that either solution improves445

the overall performance, and achieves state-of-the-art results on the standard

benchmark datasets used. Finally, it is curious to note that the initial criticism

of any feature engineering in the deep learning arena has transitioned slowly to

more human-aided deep learning networks, where joints, ‘body parts’, or other

human body information is explicitly provided to a network to facilitate the450

learning task, or to avoid very deep CNN networks that have trouble working

on budget hardware, or RNNs that have trouble with overfitting. It might be
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worth exploring works from the recent past, just before the last deep learning

wave (circa 2012), in order to check which engineered features for body motion

description were most successful back then, and be able to replicate them us-455

ing current convolutional neural networks, and then feeding this concurrently

with RGB (or RGB-D) information in a multi-stream fashion, as this kind of

architectures allows easier integration of human body motion features.

3.2. Camera typology and perspective

As said, the most common camera setup for lifelogging as a memory aid460

is via a outward-looking camera worn around the neck or as a brooch-like de-

vice. This camera perspective is also coined as egocentric vision or egovision

for short (Nguyen et al., 2016), or proprioceptive, as it perceives the wearer’s

own movements (Abebe & Cavallaro, 2017a). However, as stated in the intro-

duction, cameras can also be installed in the environment as this setup can be465

less obtrusive. These two camera setups tend to be used more for applications

(see Section 4) like human action recognition, or fall prevention and detection:

the first (egovision) can detect the wearer’s motion patterns with respect to

the environment, as well as activities involving the hands and handled objects;

whereas the second can recognise motion patterns involving the full body.470

In some medical applications of computer vision or methods relying on face

analysis, camera setup might need to follow a specific or bespoke setup (so that

the sensor is closer to the analysed body part), as in (Huimin et al., 2017; Lewis

et al., 2018; Li et al., 2017; Maclaren et al., 2015), or be disguised in an everyday

item such as a mirror (Andreu et al., 2016; Colantonio et al., 2015a; Henriquez475

et al., 2017).

3.2.1. From cameras installed in the environment

Using RGB-only devices. Moved by the scarcity of videos, and the small size

of datasets for action recognition, Carreira & Zisserman (2017) propose a new

dataset, namely the Kinectics Human Action Video (KHAV or simply Kinec-480

tics) dataset. They also propose the use of 3D-CNNs by inflating 2D filters
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to 3D, thus allowing for spatio-temporal feature extraction from video. They

demonstrate how current architectures in the state of the art perform when

pre-trained on Kinectics, and then tested on the much smaller existing action

datasets (Hollywood movies –HMDB-51– and University of Central Florida –485

UCF-101). Aware of the difficulties of creating a dataset as big as Kinectics,

Ma et al. (2017) propose to crawl the net for action videos, that contain any

of the 101 classes in the UCF-101 dataset. They also, as opposed to (Car-

reira & Zisserman, 2017), use 2D convolutions, rather than 3D extensions, as

they claim spatial networks can perform as well as spatio-temporal, and this490

enables the usage of single action images for training and starting the process

with pre-learnt low-level filters using pre-trained networks (with the ILSVRC2

subset of the ImageNet dataset). Another option to take temporal information

into account for training is to include motion or optical flow data as part of the

input (Park et al., 2016; Wang et al., 2016). Finally, Wang et al. (2017b) pro-495

pose to use both 3D-CNNs for spatio-temporal feature extraction from adjacent

frames, and LSTMs and temporal pooling to explore temporal scales at which

different activity instances can be detected.

Another option for analysis of poses for action recognition is using contours

or silhouettes. A previous review (Aggarwal & Xia, 2014) introduces works500

that use contours or silhouettes that can be either retrieved from RGB images

using segmentation (which tends to be complex, using background subtraction

or similar techniques), or directly from the depth channel of RGB-D devices,

in which the segmentation is much easier to perform. Chaaraoui et al. (2013)

present a work that uses a bag-of-words (BoW) modelling of features extracted505

from contours to generate a dictionary of key poses which are then used to learn

different actions according to the distributions of learnt words (poses) in video

input of performed actions.

2Large scale visual recognition challenge: http://image-net.org/challenges/LSVRC/ (ac-

cessed: November 2018)
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RGB Datasets:. When it comes to RGB-only datasets specific to AAL, it is

worth noting than most activity recognition and fall detection datasets in recent510

years are multi-modal (i.e. with heterogeneous sensor types), and many are

recorded from RGB-D sensors rather than classic RGB video cameras. In the

field of photoplethysmography (PPG) for monitoring of physiological signals,

in spite of the lack of datasets noted in the past by McDuff et al. (2015), two

datasets using RGB video stand out as noted by Tulyakov et al. (2016): those515

are the MAHNOB-HCI3 by Soleymani et al. (2012), and MMSE-HR, a subset

of the MMSE dataset4 by Zhang et al. (2016b) with annotations for heart rate

estimation.

Using depth-based sensors. Using depth data for activity recognition preserves

privacy, as people in the images are not recognisable (Padilla-López et al., 2015).520

Furthermore, depth information is insensitive to changes in lighting, and pro-

vides geometric information of the body and handled objects (Liu et al., 2016b;

Rahmani & Bennamoun, 2017). An example of recent work in this regard is Rah-

mani & Mian (2016), in which the authors propose a CNN framework to extract

view-invariant features, which are then temporally combined using Fourier Tem-525

poral Pyramids (FTPs), and discovering discriminative neuron-sets by solving

an `1/`2-norm regularised least squares problem, which achieves sparse, discrim-

inative sets per action class. Liu et al. (2016b) learn spatio-temporal features

from depth sequences using 3D-CNNs, decision is made via an SVM which

is fed the pre-learnt features as well as skeleton joint information. Ji et al.530

(2017) also use an SVM classifier as part of their method, but argue that DL-

based methods, and data-driven learning in general is bound to require to much

computational power and data. Therefore, their features are extracted using

a spatial Laplacian and temporal energy pyramid representation. They claim

to perform at a similar accuracy level as Shahroudy et al. (2016a), which uses535

3https://mahnob-db.eu/hci-tagging/ (accessed: November 2018)
4Also referred to as BP4D+: http://www.cs.binghamton.edu/~lijun/Research/3DFE/

