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Abstract  47 

Heart failure (HF) diagnosis, typically visually performed by serial electrocardiography, may be 48 

supported by machine-learning approaches. Repeated Structuring and Learning Procedure 49 

(RS&LP) is a constructive algorithm able to automatically create artificial neural networks 50 

(ANN); it relies on three parameters, namely maximal number of hidden layers (MNL), initiali- 51 

zations (MNI) and confirmations (MNC), arbitrarily set by the user. The aim of this study is to 52 

evaluate RS&LP robustness to varying values of parameters and to identify an optimized combi- 53 

nation of parameter values for HF diagnosis. To this aim, the Leiden University Medical Center 54 

HF database was used. The database is constituted by 129 serial ECG pairs acquired in patients 55 

who experienced myocardial infarction; 48 patients developed HF at follow-up (cases), while 81 56 

remained clinically stable (controls). Overall, 15 ANNs were created by considering 13 serial 57 

ECG features as inputs (extracted from each serial ECG pair), 2 classes as outputs (cases/con- 58 

trols), and varying values of MNL (1, 2, 3, 4 and 10), MNI (50, 250, 500, 1000 and 1500) and 59 

MNC (2, 5, 10, 20 and 50). The area under the curve (AUC) of the receiver operating character- 60 

istic did not significantly vary with varying parameter values (P≥0.09). The optimized combina- 61 

tion of parameter values, identified as the one showing the highest AUC, was obtained for 62 

MNL=3, MNI=500 and MNC=50 (AUC=86%; ANN structure: 3 hidden layers of 14, 14 and 13 63 

neurons, respectively). Thus, RS&LP is robust, and the optimized ANN represents a potentially 64 

useful clinical tool for a reliable automatic HF diagnosis. 65 

 66 

Keywords: Deep Learning; Machine Learning; Artificial Neural Network; Repeated Structuring 67 

and Learning Procedure; Heart Failure; Serial Electrocardiography. 68 

  69 
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1. Introduction1 70 

Heart failure (HF) is a common and potentially fatal heart disease that currently affects about 2% 71 

of the adult population, with peaks up to 10% in subjects over 65 years old; the risk of death at 72 

one year from the first diagnosis is about 35% [1,2]. According to guidelines of the European 73 

Society of Cardiology, HF is a clinical syndrome characterized by breathlessness, ankle swelling 74 

and fatigue. These symptoms are usually associated with clinical evidence, such as elevated jug- 75 

ular venous pressure, pulmonary crackles, and peripheral edema. These symptoms and clinical 76 

evidences are caused by a structural and/or functional cardiac abnormality, resulting in a reduced 77 

cardiac output and/or elevated intracardiac pressures at rest or during stress [3]. This broad defi- 78 

nition reflects the complexity of the disease that has about seventeen primary aetiologies. How- 79 

ever, more than two-thirds of HF cases can be attributed to four underlying conditions: ischemic 80 

heart disease, chronic obstructive pulmonary disease, hypertensive heart disease and rheumatic 81 

heart disease [4]. 82 

While the primary cause of HF may be extracardiac, presence of one or more underlying 83 

cardiac abnormalities is central for HF diagnosis. According to the current definition, HF is pre- 84 

sent when symptoms occur; however, some asymptomatic patients may present structural or func- 85 

tional cardiac abnormalities that are precursors of HF. Timely recognition and treatment of these 86 

precursors may help to contrast HF natural development [5] and lead to positive outcomes [3]. 87 

Presence of several HF precursors implies changes in the electrical properties of the heart and, 88 

thus, variations of the electrocardiogram (ECG) with respect to normal. The ECG is the recording 89 

of the electrical activity of the heart; by its nature, it is a pseudo-periodic signal consisting in the 90 

 

Abbreviations: Acc, accuracy; ANN, artificial neural networks; AUC, area under the curve; CI, 95% con-

fidence intervals; ECG, electrocardiogram; HF, Heart failure; HFDB, heart-failure database; LCT, learning 

computational time; MNC, maximal number of confirmations; MNI, maximal number of initializa-tions; 

