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Abstract— Additive manufacturing (AM) is gaining relevance for 

the freedom it gives to designers in experimenting topologically 

optimized components, especially those having lattice morphology. 

Indeed, these are of great interest in various application fields 

(automotive, biomedical, etc.) because, in addition to a significant 

mass reduction, lattice topology (micro-scale) can be tuned to 

provide the final product (macro-scale) with the specific properties 

it needs to exhibit. However, additive manufactured lattice 

structures are still to be fully investigated, given the mismatch 

between the designed and the manufactured final product.  

This paper presents some preliminary results from a multi-

instrument approach, grounding on non-contact measurement 

techniques, to characterize lattice and trabecular structures in 

terms of dimensional accuracy, surface morphology, stress-strain 

distribution and modal behavior. 

 
Index Terms— additive manufacturing (AM), lattice structures, 

2D vision systems, digital image correlation, thermoelastic stress 

analysis, laser Doppler vibrometry  

I. INTRODUCTION 

Additive Manufacturing (AM) has gained disruptive 

relevance in engineering applications for the high 

flexibility achievable in terms of design: geometrically complex 

shapes [1, 2, 3, 4] are reproduced without the typical constraints 

of shaving removal. Among the possible structures, those 

presenting lattice/trabecular morphology are becoming 

standard in various fields, from automotive to biomedical. In 

fact, lattice/trabecular morphology gives the possibility to 

optimize topology of a structure, thus achieving important mass 

reduction and improved characteristic properties of the 

structure itself, like fine-tuned stiffness or improved thermal 

properties. However, despite the clear advantages of 3D 

printing technology, the structural response of 3D printed lattice 

components can be significantly different, from the designed 

one, no matter the material adopted. This enforces the necessity 

to experimentally identify dissimilarities to better understand 

both 3D printing mechanism associated to these structures and 

better control the design/production process to provide higher 

reliability to the final product. This is a complex task, which 

necessarily requires a multi-instrumental and multi-competence 

approach. 

The few studies [5] already published on this topic prove the 

necessity to analyse more in-depth the mechanical behaviour of 

trabecular structures. While finite elements numerical analyses 

[6, 7] have been performed, experimental characterization has 

been limited to stress-strain curves estimation by compression 

tests, to porosity evaluation through electron scanning 

microscopy [8] and to investigation of materials crystalline 

structure composition by electronic backscatter diffraction [9]. 

In the end, there are few examples of non-invasive 

characterization of these structures and the target is mainly 

validation of numerical models [6, 10, 11, 12, 13, 14]. 

Contrarily, the aim of the present paper is to develop proper 

experimental protocols based on advanced non-contact 

measurement techniques to qualify lattice structures. For this 

reason, different techniques, such as 2D vision systems, digital 

image correlation (DIC), thermo-elastic stress analysis (TSA) 

and laser Doppler vibrometry, have been used to assess 

dimensional stability and surface characteristics, to map global 

and local stress-strain fields, and to analyse the modal 

behaviour of simple structures with lattice morphology.  

The paper, which is an extended version of the one presented 

at the recent IEEE I2MTC 2019 [15], is organized as follows: 

the specimens investigated, and the experimental techniques 

adopted are presented in Section II; Section III discusses the 

main results of the analyses performed; Section IV draws the 

conclusions of the activity. 

II. MATERIAL AND METHODS 

A. Elementary trabecular samples 

Fig. 1 shows the three samples used in the study. The first 

specimen (Fig. 1 a) has a square elementary cell of 3 × 3 mm 
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with a trabecular width of 2 mm; the second one (Fig. 1 b) has 

a rhombic elementary cell with diagonals of 6 - 20 mm and 

trabecular width of 2 mm. Both these samples were produced 

in Ti6Al4V alloy and printed by Electron Beam Melting 

(EBM). Their sizes are 120 × 20 × 5 mm with the same cross 

section. 

 
The third specimen (Fig. 1 c) has a finely detailed structure 

with a cubic cell of 3.50 mm that develops in the x, y and z 

directions. A hole of 5 mm of diameter was created in the 

middle of the sample. The sample sizes are 100 × 20 × 5mm. 

