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Abstract— In this work, a simple and efficient circuit modeling
of metamaterial structures, providing a compact circuit able
to describe accurately the device over a large bandwidth of
operation, is proposed. The equivalent circuit model is obtained
by the identification process of the load in terms of shunt
branches constituted by reactive elements that can be both
positive and negative. The circuit model is validated by analyzing
the split-ring resonator (SRR) structure. The presence of negative
elements in the non-Foster load is transformed into positive
reactive elements by converting the load from shunt into series.
Unlike the T or 5 circuit models, using this approach a circuit
model can be constructed directly from the scattering parameters
and valid for any circuit topologies.

Index Terms— Equivalent circuit, Foster circuit, non-Foster
circuit, positive rational function (PRF), split-ring resonator
(SRR).

I. INTRODUCTION

METAMATERIALS are artificially designed resonant
structures which exhibit negative permittivity and/or

negative permeability, realized with periodic metallic inclu-
sions in a dielectric media [1]. These artificial materials are
of great interest for their peculiar effective material prop-
erties and its usefulness in scalability and integration of
microwave/mm-wave components. They became popular since
the first demonstration of negative dielectric permittivity using
a periodically arranged thin metallic wires as inclusions [2]
and negative magnetic permeability using a resonating metallic
ring structures [3], [4]. Accurate equivalent lumped element
models are useful to predict the behavior of the metama-
terial structures in a simple and computationally efficient
way. Equivalent circuit model permits to establish straightfor-
ward relationships with physical parameters (i.e., geometrical
dimensions, etc.) of metamaterials’ structure and its frequency-
dependent reflection/transmission characteristics. The most
studied resonant structure for the creation of metamaterial is
the split-ring resonator (SRR) that is a ring-shaped subwave-
length metallic structure with a split gap providing negative
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permeability near and above the resonance frequency. SRR
and its variants are the widely studied metamaterial structures
for the frequency range stretches from microwaves to terahertz
(THz) optics [5], [6], [7], [8]. In a simplest form, SRRs can
be modeled as resonant LC circuit [9], L accounting for the
line inductance of the metallic ring and C coming from the
dielectric split gap. At the resonance frequency, the magnetic
permeability goes to negative and will create a stopband in the
transmission spectra. Several works in the past were dedicated
to the analytical/numerical modeling of SRRs to understand its
resonance behavior [10], [11]. Researchers have already shown
that SRRs exhibit not only magnetic resonance but also an
electric resonance depending on the orientation of the SRRs
to the incident field [12], [13], [14]. Some of the reported
equivalent circuit models for SRRs use a quasi-static approach
as it is acceptable given that the metamaterial structures are
smaller than the free-space wavelength [15], [16], [17], but
these methods suffer from their own limitations and require
tedious calculations and evaluations before applying them into
the design process. Some other works [18], [19] also reported
similar quasi-static analysis to predict the resonance frequency
of SRRs embedded in microstrip, or coplanar structures.
The calculation of the capacitance per unit length in those
analyses requires an accurate value of the effective dielectric
permittivity of the substrate. For a multilayer high-frequency
technology stack, it requires additional effort on calculating the
effective permittivity considering all the layers of the substrate
while using the simple formula that takes into account only
one substrate layer will produce substantial error in predicting
the resonance frequency. In addition, it should be noted
that different kinds of excitations produce different spatial
configurations of the electromagnetic fields impinging on the
SRRs and, in this case, it may not be so simple to apply similar
analysis to the prediction of the frequency of resonance.
Moreover, some of those models are useful in predicting only
the resonance frequency of the metamaterial structure but not
the complete reflection/transmission behavior for the whole
frequency band. Sometimes, due to the distributed character
of the structures being modeled, they could yield physically
unsuitable lumped elements with no physical correspondence
to the modeled metamaterials. For practical design purposes,
we need precision over a large bandwidth of operation other
than just predicting only the resonance frequency.

In this work, we propose a simple and efficient circuit mod-
eling of lossless metamaterial structures yielding a compact
circuit to address high accuracy over a large bandwidth. The
objective is mainly devoted to develop an equivalent network
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valid for a large bandwidth based on the “minimal” model
defined by Marcuvitz [20] and Montgomery et al. [21] for
microwave discontinuities that is constituted by a shunt load
embedded in two transmission lines. This circuit is “minimal”
because it contains only three electrical quantities, just as
the number of the independent parameters of the scattering
matrix S of the lossless device under study. An improvement
of the model is obtained by the identification process of the
load in terms of shunt branches, constituted by one branch
with only a capacitance and a number of resonant branches
made by all positive or all the negative inductances and
capacitances. Although it is correct to use such negative
elements from an identification point of view, we propose to
substitute these negative reactive elements, producing “non-
Foster” loads, with positive Foster reactive elements by means
of a combination of transmission lines and a shunt-to-series
transformation.

It should be noted that the presence of negative non-Foster
reactive elements in metamaterials can be found in the liter-
ature [22], [23], [24], [25], [26], [27], [28], [29], [30], being
obtained by means of active elements and used, for example,
to improve the bandwidth of an antenna matching.

It should be stressed that the non-Foster elements obtained
in the identification process proposed in this article are due to
the “compression” of the electrical complexity of the lossless
device in terms of an equivalent circuit made only with a
“minimal” representation, based on three electrical parameters.
Moreover, these non-Foster elements cannot be seen as stand-
alone elements, as the previous one obtained by active devices,
but they have to be considered as a constituting block of the
overall equivalent circuit of the entire device that still has
a Foster behavior at the input–output ports, being a passive
lossless device.

This proposed approach is not limited only to SRR case but
can be applied to any kind of lossless metamaterials’ design
to attain a compact circuit.

II. THEORY

The evaluation of an equivalent circuit for the SRR can
be performed with various approaches, as discussed in the
introduction, but they mainly refer to the lossless case or the
quasi-static one. The hypothesis of lossless materials may not
be correct in principle, because any realized structure is made
by lossy dielectric and lossy metal but considering at first a
lossless structure permits to obtain the general properties of
the equivalent circuit related to the SRR geometric parameters
and to the SRR electromagnetic field distribution.

The unit cell of the analyzed structure is shown in
Fig. 1(a) and (b). It is constituted by an SRR, placed on the
xy plane, with N rings (two in the figure) embedded in the
Si3N4 layer (height hSi3N4 = 4 µm) and fabricated on a
Si substrate (height hSi = 650 µm) covered with a SiO2
(height hSiO2 = 300nm) layer. The external ring has a width
w, length a, and thickness t = 1 µm; spacing between the
concentric rings is s and the width of the gap in each ring
is g. A multilayer stack is taken into account here for a
practical consideration, because the results discussed in this
article are the preliminary step of a more global project that

Fig. 1. SRR geometry. (a) Longitudinal section. (b) Cross section.

