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Abstract

Architected metamaterials offering superior dynamic performances can be conceived by inducing local mechanisms of

inertia amplification in the periodic microstructure. A one-dimensional cellular lattice characterized by a pantograph

mechanism in the tetra-atomic cell is proposed as minimal physical realization of inertially amplified metamaterial.

A discrete model is formulated to describe the undamped free dynamics of the cell microstructure. The ordinary

differential equations of motion feature quadratic and cubic inertial nonlinearities, induced by the indeformability

of the pantograph arms connecting the principal atoms with the secondary atoms, serving as inertial amplifiers. An

asymptotic approach is employed to analytically determine the dispersion properties governing the free propagation

of harmonic waves in the pantographic metamaterial. First, the linear wavefrequencies and waveforms are obtained by

solving the eigenproblem governing the lowest asymptotic order. An invariant parametric form is achieved for the pass

and stop band structure, corresponding to propagation and attenuation branches of the dispersion spectrum in the plane

of complex wavenumbers. The major effects due to the mass ratio of the inertial amplifiers are discussed. Particularly,

the existence conditions, amplitude and centerfrequency of the band gap separating the acoustic and optical pass bands

are determined analytically. Second, the nonlinear wavefrequencies and waveforms are obtained by solving the hier-

archical linear problems governing the higher asymptotic orders. Analytical, although asymptotically approximate,

functions are achieved for the nonlinear wavefrequencies and waveforms, which show quadratic dependence on the

oscillation amplitudes. The mechanical conditions for the softening/hardening behaviour of the nonlinear wavefre-

quencies and the different topological properties of the invariant manifolds associated to the nonlinear waveforms are

discussed. Finally, numerical simulations are provided to validate the analytical results.

Keywords: Periodic materials, Pantographic metamaterials, Wave propagation, Complex spectrum, Nonlinear

dynamics, Perturbation methods.

1. Introduction

The dispersion properties of periodic media have been

widely studied over the past century in a multiplicity

of different scientific branches, ranging from acoustics

of crystal lattices to optics of dielectric gratings [1–3].

Recently, the research interest towards the propagation

of elastic waves through periodic mechanical systems

has been renewed by the extraordinary developments in

the micro/nano-engineering of architected materials and

acoustic metamaterials [4–8]. Indeed, the rapid techno-

logical progresses in the fields of high-precision man-

ufacturing and high-fidelity prototyping are paving the
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way for the next generations of artificial materials, with

highly customizable dispersion properties.

Within this challenging scenario, a decisive impulse

towards the conception of new periodic materials with

unusual or functional dispersion properties is given by

the virtuous synergy between the descriptive power

of different mechanical formulations – covering the

largest variety of discrete models and equivalent con-

tinua – and the growing resources of computational

optimization [9–17]. Particularly, the high parametric

tunability of composite microframes (trusses, grillages,

honeycombs) favors the development and optimal de-

sign of periodic microstructures working as broadband

phononic filters, directional energy propagators, acous-

tic polarizers and non-reciprocal rectifiers [18–24]. As

major consequence, the extreme versatility and mul-
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tifunctionality of mechanical metamaterials have been

profitably exploited to achieve innovative and fascinat-

ing applications, including impact absorption, negative

refraction, sound equalization, wave beaming and fo-

cusing, vibration shielding, noise silencing and invisi-

bility cloaking [25–33].

Within this rapidly-evolving context, an emerging

research trend is targeted at improving the dynamic

response of mechanical metamaterials, by overcom-

ing the traditional physical limits inherent to the mi-

crostructural inertia, stiffness and damping. Among

the others, inhibiting the propagation of low-frequency

waves is a major challenge in the microstructural de-

sign of high-performant mechanical metamaterial. In-

deed, both natural solids and artificial lattices natively

possess a low-pass spectral band associated to shear

waves [1]. Based on these motivations, the specific ob-

jective of realizing functional metamaterials working as

low and ultra-low frequency filters for elastic waves has

inspired the conception of different original solutions

for reducing the centerfrequency of the lowest spec-

tral stop band. Among the others, the mechanical solu-

tions governing the low-frequency response are mostly

based on microstructural mechanisms operating at the

cell scale, like local resonances, inertia amplification,

multi-stability, and trampoline stiffness [34–38].

