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ABSTRACT  17 

Clear orthodontic aligners have recently seen increasing popularity. The thermoplastic materials 18 

present several advantages, even if it is known that all plastic products can be subjected to 19 

environmental and mechanical degradation, leading to the release of microplastics (MPs). Their 20 

ingestion could cause oxidative stress and inflammatory lesions. This study aims to evaluate the 21 

potential detachment of MPs by clear aligners due to mechanical friction simulated with a 7-days 22 

protocol in artificial saliva. The study was performed on orthodontic clear aligners from different 23 

manufacturers: Alleo (AL); Flexi Ligner (FL); F22 Aligner (F22); Invisalign (INV); Lineo (LIN); 24 

ArcAngel (ARC), and Ortobel Aligner (2). For each group, two aligners were immersed in artificial 25 

saliva for 7 days and stirred for 5 hours/day, simulating the physiological teeth mechanical friction. 26 

After 7 days, the artificial saliva was filtered; filters were analyzed by Raman Microspectroscopy 27 

(RMS) and Scanning Electron Microscopy (SEM), respectively to chemically identify the polymeric 28 

matrix and to measure the number and size of the detected MPs. MPs were evaluated in terms of 29 

chemical composition, number, and size. RMS spectra revealed that AL, FL, LIN, ARC, and OR 30 

aligners were composed by polyethylene terephthalate, while F22 and INV ones by polyurethane. 31 

SEM analysis showed that the highest number of MPs was found in ARC and the lowest in INV 32 

(p<0.05). As regards MPs’ size, no statistically significant difference was found among groups, with 33 
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most MPs ranging from 5 to 20 µm. Noteworthy, a highly significant correlation (p<0.0001) was 34 

highlighted between the distribution of MPs size and the different typologies of aligners. This in vitro 35 

study highlighted for the first the detachment of MPs from clear aligners due to mechanical friction. 36 

This evidence may represent a great concern in the clinical practice since it could impact human 37 

general health. 38 

 39 

Keywords: Clear orthodontic aligners; Microplastics; Raman Microspectroscopy; Scanning Electron 40 

Microscopy. 41 

 42 

1. Introduction 43 

To date, the growing demand for “invisible” orthodontic treatments among both child and adult 44 

patients, led to an upsurge in the development of esthetic and comfortable alternatives to conventional 45 

fixed appliances (Kesling, 1946; Macrì et al., 2022). Thanks to the introduction in dentistry of 46 

CAD/CAM technologies, the use of clear removable aligners for orthodontic purposes has received 47 

a great impulse (da CUNHA et al., n.d.; Tartaglia et al., 2021).  48 

The first digitally designed and manufactured removable polyurethane aligners, based on the 49 

InvisalignTM system, were launched in 1998 by Align Technology (Santa Clara, CA, United States). 50 

Currently, clear aligners are produced all over the world by various companies (Galan-Lopez et al., 51 

2019; Nemec et al., 2020). Dedicated software are able to project and develop unique and 52 

personalized removable aligners, which perfectly fit with the patient's dentition, causing incremental 53 

tooth movements (Kravitz et al., 2009). Patients should wear each aligner for up to 22 hours per day 54 

for 7-14 days, according to the manufacturer's protocol (Al-Nadawi et al., 2021); the number of 55 

prescribed aligners depends on the amount of dental crowding and case complexity. 56 

The thermoplastic materials used by aligner manufacturers mainly include polyethylene 57 

terephthalate (PET), polypropylene (PP), polycarbonate (PC), and polyurethanes (PU) (Daniele et al., 58 

2020; Ho et al., 2021). These plastics can be prone to various environmental and mechanical factors 59 

which degrade them into smaller fragments, referred as secondary microplastics. In fact, the term 60 

“microplastic”, coined in 2004, is used to describe small plastic particles (Frias and Nash, 2019). 61 
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Most commonly, MPs are defined as synthetic polymer particles or fibers with a diameter of 1–5000 62 

μm (Chain (CONTAM), 2016; Horton et al., 2017; Rocha-Santos and Duarte, 2015), even though the 63 

lower limit has been extended down to 100 nm by the European Food and Safety Authority (EFSA) 64 

(Chain (CONTAM), 2016). MPs can be distinguished into primary and secondary (Cole et al., 2011); 65 

the former are intentionally inserted in some products, such as toothpaste, face wash, cosmetics and 66 

industrial abrasives (da Costa et al., 2016), while the latter  arise from the physical, chemical, and/or 67 

biological fragmentation of larger plastic objects during their use or when released in the environment 68 