Fig. 2. Equivalent circuit for the lossless SRR.

would joint together the presence of metamaterials, antennas,
and active device at different planes in the same technological
stack [31], [32].

Another important aspect that must be considered in deriv-
ing an equivalent circuit is the kind of excitation of the device.
In this work, we suppose that a plane wave with Ex and Hy

component is traveling in the z-direction, impinging from the
air on a periodic distribution of SRR’s along the x-direction,
with periodicity Px . Similarly, a periodic distribution of the
SRR’s in a vertical stack with periodicity Py = hSi3N4 +

hSiO2 + hSi = 654.3 µm is considered. Under this hypothesis,
we can define a unit cell, with dimensions Px × Py and use the
Floquet modes’ approach (with no phase shift between the
walls of the unit cell) that reduces the simulations effort.
The electromagnetic software CST Microwave Studio has
been used to evaluate the S matrix of the unit cell. Such an
arrangement permits to analyze the stopband properties of the
SRR in the presence of an exciting electric field, parallel to
the plane of the SRR. This arrangement could be used, for
example, to suppress the surface mode arising in a stack planar
structure.

The extraction of an equivalent circuit could also be per-
formed in a quasi-static approach, but it is very difficult to
obtain a reasonable and simple equivalent circuit that could
be used to predict all the resonances at high frequencies with
an acceptable precision. Moreover, these models cannot be
considered reliable for parametric analysis of the devices,
except for particular cases.

In the hypothesis of lossless material, the simplest way
to extract an equivalent circuit is the method presented in
the Marcuvitz [20] or Montgomery et al. [21] handbooks
that, starting from the knowledge of the scattering parameters,
allows to obtain the equivalent circuit shown in Fig. 2. The
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proposed equivalent circuit takes into account the discontinu-
ities at the air–dielectric interfaces at z = 0 and z = Lr that
can be represented by the connection of two different trans-
mission lines, being the first relative to the wave propagation
in air and the second to the propagation in a dielectric medium
with effective dielectric constant εe

r and wave impedance
ηr = (η0/

√
εe

r ), where η0 is the air wave impedance. This
circuit is obtained in the hypothesis that the evaluation of εe

r
of the multilayer structure shown in Fig. 1(b) is possible by
means of the effective dielectric constant method [33] or by the
evaluation of the modes properties with CST or other full-wave
electromagnetic simulation software. In fact, in this case, the
scattering matrix Sair obtained by CST with the Floquet ports
placed at z = −L p, z = Lr + L p (black dashed box in Fig. 2)
can be de-embedded in phase by adding two negative lines of
length θ0

= −k0L p (this evaluation can also be done directly
by CST) obtaining the matrix S0 (blue dashed box in Fig. 2),
which can be used to obtain the scattering matrix “seen” at the
dielectric ports Sr (red dashed box in Fig. 2), by denormalizing
S0 with respect to η0 and normalizing with respect to ηr .

It should be noted that the circuit representing Sr (red box)
is minimal, being composed by only three unknown parameters
(i.e., the electrical lengths of the two external transmission
lines, θ r

1 , θ r
2 , and the shunt load B) which correspond to the

number of independent scattering parameters, for example,∣∣Sr
11

∣∣, ϕr
11, and ϕr

22. The circuit of Fig. 2 is efficient, because the
reflection/transmission properties of the device are directly and
only related to the susceptance B that can be simply evaluated
by [34]

B = ± 2

∣∣Sr
11

∣∣
ηr

∣∣Sr
12

∣∣ (1)

θ r
1 = −

1
2

arg
(

Sr
11

2 j − Bηr

2 j

)
(2)

θ r
2 = −

1
2

arg
(

Sr
22

2 j − Bηr

2 j

)
. (3)

The presence of the external transmission lines θ r
1 , θ r

2 ensures
the correct values of the phase of the global scattering param-
eters of the equivalent circuit with respect to Sr . Therefore,
the equivalent circuit shown in Fig. 2 is very effective being
able to mix the effect of the reflection at the air–dielectric
discontinuities and the effect of the rings in the dielectric
layers. It is noteworthy to mention that this equivalent circuit
can always be defined for any reciprocal microwave structure
because it is directly related to the scattering parameters by
(1)–(3) that can be obtained numerically or experimentally
for any device. On the contrary, T or 5 equivalent circuit
coming from the Z or Y matrix is not defined for some circuit
topologies, as, for example, it occurs for a transformer that
cannot be expressed in terms of Z or Y but only with T and
S matrix. Moreover, the scattering properties of the device in
those representations are related to the series and shunt reac-
tances, and a quick evaluation of the reflection/transmission
properties of the equivalent circuit is not possible due to the
combination of three reactances.

It is evident that the reflection/transmission properties of the
device, the SRR in our case, are included only in the shunt load

and it can be frequency-dependent. For very simple structures,
such as thin inductive or capacitive windows in waveguides,
the frequency dependence of the susceptance B corresponds
exactly to a pure inductive or capacitive susceptance [20], [21].
For more complex shapes of the aperture between the two
sides of the waveguide, the shunt load can be represented
by resonant LC circuit. Hence, the global susceptance B
can be represented by some combinations of inductance and
capacitance matching with the frequency behavior of B. This
is the problem known as identification, i.e., how to identify
the best representation of B in terms of lumped inductances
or capacitances in a proper network combination.

The same B identification holds also for the SRR but,
in this case, the complexity of the structure that depends
on many geometrical parameters does not allow a simple
evaluation of inductances and capacitances in a particular
combination to be used to represent the frequency behavior
of B. To this aim, the identification of B can be done by
means of the classical approach based on the pole-zero identi-
fication starting from the frequency response [35]. The typical
implementation of such technique is based on an optimization
process (least squares, maximum likelihood estimation, vector
fitting, or others. . . ) which try to evaluate the coefficients of a
transfer function made by the ratio of two polynomials, which
approximates the frequency response of B. The classical evalu-
ation imposes some constraints on the polynomial coefficients
to obtain a positive rational function (PRF) and it can be syn-
thesized by positive inductances and capacitances. In this case,
the frequency behavior of the obtained network satisfies the
condition (d B( f )/d f ) > 0. This kind of network representing
the shunt load B( f ) is defined as a Foster network. Removing
the constraints of the classical approach, non-Foster networks
can be included in the identification process for the lossless
case under study. The main difference between a non-Foster
and a Foster circuit is related to the slope of (d B( f )/d f )

that has to be positive for Foster and negative for non-Foster
susceptance (or reactance). Consequently, the identification of
the corresponding equivalent circuit is based on the presence
of inductances and capacitances both positive or both negative
for the two cases, respectively. Moreover, a non-Foster circuit
can also be identified with positive inductance/capacitance but
with positive and negative resistors [36], [37], [38].