3DFE_Analysis.html (accessed: November 2018)
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a recurrent network with LSTMs for feature extraction and temporal integra-

tion, and at a fraction of the time required per frame. This demonstrates that,

although DL-based methods tend to perform better in general, an appropri-

ate mixture of well-picked features can also achieve good accuracies in complex

problems. Another example of this is Shahroudy et al. (2016b) in which fea-540

tures are learnt by sparse minimisation of a set of features obtained from depth

and skeleton data. Rahmani & Bennamoun (2017) also fuse depth and skeleton

data in their method: joint data is pre-processed to obtain a view- and scale-

invariant normalised skeleton. Rectangles of interest around the joints in the

depth space are also cropped and processed via a CNN to obtain view-invariant545

joint-context information, which is useful to detect actions involving handled

objects. Another idea is to create spatio-temporal templates of action videos

either manually (Ijjina & Chalavadi, 2017) or automatically via convolutional

networks using rank pooling on the raw images of an action video, which results

in dynamic images (Xiao et al., 2019). Ijjina & Chalavadi (2017) use classical550

temporal templates (motion history and motion energy images) extracted from

the RGB and depth channels independently and then feed these to a CNN for

further feature extraction. Since the images (templates) convey spatio-temporal

information, the CNN extracts spatio-temporal features that are useful for the

classification task. Similarly, Xiao et al. (2019) propose to extend the concept of555

dynamic images to depth data, by feeding a CNN with the RGB as well as the

depth dynamic images. Furthermore, they obtain the depth dynamic images

from several simulated viewpoints (by rotating the point cloud accordingly),

and finally classify the actions using an SVM classifier. Finally, Zhang et al.

(2018) propose to use depth and joint positions in a multi-stream deep convo-560

lutional network. Figure 4 shows a diagram of their proposed method. Three

CNNs are trained: one with skeleton data (1D); another with temporal tem-

plates (2D); and the last one, a 3D-CNN with spatio-temporal depth volumes.

The activations from the second-last layer from each CNN are then used in an

attribute learning framework which uses predefined motion patterns which are565

discriminative of the different action classes to recognise.
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RGB-D Datasets:. As mentioned, most recent activity recognition and fall de-

tection datasets are multi-modal, that is, captured from networks equipped with

different sensor types: RGB-D cameras, but also wearable, and binary devices

(i.e. contact sensors for cabinet and house doors, electric switches, etc.). Two570

examples of large datasets captured in recent years amounting days and even

months of data are: a) those compiled by Twomey et al. (2016) for the SPHERE

project as part of their challenge5 which consisted of RGB-D, acceleromenter

and PIR sensor data to detect (classify) 20 different motions, postures, or pos-

ture transitions; b) the NTU dataset for activity recognition introduced by575

Shahroudy et al. (2016a), which includes 56 thousand video samples from 40

different subjects performing a total of 60 labelled action classes. Other inter-

esting datasets (including fall detection) can be found in the specific reviews by

Zhang et al. (2016a) and Cai et al. (2017). Physiological signal monitoring from

RGB-D sensors and heart rate monitors for ground truth labelling also exist, an580

example is SWELL stress dataset6 by Koldijk et al. (2014). For fall detection,

Zhang et al. (2015) and to a minor extent Cai et al. (2017) provide good reviews

of available datasets.

Some authors also use top-view depth imagery (Liu et al., 2017a; Kasturi

& Jo, 2017; Cippitelli et al., 2015, 2016). It is the case of Liu et al. (2017a),585

which propose to perform transfer learning along with cross-layer inheriting

feature fusion (CLIFF). In their scheme the lower layers of a VGG16 model (7

convolutions) are kept frozen, with an additional block of convolution added.

The result of the pooling block after that additional convolution is concatenated

with features coming directly from the pooling after the fourth convolution.590

The authors claim this allows to train on a small dataset such as the one used,

avoiding vanishing gradients or over-fitting. Like Liu et al. (2017a), Kasturi &

Jo (2017) also use top-view imagery, but, as opposed to all works reviewed so

far using depth-based sensors, their aim is to provide a fall detection system.

5https://www.irc-sphere.ac.uk/sphere-challenge/home (accessed: November 2018)
6http://cs.ru.nl/~skoldijk/SWELL-KW/Dataset.html (accessed: November 2018)
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Figure 4: Example of multi-stream CNN using skeletal data, temporal templates, and spatio-

temporal depth volumes in a single learning scheme. Features from the second-last layer as

input for an attribute learning framework (reproduced from (Zhang et al., 2018)).

They extract shape-based features from the silhouettes, and classify them into595

fall or non-fall instances using an SVM classifier. It is worth noting here, that

unlike HAR, fall detection tends to use simpler machine learning, and rarely

uses DL-based methods. Another option is to extrapolate a worldtop view from

the point cloud as done by Pramerdorfer et al. (2016). In their proposal they

first identify the ground plane by an iterative Ransac plane fitting. Objects600

are then detected filtering points with a height of 30 to 90 cm above the ground

plane, horizontal planes are then analysed to determine whether they can be

fall areas. Motion detection and tracking is performed, and therefore falls when

multiple people are in a room are supported. Height and occupation maps are

derived from the data, and subsequently used for tracking, finally falls detected605

from body poses and a rules-based reasoning for exclusion criteria.

Using skeleton data. Some methods using depth along with skeleton data have

been reviewed above. However, methods exist using only skeleton data or data

derived from joint information only. To recognise activities from skeleton data,
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(a)

(b)

Figure 5: Pramerdorfer et al. propose an advanced fall detection framework: a) Frame

showing colourisation of detected floor (blue) and furniture (yellow); b) from left to right:

depth map, point cloud in plan-view space, and height map of moving objects (reproduced

from (Pramerdorfer et al., 2016)).

first skeleton construction or recovery methods need to be run. These methods610

provide information on the location of the joints of a person, either in 2D (image)

or 3D (real world) coordinates. These methods can be run from single RGB

cameras, multiple camera views (can be positioned orthogonally, or not), and

more recently with cameras providing depth information (i.e. RGB-D devices

like Kinect and similar). Application programming interfaces (APIs) for RGB-615

D devices often offer a way to obtain the skeleton information. For instance

Microsoft Kinect SDK offers an implementation of Shotton et al. (2011).