(Cole et al., 2011). During the last decade, MPs emerged as “novel” pollutants and attracted 69 

considerable attention in the scientific community, due to their ubiquitous distribution and toxicity 70 

(Park and Park, 2021; Prata et al., 2020).  71 

The ingestion of MPs by humans can be hazardous since some recent studies evidenced oxidative 72 

stress and inflammatory processes in animal models exposed to these microparticles (Yang et al., 73 

2022). Moreover, the inability of the immune system to remove synthetic particles may lead to 74 

chronic inflammation and increase risk of neoplasia (Prata et al., 2020; Ragusa et al., 2021). In 75 

general, the potential toxicity of microparticles depends on their shape, chemical composition, and 76 

size (Triebskorn et al., 2019; Yang et al., 2022). Size is a crucial factor for the uptake, intended as the 77 

penetration into either cells or tissues beyond the epithelial surface (Triebskorn et al., 2019): it has 78 

been observed that very small particles are able to passively cross cell membranes, while larger ones 79 

require active endocytosis (Kettiger et al., 2013, p.). Generally, processes facilitating active uptake 80 

into tissues appear to work on particles up to 1 µm (Zhu et al., 2013). As regards the shape, it 81 

influences the toxicity modifying interactions with cells and tissues: it has been demonstrated that 82 

microfibers interact with cells and tissues differently than microspheres, fragments, or films (Allegri 83 

et al., 2016).   84 

Currently, optical and electronic microscopies, as well as spectroscopic techniques are widely 85 

employed to carry out a qualitative and quantitative characterization of MPs in different organic and 86 

biological matrices (Jenner et al., 2022; Kutralam-Muniasamy et al., 2023; Romano et al., 2022). 87 
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Scanning Electron Microscopy (SEM) represents an important tool for the quantification of MPs 88 

(Chen et al., 2020; Shi et al., 2022; Wang and Wang, 2018); moreover, thanks to its ability to create 89 

high- resolution images of the surfaces, it let obtain information on the micromorphology of 90 

microparticles, both in terms of size, shape and surface micromorphology and structure (Fries et al., 91 

2013; Memè et al., 2022; Monterubbianesi et al., 2021; Tosco et al., 2021; Vitiello et al., 2022; Wang 92 

et al., 2017). Regarding the spectroscopic techniques, Raman Microspectroscopy (RMS) is a highly 93 

reliable technique for the detection and identification of MPs, since it allows to characterize not only 94 

the morphological features of microparticles but also their chemical composition in terms of both 95 

polymer matrices and pigments (Araujo et al., 2018; Di Renzo et al., 2021; Orilisi et al., 2021; Orsini 96 

et al., 2021; Ragusa et al., 2022). Furthermore, thanks to the high potential of light scattering, RMS 97 

offers the advantage of enabling the analysis of MPs as small as ~2 μm directly on filtration 98 

membranes (Jin et al., 2022; Ribeiro Claro et al., 2016).  99 

In this in vitro study, for the first time, the potential detachment of microparticles by clear 100 

orthodontic aligners has been investigated. To this aim, orthodontic clear aligners provided by seven 101 

different manufacturers were submitted to a 7-days protocol in artificial saliva to simulate the 102 

mechanical friction generated by teeth. The detached MPs were then analyzed by Raman 103 

Microspectroscopy and Scanning Electron Microscopy. This is an important and actual topic, since 104 

clear orthodontic aligners are widely used every day all over the world. The detached small polymer 105 

fragments can be considered as secondary MPs and their ingestion could cause oxidative and 106 

inflammatory processes in orthodontic patients (Galloway, 2015).  107 

 108 

2. Materials and methods 109 

2.1 Materials 110 

The orthodontic clear aligners, derived from the same STL file, were provided by the following 111 

manufacturers: Alleo (AL, Digital Service Leone s.r.l, Florence, Italy); Flexi Ligner (FL, Roma, 112 

Italy); F22 Aligner (F22, Sweden & Martina Spa, Padova, Italy); Invisalign (INV, Align Technology, 113 
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Mexico); Lineo (LIN, Micerium Lab, Milan, Italy); ArcAngel (ARC, Network Gruppo Dextra, 114 