Hence, the proposed approach to perform the identification
of the shunt load B in the equivalent network is to include both
the Foster and non-Foster networks with the only requirements
that the identification with positive and negative resistors and
positive inductance/capacitance for the non-Foster part is not
taken into account for the lossless SRR case because, to the
authors’ opinion, the presence of positive and negative resis-
tors for a lossless device can be considered as questionable.

The presence of non-Foster reactances/susceptances in a
lossless circuit could be surprising. Actually, there are some
cases where the identification process yields to the presence
of elements with the non-Foster behavior, even if the actual
device shows a Foster behavior at its input and output ports.
For example, the representation of a simple transmission line
with a two-port circuit requires the presence of such elements.
In fact, we know that the scattering matrix of a transmission
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line is simply S11 = 0, S12 = e− jθ , where θ = 2π f
√
LCL

is the electrical length, f is the frequency, L, C are the
inductance and capacitance per unit length, respectively, L
is the physical length, and Z0 =

√
L/C is its characteristic

impedance. From the S matrix, we can obtain the Z matrix
that can be represented in terms of a T equivalent circuit,
made by a series reactance X line

s = −Z0 cot(θ) and a shunt
reactance X line

p = −Z0 csc(θ). If we plot X line
s and X line

p
versus frequency f , we can observe that X line

s corresponds to a
classic Foster reactance, characterized by (d X line

s ( f )/d f ) > 0,
while X line

p has a behavior corresponding to a Foster case for
0 ≤ θ ≤ π/2 and 3π/2 ≤ θ ≤ 2π and to a non-Foster case
for π/2 ≤ θ ≤ 3π/2. X line

s can be identified with a network
containing Foster elements while X line

p with a network that
must contain non-Foster elements (or positive RLC elements
with additional negative R).

We can explain this different behavior for X line
p in terms

of the circuit representation we are considering. In fact, the
actual circuit representation of a transmission lines should
be a ladder network with infinite elements L 1Z and C
1Z , with 1Z , length of a unit cell, approaching to zero.
To obtain a more compact and easy-to-use equivalent circuit
of the transmission line, the infinite ladder network, made by
positive inductances/capacitances (with the Foster behavior),
can be replaced by the T network that “compresses” the infinite
ladder network in a simple two-port representation made by
X line

s and X line
p . This “compression” yields to the presence of

a combination of the Foster and non-Foster elements in some
frequency band, while the overall behavior at the input–output
ports is always of Foster type. On the other hand, as stated by
Marcuvitz [20] in his handbook, we can define, for the same
device under study, a number of different equivalent circuits.
In fact, “. . . an equivalent circuit of a device can represent
a simple frequency dependence or the minimization of the
electrical parameters, or the effects of evanescent modes. . . .
Hence, any device can be represented with various equivalent
circuits, and each one represents a particular characteristic and
is ‘correct’.” This is just the case for the transmission line for
which we can find at least two different equivalent circuits,
each of one with its own characteristics.

1) The T network representation implies “compactness”
and the possibility to simply manipulate the cascade
with other discontinuities, but with the presence of the
Foster and non-Foster elements, which do not change
the behavior at the input–output port of the overall
transmission line that still has a Foster behavior.

2) The ladder network representation implies the presence
of positive inductances/capacitances (Foster behavior)
but with infinite elements in the ladder network and not
a simple circuit manipulation when connected to other
circuit.

It should be stressed that the non-Foster behavior of X line
p in

some θ range does not imply that we can actually realize
a non-Foster reactance by the T equivalent circuit of the
transmission line, because the only way to realize a non-Foster
reactance is based on the use of active elements [22], [23],
[24], [25], [26], [27], [28], [29], [30]. In fact, the T equivalent

circuit must be taken as a “whole,” where any elements
contained in it must be seen as “internal” elements strictly
connected to the other elements, i.e., the series reactance X line

s
for this case. Furthermore, for the same passive lossless device
we could find many circuit representations containing only
Foster “internal” elements (just as the ladder network with
an infinite number of positive L and C) and many equivalent
circuits containing also non-Foster “internal” elements, but
the latter can greatly reduce the topological complexity of
the obtained equivalent circuit. In this sense, the presence
of “internal” elements with the non-Foster behavior (just as
X line

p ) can be a key to define simple equivalent circuits based
on “minimal” representation.

The same “compression” effect can be found in the equiva-
lent circuit shown in the blue dashed box in Fig. 2, represented
by (1)–(3). As previously discussed, this is a “minimal” circuit
representation for a complex device under study, which is
represented by its two-port scattering matrix, which contains
in its numerical values the complexity of the device, just as
a “black” box. Hence, the global electromagnetic behavior of
the device is “compressed” in a two-port representation and
we have no other information about the complexity of the
“black” box and which could be the “best” representation in
terms of an equivalent circuit. As an example, let us think to a
passband Chebichev filter realized in lossless waveguide with
many cavities for which we have to define an equivalent circuit
from the knowledge of its S matrix evaluated at the input and
output ports. By the transformation of S in the Z or Y matrix,
we can define a T or 5 equivalent circuit which contains the
global properties of the filter in the reactances/susceptances
of the series or shunt branches that could also have the non-
Foster behavior, as it occurs in the previously discussed case of
the simple transmission line. Similarly, from the S matrix we
can obtain the “minimal” circuit representation (1)–(3), where
the reflection and transmission properties are “translated” only
in the frequency behavior of the shunt susceptance, being the
two external line lossless and useful only to the match phase
condition on the global scattering parameters. Being the filter
characterized by zeros of reflection and limited ripples in the
passband, we can expect that the shunt susceptance B is char-
acterized by an oscillating frequency behavior crossing zero at
the zeros of reflection, yielding to the Foster and non-Foster
behaviors between two consecutive zeros of reflection. Hence,
whichever the equivalent circuit we choose, we can expect the
presence of the Foster and non-Foster “internal” elements in
the circuit representation due to the “compression” of the two-
port representation. The “internal” elements, with their Foster,
non-Foster, or dispersive behavior, must be seen as bricks
of the whole equivalent circuit because they must represent
the passive lossless device with a Foster behavior at the
input–output ports and they cannot be “extracted” to realize
a real non-Foster element. This consideration is applicable to
all the cases analyzed in this article.

As previously discussed, once the “minimal” representation
shown in Fig. 2 has been obtained by the global lossless S
matrix, obtaining the frequency behavior of B from (1) to (3),
the next step is to identify the shunt load B by means of a
rational function, obtained by the combination of a number of
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branches containing one positive capacitance/inductance and
resonant LC series, made by both positive (Foster type) or
both negative (non-Foster type) inductance and capacitance,
to reproduce the non-Foster behavior in some frequency bands
due to the “compression” of the proposed circuit representa-
tion. The rational function representing the reactive lossless
part including positive inductances and capacitances satisfies
the conditions established by Brune for the identification of
an admittance Y(s), s = σ + jω [35].