MNL, maximal number of hidden layers; NTOT, total number of neurons; OP, operating point; P, level of 

statistical significance; ROC, receiver operating characteristic; RS&LP, repeated structuring and learning 

procedure; Se, sensitivity; Sp, specificity; TCT, testing computational time; VCG, vectorcardiogram. 
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repetition of a pattern showing a sequence of typical waves, which are: the P wave, reflecting 91 

atrial depolarization; the QRS complex, reflecting ventricular depolarization and hiding atrial re- 92 

polarization; and the T wave, reflecting ventricular repolarization. Thus, morphological and tem- 93 

poral ECG features represent physiological phenomena occurring within the heart and may indi- 94 

cate the presence of cardiac abnormalities. HF occurrence is unlikely in patients with a completely 95 

normal ECG; however, most ECG abnormalities are not HF specific [3]. 96 

In this study we focused on the automatic early diagnosis of HF through serial ECG changes. 97 

Serial ECG changes consist in ECG differences observed when comparing two ECGs, one newly 98 

and one previously acquired from the same subject [6–8]. In daily clinical practice, serial electro- 99 

cardiography is usually done by visual inspection. Nevertheless, its complexity has recently sug- 100 

gested machine-learning approaches [9–11]. Serial electrocardiographic analysis supported by the 101 

machine-learning algorithm called Repeated Structuring and Learning Procedure (RS&LP) has 102 

provided important preliminary results in the detection of newly emerging or aggravating cardiac 103 

pathology [10,11], and represents an important example of how machine-learning approaches 104 

could support advances in clinics and healthcare. In order to provide examples of possible RS&LP 105 

clinical applications, the procedure was also used to detect newly emerged HF [11]. Being pro- 106 

posed just as an example, the application relied on an arbitrary and unoptimized setting of param- 107 

eters; optimization of the parameter setting, however, becomes necessary when proposing 108 

RS&LP as a useful tool for HF diagnosis in the clinical practice.  109 

Thus, the aim of the present study is to evaluate the robustness of the RS&LP to varying 110 

values of it’s a-priory arbitrarily parameters and to identify a best combination of parameters for 111 

automatic HF diagnosis.  112 

 113 

2. Related works 114 

Several works have previously presented machine learning approaches for automatic HF detec- 115 

tion [12]. Used clinical data are heterogeneous and include electrocardiographic data, echocardi- 116 

ographic data, electronic health records data and data from other sources (e.g., post-mortem 117 



6 

 

clinical analysis) [12]. Only few studies presented machine learning approaches for HF detection 118 

from ECG analysis [13–18]; proposed techniques include deep fully-connected neural networks 119 

[17], convolutional neural networks [13,19,20], long-short term memory [18], random forest clas- 120 

sifiers [16] and support vector machine [14,15]. Most works considered directly the cardiac sig- 121 

nals (ECG [13–16,19,20] or heart-rate series [18]) as input of the classifiers; only one study con- 122 

sidered both demographic and electrocardiographic features [17]. Two studies [17,19] were per- 123 

formed on a huge amount of data (more than 50,000 patients); the others were performed on 124 

smaller datasets (less than 100 patients) selected from open access databases [13–16,18,20]. Some 125 

works aimed to discriminate HF patients from subjects showing normal sinus rhythm [13–18] and 126 

show their major limitation in not considering possible comorbidities, which represent clinical 127 

confounders and, thus, may jeopardize HF diagnosis. Only two works [19,20] considered the 128 

presence of other pathologies such as diabetes mellitus, hypercholesterolemia, renal disease, hy- 129 

pertension, coronary artery disease and myocardial infarction. In one study [19] the other pathol- 130 

ogies were considered as comorbidities that could affect both HF patients as well as patients con- 131 

stituting the control group. In another study [20] pathologies other than HF were affecting the 132 

patients constituting the control group only. 133 

 134 

3. Materials and Methods 135 

3.1. Repeated Structuring and Learning Procedure 136 

RS&LP is a recently presented constructive algorithm for automatic creation of a supervised and 137 

fully connected artificial neural network (ANN) [11]. In its general formulation, the procedure 138 

takes as input a set of data features (one input neuron for each feature), constructs the ANN 139 

according to the algorithm described below and classifies the data (one output neuron for each 140 

considered class, except for binary classifications for which only one output neuron is required). 141 