Modena, Italy), and Ortobel Aligner (OR, Bergamo, Italy). 115 

The artificial saliva was prepared by Biotène Oral balance (GSK, England), and was composed by 116 

purified water, hydrogenated hydrolyzed starch, xylitol, hydroxyethylcellulose, polymetrhacrylate, 117 

beta-d-glucose, lactoperoxidase (12,000 units), lysozyme (12mg), lactoferrin (12mg), glucose 118 

oxidase (12,000 units), potassium thiocyanate, aloe vera, without any treatment.  119 

 120 

2.2 Samples’ treatment   121 

A specific protocol was set to simulate the oral cavity conditions, in which patients simultaneously 122 

wear two aligners for 7 days, one for each dental arch (Al-Nadawi et al., 2021). To this purpose, two 123 

samples of each manufacturer were immersed in 50 ml of artificial saliva in a glass beaker for 7 days. 124 

The beaker was covered with an aluminum foil throughout the experiment and positioned onto a 125 

magnetic hot plate (SuperNuova+™ Stirrer series, Thermo Scientific™, Loughborough, UK) at a 126 

constant temperature of 37° C. A cylinder-shape magnetic stirring bar (6 × 25 mm) coated with Teflon 127 

was added to create a rotating magnetic field. Each group of samples was stirred for 5 hours/day, in 128 

order to simulate the patient physiological teeth friction. In particular, during spontaneous swallowing 129 

the dental arches, and as a consequence the clear aligners, come into contact, creating a mechanical 130 

friction. For this reason, based on the spontaneous swallow frequency reported in literature (0.98/min) 131 

(Bulmer et al., 2021), and considering that in general, to ensure the best effectiveness, aligners must 132 

be worn for 20/22 hours/day (Hartshorne and Wertheimer, 2022), the number of spontaneous 133 

swallowing is around 1235. The cylinder-shape magnetic stirring bar used has been calibrated to 134 

achieve 250 rotations/hour. Thus, we performed 1250 rotations in 5 hours/day.  After 7 days, the 135 

artificial saliva was filtered through 1.6 μm pore-size filter membranes (Whatman GF/A), with a 136 

diameter of 47 mm, by a vacuum pump connected to a filter tunnel. Filter membranes were dried at 137 

room temperature and stored in glass Petri dishes until Raman Microspectroscopy (RMS) and 138 

Scanning Electron Microscopy (SEM) analyses. The experiment was performed in triplicate. 139 
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 140 

2.3 Raman Microspectroscopy analysis 141 

RMS analysis was carried out at the ARI Laboratory (Department of Life and Environmental 142 

Sciences, Polytechnic University of Marche, Ancona, Italy) by using a XploRA Nano Raman 143 

Microspectrometer (Horiba Scientific). All the filter membranes, including those deriving from the 144 

procedural blanks, were inspected by visible light using a ×10 objective (Olympus MPLAN10×/0.25). 145 

The detected MPs were morphologically characterized by a ×100 objective (Olympus 146 

MPLAN100×/0.90) and then directly analyzed on the filter by RMS (spectral range 200–1800 cm−1, 147 

532 nm or 785 nm laser diode, 600 lines per mm grating). Spectra were dispersed onto a 16-bit 148 

dynamic range Peltier-cooled CCD detector; the spectrometer was calibrated to the 520.7 cm−1 line 149 

of silicon prior to spectral acquisition. To reduce noise and enhance spectrum quality, raw Raman 150 

spectra were subjected to polynomial baseline correction and vector normalization (Labspec 6 151 

software, Horiba Scientific). The polymer matrix of the detected particles was identified by 152 

comparing the collected Raman spectra with spectral libraries of polymers obtained by measuring 153 

standard polymers/compounds (KnowItAll software, John Wiley & Sons, Inc., Hoboken, NJ, USA) 154 

(Chen et al., 2020; Fries et al., 2013). Similarities of more than 80 of the Hit Quality Index (HQI) 155 

were considered satisfactory. 156 

 157 

2.4 Scanning Electron Microscopy analysis 158 

SEM analysis was performed at the Centre for Electron Microscopy – CISMIN (Department of 159 

Materials, Environmental Science and Urban Planning, Polytechnic University of Marche, Ancona, 160 