1) No poles lie in the right half-plane.
2) No zeros lie within the right half-plane.
3) Poles on the boundary are simple and have positive real

residues.
4) Zeros on the boundary are simple and at them

(d B(ω)/dω) > 0.
5) Re

[
Y ( jω)

]
≥ 0.

To include the presence of the negative inductances/
capacitances (non-Foster type) in the rational function that
identifies B, we have to add two other conditions.

6) Poles on the boundary are simple and have negative real
residues.

7) Zeros on the boundary are simple and at them
(d B(ω)/dω) < 0.

It should be noted that the network proposed to identify B,
based on resonant LC branches containing only positive or
only negative L and C, satisfies conditions 1 and 2 as the
poles are always purely imaginary, and condition 5 because
the network is purely reactive. Hence, no problem arises in
terms of stability of the network.

The identification process can be made by minimizing the
differences (least squares, maximum likelihood estimation,
vector fitting, or others. . . ) between the obtained susceptance
B of the equivalent network shown in Fig. 2 and the fitting
rational function Bfit obtained by the previous Brune’s modi-
fied conditions. The obtained fitting rational function Bfit will
be transformed in a complex circuit by the usual technique
of extraction of poles and zeros and their identification in
terms of shunt or series branches with positive and negative
inductances or capacitances that compose the global network
of the prescribed Bfit.

The last step is to try to redraw a shunt branch of
inductances/capacitances eventually identified in the global
network in a series branch, using the properties of the trans-
mission lines. This transformation can be obtained by means
of simple network arrangements.

To this aim, let us evaluate the scattering matrix for a
generic shunt load, represented by its normalized susceptance
b = Bηr

Sb
=

 −
jb

2 + jb
2

2+ jb

2
2 + jb

−
jb

2+ jb

. (4)

The transformation from the shunt normalized susceptance b
shown in Fig. 3 into the series normalized reactance x has been
done by introducing two transmission lines with characteristic
impedance ηr and electrical length −θbx

1 , −θbx
2 that transform

Fig. 3. Transformation from shunt susceptance to series reactance.

Sb into Sx with

Sx
=

[
e jθbx

1 0
0 e jθbx

2

]
Sb

[
e jθbx

1 0
0 e jθbx

2

]
. (5)

ensuring at the same time that Sx is the scattering matrix of
a series reactance. This condition is obtained in terms of the
normalized currents i x

1 , i x
2 , as defined in Fig. 3. In fact, let us

define the normalized currents

i x
1 =

√
ηr I x

1 (6)
i x
2 =

√
ηr I x

2 (7)

and the wave amplitudes as ax
1 , bx

1 , ax
2 , bx

2 . The correct values
of θbx

1 , θbx
2 that transform Sb into Sx , by guaranteeing that Sx

is the scattering matrix of a series reactance, are obtained by
imposing that

i x
1 = −i x

2 (8)

for any excitation coming from the two ports. Recalling that
i x
1 = ax

1 − bx
1 , i x

2 = ax
2 − bx

2 , we obtain

ax
1 − bx

1 = bx
2 ∀ax

1 (9)
ax

2 − bx
2 = bx

1 ∀ax
2 (10)

for excitation coming from ports 1 and 2, respectively. The
previous equations can be cast in the following form:

ax
1

(
1 − Sx

11 − Sx
21

)
= 0 (11)

ax
2

(
1 − Sx

22 − Sx
12

)
= 0 (12)

or

1 −

[
Sb

11e2 jθbx
1 + Sb

21e j (θbx
1 +θbx

2 )
]

= 0 (13)

1 −

[
Sb

12e j (θbx
1 +θbx

2 )
+ Sb

22e2 jθbx
2

]
= 0 (14)

with Sb
22 = Sb

11, Sb
12 = Sb

21. Equations (13) and (14) have the
following solutions:

θbx
1 = ±

π

2
; θbx

2 = ∓
π

2
(15)

θbx
1 = θbx

2 =
π

2
+ arctan

(
2
|b|

)
·

{
1 b ≤ 0
−1 b > 0.

(16)

The first solution, (15), gives

Sx
1 =


b

−2 j + b
2

2 + jb
2

2 + jb
b

−2 j + b

 (17)

that is the scattering matrix of a series normalized impedance

zs = jb (18)
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while the second solution, (16), gives

Sx
2 =


b

2 j + b
2 j

2 j + b
2

2 j + b
b

2 j + b

 (19)

that is the scattering matrix of a series normalized impedance

zs = − jb. (20)

Hence, the two solutions produce a transformation of the
shunt load into a series load with the difference that by the
first solution (15), the series reactance maintains the same
frequency behavior of b( f ), while, by the second solution (16),
the series reactance has a frequency behavior equal to −b( f ).
This is very important because the two different solutions
can produce two different kinds of x( f ) behavior. In fact,
if the shunt load is a Foster type, with (db( f )/d f ) > 0, the
series reactance could be either a Foster type if we choose
the first solution, being x( f ) = b( f ), or a non-Foster type
if we choose the second solution, being x( f ) = −b( f ) and
(dx( f )/d f ) = −(db( f )/d f ) < 0.

Similarly, if the shunt load is a non-Foster type, with
(db( f )/d f ) < 0, we can obtain a series non-Foster- or Foster-
type reactance, by choosing (15) or (16).

It should be noted that the analyzed transformation can also
be applied in the reverse case to transform a series load into
a shunt one. This can be done by adding two negative lines
−θbx

1 , −θbx
2 to the left and right sides of each circuit (shunt or

series) in Fig. 3. In so doing, a series reactance is transformed
in a shunt load with similar properties as in (18)–(20) with
two lines with electrical length equal to −θbx

1 , −θbx
2 as in (15)

and (16).
Therefore, the use of transmission lines of proper elec-

trical lengths permits to overcome the presence of negative
inductances/capacitances in the global network, obtaining a
more comprehensive network able to represent the property
of the device under study over a large bandwidth up to
very high frequencies. The proposed identification technique
can be summarized as follows: given a scattering matrix S0

representing the SRR under test excited by a plane wave, the
first step is the identification of the equivalent network shown
in Fig. 2 by means of the denormalization of S0 obtaining the
scattering matrix seen at the dielectric ports, Sr . The second
step is the identification of the electrical lengths θ r

1 , θ r
2 and the

shunt susceptance B by means of (1)–(3). The third step is
the identification of B by means of a rational function Bfit( f )

satisfying the modified Brune’s conditions that can be found
with the minimization of a functional based on the least-square
differences between B and the fitting rational function Bfit( f ).
The choice of the best method to minimize the differences is
not analyzed in this article where we use the least-squares
method. The fourth step is the transformation of Bfit( f ) in
terms of series or shunt branches composed by positive and
negative inductances by the classical extraction of poles and
zeros. If only positive components have to be defined in the
global network, the last step is the transformation of the shunt
negative components in terms of two equal transmission lines
embedding series positive components by means of (16) and
(20). Similar equations can be used to transform negative series

Fig. 4. (a) CRR scattering parameters seen from the air (S0
i j , dotted lines)

and from the dielectric (Sr
i j , continuous lines). (b) Electrical length θr and

normalized susceptances b = Bηr and bfit of the corresponding equivalent
circuit of Fig. 2.

components into positive shunt ones between two transmission
lines.