RS&LP creates the ANN by using a learning dataset composed of a training dataset and a 142 

validation dataset. Class weights, each defined as the inverse of the corresponding class 143 

prevalence, are considered [21] to compensate for potential disproportions among distributions 144 
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of cases over the output classes. Each neuron is characterized by a sigmoid activation function; 145 

weights and bias, ranging between -1 and +1, are randomly initialized.  146 

ANN construction (Figure 1) occurs on the basis of an iterative procedure composed of 147 

three main phases, namely structuring phase, learning phase, and confirmation phase. The 148 

procedure starts from an original ANN composed of the input layer, one hidden layer constituted 149 

by one neuron, and the output layer. During the structuring phase, the original ANN is upgraded 150 

into several different candidate ANNs obtained by adding a neuron to an existing hidden layer or 151 

to a new hidden layer. Each candidate ANN must respect two structural rules: the number of 152 

layers cannot exceed the “maximal number of hidden layers” (MNL, the numerical value of which 153 

is initially set by the user); and the number of neurons in a layer cannot be larger than the number 154 

of neurons in the previous layer. The learning phase consists of training and validation subphases, 155 

both including several epochs during which training and validation errors are computed. Training 156 

is performed using the scaled-conjugate-gradients algorithm [22], a training algorithm presenting 157 

reliable performance in terms of computational effort, classification accuracy, even if applied to 158 

small datasets [23–25].Validation relies on the early stopping criterion to avoid overfitting [26]. 159 

When the learning phase starts, weights and biases of the neurons added during the structuring 160 

phase in each candidate ANN are initialized. Initialization is acceptable only if it implies a 161 

decrement of the training error after only one epoch. Thus, if initialization of a new neuron is not 162 

immediately acceptable, the neuron is re-initialized. The number of initializations of a new neuron 163 

cannot exceed the “maximal number of initializations” (MNI, the numerical value of which is 164 

initially set by the user). All candidate ANNs with an acceptable initialization are learnt. During 165 

the confirmation phase, the validation errors of all learnt candidate ANNs are compared with the 166 

validation error of the original ANN. If the validation error of one or more candidate ANNs is 167 

less or equal to the validation error of the original ANN, the candidate ANN with the smallest 168 

validation error becomes the new original ANN; if the validation error of all candidate ANNs are 169 

larger than the validation error of the original ANN, the original ANN remains as such. Then, the 170 

procedure starts anew by using the updated original ANN. RS&LP ends when there are no 171 
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acceptable candidate ANNs, when a candidate ANN reached the “maximum number of 172 

confirmations” (MNC; the numerical value of which is initially set by the user), or when there are 173 

no misclassifications in the learning dataset. When one of the above-listed stopping criteria 174 

occurs, the original ANN is considered as the final ANN. The pseudocode ot the RS&LP is 175 

reported in Figure 2; further details on the RS&LP can be found in [11]. 176 

To compensate for random initializations of neurons possibly leading to different final 177 

ANNs, RS&LP is run 100 times so that 100 final ANNs were obtained. Among them, the ANN 178 

with the largest area under the curve of the receiver operating characteristic on the learning dataset 179 

is considered to be the best ANN. For convenience, ANN structure is represented in terms of [N1, 180 

N2,…,NL], where Ni is the number of neurons in the ith layer, with i=1,2…NL, with NL being 181 

the number of layers in the ANN and total number of neurons (NTOT).  182 

 183 

3.2.  Heart Failure Detection by the Repeated Structuring & Learning Procedure  184 

In this study, RS&LP was applied to serial electrocardiography for the detection of newly 185 

emerging HF. In this application the input set of data features consisted of 13 serial ECG features 186 

measured on the median beat of the vectorcardiogram (VCG) that is the orthonormal 187 

representation of the standard 12-lead ECG [27]. Given their associations with 188 

electrophysiological phenomena [11,27], the following 13 serial ECG features were considered: 189 