Italy). From the same filters analyzed by RMS, supposing a homogeneous distribution of fragments, 161 

a representative circular portion with a diameter of ca. 20 mm was cropped (Hidalgo-Ruz et al., 2012); 162 

more in detail, the original filter had an area of ca. 1734.1 mm2, while the cropped filter of ca. 314.0 163 

mm2. The cropped filters were mounted on aluminum stubs, sputter-coated with gold and observed 164 
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by a TESCAN VEGA 3 LMU scanning electron microscope. SEM operated at 10 kV and at variable 165 

working distance with secondary electron detector (SE).  166 

SEM images were acquired at different magnifications to investigate the MPs number, 167 

morphology, and size. In particular, the MPs count was performed through the visual inspection 168 

(Wang and Wang, 2018); to improve count accuracy and reduce the subjectivity of the examiner, the 169 

analyses were performed according to the following criteria: (i) the entire area of the cropped filter 170 

was inspected, starting from the upper left to the lower right; (ii) aggregated MPs were considered 171 

only one time; (iii) suspected particles were excluded (Chen et al., 2020; Song et al., 2015; Wang and 172 

Wang, 2018). The morphology and the size of all the detected MPs were also obtained.  173 

 174 

2.5 Quality Assurance and Control  175 

A plastic-free protocol was adopted to avoid microplastic contamination. Cotton laboratory coats 176 

and single-use latex gloves were worn during all phases of the experiment. The phases of mechanical 177 

friction and filtration were carried out in a dedicated room. Routinely employed plastic tools were 178 

replaced with glass ones, and were washed using dishwashing liquid, triple rinsed with 70% ethanol, 179 

and finally rinsed with 1.6 µm filtered deionized water. Work surfaces were thoroughly washed with 180 

70% ethanol prior to starting all procedures and during the experimental time.  181 

Moreover, environmental and procedural blanks were prepared and thoroughly analyzed to detect 182 

microplastic contamination deriving from the laboratory environment and from other external 183 

sources. As regards environmental blanks, a filter membrane soaked with 1.6 µm filtered deionized 184 

water was placed into an uncovered Petri dish and positioned each day in the above-mentioned 185 

dedicated room. The filters deriving from environmental and procedural blanks were first inspected 186 

by stereomicroscope. 187 

 188 

2.6 Statistical Analysis  189 
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Normally distributed data of particles’ size were presented as mean ± S.D. Significant differences 190 

between experimental groups were determined by means of a factorial analysis of variance (one-way 191 

ANOVA), followed by Tukey’s multiple comparisons test, by the statistical software Prism6 192 

(Graphpad Software, Inc. USA). One-way ANOVA was used to compare the means of AL, F22, FL, 193 

LIN, OR, ARC, and INV groups to make inferences about the population means. Statistical 194 

significance was set at p < 0.05.  195 

 196 

3. Results 197 

Filters from all the experimental groups were first analyzed by RMS; then, they were cut, and the 198 

cropped circular portions were submitted to SEM evaluation. The details, including the chemical 199 

composition, number, and size, of all the microparticles detected in the three replicates, are reported 200 

in Table 1. As regards the number of MPs, it represents the number of microparticles found in the cut 201 

filter portions (diameter ca. 20 mm). It is noteworthy that both in environmental and procedural 202 

blanks, no microparticles of PET and PU were found.  203 

Table 1  

Manufacturer, polymer matrix, number, and mean size of the MPs detected in the three replicates of the following 

aligners: Alleo (AL), Flexi Ligner (FL), Lineo (LIN), ArcAngel (ARC), and Ortobel (OR); (B) F22 Aligner (F22), 

and Invisalign (INV). 

 
Manufacturer Polymer* Replicate 

(#) 

N. of MPs Mean size  

(µm) 

Smallest  

(µm) 

Largest  

(µm) 

  #1 12 13.72 ± 7.07 3.76 22.11 

AL PET #2 14 16.16 ± 8.67 3.41 28.31 

  #3 12 16.09 ± 7.25 4.78 28.9 

  #1 10 20.37 ± 7.23 7.77 36.39 

FL PET #2 8 20.12 ± 10.74 9.18 28.36 

  #3 12 19.29 ± 11.76 8.34 45.70 

  #1 11 16.12 ± 9.41 4.55 31.58 

F22 PU #2 10 19.49 ± 12.69 4.83 38.28 

  #3 12 18.80 ± 9.92 8.97 34.91 

  #1 7 16.64 ± 9.66 3.13 31,97 

INV PU #2 5 12.12 ± 5.70 3.96 18.57 

  #3 7 15.81 ± 11.37 3.85 34.20 
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 204 