III. RESULTS AND DISCUSSION

A. Closed Ring Resonator (CRR)

The proposed identification process has been applied to the
analysis of CRR unit cell containing only one closed ring
(without the gap) with g = 0, w = 2, Px = Lr = 174, L x =

172 (hereafter, all the geometric dimensions are expressed in
µm). The effective dielectric constant extracted by CST is
εe

r ≈ 8. The scattering parameters’ amplitudes seen from the
air (S0) and in the dielectric (Sr ) are shown in Fig. 4(a). From
Sr , and (1)–(3), we can evaluate the electrical lengths θ r

1 = θ r
2

and the normalized susceptance b = Bηr of the equivalent
circuit as shown in Fig. 4(b). The closed ring CRR totally
reflects at about 99.5 GHz and this is due to some resonant
part contained in the identified susceptance. The behavior of
b [black line in Fig. 4(b)] shows a resonance that can be
related to a Foster network, for which (db( f )/d f ) > 0, and
synthesized by a resonant series LC, being L and C both
positive. Moreover, the behavior of the lower and higher parts
of the band suggests the presence of a capacitance also in
shunt with the resonant part of the circuit. In fact, by applying
the identification process previously discussed to b with a
realizable shunt generic load made by two branches, we have
obtained that b can be realized with the global shunt load
shown in Fig. 5(a) where C = 7.95 fF, L F

= 0.57 nH, C F
=

4.49 fF. The comparison between the exact susceptance b
(black line) and the fitting bfit (red line) that is approximated
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Fig. 5. (a) Identified circuit for the susceptance B. (b) Normalized
susceptance behavior of the two branches of (a) (blue and green lines) and
their sum bfit = bc + bLFCF (red line). (c) Electric field across two adjacent
unit cells (transverse plane and, in the inset, longitudinal plane).

by the circuit with two branches is shown in Fig. 4(b) and
it matches well. Some explanations are needed for the two
branches’ circuit whose contributions are shown in Fig. 5(b).
The first branch is constituted by a capacitance (blue line) that
is mainly related to the capacitor formed between the sides
of the left and right unit cell conductors [39], as shown in
Fig. 5(c). This can be verified by the following analysis. The
proposed identification approach has been applied to the CRR
with a rectangular shape by fixing the length L x = 172 and
varying the conductor length L z [see Fig. 1(a)]. The identified
capacitance C is almost linear with L z , Fig. 6(a), while C F

shows a log behavior versus L z , Fig. 6(b), as in the following
approximated models:

Capp(L z) ≈ − 0.914 + 0.052L z fF (21)

C F
app(L z) ≈ − 7.22 + 1.97 log(2.22L z) fF. (22)

Hence, the length L z of the side conductors affects mainly C
and slightly C F .

While the capacitance in the first branch is mainly related
to the length of the side conductors as previously discussed,
the capacitance C F in the LC branch is mainly related to the
change in direction that the electric field undergoes when it
crosses the dielectric and impact on the ring conductor. In fact,

Fig. 6. (a) Identified capacitance C of the first branch versus the lateral
conductor length L z or the front conductor width Lx and its approximated
model as in (21) and (23). (b) Identified capacitance C F of the second branch
versus L z or Lx and its approximated model as in (22) and (24).

Fig. 7. Simplified sketch of the electric field behavior between the rings
for a plane wave impinging from the bottom at the resonant frequency f =

99.5 GHz.

the electric field of the plane wave impinging from the air on
the CRR is directed horizontally along the x-direction and it
must satisfy the boundary conditions on the CRR conductors.
Due to that, it must change its direction to be orthogonal to
the conductors. The change in direction of the electric field
is clearly shown in the simplified and not in scale sketch
of the electric field and charge distribution shown in Fig. 7,
obtained from the CST simulations. The reference plane for
the sketch is in the plane AA’ indicated in Fig. 1(b). The field
intensity is proportional to the arrow strength while the legend
for the charge intensity is shown inside the figure. The wave
is impinging from the air (bottom) with the horizontal electric
field and the presence of the horizontal conductor constrains
the electric field to change its direction to satisfy the boundary
conditions as shown by the field lines that are orthogonal to
the conductors even if it is not evident in the sketch. It is clear
that the end parts of the horizontal conductors contribute to
the capacitance C of the first branch, whereas the inner part
of the same conductors contributes to the capacitance C F of
the second branch. To verify this hypothesis, the proposed
identification approach has been applied to the CRR with
rectangular shape, fixing the length L z = 172 and varying the
conductor width L x [see Fig. 1(a)]. The identified capacitance
of the first branch C shows a log behavior, Fig. 6(a), while
the capacitance C F of the second branch is almost linear with
L x , apart from a weak quadratic dependence, Fig. 6(b), as in
the following approximated models:

Capp(L x ) ≈ − 14.2 + 2.63 log(26.2L x ) fF (23)
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Fig. 8. Surface current density in the CRR conductors for a plane wave
impinging from the bottom at f = 99.5 GHz; blue lines and arrows: top
and bottom conductor surfaces; red lines and arrows: external and internal
conductor surfaces. Magnetic field strength is proportional to the line/arrow
width: the wider the lines/arrows, the stronger the field. Dotted empty circles
represent magnetic field approaching zero.

C F
app(L x ) ≈ − 1.28 + 24.4 · 10−3L x + 52.5 · 10−6L2

x fF.

(24)

Hence, the width L x of the front conductor affects mainly C F

and slightly C .
It is not simple to evaluate the correct relationships for

C, L F , C F with respect to the geometrical parameters other
than L x , L z for the analyzed plane wave excitation. Many
researchers in the past have proposed some approximated for-
mulas [40], [41], which refer to the case of oblique incidence
on the plane of the CRR. In this article, we are analyzing
the effect of a plane wave impinging at 90◦ with respect
to the CRR plane; so, those formulas are not valid to the
case under study. Moreover, our interest is not to provide
an exact evaluation of such relationships but the evaluation
of an equivalent network suitable to describe the effects of
the CRR over a large bandwidth taking into account also the
electromagnetic field behaviors.

Concerning the inductance L F
= 0.57 nH, it should be

useful if it can be obtained by an equation similar to the
one valid for the inductance of a square loop with rectangular
conductors of section wt [42]. Unfortunately, this is not the
case because equation was obtained in the hypothesis of
constant current along the square sides while in the CRR under
study, the current distribution is completely different as the
magnetic field. Hence, the inductance of the loop cannot be
evaluated as in [42].