Inertial amplification can be realized by virtue of an

intracellular (local) pantographic mechanism based on

rhombic modules of rigid trusses connecting eccentric

masses [39–41]. This microstructural scheme grants

the inertia-amplifying mechanism a threefold advan-

tage. Firstly, the rigidly-connected eccentric masses

do not introduce additional active degrees-of-freedom

and – consequently – do not enlarge the dimension of

the periodic cell model. Secondly, the pantographic

mechanism, being kinematically indeterminate, does

not increase the microstructural stiffness and, therefore,

does not alter the static performance of the metama-

terial. Lastly, the mechanical linkage of hinged rigid

bodies required to build up the pantographic scheme is

easily realizable from a technological viewpoint [42].

On the other hand, the axial indeformability of the

trusses composing the pantograph arms introduces lo-

cal quadratic and cubic nonlinearities of geometric in-

ertial nature in the finite amplitude regime of oscilla-

tions. Although inertial nonlinearities have rarely been

analyzed in the framework of infinite periodic media,

it is well known that weak nonlinearities may induce

significant phenomena in free wave propagation, like

amplitude-dependent dispersion properties, superhar-

monic internal resonances, dynamic bifurcations, soli-

tary waves, non-regular responses, irreversible energy

transfers [43–46]. In a general perspective targeted

at enhanced functionalization, nonlinearities induce de-

pendence of the spectral properties on the dynamic re-

sponse amplitude, thus widening – in principle – the

space of the tunable functional variables in design and

optimization problems.

The free propagation of harmonic waves in weakly

nonlinear periodic systems can be studied by employ-

ing perturbation methods, which allow to determine the

dispersion properties as analytical – although asymp-

totically approximate – functions of the oscillation am-

plitudes and the governing parameters. According to

this methodological approach, monocoupled and mul-

ticoupled periodic system with complement or essen-

tial nonlinearities have been studied, both in the ab-

sence and in the presence of damping and internal res-

onances [47–51]. Attention has been primarily focused

on symmetric systems characterized by cubic nonlinear-

ities, whereas minor interest has been captured by sys-

tems with quadratic nonlinearities [52, 53]. Even lower

attention has been devoted to systems featured by co-

existent and competing quadratic and cubic nonlineari-

ties. Moreover, although several studies have analyzed

one or the other aspect individually, the comprehensive

analysis of the simultaneous effects of quadratic and cu-

bic nonlinearities of inertial nature on all the dispersion

properties (wavefrequencies and waveforms) is an open

and rarely explored field of investigation.

Alternatively, the free wave propagation in strongly

nonlinear periodic systems can be tackled through ana-

lytical and computational techniques, including the map

approach and the homotopy method, among the oth-

ers. In this respect, linearized and nonlinear maps have

been used to assess the wave propagation properties of

one-dimensional chains of mono- and bi-coupled non-

linear oscillators [54–56]. According to this approach,

the mathematical conditions and methodological tools

for studying the wave propagation are formally anal-

ogous to those employed to assess the linear stability

of periodic orbits in dynamic systems. Furthermore,

quasi-periodic and chaotic solutions have been also rec-

ognized to occur. The homotopy method has been

employed to investigate the dynamic response of one-

dimensional strongly nonlinear acoustic metamaterials

[57, 58]. According to this semi-analytical approach,

the geometric concept of homotopy from the mathemat-

ical field of topology is employed to generate a conver-

gent series solution. By virtue of this method, the local

period-doubling bifurcation of multiple cells has been

demonstrated to induce chaotic bands.