Before (Shotton et al., 2011), there were other attempts at using body-part

detectors to find limb positions in images of people: either full body, e.g. Eich-
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ner et al. (2012); or depending on application, upper body, e.g. Cippitelli et al.620

(2016). With the advent of ‘deep learning’ and the success of convolutional neu-

ral networks at solving certain visual tasks, other researchers have tried to relax

the constraints of using depth-enabled devices. That is, being able to extract

skeleton information from RGB-only devices. An example of this is OpenPose

by Wei et al. (2016), a CNN-based real-time system that can jointly detect hu-625

man body, hand, facial and foot keypoints from single images. 2D capability is

available for multiple people, whereas 3D point resolution is only available for a

single detected person with triangulation from multiple views (Cao et al., 2017;

Simon et al., 2017; Wei et al., 2016).

However, if the methods are based on a single RGB image, pose is normally630

estimated as a 2D skeleton (that is, on the image plane) as in Cherian et al.

(2014), rather than a 3D skeleton in real world coordinates, although attempts

at this exist, e.g. Andriluka et al. (2010). Several methods using DL-based

techniques for 2D pose estimation via skeleton joint localisation exist (Fan et al.,

2015; Tompson et al., 2014; Toshev & Szegedy, 2014). For instance, in Tompson635

et al. (2014) a CNN is trained to find the locations of joints in a fashion similar to

that of Eichner et al. (2012), then a spatial model is learnt via Markov Random

Fields, to constrain the pose to a plausible one. The CNN component looks at

patches at different resolutions, in order to fine-tune the location of the joint.

Similarly, in Fan et al. (2015) a dual-source CNN is used. This type of CNN640

receives both a general image and a close-up of the joint region, in order to

better train for accurate joint position estimation. Finally, Toshev & Szegedy

(2014) present DeepPose, which consists of a multi-stage process. The first

stage (consisting of a CNN) is given a general view of the image, to estimate

locations of joints. This first network’s receptive field is limited in pixel size (ca.645

220×220 image), therefore estimations tend to be coarse. All subsequent stages

consist of a second CNN which receives a patch around the joint location of the

first network and is trained to refine the joint locations (i.e. using real-valued

regressors).

Formation of 3D skeletons tends to use systems with multiple cameras. For650
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instance, Elhayek et al. (2015) propose to use a CNN as a ‘body part’ detector

(estimating joint probabilities) which is then used with a model-based generative

approach for skeleton fitting and skeletal motion tracking. They obtain 3D

skeletons by aggregating joint information from multiple views. This is not

novel, as reported in their literature review, but they are able to achieve minimal655

number of cameras to obtain 3D skeletons, stating that they can use as little as

2–3 cameras.

Once the skeleton is obtained, or constructed from the data, many works

exist for action recognition (Ding et al., 2017; Liu et al., 2016a; Núñez et al.,

2018; Zhu et al., 2016) using different skeletal data representations as reviewed660

by Han et al. (2017). Zhu et al. (2016) propose a regularisation to learn a joint

co-occurrence feature of skeleton joints using skeletal data as input to a RNN

with LSTM blocks. However, Ding et al. (2017) criticise RNN networks due to

how these overemphasize temporal information, and therefore decide to encode

temporal information via texture images. They compare different skeleton-based665

features (joint-to-joint distances, orientations, vectors; joint-line distances; line-

line angles). Each feature is represented as a texture colour image, i.e. where

columns represent spatial features in a frame, and rows encode the sequence of

a specific feature. These features are then given to separate CNNs in a multi-

stream fashion. Results are provided for all features combined, as well as for670

subsets of features (using feature selection). Another option to counter overem-

phasis in temporal information is provided by Liu et al. (2016a), who propose to

use an RNN with LSTMs in a different way. Aware of the importance of spatial

joint arrangement for action discrimination, the LSTMs in their network en-

code both spatial and temporal relationships. They do so by adding contextual675

information about other joint positions as well as the position of the joint in

the previous time step. Furthermore, due to the nature of the sensors, which

might include noisy inputs, trust gates are used as a mechanism to accept or

ignore new data that might distort the spatio-temporal joint model learnt so

far. Similarly, Núñez et al. (2018) use a combined neural network, consisting of680

a CNN and a RNN using LSTM blocks. The CNN is trained separately to learn
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representations from spatio-temporal skeletal data. The LSTM-RNN is then

used to determine the action based on the underlying (input) representation.

This method of training two ‘deep learning’-based networks that are combined

to form one single inference engine is the de facto standard in DL-based work in685

recent years (Ren & Zemel, 2017), although Núñez et al. train the components

separately, instead of in an end-to-end fashion as is common.

3.2.2. From wearable or first-person vision

As stated in Nguyen et al. (2016), recognising activities where objects are

manipulated in front of the hands (which includes many ADLs) can be hard from690

ambient-installed cameras, since the head and torso or a cluttered environment

could occlude the activity. Furthermore, with cameras installed on the forehead

(or disguised into smart glasses), or the chest, actions tend to take place (and ob-

jects tend to be) in the centre of the image, where camera focus is also better. As

with ADLs detected from ambient-cameras, methods can be classified according695

to the semantic level of the behaviours being analysed: from motion, to actions,

and activities, or long-term behaviours (Chaaraoui et al., 2012). Furthermore,

the authors also differentiate between object-based activity recognition (using

detected objects to infer activities being performed), as opposed to motion-

based methodologies, which use physical features (magnitude, angle, frequency)700

of detected motions to recognise what the person is doing. The former have

the challenge of detecting an activity with a set of missing detections, whereas

the latter is a holistic approach better apt for coarser types of activities, which

involve bigger motion patterns (e.g. a motion-based method will not be able

to differentiate actions involving small object manipulation in the hands). In705

another work, Nguyen et al. (2018) propose using a CNN-based hand detection

for improved activity recognition from egocentric vision, using the EgoHands

dataset of Bambach et al. (2015). Related to motion-based first-person vision

methods, proprioceptive HAR is another line of research that consists on recog-

nising activities from the perception of the wearer’s movements. One could use710

well established methods such as optical flow or interest point correspondence
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to detect variation of the scene as seen by the camera between consecutive or

near frames. The detected motion can then be characterised via its strength,

periodicity (or lack thereof) to recognise different activities. In this field, the

works by Abebe & Cavallaro stand out (Abebe & Cavallaro, 2017b,c,a). Two715

of the methods are DL-based, whereas the other is not. In (Abebe & Cavallaro,

2017a) motion features are extracted by interest point detection and matching.