This aspect can be clarified by the sketch of the surface
currents on the conductors obtained by the CST simulations
at the resonance frequency, f = 99.5 GHz, as shown in Fig. 8.
The surface current density distribution in the top and bottom
surfaces of the ring conductor is shown as blue lines with
arrows (currents are very similar). The surface current density
distributions in the external and internal surfaces of the ring
conductor are shown as red lines with arrows. Their intensity
is proportional to the strength of the lines/arrows. The blue
and red circles represent positions where currents vanish. The
current distribution follows a not constant behavior and it goes
in opposite directions in the upper and lower parts of the ring,
vanishing in the middle of the structure. The magnetic field is
also shown in the same sketch and it is evident that it has a
behavior related to the currents and it vanishes in the middle of
the CRR. Therefore, the current is far to be constant along the
ring and the related magnetic field is completely different from

Fig. 9. Inductance L F versus the side conductor length L z or width Lx and
its approximated model, as in (25) and (26).

that of a loop with constant current, making [42] inapplicable.
Moreover, the value of the inductance for a radiating circular
loop is related to the frequency as discussed in [43], due to
that a prediction of the value of the inductance L F is not easy
to perform.

Anyway, starting from the behavior of L F versus L z or L x ,
as shown in Fig. 9, an approximating equation for L F can be
obtained for the variation with respect to L z for L x = 172

L F
app(L z) ≈ −3.095 +

69.2
L z

+ 0.627 log(1.07L z) nH (25)

and for the variation with respect to L x for L z = 172

L F
app(L x ) ≈ −0.012 +

84
L x

+ 0.021 log(1.07L x ) nH. (26)

Hence, we can conclude that the second branch with the LC
resonator is due to the loop inductance and mainly to the front
capacitance of the CRR.

B. Lateral Gap SRR

The second CST simulation refers to a one-ring SRR with
a gap g = 2 in the ring. As in the previous case, the scattering
parameters seen from the air and in the dielectric are shown
in Fig. 10(a). In this case, there are two resonances at around
98.48 and 77.06 GHz. The introduction of the gap produces a
little change in the higher resonance about 1 GHz compared
with the closed ring case, less than 1%, and a new resonance
appears at 77.06 GHz. The highest one corresponds to the
resonance of the closed ring without the gap. This is due to
the fact that the gap has been placed in the position where
the current vanishes at the resonance of the CRR, as shown
in Fig. 8. The placement of the gap in that position permits
to maintain almost the resonance of the full closed ring case.
The corresponding surface current behavior for the gap case
at 98.48 GHz is shown in Fig. 11(b) that is very similar to the
closed ring case shown in Fig. 8. A little asymmetry appears
for currents and magnetic fields and it is due to the gap that
is placed in one side only.

The new resonance is mainly due to the effect of the gap
between the conductors and this is confirmed by the surface
current behavior at 77 GHz, Fig. 11(a), that is totally different
from its behavior at 98.48 GHz, Fig. 11(b). In fact, at the lower
frequency resonance, all the components of the surface current
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Fig. 10. Lateral gap SRR. (a) Scattering parameters seen from the air (S0
i j ,

dotted lines) and from the dielectric (Sr
i j , continuous lines). (b) Electrical

length θr and normalized susceptances b and bfit of the corresponding
equivalent circuit of Fig. 2.

Fig. 11. Surface current density in the SRR conductors with gap for a plane
wave impinging from the bottom; blue lines and arrows: top and bottom
conductor surfaces; red lines and arrows: external and internal conductor
surfaces. (a) f = 77.06 GHz. (b) f = 98.48 GHz. Magnetic field strength is
proportional to the line/arrow width: the wider the lines/arrows, the stronger
the field. Dotted empty circles represent magnetic field approaching zero.

density (top, bottom, internal, external) flow counterclockwise
from the lowest part of the ring to the highest part, vanishing
near the gap as highlighted by the presence of red circles in
the current path. The difference in the current and magnetic
field distributions causes different values of inductances at the
resonances.

It is interesting to compare the equivalent network param-
eters, θ r

1 = θ r
2 = θ r and b obtained by (1)–(3), for the CRR

[closed ring, Fig. 4(b)] and the SRR [see Fig. 10(b)]. The first
remark concerns the different behavior of the electrical lengths
θ r for the two cases: while θ r for the closed ring case is linear
versus frequency [see Fig. 4(b)], the gap case shows a sharp
change in the slope at 77.06 GHz (see Fig. 10(b), black line),
while it remains quite linear at 98.48 GHz. This behavior is
strictly related to the evaluation of b (see Fig. 10(b), red line):

Fig. 12. Lateral gap SRR. (a) Identified circuit for the susceptance B.
(b) Normalized susceptance behavior of the three branches (blue, green, and
black) and their sum bfit = bc + bLnFCnF + bLFCF (red).

the gap case shows two infinite values at the resonances but
the main effect is that (db( f )/d f ) is negative around 77 GHz,
while is positive around 98.48 GHz. Hence, b can be identified
with a non-Foster circuit around 77.06 GHz and a Foster
circuit around 98.48 GHz and the corresponding identification
will be based both on the negative inductance/capacitance, for
the non-Foster part, and positive inductance/capacitance for
the Foster part.

Starting from these considerations, the proposed identifica-
tion procedure has been applied to b obtaining a fitting bfit
that can be represented by the schematic circuit shown in
Fig. 12(a), where the first branch is related to the capaci-
tance between the lateral side of the rings of two adjacent
unit cells (as previously discussed for the closed ring case),
and the second and third branches to the non-Foster and
Foster parts, respectively. The corresponding values obtained
by the identification procedure are: C = 8.11 fF, LnF

=

−1.99 nH, CnF
= −2.14 fF, L F

= 0.52 nH, C F
= 4.98 fF.

The values of C, L F , C F are very similar to the case of closed
ring, because the presence of the gap has a little effect on them,
as previously discussed.

The frequency behavior of each branch of the identified bfit
is shown in Fig. 12(b). The blue line in Fig. 12(b) corresponds
to the pure capacitance, while the green and black lines refer to
the non-Foster and Foster branches, respectively. As previously
discussed, the non-Foster part shows a behavior with negative
slope at any frequency with very low effect in the lower and
upper parts of the band, while the Foster part, with positive
slope everywhere, has an effect on the whole frequency
band. Also in this case, the presence of “internal” non-Foster
elements is strictly related to the “compression” effects of the
proposed equivalent circuit. Hence, the non-Foster elements
must be considered only as a part and cannot be separated
from the other components of the overall equivalent circuit of
the passive lossless device. For example, near the non-Foster
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resonance the strongly dispersive behavior of the transmission
line length θ r shown in Fig. 10(b) together with the behavior
of the non-Foster branch “compensate” each other producing a
global behavior at the input–output ports of the overall equiv-
alent circuit that still has a Foster behavior being related to the
passive lossless SRR. It should be noted that the transmission
line with electrical length θ r shown in Fig. 10(b) could be
replaced by a more complex network containing as the Foster
and non-Foster elements (or positive RLC and negative R),
“hidden” by the strong frequency dispersive behavior near the
non-Foster resonance. Such a replacement will produce a very
complex global network, making it very challenging to “read”
the overall equivalent circuit. On the other hand, recalling that
the transmission lines with electrical length θ r

1 = θ r
2 = θ r

change only the phase of the scattering parameters to obtain
the correct relationships between them at the input–output
ports, we prefer to maintain the actual representation with the
transmission lines, even if they show a frequency dispersive
behavior, to obtain a model that is simple and easy to handle.