As regards the chemical composition, the representative RMS spectra of all the MPs confirmed 205 

the presence of two different polymers: polyethylene terephthalate (PET) for AL, FL, LIN, ARC, 206 

and OR samples, and polyurethane (PU) for F22 and INV (Fig. 1). 207 

  #1 13 21.02 ± 12.15 5.89 55.8 

LIN PET #2 14 22.71 ± 8.87 6.92 41.07 

  #3 17 20.13 ± 8.43 7.10 37.70 

  #1 17 25.09 ± 20.95 7.47 94.49 

ARC PET #2 20 23.19 ± 11.35 5.62 44.80 

  #3 16 24.57 ± 11.37 9.10 42.30 

  #1 14 20.74 ± 13.04 9.16 61.0 

OR PET #2 15 23.19 ± 11.35 7.40 43.81 

  #3 18 24.57 ± 10.65 9.10 42.3 

* PET: polyethylene terephthalate; PU: polyurethane. N. of MPS: number of MPs counted in the cropped filter with a diameter 

of ca. 20 mm.  
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 208 

In Fig. 2, the microphotographs collected with the light microscope (100x magnification) of some 209 

representative MPs found in each group were reported. In almost all cases, the detached 210 

microparticles appeared as irregular fragments with different shape and size: more in detail, an almost 211 

spherical shape was observed in AL, FL, INV, and OR groups, while a fiber shape was identified in 212 

 

Fig 1.  Representative RMS spectra collected on the microparticles detached from the aligners. Spectra (A) and (B) 

were ascribable respectively to polyethylene terephthalate and polyurethane. Spectrum (A): Alleo (AL), Flexi Ligner 

(FL), Lineo (LIN), ArcAngel (ARC), and Ortobel (OR). Spectrum (B) F22 Aligner (F22), and Invisalign (INV).  
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F22, LIN and ARC ones. Moreover, in FL, INV and ARC, some of the identified MPs were 213 

pigmented with blue and black colors due the writings on the aligners.  214 

 215 

 

Fig. 2. Microphotographs of some selected microparticles detached from the following aligners: AL: Alleo; FL: Flexi 

Ligner; F22: F22 Aligner; INV: Invisalign; LIN: Lineo; ARC: ArcAngel; OR: Ortobel Aligner (100x magnification, 

Olympus MPLAN100×/0.90) 

 

 216 

In Fig. 3, SEM micrographs of representative MPs collected for each group are shown. 217 

Interestingly, the high magnification (2000x – 3000x) revealed that MPs deriving from F22 and INV 218 

groups, appeared as an aggregate of microspheres, while those detected in all the other groups seemed 219 

to have a more homogeneous surface.  220 

 221 
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Fig. 3. Scanning electron micrographs collected at different magnifications on some selected MPs detached from the 

following aligners: AL: Alleo; FL: Flexi Ligner; F22: F22 Aligner; INV: Invisalign; LIN: Lineo; ARC: ArcAngel; 

OR: Ortobel. For each micrograph, the sizes of MPs were reported (µm).   

 222 

The average number of MPs, found in the different aligners and derived from the three replicates, 223 

revealed statistically significant differences between the tested groups (p<0.05). In particular, more 224 

than 10 MPs were counted in AL (13 ± 1), F22 (11 ± 1), FL (10 ± 2), LIN (15± 2), ARC (18 ± 2) 225 

and OR (16 ± 2) (p>0.05), while only in INV, the number of MPs was lower than 10 (6 ± 1) (p<0.05). 226 

Relating these data to the entire filter, with a diameter of 47 mm, the following values of counted 227 

MPs were found: N. 72 ± 6 in AL; N. 61 ± 6 in F22; N. 55 ± 11 in FL; N. 83 ± 11 in LIN; N. 88 ± 228 
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11 in OR; N. 99 ±11 in ARC; N. 33 ± 6 in INV. Hence, the highest number was found in ARC and 229 

the lowest one in INV. 230 

As regards MPs’ size in the three replicates, no statistically significant differences were 231 

observed (p>0.05) (Fig. 4A). However, considering the average size of the three replicates (Fig. 4B), 232 

the lowest ones were found both in INV (14.91 ± 8.85 µm), with the smallest MP detected of 3.13 233 

μm, and in AL (15.32 ± 7.66 µm), with the smallest MP detected of 3.41. In F22, an average size of 234 