These include magnitude, direction, as well as point descriptor changes. These

are then temporally accumulated to create higher level features. In (Abebe

& Cavallaro, 2017c), stacked spectrograms of motion patterns extracted from720

optical flow vectors and the displacement vectors of the intensity centroid are

used in a CNN with LSTMs to encode temporal dependency. Stacking of spec-

trograms allows for the usage of 2D convolutional filters, which are much more

common in off-the-shelf DL-based architectures. Temporal information is, ac-

cording to the authors, the most important characteristic for the recognition of725

proprioceptive activities, and the LSTM component in the network is in charge

precisely of this.

Egovision datasets:. Section 5 of the review by Nguyen et al. (2016) contains a

summary of relevant datasets on the field of egocentric vision for AAL, specifi-

cally for ADL recognition. Most relevant datasets mentioned are the Activities730

of Daily Living (ADL) dataset of Pirsiavash & Ramanan (2012) from 2012; the

Georgia Tech Egocentric Activities (GTEA) dataset7 by Fathi et al. (2011),

and GTEA Gaze+8. However, since the publication of (Nguyen et al., 2016)

other datasets have appeared such as some datasets for manipulated object

detection such as the EMMI dataset by Wang et al. (2017a). In their paper735

they also explore other manipulated object recognition datasets, which could

be interesting to the reader. Also there have been extensions to previously

existing datasets, such as the extended GTEA Gaze+ which subsumes the orig-

7http://www.cbi.gatech.edu/fpv/ (accessed: November 2018)
8http://ai.stanford.edu/~alireza/GTEA_Gaze_Website/GTEA_Gaze+.html (accessed:

November 2018)
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inal Gaze+ dataset, and features 28 hours (de-identified) of cooking activities

from 86 unique sessions of 32 subjects. These videos come with audio and740

gaze tracking. The authors have further provided human annotations of actions

(human-object interactions) and hand masks. The CMU Multi-Modal Activity

Database9 (CMU-MMAC) by De la Torre Frade et al. (2009) is mentioned in

(Nguyen et al., 2016), but due to the lack of publicly available annotations,

it has seldom been used. This is likely to change with the recent publication745

of the semantic annotation done by Yordanova et al. (2018). Another recent

dataset is the EPIC-KITCHENS dataset by Damen et al. (2018): a large-scale

egocentric video benchmark recorded by 32 participants in their native kitchen

environments. Their videos depict non-scripted daily activities: they simply

asked each participant to start recording every time they entered their kitchen.750

Recording took place in 4 cities (in North America and Europe) by participants

belonging to 10 different nationalities, resulting in highly diverse cooking styles.

The dataset features 55 hours of video consisting of 11.5M frames, which were

densely labelled for a total of 39.6K action segments and 454.3K object bound-

ing boxes. The resulting annotation is unique in that the participants narrated755

their own videos (after recording), thus reflecting true intention, the authors

then crowd-sourced ground-truths based on these narrations.

3.2.3. From bespoke camera installations

As mentioned in the introduction to this section on camera perspectives,

some methods need to have special conditions for a good-quality analysis of the760

signals to be processed from the images. Most of these entail physiological signal

monitoring, such as breath and cardiac activity sensing via images (Chen & Mc-

Duff, 2018; Maclaren et al., 2015; Colantonio et al., 2015b; Andreu et al., 2016),

affective status and well-being detection from faces (Colantonio et al., 2015a;

Andreu-Cabedo et al., 2015; Henriquez et al., 2017), wound healing monitor-765

ing (Huimin et al., 2017), or automatic food journalling (Sen, 2017; Cippitelli

9http://kitchen.cs.cmu.edu/ (accessed: Nov, 2018)
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et al., 2015, 2016). Huimin et al. (2017) use close-up images of wounds to analyse

their healing process and determine whether the patient might require further

care. For this purpose, they use a CNN to learn to segment the mask of the

wound in the picture, and therefore determine its size. Maclaren et al. (2015)770

propose a system for measuring respiratory and cardiac information from a

camera during a magnetic resonance (MR). The patient is lying during the test,

and the camera is mounted above the forehead of the patient. Their method

measures colour changes for heartbeat detection (based on ideas similar to Wu

et al. (2012)), and motion in the head-foot direction for breath pattern detec-775

tion. European Union’s FP7 project Semeoticons (Colantonio et al., 2015b,a)

(2013–2017) led to a number of publications regarding the use of face analy-

sis (semeiotics) for the diagnostic of cardio-metabolic syndrome. The project’s

main tool is a smart mirror (the wize mirror in project’s terms (Andreu et al.,

2016; Andreu-Cabedo et al., 2015; Henriquez et al., 2017)) equipped with multi-780

ple cameras and depth sensors, that along with a gas sniffer (wize sniffer (Ger-

manese et al., 2017)) is able to detect most risk factors for cardiac and metabolic

(type-2 diabetes) diseases, namely: the amount of face fat (indicator of over-

weight and obesity), its location near the eyelids (hypercholesterolemia), lack of

skin micro-circulation (visible after local heating in healthy individuals), noxious785

habits (smoke and alcohol byproducts detected by sniffer), anxiety issues (via

expression analysis of face), etc. Chen & McDuff (2018) propose a DL-based

method for heart and breath rate detection from imagery consisting of close-up

videos of the head and upper torso of individuals. Their DeepPhys framework

consists of a convolutional attention network (CAN), which is a type of network790

that, based on knowledge about the human eye, gives more attention to a cen-

tral area of the image (fovea), and less to the surrounding (context). This can

also translate to just focusing more on a subset of features, and less on another

group. The authors claim that in the fields of physiological measurements using

computer vision, use of CNNs in the past was limited to feature extraction from795

images, but not to the calculation of the physiological metrics themselves. They

claim to be the first to propose an end-to-end system that can simultaneously
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learn the spatial mask to detect the appropriate regions of interest (RoIs) and

recovers the blood volume pulse (BVP) and respiration signals.