It should be helpful to understand whether the representation
with three shunt branches could be improved. To this intent,
the electric field behavior in the neighborhood of the conductor
gap is shown in Fig. 13(a)–(e) at five different frequency
values, 10, 74.96, 77.06, 98.48, and 150 GHz, corresponding to
the lowest (10) and highest (150) frequencies of the analyzed
band, the total transmission frequency (74.96), the non-Foster
(77.06), and Foster (98.48) total reflection frequencies. The
plots are evaluated in the reference plane A-A’ placed in
between the ring conductors as shown in Fig. 1(b). The electric
field behavior shows that near the total transmission and non-
Foster resonance, Fig. 13(b) and (c), there is a change in
polarity of the charges in the conductors of the gap, while,
at the other frequencies, the polarity is always the same in the
two gap conductors. Similar behavior occurs for the charges
of the straight conductor of the left unit cell that have the
opposite polarity with respect to that in the gap conductors of
the right unit cell. At these frequencies, the null of charge at
about the middle of the left straight conductor of the right unit
cell in Fig. 13(b) and (c) induces to think that there should be
a “voltage drop” across the gap as highlighted in the sketch
(not in scale) of the electric field shown in Fig. 14(a), obtained
by the CST simulations.

Due to this fact, the circuit representation of this behavior
with a shunt non-Foster branch will be suitable to take into
account this “voltage drop,” and to overcome this problem, the
shunt non-Foster branch is transformed into a series reactance
as in Fig. 3 and previously discussed. Two equal transmission
lines of electrical lengths θbx evaluated by (16) embed a series
impedance Zs = j X p

F = − j BnF with

X p
F =

ωL F
p

1 − ω2L F
p C F

p
= −BnF =

−ωCnF

1 − ω2LnF CnF
(27)

resulting in the Foster series reactance with behavior shown
in Fig. 15(b) and identified by an LC shunt with L F

p =

−CnF
= 2.14 fH and C F

p = −LnF
= 1.99 nF. The complete

identification of the shunt load B of the equivalent network in
Fig. 12(a) becomes as shown in Fig. 15(a).

Fig. 13. Electric field near the gap in two adjacent unit cells evaluated at the
following frequencies (a) 10, (b) 74.96, (c) 77.06, (d) 98.5, and (e) 150 GHz.

It is interesting to analyze the behavior of θbx shown in
Fig. 15(b): the effects of the transmission lines vanish at
the edges of the bandwidth, where they tend to π or 0 and
also the series reactance X p

F → 0, just as the non-Foster
shunt load shown in Fig. 12(b) (green dotted line). In this
representation, where the series branch has positive L F

p , C F
p ,

the non-Foster behavior of LnF , CnF has been converted in
the anomalous dispersion of the transmission line θbx , which
could be replaced by a more complex network containing
the Foster and non-Foster elements (or positive RLC and
negative R), “hidden” by the anomalous frequency dispersive
behavior.
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Fig. 14. Simplified sketch of the electric field behavior between the rings for a
plane wave impinging from the bottom at (a) f = 77.06 GHz (non-Foster-type
resonance) and (b) f = 98.48 GHz (Foster-type resonance).

Fig. 15. Transformation of the non-Foster shunt branch into a Foster series
block, as in (16), (20), and (27). (a) Identified susceptance B of the SRR,
taking into account the transformation of the non-Foster shunt branch in a
Foster series block. (b) Electrical length θbx of the transmission lines and
normalized reactance x = X F

p /ηr of the circuit shown in (a).

Summing up, the presence of a non-Foster load in the equiv-
alent network is due to the proposed identification process
of B( f ) that is very easy to perform and produces both the
Foster and non-Foster branches. While the Foster branches are
directly identified with shunt capacitances or shunt LC series
blocks with all the positive values, the non-Foster branches
are identified by shunt LC series blocks with negative values
for L and C. This last identification is due to a “compression”
of the circuit representation in a shunt non-Foster load that is
not able to correctly represent the “voltage drop” across the
gap. Therefore, the transformation from the non-Foster shunt
into the Foster series load permits to model more correctly the
behavior of the SRR versus frequency with positive L and C
for any branch.

As an example of the proposed identification process
applied to SRR with gap, the variation in L F

p and C F
p with

Fig. 16. (a) C F
p and L F

p versus L z or Lx . (b) Product LC for both the
branches of Fig. 15(a) versus L z or Lx .

respect to L z or L x is shown in Fig. 16(a) where the compar-
ison with the following approximations is also reported:

C F
p,app(L z) ≈

70.83
1.564 + 0.195L z

nF (28)

C F
p,app(L x ) ≈ 0.627 + 5.68 · 10−3L x + 12.8 · 10−6L2

x nF

(29)

L F
p,app(L z) ≈ −0.276 + 5.24 · 10−3L z + 51.7 · 10−6L2

z fH

(30)

L F
p,app(L x ) ≈ 0.262 −

24.2
L x

+ 0.479 log(0.39L x ) fH. (31)

An interesting remark can be done if we plot the product
LC for shunt and series Foster cases versus L x or L z as in
Fig. 16(b): the product LC is linear with L z or L x in the
range 100 ÷ 250 and this can be verified by a series expansion
around 175 of the LC product, obtained from (22), (24), and
(25)–(26) or (28)–(31). For example

L F
p (L z)C F

p (L z) ≈ 0.494 + 0.0124L z . (32)

This linear behavior of LC permits to predict the resonance
frequency, fc = (1/2π

√
LC), for any rectangular SRR by

means of only two numerical simulations of two different
SRRs with different length L z , for L x = 172 (or the opposite).
In fact, by means of the identification process of the two
resonant branches (L F , C F , L F

p , C F
p ) for only two values of
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Fig. 17. Front gap SRR. (a) Scattering parameters seen from the air (S0
i j ,

dotted lines) and from the dielectric (Sr
i j , continuous lines). (b) Electrical

lengths θr
1 andθr

2 and normalized susceptance b of the corresponding equiva-
lent circuit of Fig. 2.

L z , the parameters m and n of the straight line L F C F
=

m F
+ nF L z and L F

p C F
p = m F

p + nF
p L z can be easily found

and the prediction of the resonant frequency for each branch
can be done for any other values of L z . This can be a very
fast and efficient approach if the SRR has to be developed at
a certain resonance frequency.