For its manufacturing, photopolymer resin (Clear FLGPCL03, 

Formlabs) and Stereolithography (SLA) were employed. All 

samples structures were chosen because they reproduce typical 

connections of lattice systems. 

B. 2D vision systems setup 

Machine vision was adopted to analyze the superficial 

geometry of the samples. Given the challenge provided by the 

third sample, the activity was carried on mainly on that 

specimen. 

The test-bed is shown in Fig. 2. An IDS UI-1460SE CMOS 

camera was employed to analyze the lattice structure. The 

camera has a resolution of 2048 × 1536 pixels, a sensor size of 

½” and was equipped with bi-telecentric lens (Opto 

Engineering TC23036 depth of field = 11 mm). The lattice 

structure was placed in front of the objective, on a rigid support. 

The structure was located at 102.5 mm from the objective. Two 

motorized linear stages, with ±0.1 m resolution, were used to 

center the structure with respect to the field of view of the 

camera. The final field of view was 26.3 × 19.7 mm. 

 
Fig. 3 a) shows a sample image acquired with the camera. 

Image distortions and perspective errors were minimized by the 

adoption of the bi-telecentric lens. The structure was aligned 

with respect to the optical axis so that only the superficial layers 

of the structure were visible. Fig. 3 b) displays a zoomed part 

of a sector of the superficial layer of the structure. Each beam 

of the sector is correctly focused. 

 

The CAD model of the analyzed trabecular structure is shown 

in Fig. 4 a). The structure is superficially composed of a 

repetition of squared element, called sectors (Fig. 4 b)). The 

structure was dimensionally characterized analyzing each of 

these sectors and measuring the following four distances (Fig. 

4 b)) by a specifically designed edge-detection-based 

algorithm: 

• V, i.e. distance between vertical opposite vertices of the 
sector; 

• O, i.e. distance between horizontal opposite vertices of the 
sector 

• D1, D2, i.e. distances between opposite beams of the 
sector. 

 

 

 
The measurements were performed following four different 

phases: 
1. RoIs selection (Fig. 5 a)): four different rectangular Regions 

of Interest (RoI) were manually selected in the sector image. 
Each RoI was built around each beam of the sector. 

2. Edges detection (Fig. 5 b)): a standard edge detection was 
performed in each RoI analyzing the gray levels of the 
pixels contained in the RoI. Left and right edges were split 
into two different groups (red and green points). The 
identified edges represent the limits of each beam. 

 a)  b) 

 c) 

Fig. 1. Lattice samples with a) square, b) rhombic, C) cubic cell. 

 

 
Fig. 2. 2D vision system test-bed. 

a) b) 

Fig. 3. Image acquired with the 2D vision system setup a). The green 

rectangle represents a single sector of the analyzed structure, zoomed in 

b). 

 

 a)  b) 

Fig.4. CAD model of the analyzed trabecular structure a), and of a single 

sector b). 

 

 a) 

c) 

b) 

d) 

Fig. 5. Measurement algorithm using the 2D vision system setup. RoIs 

selection phase a), edges detection phase b), lines fitting phase c), and 

dimensional measurement phase d). 
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3. Lines fitting (Fig. 5 c)): edges found in the previous phase 
were used to fit two straight lines on the beam edges (yellow 
segments). The beam axis was then detected computing the 
bisecting line of the yellow segments (blue segment). 

4. Dimensional measurements (Fig. 5 d)): the final 
dimensional measurements were obtained considering the 
axes computed in each of the four RoIs. 

C. Digital Image Correlation setup 

DIC measurements were performed using a Canon EOS 7D 

camera, equipped with a hybrid image stabilizer and a 100 mm 

1:2.8 L IS USM macro optic, and a commercial software 

(Limess DIC 2D) to cross-correlate images acquired. Specific 

tests were carried out to optimize the lighting conditions and the 

measuring parameters for extract the strain field. DIC was 

performed on the two metallic samples. As well as direct and 

diffused light, artificially created speckle and natural speckle 

provided by the rough surface of the samples were tested. 