Finally, and on a different topic, in the thesis of Sen (2017, Ch. 4) the author800

presents an automated food journalling application using images captured from

a smart watch. An accelerometer-based approach triggers the camera when

eating-like motions are present in the wrist. Pictures are taken at the point of

the motion where the biggest portion of the plate can be seen, these are then

sent to a server for analysis and to determine food presence in pictures to filter805

uninteresting pictures. By doing this, an automated food journal can be created,

to for instance, check adherence to a diet plan, or to calculate general well-being

indices from food intake. Food intake analysis is also explored by Cippitelli et al.

(2015), where a top-view RGB-D camera with improved matching of colour and

depth is used to detect the individual, plates, cutlery, and contents of the plates.810

This is further extended in Cippitelli et al. (2016), where 3D localisation of upper

limbs and head from a top-view RGB-D sensor is used in a system to analyse

food type and intake behaviours.

4. Applications of lifelogging for AAL

A good review on video-based monitoring of patients and older people can815

be found in the work by Sathyanarayana et al. (2018). However their review is

much more focused at institionalised patients, and is much more dedicated to

detection of medical conditions, and action recognition within the hospital. The

authors look at different solutions focusing on the application. Specifically, they

cover seven possible application fields, namely detection and/or monitoring of:820

falls, activities, sleep, apnoea, epilepsy, vital signs, and facial expression. All

of these fields could be of interest to a person trying to monitor their own

overall health and independence status, and to establish an early diagnosis of

some conditions such as sleep disorders, apnoea, etc. Therefore, all applications

presented in (Sathyanarayana et al., 2018) would be useful for lifelogging in825

an AAL scenario. Furthermore, the review is focused in vision techniques, i.e.
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using video (RGB), depth (RGB+D), infrared (IR) and time-of-flight (TOF)

cameras; although some multi-sensor methods (including cameras in most cases

but not all) are also presented. As stated in the motivation, Planinc et al.

(2016) also propose a division of computer vision methods for AAL based on830

technologies and applications. These methods are part of the key enabling

technologies laid out in the work by Moschetti et al. (2014), which describes the

Aaliance2 project, and explores the technologies for AAL currently existing

throughout Europe and other parts of the world, identifies stakeholders and

analyses their needs, and then propose a series of key enabling technologies that835

need to be present to achieve the goals of greater independence for older people,

among others. It can be observed, from these two reviews, that common themes

appear: activity recognition, fall prevention and detection, and physiological

signs monitoring (including affective status, sleep quality, indicators of apnoea

or epilepsy, and other niche areas). Other applications are not as useful for840

data collected into a personal lifelog (i.e. tele-rehabilitation, serious gaming,

gesture-based interfaces, and assistive robotics). We will therefore focus on the

former group. Table 4 shows how different methods reviewed are used or could

potentially be used for different applications.

4.1. Human activity recognition845

One of the tasks regarded as essential to AAL is human activity monitoring

or human activity recognition (HAR) (Calvaresi et al., 2017; Rashidi & Mi-

hailidis, 2013), sometimes mentioned under the umbrella of a wider “context

awareness” concept (Queirós et al., 2015). In Aggarwal & Xia (2014) these

methods are classified according to the type of feature that is used for recogni-850

tion, namely: depth data, contours and silhouettes, and skeleton information.

This same division has been used for methods using cameras installed in the en-

vironment under Sec. 3.2. The reader is referred to that section for an in-depth

analysis of methods aiming at this application.
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Table 4: Applications provided by works surveyed in this review

Application
Reviewed literature

Real provision Potential provision

HAR and HBA Carreira & Zisserman (2017);

Ding et al. (2017); Ijjina &

Chalavadi (2017); Ji et al.

(2017); Liu et al. (2016b,a,

2017a); Ma et al. (2017);

Park et al. (2016); Rah-

mani & Bennamoun (2017);

Shahroudy et al. (2016b);

Wang et al. (2016, 2017b);

Zhang et al. (2018); Zhu et al.

(2016) Abebe & Cavallaro

(2017b,c,a); Nakamura et al.

(2017, 2016)

Eichner et al. (2012); Elhayek

et al. (2015); Fan et al. (2015);

Tompson et al. (2014); Toshev

& Szegedy (2014); Varol et al.

(2017)

Fall detection Kasturi & Jo (2017); Mas-

torakis et al. (2018); Solbach

& Tsotsos (2017)

(reviews: Khan & Hoey

(2017))

Gait analysis and

Fall prevention
Dubois & Charpillet (2014);

Vaziri et al. (2017)

(reviews: Hamm et al. (2016);

Rajagopalan et al. (2017);

Cippitelli et al. (2017))

Physiological signal

monitoring and well-

being assessment

Andreu-Cabedo et al. (2015);

Andreu et al. (2016); Chen

& McDuff (2018); Colantonio

et al. (2015a,b); Coppini

et al. (2017); Germanese

et al. (2017); Henriquez et al.