QRS-duration difference (ms), QT-interval difference (ms), difference in maximal QRS-vector 190 

magnitude (µV), difference in maximal T-vector magnitude (µV), QRS-integral vector magnitude 191 

difference (mV·ms), T-integral vector magnitude difference (mV·ms), QRS-complexity 192 

difference (%), T-wave complexity difference (%), magnitude of the ventricular-gradient 193 

difference vector (mV·ms), magnitude of the QRS-T spatial-angle difference (°), heart-rate 194 

difference (bpm), magnitude of J-vector difference vector (µV) and T-wave symmetry difference 195 

(%). Number of neurons in the ANN input layer was 13 (as the number of input features); number 196 

of neurons in the ANN output layer was 1 (binary ouptut indicating presence or absence of HF).  197 
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Suboptimized ANN for detection of newly emerged HF was constructed, trained and tested 198 

on the HF database (HFDB) [11,28] that was retrospectively derived from the clinical ECG 199 

database of the Leiden University Medical Center (Leiden, The Netherlands). All retrospective 200 

evaluations reported here were undertaken in compliance with the ethical principles of Helsinki 201 

Declaration and approved by the Leiden University Medical Center Medical Ethics Committee. 202 

The HFDB contains 129 10-second 12-lead ECG pairs acquired in patients who had experienced 203 

a myocardial infarction. All patients were clinically stable at the moment of their baseline ECG 204 

recording, which was a routine ECG performed at least six months after the acute event. The 81 205 

patients who remained clinically stable and did not develop HF during the follow-up were selected 206 

as control patients; their follow-up ECG was a routine ECG performed approximately one year 207 

after the acute myocardial infarction. The remaining 48 patients who developed HF during follow- 208 

up were selected as case patients; their follow-up ECG was a routine ECG performed at HF initial 209 

occurrence.  210 

All ECGs were processed by the custom-made LEADS software [29] that computes the 211 

VCG and measures, among others, all the ECG features needed for this study. Eventually, the 13 212 

serial ECG features mentioned above were computed by subtracting baseline ECG feature values 213 

from the corresponding follow-up ECG feature values. No normalization was performed because 214 

not consistent with of what normally done in clinics.  215 

The HFDB was equally divided into a learning dataset and a testing dataset. The learning 216 

dataset was used for ANN creation by RS&LP; the testing dataset was used to assess classification 217 

performance. The learning dataset was further divided into a training dataset (80% of the learning 218 

dataset) and a validation dataset (20% of the learning dataset). The prevalence of cases and 219 

controls was maintained in all datasets. The distribution of case patients and control patients over 220 

the datasets is reported in Table 1.  221 

 222 

 223 

 224 
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3.3.  Robustness Analysis 225 

In previous examples of RS&LP applications [10,11,30] values of MNL, MNI and MNC were 226 

arbitrarly set at 3, 500 and 10, respectively. Here, numerical setting of these parameters was varied 227 

to evaluate clinical performance of each ANN in the testing dataset. Value of each parameter was 228 

varied while keeping the values of the other two constant. Specifically, the following three tests 229 

were performed: 230 

• Test 1 was performed to determine RS&LP robustness to varying value of MNL. Consid- 231 

ered values of MNL were 1, 2, 3, 4 and 10, while values of MNI and MNC were kept constant at 232 

500 and 10, respectively. 233 

• Test 2 was performed to determine RS&LP robustness to varying value of MNI. Considered 234 

values of MNI were 50, 250, 500, 1000 and 1500, while values of MNL and MNC were kept 235 

constant at 3 and 10, respectively. 236 

• Test 3 was performed to determine RS&LP robustness to varying value of MNC. Consid- 237 

ered values of MNC were 2, 5, 10, 20 and 50, while values of MNL and MNI were kept constant 238 

at 3 and 500, respectively. 239 

 240 

3.4.  Statistical Analysis 241 

For each test, the best ANN was characterized by computing the area under the curve (AUC) 242 

of the receiver operating characteristic (ROC) and the associated 95% confidence intervals (CI) 243 

in the testing dataset. ROCs obtained with all combinations of parameter values were compared 244 

using the DeLong’s tests [31], setting a level of statistical significance (P) equal to 0.05. Finally, 245 

the operating point (OP), identified as the ROC point in which sensitivity (Se – represented in the 246 

vertical axes of ROC) equals specificiy (Sp – represented in the horizontal axes of ROC), was 247 

used to calculate number of true positives (TP, number of patients affected by HF classified as 248 

cases), true negatives (TN, number of patients not affected by HF classified as controls), false 249 

positives (FP, number of patients not affected by HF classified as cases) and false negatives (FN, 250 
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number of patients affected by HF classified as controls). According with these definitions, values 251 

of accuracy (Acc), Se (equal to the vertical coordinate of OP on the ROC) and Sp (equal to the 252 

horizontal coordinate of OP on the ROC) were computed as follow: 253 

𝑆𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
       (1) 254 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
       (2) 255 

𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (3) 256 

For each test, the numerical value of the analyzed parameter was selected considering those 257 

used to create the ANN having the highest AUC. The best paramenters configuration was finally 258 

identified by combining the selected values of MNL (from Test 1), MNI (from Test 2) and MNC 259 

(form Test 3). 260 

 261 

3.5.  Computational efficency  262 

Computational efficiency of the RS&LP was evaluated in terms of computational time required 263 

to create the ANN over the learning dataset (LCT), and to classify data over the testing dataset 264 

(TCT). Processing was performed using MATLAB R2019b, running on an Intel(R) Core(TM) i7- 265 

2600 (RAM=12GB). 266 

 267 

4. Results 268 

Performances of ANNs obtained by performing the tests are reported in Table 2. Results of Test 269 

1 indicate that, although the number of hidden layers increased with increasing MNL, it never 270 

became larger than 6, obtained for MNL equal to 10. NTOT also tended to increase with MNL, 271 

going from 26 (MNL=1) to 63 (MNL=10). The AUC values ranged from 77% to 83%, even 272 

though differences among the ROCs did not reach statistical significance (P>0.05). ROCs relating 273 

to Test 1 are depicted in Figure 3(a). The maximum value of AUC was 83%, obtained for MNL=3, 274 

thus representing the optimized MNL value in correspondence of which values of Acc, Se and Sp 275 

in OPSe=Sp were all 75%.  276 
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Results of Test 2 show that NTOT varied from 28 (MNI=1500) to 50 (MNI=1000) without 277 

showing a clear trend. AUC values ranged from 68% to 83%, even though differences among 278 

ROCs did not reach statistical significance (P>0.05). ROCs relating to Test 2 are depicted in Fig- 279 

ure 3(b). The maximum value of AUC was 83%, obtained for MNI=500, thus representing the 280 

optimized MNI value in correspondence of which values of Acc, Se and SP in OPSe=Sp were all 281 

75%. 282 

Results relative to Test 3 indicate that NTOT increased from 3 (MNC=2) to 41 (MNC=50) 283 

with increasing MNC. AUC values were quite stable, ranging from 78% to 86% (P>0.05). ROCs 284 

relative to Test 3 are depicted in Figure 3(c). The maximum value of AUC was 86%, obtained 285 

only for MNC=50, thus representing the optimized MNC value in correspondence of which values 286 

of Acc, Se and SP in OPSe=Sp were all 75%. 287 

Table 2 also reports LCT values associated to all tests and combinations of parameter val- 288 

ues; LCT value ranged from 2h, 44min and 28s (Test 2 with MNL=3, MNI=50 and MNC=10) to 289 

212h, 44min and 11s (Test 3 with MNL=3, MNI=500 and MNC=50). TCT was 9ms in all cases.  290 

Considering the results of all tests, the best combination of parameter values is MNL=3, MNI=500 291 

and MNC=50. Thus, the ANN associated with this combination, having architecture equal to 292 

[14,13,13], AUC equal to 86%, CI equal to 20%, and Acc, Se and SP all equal to 75% (in OPSe=Sp), 293 

LCT equal to 212h, 44min and 11s, and CTC equal to 9ms (Table 2; Figure 4) represents the best 294 