D. Thermal Stress Analysis setup 

As for TSA measurements, an infrared camera (FLIR SC 7200) 

with InSb cooled sensor (320 × 256 pixels of resolution, NETD 

< 25 mK) and a dedicated image-processing software (Altair 

LI) were used. To increase robustness of results each specimen 

surface was painted whit a black opaque paint to homogenize 

its emissivity. Even though paint thickness homogeneity could 

not be guaranteed, different tests in preliminary phases showed 

that the emissivity homogeneity in the painted specimens was 

higher than in the non-painted ones, thus resulting in higher 

Signal to Noise Ratios. Tests were approached in two ways: 

globally framing the weft of interest, to evaluate the overall 

stress distribution on the structure and the interactions between 

the various weft portions, and locally using an IR close-up lens, 

able to focus the trabeculae in detail and to determine the 

surface stress state on the component. 

E. Load system for DIC and TSA 

A specifically designed loading system (Fig. 6) was adopted for 

DIC and TSA measurements. The system consists of a 

structure, two grips, one fixed and the other movable, four 

pneumatic cylinders and an electrodynamic shaker (LDS 

V650). The structure consists of four core columns, divided into 

three sections that join three metal plates. Threaded bars are 

located inside the columns. The lower and central plates have a 

hole for inserting a sliding bush within which the cylindrical bar 

moves. An extensometric load cell is screwed on the cylindrical 

bar head. The specimen is clamped at an end, while the other 

one is integral with the shaker sliding shaft. This last one, 

supplied by a power amplifier (LDS PA1000L) and a signal 

generator, is able to axially stress the sample. The four 

pneumatic pistons (FESTO DSNU-12-50-P-A) are used both to 

provide a preload (dynamic tests) and to apply a uniform load 

(static tests). The stress for the specimen is transmitted from the 

shaker head through a connecting rod with 2 spherical joints at 

the end. The structure is made of AISI 316 steel and has 

sufficient rigidity to guarantee the open loop use a frequency 

range from 0 to 500 Hz, while the structure lower portion 

presents an open loop operation limit relative to the first total 

system frequency of about 115 Hz. The whole solution provides 

a uniform load preventing formation of asymmetrical strains. 

 

F. Experimental Modal Analysis setup 

Laser Doppler Vibrometry (LDV) was adopted to characterize 

the dynamic behavior of the third specimen. Conventional 

excitation methods used in modal testing are effective for 

exciting global vibrational mode shapes, but they are not when 

it comes to exciting the single trabeculae. Two types of 

excitation were used: a non-contact acoustic excitation (it is 

well known that in lightweight structures non-contact methods 

should be preferred also in terms of excitation) for assessing the 

global mode shapes of the specimen and a piezo-based 

excitation to focus on the dynamics of trabeculae.  

A mid-/high-frequency volume acoustic source (Fig. 7) placed 

10 mm from the sample (tested in cantilever beam like 

configuration, so clamped at one end, free at the other) and 

driven with random signal in the range 0.2-10 kHz was used for 

assessing the global mode shapes of the specimen. The driving 

force is the acoustic strength of the monopole at the outlet of 

the source measured as volume acceleration. Given the non-

punctual nature of the exciting system, torsional modes are 

barely excited. LDV measurements were performed on a 30 

points grid (3 × 10 – 3 points on the short side of the specimen) 

over the whole target (the lattice and solid parts). A piezo-

actuator (Fig. 8 a) was fixed to the specimen with epoxy glue. 

Two tests in different excitation ranges were performed: a first 

one in the 10-102 kHz range, and a second one in the 35-70 kHz 

range to reduce the influence of global modes. Given the 

characteristics of the piezoelectric and the installation mode, it 

was not possible to install a load cell to measure actual 

excitation force, to estimate the Frequency Response Function 

(FRF) and to obtain a reference signal. Given the impossibility 

to measure the force transmitted to the structure, the monitor 

signal provided by the power amplifier of the piezoelectric 

actuator was used as reference for Frequency Response 

Function (FRF) assessment (this means assuming a flat actuator 

response). The specimen was tested on a soft foam in free 

boundary conditions.  