18.33 ± 10.37 μm was found, with the lowest MPs’ size of 4.55 μm. FL, LIN, ARC and OR groups 235 

presented MPs in the range of 20-30 μm (20.22 ± 8.73, 21.29 ± 9.81, 24.28 ± 14.31 and 21.98 ± 10.33, 236 

respectively). In Fig. 5, the distribution in percentage of the MPs sizes, subdivided into 3 ranges (< 5 237 

µm, 5-20 µm and > 20 µm) for each group is also reported. Furthermore, univariate Chi square test 238 

revealed a highly significant association (p < 0.0001) between the distribution of particles’ size and 239 

the different typologies of aligners.  240 

 241 

(A)  

0

5

10

15

20

25

30

35

40

45

50

#1 #2 #3

Mean MPs size of the three replicates 

AL F22 FL INV LIN ARC OR



   

 

   

 

14 

(B)  

Fig. 4. (A) Mean size (µm) and standard deviation of MPs detected in the experimental groups, subdivided in the three 

replicates (#1, #2, #3); (B) mean size (µm) and standard deviation of MPs of the three replicates. AL: Alleo; F22: F22 

Aligner; FL: Flexi Ligner; INV: Invisalign; LIN: Lineo; ARC: ArcAngel; OR: Ortobel Aligner 

 242 

 243 

 

Fig. 5. Distribution in percentage (%) of the mean MPs sizes of the three replicates, subdivided into 3 ranges (< 5 µm, 

5-20 µm and > 20 µm), for each group: AL (Alleo); FL (Flexi Ligner); F22 (F22 Aligner); INV (Invisalign); LIN 

(Lineo); ARC (ArcAngel); OR (Ortobel Aligner). 

 244 

4. Discussion 245 
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Since the introduction of clear aligners with the InvisalignTM brand, distributed by the US company 246 

Align Technology© (Kuo and Miller, 2003; Meier et al., 2003), during the years, the commercial offer 247 

has been significantly enriched with national and international competitor brands. Nowadays, clear 248 

aligners, with the widespread popularity due to their better comfort and aesthetics, are an integral part 249 

of orthodontic treatments and are receiving increased attention as an alternative to conventional 250 

braces, in both young and adult patients (Pacheco-Pereira et al., 2018; Weir, 2017). Thermoplastic 251 

polymers are the most common materials of which aligners are made (Condo’ et al., 2018). 252 

Biomechanical properties play a key role in the performance and in obtaining the desired orthodontic 253 

tooth movement (Kohda et al., 2013). The most used materials are polyurethane, polyester, and 254 

polyethylene terephthalate. Many spectrophotometric studies have already analyzed the composition 255 

of clear aligners to confirm the chemical structure, stated by the manufacturers (Tamburrino et al., 256 

2020). 257 

In the last years, many efforts have been made to provide clinical guidelines for optimal aligner 258 

wear protocols (Al-Nadawi et al., 2021; Bilello et al., 2022; Hartshorne and Wertheimer, 2022; 259 

Putrino et al., 2021; Robertson et al., 2020): in general, to ensure the best effectiveness, aligners must 260 

be worn for 20/22 hours/day, and they should be changed every 14-days (Hartshorne and Wertheimer, 261 

2022). Recently, this prescription has been questioned (Bilello et al., 2022). In fact, Al-Nadawi et al. 262 

suggested that a 7-day protocol can be generally sufficient since there was no significant clinical 263 

difference compared with a 10-day or a 14-day protocol (Al-Nadawi et al., 2021).  264 

However, the daily wearing of aligners by patients inevitably lead to a continuous frictional contact 265 

between the occlusal aligner surfaces, and this mechanism could allow a possible detach of plastic 266 

fragments from the thermoplastic material in the oral cavity. This fact, coupled with the large number 267 

of hours per day and the long period aligners are recommended to be worn for achieving the desired 268 

positive results, generates a growing concern about the risks associated with the exposure and intake 269 

of microplastics in orthodontic patients. 270 
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Until today, several studies have been performed to evaluate the stability of these thermoplastic 271 

materials in terms of mechanical properties, aging, colorimetric alteration after exposure to highly 272 

pigmented foods, and chemical changes during wearing time which could compromise the force 273 

delivery capacity and treatment efficacy (Bernard et al., 2020; Liu et al., 2016; Lombardo et al., 274 