ANN for the automatic diagnosis of newly emerged HF.  295 

 296 

5. Discussion 297 

This study evaluated the robustness of the RS&LP to varying values of parameters and identified 298 

the best combination of MNL, MNI, and MNC values for the automatic diagnosis of newly 299 

emerged HF from serial electrocardiography. The simultaneous availability of the previously pro- 300 

posed RS&LP and of the here-identified best combination of parameter values represents the main 301 

contribution of this work since makes RS&LP a tool immediately usable in clinics for HF diag- 302 

nosis. Indeed, RS&LP may be used to diagnose different pathologies; however, to perform 303 
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reliably, it needs to be associated with an optimal combination of parameter values specifically 304 

identified for that pathology.  305 

As known, clinical interpretability of automatic decision support systems is essential in 306 

healthcare. To ensure interpretability of the results, our procedure for automatic HF diagnosis 307 

relies on intra-subject serial changes of ECG features and not on raw ECG data. Indeed, according 308 

to serial electrocardiography, absence of ECG changes indicates clinical stability of a patient, 309 

while occurrence of ECG changes may indicate emerging pathologies. By using the 13 serial ECG 310 

features, our machine-learning approach mimics and potentiates the decision procedure normally 311 

adopted by physicians, who visually compare two serial ECG tracings in search of clinically sig- 312 

nificant differences.  313 

RS&LP robustness was evaluated by performing three tests during which one single param- 314 

eter value was varied. Overall, thirteen different combinations of parameter values were consid- 315 

ered. The obtained ANN was validated by using the train/test split validation procedure, guaran- 316 

teeing the realization of a unique tested decision support system. 317 

Results (Table 2) indicate that ANNs constructed by the RS&LP are more stable in terms 318 

of AUC and CI than in terms of structure. This is an expected and desirable finding; indeed, 319 

RS&LP was designed to automatically create an ANN by recursively alternating structuring and 320 

learning phases to optimize correctness of output classification, without considering a-priori ar- 321 

chitecture. The best parameter configuration is those having MNL, MNI and MNC equal to 3, 322 

500 and 50, respectively. This combination of parameters may not be the optimal one, indeed it 323 

would be it in case of parameter independence. Nevertheless, it associates with a high value of 324 

AUC (86%) and thus guarantees a good clinical performance. Additionally, this optimized com- 325 

bination of parameter values was associated with the longest LCT (212h, 44min and 11s), mostly 326 

due to the high values of the parameters, particularly of MNI. However, once created with the 327 

optimized combination of parameter values, the ANN performed testing classification fast 328 

(TCT=9ms) suggesting its possible use in clinical applications, even in real-time scenarios. 329 
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The best ANN was identified based on AUC and not on Acc, Se, and Sp. Indeed, computa- 330 

tion of the latter requires choice of an operating point on the ROC, choice that should be left to 331 

the clinician and could vary depending on the clinical condition, anamnesis, and HF risk class of 332 

the patient. As an example, we reported Acc, Se, and Sp value relative to the commonly used 333 

operating point for which Se equals Sp; this value was 75% for the optimized ANN. 334 

In general, definition of the ANN architecture is critical, independently by the method ap- 335 

plied to construct it. Indeed, use of too few neurons and/or hidden layers may lead to underfitting,  336 

whereas use of too many neurons and/or hidden layers may lead to overfitting [32]. Well defined 337 

rules for architecting ANNs have not been drawn up yet and definition of the appropriate number 338 

of neurons and layers still requires several trials and computations. RS&LP does not require an a 339 

priori definition of the architecture of the ANN to be created; rather, it adaptively defines it by 340 

continuously optimizing classification correctness. ANN growth is encouraged by trying different 341 

candidate ANNs (thus avoiding underfitting) and discouraged by imposing that candidate ANNs 342 

must improve performance (thus avoiding overfitting). The RS&LP underlying hypothesis is that 343 

there may exist several ANN architectures that may lead to the best possible classification; the 344 

reached optimized architecture depends on random initializations.  345 

Several constrictive algorithms have been previously presented in the literature [33,34] but, 346 

to our knowledge, none for clinical or healthcare applications. The constructive nature of the 347 