The surface of the structure was coated with a very thin layer of 

lacquer: this strategy is targeted to improve the Signal to Noise 

  

 

 

Fig. 6. Load system for DIC 

and TSA. 

Fig. 7. Set-up for vibrational 

excitation by volume acoustic source 

 

 a)  b) 

Fig. 8. Piezo-based excitation set-up: piezo location a), investigation area 

on the trabeculae b). 
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Ratio (SNR) of the vibration velocity measured by LDV. A grid 

of 45 points (Fig. 8 b), equally spaced and aligned with the 

superficial trabeculae, on a section of the structure in between 

the central hole and the solid part, was set as investigation grid. 

III. RESULTS 

A. 2D Vision system results 

1)  Metrological characterization of the experimental setups 

The 2D vision system setup was characterized, at first, in terms 

of measurement reproducibility. A total of 50 measurements of 

distance D2 were performed on a single sector of the trabecular 

structure. Measurements were obtained varying the 

measurement condition, i.e. modifying measurement 

parameters such as sector position (with respect to the field of 

view of the sensors), RoIs, etc. Results are reported in Table I. 

TABLE I.  RESULTS OF THE METROLOGICAL CHARACTERIZATION OF THE 

2D VISION SYSTEM SETUP 

 2D Vision system setup 

Number of measurements 50 

D2 mean value [m] 3449.8 

D2 standard deviation [m] 3.5 

Reproducibility (95%) [m] 6.9 

 

The setup shows good reproducibility with compatible 

measurements. The variability is probably due to the non-

optimal alignment of the structure with respect to the optical 

axis of the imaging system. 

2) Dimensional characterization of the trabecular structure 

Each sector of the trabecular structure was dimensionally 

measured using the algorithm. Table II shows the measurement 

results in terms of measurement errors , defined as the 

difference between nominal and measured values. The latter 

term refers to measurements performed over all the exposed 

trabecular part of the specimen.  

TABLE II.  RESULTS OF THE DIMENSIONAL CHARACTERIZATION OF THE 

TRABECULAR STRUCTURE 

Dimension 

(nominal value) 

2D Vision system setup 

Mean of  [m] Standard deviation of  [m] 

V (4950 m) 98.3 33.7 

O (4950 m) 77.7 38.8 

D1 (3500 m) 59.7 10.4 

D2 (3500 m) 57.2 14.0 

 

Results shows positive measurement errors, with maximum 

errors obtained for the dimension V. This means that the 

trabecular structure presents lower dimensions with respect to 

the nominal values. This can be due to plastic deformations due 

to the manufacturing process and to the material used to 

produce the structure. The variability of the dimensions of the 

sectors can be equally due to manufacturing process. This 

conclusion is confirmed analyzing the alignment of the 

structure in different areas along the field of view of the camera. 

Fig. 9 shows details of two different zones of the structure. 

Zoom number 1 (top right part of the structure) shows good 

alignments since superior trabeculae hide inferior ones 

correctly. Zoom number 2 (bottom part of the structure) shows 

misalignments: lower trabeculae are not hidden by higher ones. 

This behavior is due to a plastic deformation of the structure. 

To further analyze the deformation, a tomographic scan of the 

structure was performed using an industrial equipment (NSI 

X5000, North Star Imaging) with 0.5 m resolution. The 

tomographic scan and the CAD model were aligned using 

commercial software (Polyworks 2016, Innovmetric). Fig. 10 

shows, in colormap form, deviation between the real structure 

and the nominal CAD model. The tomographic scan clearly 

shows the plastic deformation along the XZ plane of the 

structure. Focusing on the trabecular area of the structure, 

deviations up to 0.2 mm were obtained. The deviation identified 

is probably due to the standing surface chosen during the 

additive manufacturing process. If the structure had been made 

choosing other standing surfaces, plastic deformation would 

have spread toward other directions. 