(2017); Hurter & McDuff

(2017); Irani (2017); Lewis

et al. (2018); Li et al. (2017);

Lopez-Martinez & Picard

(2017); Huimin et al. (2017);

Maclaren et al. (2015); Picard

et al. (2001); Sen (2017)

Wu et al. (2012) (reviews: Be-

tancourt et al. (2015); Faust

et al. (2018); Sathyanarayana

et al. (2018))
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4.2. Gait analysis, fall detection and prevention855

Several reviewed works focus on fall detection, or gait analysis for fall pre-

vention (Dubois & Charpillet, 2014; Mastorakis et al., 2018; Solbach & Tsotsos,

2017; Stavropoulos et al., 2016; Vaziri et al., 2017; Kasturi & Jo, 2017; Cippitelli

et al., 2017; Pramerdorfer et al., 2016). Cippitelli et al. (2017) is a review on

fall detection methods from depth and radar sensors. Kasturi & Jo (2017) has860

already been mentioned under depth camera-based methods in Sec. 3.2.1. Most

works on fall detection do not rely on advanced machine learning algorithms

for decision, but rather use threshold-based methods. Solbach & Tsotsos (2017)

propose to use stereo camera information to estimate the human pose and the

ground plane in 3D. Once this is achieved, they propose a number of measures865

to determine whether a person is fallen. Even if the human pose is calculated

using a CNN, the reasoning behind, i.e. to detect a fall, is based on simple

hand-crafted features, since detecting a fall can be derived from a knowledge-

based reasoning, e.g. using a distance from ground calculated as the distance of

the centre of gravity to the floor (ground plane). One of the problems with fall870

detection techniques is the lack of big datasets that are representative of a wide

variety of fall instances as exposed in the review by Khan & Hoey (2017). To

tackle this problem, Mastorakis et al. (2018) propose to use a physics-based sim-

ulated approach. They claim that fall recordings are unnecessary for modelling

falls, since the simulation engine employed can produce a variety of fall events875

that can mimic an individual’s physical conditions using myoskeletal models.

Focusing now on the gait analysis and fall prevention, Dubois & Charpillet

(2014) propose to track three different gait parameters: length of steps, their

duration, and speed of the gait. They compare the data measured in different

situations (e.g. walking normally, or with actors wearing a skirt that impedes880

normal gait) to a ground truth consisting of the same gait parameters obtained

by an actimetric carpet.

Finally, Vaziri et al. (2017) shows a quantitative and qualitative analysis

of a fall prevention intervention, named iStoppFalls which is a video game-

based system (exercise gaming, or exergaming) for older adults which aims to885
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improve balance and strengthen key muscles which are frail in high risk fallers.

Since adherence to a exercising routine is key to success in fall prevention, they

quantitatively monitor patient progress and/or failure using several metrics.

Furthermore, because of other factors beyond technical, they also propose a

qualitative assessment to discover how older people regard the system, and890

what do they think could improve their likeliness to use the system for longer

periods of time.

4.3. Physiological signal monitoring

Computer vision methods for physiological signal monitoring can be seen as

an alternative to invasive systems requiring patch sensors on the skin (Irani,895

2017; Li et al., 2017). Also, alternatives based on radar and laser can also be

very costly. As said above, a good review on physiological signal monitoring is

that of Sathyanarayana et al. (2018), which is focused on video devices. Also

the reviews commented in the introduction about non-vision sensors, as much

of physiological signal monitoring happens with other types of (mostly medical-900

grade) sensors (the review by Faust et al. (2018) is entirely on methods using

these devices). One of the earliest works in this field is Picard et al. (2001),

which estimates affective state of a patient by using four different physiological

signals. Although vision is not used, it demonstrates the ability of physiological

signals to provide valuable information for affective state recognition.905

Hurter & McDuff (2017) present Cardiolens to provide a visual aid to per-

form remote physiological monitoring of heart rate. The idea is to integrate

their algorithm in smart glasses to monitor subjects in front of the wearer, but

it could well be adapted to other uses (e.g. a mirror as in (Colantonio et al.,

2015a)). They propose a photoplethysmography algorithm using RGB infor-910

mation along with frequency filtering to obtain heart rate as per a previously

validated method by the same authors.

The PhD thesis of Irani (2017) explores techniques for the analysis of human

facial videos to provide contact-less (non-intrusive) methods for physiological

signal recovery, including: heartbeat estimation, muscle fatigue detection, and915
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pain/stress recognition. They propose a new method for heart estimation, that

unlike others is not colour-based, but rather motion-based (i.e. performing

tracking of facial landmarks). For pain, the author proposes a spatio-temporal

technique based on energy changes of the facial muscles due to discomfort. For

stress detection, they use a combination of RGB and thermal information, along920

with features from super-pixels, rather than directly from pixels as reported in

the literature, achieving state-of-the-art performance.

Li et al. (2017) present a means for non-contact vision-based cardiopul-

monary monitoring in different sleeping positions. Their method is aimed at

apnoea detection during sleep and aims to be robust against postural change925

while sleeping. Their method is motion-based (tracking of distinctive points)

and uses infra-red (IR) imagery (since presence of light would impede sleep

in patients). They compare their results against a ground truth based on a

polysomnography recording and report low mean percentage errors for heart

and respiratory rates (< 5.0% and < 3.4% respectively).930

Lewis et al. (2018) present a system for continuous cardiac activity moni-

toring combining an RGB-D device with a video camera (RGB). They claim

that methods which can run on real-time have the potential to be embedded on

a device, and call for better on-line methods, as opposed to existing methods

which tend to evaluate data post-hoc, i.e. off-line. The RGB-D device is used to935

monitor the patient’s face, whereas the features for cardiac activity monitoring

are extracted from a video camera with better resolution. They also compare

their results against ground truth ECG data.

At the convergence of first-person video and physiological monitoring, is the

work by Nakamura et al. (Nakamura et al., 2016, 2017). They collected a dataset940

consisting of egocentric video augmented with heart rate and acceleration sig-

nals with more than 30 hours of video (Nakamura et al., 2016). Furthermore

they propose a method for energy expenditure calculation and activity recog-

nition using video and acceleration data, but using heart rate data during the

training stage as a soft labelling of real energy expenditure. Their regression945

works on a recurrent network (using CNNs for feature extraction form the video
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and engineered acceleration features, with early fusion, then fed to LSTMs to

consider the temporal dimension too). Also analysing energy expenditure, yet

from ambient cameras is Tao et al. (2018). The proposed method uses a combi-

nation of visual (RGB-D) and inertial sensors to calculate energy expenditure.950

The proposed framework is individual-independent and fuses information from

both modalities leading to improved estimates beyond the accuracy of each

single modality and manual methods based on “metabolic equivalents of task”

(MET) energy expenditure lookup tables, which are currently commonly used

by professionals. In another work, Tao et al. (2017) compare calorific expendi-955

ture estimated from RGB-D data against physical gas exchange measurements

in a domestic environment. From their experiments, the authors conclude that

the proposed vision pipeline is suitable for home monitoring in a controlled

environment.