RS&LP, that uniquely iteratively optimizes ANN architecture and its weights and biases, makes 348 

it particularly suitable to be applied to both relatively small databases, like the one used here or 349 

in our previously works [10,11], as well as to big data. To further avoid generalization problems 350 

due to the small size of the available dataset, in the present study the constructed ANN was also 351 

evaluated on the validation dataset where we applied the early-stopping criteria and selected 352 

suboptimized ANN as the one with the highest AUC among the 100 ANNs created with different 353 

random neuron initializations. Many clinical databases are limited in size and their statistical 354 

modelling is often rather conventional and miss ANN flexibility to handle non-linear interactions 355 

between features. Our present and previous applications of RS&LP to the same HF database [11] 356 
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indicate that RS&LP performance (AUC=86%) is superior to that of logistic regression 357 

(AUC=61%) and of standard ANN method with a-priori fixed architecture (AUC=83%). When 358 

applied to databases of small size, the ANN architecture obtained with the RS&LP typically in- 359 

cludes a low number of layers, but in case of big data applications, the RS&LP has the potentiality 360 

to create more complex ANN architectures able to manage different types of clinical data. 361 

A qualitative comparison of the RS&LP performance against that of other machine learning 362 

approaches [13–20] aiming to detect HF by using cardiac signals is reported in Table 3. The 363 

studies differed in terms of used algorithm, presence of clinical confounders, samples size of an- 364 

alyzed populations and signals in input of the classifier. Many studies show very high perfor- 365 

mance; however, their clinical applicability could be limited due to lack of interpretability and 366 

explainability (cardiac signals [13–16,18–20] instead of features are used as input for the classi- 367 

fiers). The need of “Explainable Artificial Intelligence”[35] is a priority in clinical/ healthcare 368 

applications where machine learning approaches should not only perform automatic diagnosis of 369 

a pathology, but also explain why that classification was provided. Use of features (as done in the 370 

present study and in [17]) instead of signals as input of the classifier is often preferred in these 371 

cases. Indeed, if properly selected, the features have a physiological meaning that allows clini- 372 

cians to interpret the results provided by the automatic analysis. Additionally, in real scenarios 373 

patients may be affected by comorbidities so that the capability to discriminate HF patients from 374 

subjects with normal sinus rhythm only [13–18] appears reductive. Anyway, considering the high 375 

versatility of ANN, future studies will aim to implement the RS&LP for the structuring and learn- 376 

ing of convolutional and recurrent neural networks and test its performance in more complex 377 

clinical scenarios, always guaranteeing clinical interpretability.  378 

It is finally important to observe that, as previously said, here RS&LP was optimized to 379 

work on serial electrocardiography to mimic and potentiate the diagnostic procedure adopted by 380 

clinicians while ensuring interpretability. However, in some practical cases baseline ECG may 381 

not be available. In those cases, RS&LP could still be thought as a tool to discriminate HF occur- 382 

rence, but with an architecture and a combination of parameter values that should be specific for 383 
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that application. Determination of these architecture and combination of parameter values is be- 384 

yond the scope of this paper but will be matter of future studies.  385 

 386 

6. Conclusion 387 

Automatic diagnosis of newly emerged heart failure can occur through our optimized supervised 388 

fully connected artificial neural network created using the Repeated Structuring & Learning pro- 389 

cedure that can thus be proposed as a useful diagnostic tool for the clinical practice.  390 
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Table 1. Division of the HFDB, constituted by case patients and control patients, into learning 516 

and testing datasets, and further division of the learning dataset into training and validation da- 517 

tasets.  518 

 

Learning (50%) 
Testing 

(50%) 

Total 

(100%) 
Training 

(80%) 

Validation 

(20%) 

Total 

(100%) 

Case patients 18 6 24 24 48 

Control patients  34 7 41 40 81 

Total 52 13 65 64 129 

 519 

  520 



25 

 

Table 2. Clinical performances of suboptimized artificial neural networks (ANNs) obtained by 521 
performing the three robustness tests. 522 

Tes

t 

MN

L 

MN

I 

MN

C 
Architecture 

AU

C 

(%) 

CI 

(%

) 

Acc 

(%

) 

Se 

(%

) 

Sp 

(%

) 

 LCT 

(hh:mm:ss

) 

 

1 

1 500 10 [26] 78 
66-

90 
75 75 75 

 
13:16:02 

 

2 500 10 [22,21] 80 
68-

92 
72 71 73 

 
16:28:12 

 