Fig. 11 shows a section of the structure along the YZ plane. 

Black and red ellipses represent nominal and real trabeculae 

sections respectively. As expected, red ellipses have different 

dimensions and positions with respect to black ones. The 

difference between nominal and real sections increases toward 

structure edges. 

 

 

 

Fig. 9. Zoomed portions of two areas of the analyzed structure. Zoom n. 

1 shows good alignment. Zoom n. 2 shows misalignments. 

 

 

 

Fig. 10. Tomography of the analized structure. Colormap shows 

deviation between real structure and nominal CAD model. 

 

 

Fig. 11. Sample section of the analyzed structure along the YZ plane. 

Black and red ellipses represent nominal and real trabeculae sections 

respectively. 
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B. DIC results 

To measure the strain state, static tensile tests were performed 

at the same load conditions for both the sample types, applying 

a variable load from 0 to 1000 N with a step of 250 N.  

Fig. 12 shows the comparison between results obtained under 

direct and diffused lighting conditions on the samples with 

artificial speckle at a static traction load of 1000 N. Images well 

demonstrate importance of uniform lighting in the RoI. The best 

detail level is obtained in diffused lighting condition. 

Fig. 13 shows the comparison between vertical displacement 

and strain field with natural speckle and diffused lighting under 

the most severe test conditions (load of 1000 N). Strain tends to 

focus on the minimum resistance sections. The strain 

asymmetry, between the crossings, is due to the screws non-

homogeneous clamping. 

C. TSA results 

The TSA tests were designed to demonstrate the possibility of 

measuring the plane stress field of the elementary trabecular 

cells, without contact and with enough detail. Cyclical loads 

were performed, varying preload (from 20 to 200 N), peak-peak 

amplitude (from 30 to 250 N) and cycle frequency (from 10 to 

70 Hz).  

 

The tests were carried out in two ways. A 50 mm optic was used 

to totally focus the RoI and to evaluate the overall stress 

distribution on the structure. A 100X close-up lens was 

employed to analyze the individual interconnections between 

the various elementary specimen trabeculae and to allow a more 

detailed investigation of the surface stress field. Figs. 14 and 15 

show the overall and detailed views. The thermoelastic signal 

is particularly high (stress tends to assume the highest values) 

at the trabeculae intersection areas for the rhombic weft 

specimen and along the vertical interconnections, parallel to the 

applied load direction, for the square weft specimen. The phase 

images highlight undesired edge effects presence due to rigid 

motions the sample was undergoing during the test. However, 

these effects can be compensated by dedicated images post-

processing. 

 

 

D. Finite Element Analysis (FEA) results 

A FE simulation was also carried out using the commercial 

software ANSYS™ in order to compare strain results with 

those obtained experimentally (Fig. 16 and 17). The specimen 

geometries were obtained by directly importing the CAD 

models which had been used for printing them. The models 

were discretized using 1.5 mm shell elements, thickening the 

grid to 0.5 mm in the trabecular region. These discretization 

values made it possible to balance the goodness of results and 

computational effort. The printed material properties (Ti6Al4V 

 a)  b) 

 

 

 c)  d) 

 

Fig. 12. Longitudinal strain full-field measurement, obtained by DIC: 

comparison between a), c) direct and b), d) diffuse lighting conditions on 

specimens with artificial speckle (F = 1000 N). 

 a)  b) 

 

 

 c)  d) 

 

Fig.13. Longitudinal strain full-field measurement, obtained by DIC: 

comparison between diffused lighting conditions (F = 1000 N) with a), c) 

artificial and b), d) natural speckle. 

 a)  b) 
 

 

Fig. 14. Stress full-field measurement obtained by TSA, global study. 

Amplitude images obtained with preload of 200 N, peak-peak of 200 N, 

frequency of 50 Hz on trabecular specimen with a) rhombic and b) square 

elementary module. 

a)  b) 
 

 

c)  d) 
 

 

Fig.15. Stress full-field measurement obtained by TSA, local study with 

close-up optics. Amplitude images a), b) and phase c), d) obtained with 

preload of 200 N, peak-peak of 200 N, frequency of 50 Hz on trabecular 
specimen with elementary rhomboid (on the left) and square elementary 

module (on the right). 
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grade 5) were directly imported from the software database. 