5. Privacy and user acceptance960

User views and preferences are important in the design and marketing of

AAL solutions, as collected in several reviews on the topic (Arning & Ziefle,

2015; Bygholm & Kanstrup, 2015; Queirós et al., 2015). The works by Bygholm

& Kanstrup (2015) and Queirós et al. (2015) have already been presented in the

introduction (Section 1). However, Arning & Ziefle (2015) focus more on the965

user acceptance of AAL solutions based on not only the medical effectiveness

of the proposed systems, but the combination of this factor with others such as

camera typology and perceived privacy. Their conclusions are that acceptance

has a lot to do with effectiveness of the proposed monitoring method (i.e. medical

safety as is worded by the authors), and privacy is a concern in private spaces970

a lot more than it is in public spaces. Privacy concerns were mostly related to

being recognisable, and less related to data privacy (e.g. storage of video for

medical purposes). In fact, there are some completely unacceptable technologies

according to the individuals interviewed: face recognition in the private scenario,

storage in some cases, and seamless integration (i.e. cameras integrated in the975
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home in an invisible manner).

Padilla-López et al. (2015) offer a review of different privacy preservation

methods, first defining a series of dimensions of privacy (enumerated as a list of

questions about the data and its processing) that systems deemed secure need

to consider. The review shows an emphasis on different methodologies that can980

be followed (intervention, blind vision, secure processing, redaction and data

hiding). Redaction methods are the most common, according to the authors,

and they present different image filtering, encryption, de-identification of faces,

object removal (via impainting), and visual abstraction (e.g. the use of avatars

to hide the person’s identity). They also discuss privacy at all levels of pro-985

cessing (acquisition, processing, storage, and retrieval), with advantages and

drawbacks from the data security point of view. Furthermore, it also enumer-

ates some of the video surveillance systems that take privacy into account, and

to what extent they take into account all dimensions of privacy preservation

proposed. Following this review, (Padilla-López et al., 2014) propose a series of990

image filters for privacy-aware real-time video redaction, with different levels of

access depending on the person accessing the secure video channel (privacy-by-

context). For instance, close relatives might be able to see the video with a filter

that shows the face and pose of the person, whereas other stakeholders might

only be able to see a more redacted output that still allows them to interpret995

what is happening in the scene without privacy-revealing details.

Ribaric et al. (2016) present the concept of de-identification in multimedia

for privacy protection. They present a taxonomy of features that can identify

a person (both biometric and non-biometric, such as textual information) and

review existing methods to overcome identification (i.e. by detecting and re-1000

placing or scrambling the identifying data). In the biometric de-identification

methods they include: face, fingerprints, voice, ear, gait and gestures; as well

as soft identifiers such as height, body silhouette, gender, age, ethnicity, scars

and tattoos, etc.

Another possibility for de-identification is cartooning (Erdélyi et al., 2013,1005

2014; Hassan et al., 2017). Erdélyi et al. (2013) propose a MeanShift-based
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method for cartooning (i.e. reducing the total number of colours and simpli-

fying texture based on pixel property neighbourhood) with edge recovery to

preserve sharp edges. This is done to obscure the identity of people while

preserving video intelligibility. As part of their algorithm they also recolour1010

personal items (such as scarves and carried bags) by shifting the hue, and per-

form further blurring of faces. In a later work, Erdélyi et al. (2014) propose

to have an adaptive filter, i.e. where an operator can determine the level of

obscuring performed. They also provide comparison to intelligibility, privacy,

and appropriateness with pixelation and simple blurring. Finally, Hassan et al.1015

(2017) use a similar cartooning method, and propose a deep learning based

approach (using region-based convolutional networks, or R-CNNs for short) to

replace personal identifying items (e.g. toothbrushes, TV and computer screen

contents, etc.) with clip-art images from a pre-selected collection. They also

apply this method on first-person videos (where such personal items are much1020

more visible, especially screen contents), and claim to be the first to do so.

More particular to the field of lifelogging (LL), Gurrin et al. (2014) intro-

duce a proposal for a privacy by design framework for LL. They introduce the

stakeholders of a lifelogging system, namely: the individual, subjects the indi-

vidual interacts with, passive bystanders (recorded unintentionally), and a host1025

or hosts (people given access to the lifelog by the individual). They then anal-

yse which aspects of lifelogging (devices used, stakeholders) have a potential for

privacy breaches, and propose measures to counter them. For instance, they

state the use of video logging is much more likely to cause breaches of privacy

of bystanders, whereas pedometer data and other wearable data (e.g. tempera-1030

ture, heart rate, breathing) might not pose such privacy concerns. Among the

measures are secure transmission and storage, as well as the right of anyone to

chose whether to be in or out of someone else’s lifelog.

Some reviewed works cover user acceptance studies of specific projects or

finalised systems (Coppini et al., 2017; Stavropoulos et al., 2016; Vaziri et al.,1035

2017). Coppini et al. (2017) provides a user acceptance and usability study

regarding the wize mirror proposed in (Colantonio et al., 2015a; Henriquez
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et al., 2017). Another example is Stavropoulos et al. (2016) present the results

of a system called Dem@care, which combines multiple types of sensors, including

video and audio, but also wearable physiological signal devices. The system has1040

undergone clinical trials in different countries and therefore it has been validated

under several jurisdictions. One of the things the authors note, for instance, is

how different national-level regulations allow or prevent the use of certain types

of sensors in different environments due to how privacy issues are perceived in

each society. These examples show the recent trend and effort in involving final1045

users, to counter the issues perceived in reviews like (Bygholm & Kanstrup,

2015; Queirós et al., 2015) as shown in the introduction.