3 500 10 [12,12,8] 83* 
72-

94 
75 75 75 

 
18:04:30 

 

4 500 10 [15,15,10,10] 77 
64-

89 
70 71 70 

 
16:51:55 

 

10 500 10 
[17,13,10,8,8,7

] 
77 

64-

89 
67 67 68 

 
22:43:46 

 

2 

3 50 10 [15,12,8] 68 
54-

82 
63 63 63 

 
2:44:28 

 

3 250 10 [26,10,10] 79 
66-

91 
67 67 68 

 
8:27:13 

 

3 500 10 [12,12,8] 83* 
72-

94 
75 75 75 

 
18:04:30 

 

3 1000 10 [17,17,16] 80 
69-

92 
72 71 73 

 
32:57:32 

 

3 1500 10 [14,7,7] 79 
67-

91 
70 71 70 

 
58:05:07 

 

3 

3 500 2 [1,1,1] 82 
71-

94 
75 75 75 

 
3:36:44 

 

3 500 5 [15,7,7] 85 
74-

95 
75 75 75 

 
6:30:07 

 

3 500 10 [12,12,8] 83 
72-

94 
75 75 75 

 
18:04:30 

 

3 500 20 [19,10,9] 78 
66-

91 
70 71 70 

 
39:17:36 

 

3 500 50 [14,14,13] 86*§ 
76-

96 
75 75 75 

 
212:44:11 

 

*suboptimized ANN with the highest AUC within a test; §optimized ANN.  523 
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Table 3. Qualitative comparison of machine learning approaches for heart failure detection from 525 
cardiac signals.  526 

Ref. Algorithm 
Clinical 

Confounders 

Data Sam-

ple Size 
Input 

Inter-

preta-

bility 

Results 

[13] 

K-nearest 

neighbours and 

convolutional 

neural networks 

No 73 ECG No Acc=98.97% 

[14] 
Support vector 

machine 
No 76 ECG No Acc=99.66% 

[15] 
Support vector 

machine 
No 33 

64 ECG 

samples 
No 

Acc= 

97.27% 

[16] 
Random forest 

classifier 
No 63 ECG No 

Acc=99.86 

% 

[17] 
Deep neural 

networks 
No 55163 

Demo-

graphic and 

electrocar-

diographic 

features 

Fea-

tures 
AUC=89% 

[18] 

 

Long short-term 

memory 

No 

156 di-

vided into 

two data-

bases: 

1. 73 

2. 83 

RR time 

series 
No 

 

Acc=98.9% 

Acc=87.6% 

[19] 
Convolutional 

neural networks 

Comorbidities in some pa-

tients: diabetes mellitus, hy-

percholesterolemia, renal dis-

ease, hypertension, coronary 

artery disease, myocardial in-

farction. 

163892 ECG No AUC=89% 

[20] 
Convolutional 

neural networks 

Comorbidities in some pa-

tients: hypertension. 
40 ECG No 

Acc>99.8% 

in several 

experiments 

This 

work 

Neural Net-

works 

Comorbidities in all patients: 

myocardial infarction. 
129 

13 serial 

ECG dif-

ference 

features 

Fea-

tures 
AUC=86% 

Acc: accuracy; AUC: area under the receiver operating curve 527 
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 529 

 530 

Figure 1. Flowchart of the repeated structuring and learning procedure (RS&LP). 531 
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 533 

Figure 2. Pseudocode of the repeated structuring and learning procedure (RS&LP).  534 
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 535 

Figure 3. Receiver operating characteristics (ROCs) obtained when performing Test 1 (panel a), 536 

Test 2 (panel b) and Test 3 (panel c), with a varying maximum number of hidden layers (MNL), 537 

a varying maximum number of initializations (MNI) and with a varying maximum number of 538 

confirmations (MNC), respectively. The operating points for which sensitivity equals specificity 539 

(OPSe=Sp) are indicated with ‘×’. 540 

 541 
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 542 

Figure 4. Artificial neural network obtained with the optimized configuration of repeated struc- 543 

turing & learning procedure parameters for automatic diagnosis of newly emerged heart failure 544 

with [14, 14, 13] architecture and associated area under the curve (AUC) of 86%.  545 

 546 