The constraint and load conditions involve the presence of a 

lock at the upper edge and the application of a force of 1000 N 

at the lower one. 

The numerical simulation shows good agreement with the 

experimental evidence. The most stressed regions, as already 

highlighted by the optical measurements, are concentrated at 

the trabeculae intersection for the rhombic geometry and along 

the applied load direction for the square geometry. 

 

 

E. Modal analysis results 

Modal analysis was performed exploiting PolyMAX algorithm 

[16][17] for modal parameters extraction. Fig. 18 reports the 

comparison between the Sum FRFs (average FRF over spatial 

domain) estimated on the tests with the acoustic source placed 

at the tip (green curve) and at the constraint (red curve). 

As expected, considering the quite high mobility of the 

structure, the excitation at the constraint take advantage from 

the higher mechanical impedance, and it is much more 

effective, with the ability to highlight more resonance peaks. 

Fig. 19 shows some mode shapes obtained in this excitation 

condition. 

Fig. 20 shows the comparison between the Sum FRF and the 

Power Spectral Density (PSD) of the excitation signal supplied 

to the piezoelectric transducer for the 10-102 kHz excitation 

range. The excitation decay over 70 kHz is a proof that this 

excitation range should not be considered in the analysis. 

The lower frequency range (around 10 kHz) seems to be still 

affected by global modes. This is proved if looking at mode 

shapes calculated in this range. Fig. 21 show an example in 

which the presence of global modes (showing up as “rigid body 

modes” for the trabecular cell) prevents a correct assessment of 

trabeculae dynamic behavior.  

 

 

 

 

 

Fig. 22 shows the Sum FRF and the PSD of the amplifier signal 

for the second frequency range investigated, i.e. 35-70 kHz. The 

mode shapes reported in Fig. 23 appear now more evident, 

 a)  b)  

 

   

Fig.16. Longitudinal strain (in mm/mm) by means of FE modelling for a) 

rhombic and b) square weft trabecular specimen. 

 a) b)  

 

   

Fig.17. Von Mises equivalent stress (in MPa) by means of FE modelling 

for a) rhombic and (b) square weft trabecular specimen. 

 

Fig.18. FRF comparison between constraint (red) and tip (green) 
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Fig. 19. Mode shapes with acoustic excitation 

 

 

Fig.20. Piezo-based excitation test: Sum FRF Vs Reference PSD for the 

10-102 kHz frequency range excitation 

 

 

Fig.21. Trabeculae Mode shape at 11 kHz: global modes mask the local 

dynamic behavior of the lattice structure 

 

 

Fig.22. Piezo-based excitation test: Sum FRF Vs Reference PSD for the 

35-70 kHz frequency range excitation 
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showing interesting local effects. Unfortunately, it was not 

possible to increase the spatial density of the measurement 

points, in order to avoid the risk of spatial aliasing, which is 

likely to happen in higher frequency maps. 

 

IV. CONCLUSIONS 

Lattice structures represent interesting structures for many 

engineering applications. When it comes to these structures, 

additive manufacturing is the only technological solution for 

their manufacturing, given the presence of complex pattern of 

voids as well as thin and columnar elements (trabeculae) highly 

interwoven. The development of full-field experimental 

techniques and specific test protocols, to evaluate morphology, 

stress-strain state and modal behavior, is an actual issue and of 

great interest for practical application of this new class of 

structures. Some preliminary results obtained on specimens 

with elementary trabecular morphology using a multi-

instrument and multi-competence approach were presented in 

this paper. This approach made it possible to analyze different 

aspects ranging from dimensional accuracy and surface 

morphology to the structural response in terms of stress-strain 

distribution and modal behavior. Future work will be addressed 

to extend the characterization to 3D analysis as well as to apply 

it to real components. 
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