Finally, in the context of privacy and data security, it is worth mention-

ing recent developments in ‘deep learning’-based methods (Abadi et al., 2016;

Malekzadeh et al., 2018; Phan et al., 2016). With the advent of generative ad-1050

versarial networks (GANs), it has been possible to extract information about

the training data and/or to fool systems (Malekzadeh et al., 2018). The lack of

studies about privacy preservation in DL-based methods has also been pointed

out (Phan et al., 2016). For instance in (Abadi et al., 2016), privacy leaks from

the perspective of the training data are analysed. If a training dataset contains1055

real-world sensitive data, it could be possible to create attacks that target DL-

based systems to retrieve training examples (Fredrikson et al., 2015) via model

inversion. To counter this, Abadi et al. (2016) propose a framework for using

differential privacy within the context of DL neural networks. They achieve this

by using modified version of the stochastic gradient descent (SGD) algorithm:1060

a differentially private SGD. It is also worth mentioning auto-encoders (AE),

which can be used to preserve privacy when dealing with sensory data, such

as in Malekzadeh et al. (2018), where a replacement AE (rAE) is proposed.

This type of auto-encoder can retain accuracy while preserving the privacy of

sensitive information. To do so, the rAE learns how to transform discriminative1065

features that correspond to the inference of sensitive instances into a set of fea-

tures that have been observed more often in non-sensitive data; all this while

preserving the important features of desired inferences unchanged to allow for
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data sharing through public networks (e.g. usage of cloud services). To exem-

plify a usage scenario in an AAL environment, Malekzadeh et al.’s method would1070

consider e.g. ‘bathroom usage’ as sensitive (and therefore substituted in the ac-

tivity log with a faked non-sensitive event), ‘reading’ as non-sensitive, and an

eldery falling as an important event (thus preserved in the activity log available

to caregivers or medical practitioners). They demonstrate that GANs cannot

deduce or find which non-sensitive inferences are actual ones, and which are1075

substitutions of uninteresting but privacy-sensitive events. In a fashion similar

to (Abadi et al., 2016), Phan et al. (2016) propose a deep private auto-encoder

(dPA), which also uses principles based on ε-differential privacy.

6. Conclusions

The most recent advances in video-based intelligent lifelogging systems for1080

AAL applications have been reviewed. Common technologies and techniques

used across a number of applications in the field have been introduced. These

applications have also been commented, especially those which can serve the

purpose of feeding a lifelog that can be useful as a retrospective memory aid for

patients, but also for caregivers and medical practitioners to know more about1085

the day to day performance of the lifelogger, as well as their overall health

status.

After analysing previous reviews in these areas, carried out until two years

ago, it is clear that in the field of intelligent systems, deep learning techniques

seem to have swept the board, at least for activity recognition and most other1090

applications requiring advanced machine learning techniques (i.e. an exception

to this is fall detection, which can still be successfully detected by using other

methods). Among DL, it is interesting to note how CNN methods should still be

preferred as the first architecture even for problems dealing with sequential data,

in light of a recent systematic review by Bai et al. (2018) evaluating performance1095

on tasks commonly used to benchmark recurrent neural networks (RNNs using

LSTMs), in which results showed better performance for CNNs and even longer
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effective memory capabilities. This has also been noted in the reviewed works

where multi-stream CNNs coding temporal data as 2D distributions and feeding

them to a 2D-filter network outperform other more complex methods (Bilen1100

et al., 2016; Ma et al., 2017; Xiao et al., 2019).

Other interesting techniques for future work are those mixing dictionary-

based approaches that had great acceptance in the past (bag-of-words mod-

elling, Fisher vector encoding) with features obtained from convolutional neural

networks trained with current means, as introduced by Liu et al. (2017b); Xie1105

et al. (2017), instead of using handcrafted features. Alternatively, there is also

the proposal of using decision trees as combinations of features extracted from

CNNs, as explored by Tanno et al. (2019).

Newer video-based technologies, as RGB-D devices, which capture not only

images but also depth and human pose information, and the application of1110

deep learning models, are considerably improving the accuracy and reliability

of lifelogging AAL services. However, their deployment in real environments is

still far from being a reality, as systems need to deal with cluttered and changing

environments, with differences in the way individual people perform their daily

activities, and with the changes in the behaviour of a particular user along time.1115

There are a couple of issues that need to be addressed in order to improve the

results:

1. the lack of massive amounts of video data related to AAL applications,

which are necessary to train modern intelligent systems; and

2. the necessity to involve older and frail people from the inception, and into1120

the design, development and deployment of new technologies (Bygholm

& Kanstrup, 2015; Queirós et al., 2015). The literature seems to indi-

cate living labs are the best solution, as they allow an iterative trial and

error approach with users, thus assuring their needs are met. Further-

more, proper testing and validation of proposed technologies is a must if1125

these technologies are to be considered more than mere futuristic proto-

types (Calvaresi et al., 2017).

46



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Privacy is also a concern, since technologies at the intersection of the fields

mentioned are usually installed in private environments, where people develop

their personal lives and have high expectations of privacy (Arning & Ziefle,1130

2015). Further studies regarding perceived privacy especially with regards to

proposed image filtering approaches are needed, as well as to establish which

measures could be taken to improve user acceptance, since benefits of the pro-

posed technologies could potentially serve people most at need, and assist them

in living on their own, preserving health for longer, and reassuring their care-1135

givers and families.
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Coppini, G., Zuccaia, V. C., Marià, R. D., Nazare, J. A., Morales, M. A., &

Colantonio, S. (2017). User acceptance of self-monitoring technology to pre-

vent cardio-metabolic diseases: The wize mirror. In 2017 IEEE 13th Interna-

tional Conference on Wireless and Mobile Computing, Networking and Com-

munications (WiMob) (pp. 265–271). doi:doi:10.1109/WiMOB.2017.8115837.1290

52



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Damen, D., Doughty, H., Maria Farinella, G., Fidler, S., Furnari, A., Kazakos,

E., Moltisanti, D., Munro, J., Perrett, T., Price, W. et al. (2018). Scaling

egocentric vision: The EPIC-KITCHENS dataset. In Proceedings of the Eu-

ropean Conference on Computer Vision (ECCV) (pp. 720–736).

De la Torre Frade, F., Hodgins, J. K., Bargteil, A. W., Artal, X. M., Macey,1295

J. C., Castells, A. C. I., & Beltran, J. (2009). Guide to the Carnegie Mellon

University Multimodal Activity (CMU-MMAC) Database. Technical Report

CMU-RI-TR-08-22 Carnegie Mellon University Pittsburgh, PA.
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