Based on this scientific background, the present pa-

per introduces a one-dimensional infinite lattice, char-
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Figure 1: Periodic pantographic material: (a) tetra-atomic unit, (b) periodic cell of the discrete model, (c) mechanical properties.

acterized by a tetra-atomic periodic cell, to realize an

original minimal prototype of pantographic metamate-

rial with inertia amplification (Section 2). According

to a classic beam lattice formulation, a kinematically

nonlinear discrete model is derived from the Hamilton’s

principle to describe the free undamped dynamics of the

cellular microstructure. The axial indeformability con-

straint of the pantograph arms determines quadratic and

cubic couplings among the active degrees of freedom

(Subsection 2.1). Therefore, a general asymptotic strat-

egy based on the Multiple Scale Method is employed to

attack the weakly nonlinear governing equations (Sec-

tion 3). Solving the eigenproblem governing the low-

est asymptotic order, the linear dispersion properties are

investigated through an invariant representation of the

complex-valued frequency band structure (Subsection

3.1). Subsequently, solving the non-homogeneous hier-

archical problems at the higher orders, the nonlinear fre-

quencies and waveforms are both determined in closed

form as parametric functions of the oscillation ampli-

tude (Subsections 3.2 and 3.3). The accuracy of the

analytical solutions is successfully verified by compar-

ing the invariant manifolds associated to the nonlinear

waveforms with periodic orbits obtained via numerical

integrations of the governing equations (Section 4). Fi-

nally, concluding remarks are pointed out.

2. Pantographic material

The minimal physical realization of a pantographic

metamaterial with inertial amplification can be repre-

sented by a one-dimensional crystal lattice, character-

ized by a repetitive tetra-atomic unit (Figure 1a). The

crystalline microstructure can be synthesized by cre-

ating an infinite chain of identical massive disks (pri-

mary atoms), enriched by lateral massive disks (sec-

ondary atoms) located symmetrically with respect to the

chain axis. The secondary atoms are paired in corre-

spondence of the mid-distance between alternate cou-

ples of primary atoms. Consequently, the four (two

primary and two secondary) atoms of the metamaterial

unit are organized according to a rhombic geometry in

the plane containing all the disk centroid (metamate-

rial plane). The rhombic shape is fully characterized

by the distance L separating the primary atoms and the

acute angleα between the chain axis and the primary-to-

secondary atom alignments (amplification angle). Each

primary atom is postulated to exchange only conserva-

tive position-dependent forces (attraction or repulsion)

with the nearest-neighbor elements of the chain. Within

a single unit, primary and secondary atoms are supposed

to not change their mutual distance.

2.1. Discrete model

From the mechanical viewpoint, the free dynamics

of the pantographic metamaterial can properly be de-

scribed by a low-dimensional discrete model. The peri-

odic cell can be properly selected to coincide with the

tetra-atomic unit (Figure 1b). All atoms can be mod-

eled as point masses located at the disk centroids. Con-

sequently, the undeformed configuration of the cellu-

lar rhombic microstructure is described by a set of four

configurational nodes, located at the rhombus vertices.

The respective masses of the primary and secondary

atoms M1 and M2 are supposed to differ from each

other, in the general case (Figure 1c). As key hypoth-

esis, the primary atoms are assumed to possess a sin-

gle degree-of-freedom, corresponding to the translation

along the chain axis. Differently, each secondary atom

is supposed to develop a two degrees-of-freedom trans-

lation in the metamaterial plane. The unique degree-

of-freedom of the two principal atoms can be described

by the displacements U1 and U3 of the configurational

nodes 1© and 3©. Similarly, the two degrees-of-freedom

of the secondary atoms can be described by the dis-

placement components U2,U4 and V2,V4 (respectively

parallel and orthogonal to the chain axis) of the config-

urational nodes 2© and 4©. Auxiliary massless nodes ℓ©
and r©, characterized by a unique chain-aligned trans-

lational degree-of-freedom described by the displace-
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ments Uℓ and Ur , are purposely introduced at the left

and right sides of the cell boundary, respectively.