2017b; Papadopoulou et al., 2019). Hence, this is the first in vitro study which demonstrates that clear 275 

aligners produced from different manufacturers and subjected for 7 days to artificial mechanical 276 

friction, can release microparticles with variable shapes and sizes. MPs were chemically characterized 277 

by RMS and evaluated in terms of shape and sizes, using optical and scanning electron microscopies.  278 

A specific protocol, based on the mean wearing time that emerged from the scientific literature, 279 

was set up to reproduce the mechanical friction to which aligners are subjected into the oral cavity 280 

(Al-Nadawi et al., 2021). In this regard, in all the tested groups, the mechanical friction led to the 281 

detachment of MPs with irregular profiles and with sizes ranging from 3 µm to 50 µm. All the detected 282 

MPs resulted made by two type of thermoplastic polymers: polyethylene terephthalate (in the case of 283 

AL, FL, LIN, ARC, and OR groups) and  polyurethane (in the case of F22 and INV groups) (Daniele 284 

et al., 2022; Ihssen et al., 2019; Lombardo et al., 2017a). As previously described, these microparticles 285 

can be classified as secondary microparticles, since they derive from the fragmentation of larger 286 

plastic items during their use (Cole et al., 2011).  287 

Currently, there is growing scientific evidence about MPs in humans, with an estimated total intake 288 

of 39-52 thousand MPs per person per year, mainly through ingestion (Cox et al., 2019; Prata, 2018; 289 

Prata et al., 2020). According to the scientific literature, the primary health effects of ingested MPs 290 

are triggered from the digestive system, causing direct damage not only at local level, such as irritation 291 

or intestinal dysbiosis, but also at systemic level (Tamargo et al., 2022; Yee et al., 2021). To date, the 292 

changes of MPs during gastrointestinal digestion or colonic fermentation are scarcely explored. 293 

However, a recent study provided scientific evidence of modifications and potential effects of MPs 294 

during their passage through the digestive tract (Tamargo et al., 2022). Indeed, authors reported that 295 

PET MPs during gastrointestinal digestion showed structural changes, suggesting a potential 296 
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biodegradation probably driven by colonic microbiota, supporting the existence of an interaction 297 

between the colonic microbiota and PET MPs particles. Although there are few experimental 298 

researches on MPs metabolism in the human body, studies agree that their uptake is influenced by 299 

their shape and size (Triebskorn et al., 2019; Wieland et al., 2022). In particular, size represents a 300 

crucial factor, with larger particles requiring active endocytosis, while very small particles being able 301 

to passively cross membranes (Kettiger et al., 2013; Triebskorn et al., 2019; Yang et al., 2022). 302 

Indeed, particles > 20 µm are likely excreted from the gastrointestinal tract (Schwabl et al., 2019; 303 

Wieland et al., 2022). Conversely, microparticles ranging from 5 µm to 20 µm, at the gastrointestinal 304 

level, may pass through the epithelium by endocytosis mechanisms or by paracellular diffusion. After 305 

that, MPs are translocated by dendritic cells through the lymphatic circulation and reach the 306 

circulatory system (Prata et al., 2020). As regards our results, microparticles with a diameter of 5 - 307 

20 µm were found in all the attested aligners and represented the largest group, with a percentage 308 

higher than 50%, except that for F22 and LIN (36% and 46%, respectively). A percentage range of 309 

30-50% was detected for MPs > 20 µm in all the aligners, while MPs < 5 µm were detected only in 310 

AL (17%), F22 (18%) and INV (14%). In this context, it needs to be considered if these MPs could 311 

pass the gastrointestinal tract through para and/or transcellular manner. Florence et al. reported that 312 

the uptake of MPs by M-cells into the Peyer’s patches (lymphoid follicles in the small intestine) plays 313 

a significant role (Florence, 1997). Indeed, the presence of MPs could cause aggregations of 314 

macrophages, granulation tissue and foreign body response, with inflammation and oxidative stress 315 

(Paul et al., 2020; Urban et al., 2000; Willert and Semlitsch, 1996). In this light, it is suggested to use 316 

this type of orthodontic treatment with caution in growing children.  317 

Recent studies showed that the leaching of monomers from MPs could contribute to their toxicity 318 