C. Front Gap SRR

As a further study, a one-ring SRR with a gap aligned at
front has been simulated, as shown in the inset of Fig. 17(a).
The obtained scattering parameters seen from the air and in
the dielectric are shown in Fig. 17(a) and only one resonance
appears at f = 61.5 GHz. The identified equivalent circuit is no
more symmetric with respect to the direction of propagation
of the incident wave, and two different electrical lengths for
the transmission lines are found as shown in Fig. 17(b). The
identified normalized susceptance b is shown in Fig. 17(b) and
only one resonance appears, due to the gap at front. In fact,
the resonance of the closed ring completely disappeared in the
presence of the front gap that drastically changes the current
behavior around the ring, imposing a null of current exactly in
the gap position. Moreover, the susceptance b is identified with
a capacitor in the first branch and a Foster series LC resonator
in the second branch as in Fig. 5(a), because the gap is in the
front side of the conductor and it is correctly seen as a pure
shunt load with positive L and C values. In fact, in this case
there is no “voltage drop” along the direction of propagation

of the incident wave as in the lateral gap case and, for the
front gap case, the identified values are: C = 3.36 fF, L F

=

0.97 nH, andC F
= 6.88 fF.

D. Circular SRR

As a very brief example of the possibility to apply the
proposed approach to other kind of geometries, we have
analyzed the case of one circular ring without and with gap for
the same excitation as the previous lateral gap SRR case. The
unit cell contains only one circular ring with an inner radius
of 128 µm, w = 2 µm, Px = 258 µm, and g = 2 µm
(with gap case). The approach is similar and in this case
we have obtained a frequency of resonance around 99 GHz
for the closed ring (CRR). The equivalent circuit identified
for B is constituted by two branches as in Fig. 5(a) with
C = 7.78 fF, L F

= 0.84 nH, andC F
= 2.41 fF. The circular

SRR case with lateral gap exhibits a resonance frequency
around 99 GHz, similar to the CRR, and introduces also a
new resonance around 62 GHz, corresponding to a non-Foster
case. The corresponding identified circuit is similar as shown
in Fig. 12(a) with C = 7.48 fF, LnF

= −3.1 nH, CnF
=

−1.54 fF, L F
= 0.78 nH, andC F

= 2.59 fF.

E. Two-Ring SRR

The last studied SRR is the two-ring case shown in Fig. 1(a)
with the same geometric parameters used for the one-ring case.
The obtained equivalent circuit parameters corresponding to
the scattering parameters of Fig. 18(a) are shown in Fig. 18(b).
In this case, the presence of two rings moves the first two
resonances to lower values (44.4 and 96.8 GHz) and this is due
to the mutual capacitive coupling between the rings. A new
third non-Foster resonance appears at about 125.8 GHz and
this is due to the gap of the inner ring that acts as the one
ring case as previously discussed. The bfit contains four shunt
branches with one capacitance, two non-Foster, and one Foster
LC series in the branches. Both the non-Foster resonances are
related to the lateral gap and they are due to a “voltage drop”
as in the one-ring case. Hence, it is possible to transform
both the non-Foster branches in two series load yielding to
the identified circuit for the total susceptance as shown in
Fig. 18(d), with θbx

1 , θbx
2 as in Fig. 18(e). The identified

values for the elements in the circuit of Fig. 18(d) are: C =

9.2 fF, L F
p1 = 1.47 fH, C F

p1 = 9.01 nF, L F
= 0.443 nH, C F

=

6.09 fF, L F
p2 = 0.087 fH, and C F

p2 = 18.06 nF.
Also in this last case, it is interesting to compare the electric

field maps and current distributions to better understand the
relationships between the capacitances/inductances and elec-
tromagnetic fields.

The Foster resonance shows a behavior of the electric field
similar to the one-ring cases as can be seen in Fig. 19(b).
The two non-Foster resonances, Fig. 19(a) and (c), have a
similar behavior of the electric field with two different kinds
of capacitive coupling, the first between the straight conductors
and the second between the arms of the inner conductors
separated by the gap, as in the one-ring case. The difference
between the two non-Foster fields is mainly in the polarity of
the charge on the inner conductors.



5862 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 71, NO. 7, JULY 2023

Fig. 18. Two-ring SRR. (a) Scattering parameters seen from the air (dotted lines) and from the dielectric (continuous lines). (b) Electrical length θr and
normalized susceptances b and bfit. (c) Behavior of the four identified branches and their sum bfit = bc + bLnF

1 CnF
1

+ bLFCF + bLnF
2 CnF

2
. (d) Identified circuit for

the susceptance B. (e) Electrical lengths θbx
1 andθbx

2 in circuit (d).

Fig. 19. Two-ring SRR. Simplified sketch of the electric field behavior between the rings if a plane wave incident from the bottom at (a) f = 44.4 GHz
(non-Foster-type resonance), (b) f = 96.8 GHz (Foster-type resonance), and (c) f = 125.8 GHz (non-Foster-type resonance).

Fig. 20. Two-ring SRR. Simplified sketch of the surface current density in the SRR conductors and magnetic field if a plane wave incident from the bottom;
blue lines and arrows: top and bottom conductor surfaces; red lines and arrows: external and internal conductor surfaces. Magnetic field strength is proportional
to the line/arrow width: the wider the lines/arrows, the stronger the field. Dotted empty circles represent magnetic field approaching zero. (a) f = 44.4 GHz.
(b) f = 96.8 GHz. (c) f = 125.8 GHz.

A simplified sketch (not in scale) of the current density
distributions on the conductors’ surfaces of the external and
internal rings and the magnetic field is shown in Fig. 20(a)–(c).
Also in this case, the amplitude and direction of the current
density and the related magnetic field are different for the

Foster and non-Foster cases, drastically changing with fre-
quency. Hence, the different behaviors of the electric and
magnetic fields at the three frequencies justify the different
values for the capacitances and inductances identified in the
equivalent circuit of Fig. 18(d).
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IV. CONCLUSION

A simple equivalent circuit for SRR has been proposed
based on the improved approach of a shunt load embedded
in two transmission lines. The reflection and transmission
properties are contained in the shunt susceptance contained in
the circuit. An identification process of a fitting susceptance
based on Brune’s synthesis has been applied, taking into
account the presence of the Foster and non-Foster reactive
loads. The non-Foster branches are at first identified with
negative inductance and capacitance; then, they are related to
a “voltage drop” across the ring gap and transformed into a
series Foster loads, with positive inductance and capacitance,
to make more effective the circuit representation of the actual
electromagnetic fields’ behavior in the SRR. The proposed
approach is then applied to the two-ring case, and an effective
equivalent circuit containing all the positive reactive elements
is obtained, valid over a large bandwidth. The proposed
method can be applied to the identification of equivalent
circuits for any type of metamaterials with different geometries
and electromagnetic nature as well as different frequency
bands, from microwaves to sub-THz.
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