(Mastrangelo et al., 2002; Xu et al., 2003). MPs deriving from F22 and INV aligners appeared as 319 

aggregates of microspheres, and, hence, they could lead to a further detachment of microparticles 320 

with smaller diameter and with higher toxicity into the gastrointestinal tract. Moreover, in FL, INV 321 

and ARC aligners, some of the identified MPs appeared blue or black pigmented. This finding, 322 
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probably related to the ink used to identify the aligner, could be explained by the fact that these areas 323 

may be less resistant to mechanical friction, leading to easier detachment of the MPs.  324 

Another important factor, which could lead to a different level of MPs detachment, could be the 325 

processing in the manufacturing techniques (Alhendi et al., 2022; Eliades et al., 1999). Clear aligners, 326 

indeed, can be thermoformed on the serial digital 3D models, considering the conventional 327 

fabrication, or can be direct 3D printed, representing the new approach (Maspero and Tartaglia, 328 

2020). This technology allows to manufacture components layer-by-layer (such as stereolithography, 329 

selective laser sintering and fused deposition modelling), instead of common manufacturing methods 330 

that rely on molding, machining or other subtractive methods (Athirasala et al., 2018). From the 331 

analyzed groups, only Invisalign® aligners are 3D printed, based on the application of the 332 

stereolithography technology (Tartaglia et al., 2021). In the other groups, clear aligners are produced 333 

using the thermoformed method. According to our results, a highly significant association (p < 334 

0.0001) between the distribution of particles’ size and the different typologies of aligners emerged. 335 

Indeed, in INV aligners the detachment of MPs appeared the lowest in number respect to the other 336 

groups. This finding could be due associated to the thermoforming process which could significantly 337 

change the material properties in response to the heat generation used to form the material around the 338 

3D model. In this light, our results agree with the scientific literature. Studies showed that 339 

thermoplastic-made aligners are reactive during their use to the intraoral environment, such as body 340 

temperature, humidity of oral cavity and salivary enzymes, which may intrinsically affect the aligner 341 

and modify its original size and mechanical properties (Martina et al., 2019; Ryokawa et al., 2006). 342 

Thus, the alterations produced by the thermoforming process and the intraoral environment on the 343 

aligner structure, probably caused an alteration of the mechanical properties, with the consequent 344 

detachment of MPs. Furthermore, the thermoformed materials showed more cytotoxicity respect to 345 

directly 3D printed clear aligners, most likely due to the release of monomers in relation to the 346 

increasing temperature in the thermoplastic process (Martina et al., 2019). Conversely, studies on the 347 
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cytotoxicity of directly 3D printed clear aligners from three different materials, concluding that 348 

Invisalign® material represented the least cytotoxic (Tartaglia et al., 2021).  349 

A limitation of this study could be ascribed to the difficulty of in vitro replicating the mechanical 350 

friction that occurs between the dental arches throughout the daily wearing. However, since in the 351 

oral cavity other factors could also contribute in the deterioration of the orthodontic clear aligners, 352 

we are confident that our findings underestimate the MPs detachment (Fang et al., 2020). Since there 353 

are few experimental studies on microplastic metabolism in the human body, it is judged that caution 354 

is needed in the interpretation of the present results. Furthermore, since the orthodontic treatment 355 

occurs in a short period of time, around 16.9±5.7 months (Borda et al., 2020), depending on the 356 

severity of the malocclusion and on the compliance of the patient (Torsello et al., 2022), the 357 

detachment of MPs and the consequent ingestion take place in a limited period. Thus, clear aligners, 358 

which represent a well-tolerated removable appliance, could be safety used. Nevertheless, future 359 

studies are needed to evaluate MPs detachments at different wearing time.  360 

 361 

5. Conclusions 362 

This in vitro study highlighted, for the first time, the detachment of MPs from commercial clear 363 

aligners, used for orthodontic treatments, due to their mechanical friction. This evidence could 364 

represent a great concern since it could impact the human general health. However, it is important to 365 

point out that in all groups, most of MPs had dimensions greater than or equal to 20 µm, and hence, 366 

they could be likely excreted from the gastrointestinal tract. As regards MPs with a smaller size (lower 367 

than 5 µm), which could be able to cross membranes and gut epithelium’ barrier, this component 368 

represents only a small percentage. Therefore, the use of clear aligners limited for a short period of 369 

time can be considered a safe and valid orthodontic treatment. However, it is still mandatory to 370 

increase efforts in the scientific research to identify and test new materials for clear aligners and the 371 

wearing protocols. 372 

 373 
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