The inter-cellular and intra-cellular interactions be-

tween the principal atoms are simulated by linear elas-

tic springs. Specifically, two elastic linear springs

with stiffness Ke (external springs) connect each of the

principal atoms with the nearest auxiliary atom at the

cell boundary to simulate the inter-cellular interactions.

An additional linear spring with stiffness Ki (internal

spring) connects the two principal atoms to simulate the

intra-cellular interactions. The constraint of unchange-

able mutual distance between each pair of primary and

secondary atoms is introduced by a rigid truss link con-

necting the respective configurational nodes.

In order to formulate the ordinary-differential equa-

tions of motion governing the discrete model in a suited

nondimensional form, the following dimensionless dis-

placement variables can be defined

u1 =
U1

L
, u2 =

U2

L
, u3 =

U3

L
, u4 =

U4

L
(1)

v2 =
V2

L
, v4 =

V4

L
, uℓ =

Uℓ

L
, ur =

Ur

L

and the dimensionless time τ=Ωt can be defined by us-

ing the (square) frequency Ω2 = Ke/M1 as proper refer-

ence. The positions w= u3−u1 and u= u1 are introduced

for the sake of convenience.

As major remark, all the displacements of the massive

primary and secondary atoms describe active degrees-

of-freedom, since inertia forces can actually develop in

the nodes at the atom centroids (internal nodes). On the

contrary, the two displacements of the auxiliary mass-

less nodes at the cell boundaries (external nodes) de-

scribe passive degrees-of-freedom, not associated to the

development of inertia forces. Indeed, only quasi-static

boundary forces, exerted by the adjacent cells (inter-

cellular forces), can be applied at the external nodes.

A minimal set µ of three independent dimensionless

parameters, sufficient to describe the mechanical model,

is composed by the quantities

̺2 =
M2

M1

, η=
Ki

Ke

(2)

together with the amplification angle α ∈ (0, π/2). From

the physical viewpoint, the parameter ̺2 describes the

secondary-to-primary mass ratio, whereas the param-

eter η represents the internal-to-external stiffness ratio.

Naturally, the mass and stiffness ratios must be assumed

strictly positive (̺2 > 0, η > 0).

The double-symmetry properties that can be recog-

nized with respect to the periodic cell center require that

the secondary atom displacements obey to the relations

u2 = u4 = u+ 1
2
w, v2 =−v4 (3)

where it is worth noting the dependence of the chain-

parallel displacements u2 and u4 of the secondary atoms

on the displacement u and w of the primary atoms.

Furthermore, the indeformability conditions of the

rigid truss links connecting the primary and secondary

atoms impose the additional asymptotic relation

v4 = p1w+ p2w2+4p2 p2
1w3+O(w4) (4)

where the α-dependent auxiliary coefficients read

p1 =
1
2

cot α, p2 =
cot α

4 sin2 α
(5)

and the dependence of the chain-parallel displacements

v4 (and v2) of the secondary atoms on the relative dis-

placement w of the primary atoms can be noted.

2.2. Nonlinear equations of motion

Adopting the undeformed configuration as initial ref-

erence for the dynamic equilibrium and considering

the symmetry and indeformability conditions (3) and

(4), the Hamilton’s principle can be applied (see

Appendix A). Therefore, the nonlinear equations of

motion governing the free dynamics of the periodic cell

read

2(1+̺2)ü+ (1+̺2)ẅ+2u+w−uℓ−ur = 0 (6)

(1+̺2)ü+ (1+̺2
e)ẅ+u+ (1+η)w−ur+

+c2(ẇ2+2wẅ)+c3w(ẇ2+wẅ)= 0

where terms higher than third order in the configuration

variables have been neglected. The ̺2-dependent ampli-

fied inertias are clearly recognizable in the coefficients

multiplying all the acceleration terms. In particular, the

linear inertia term in the second equation can be further

increased by regulating the amplification angle, since

the α-dependent auxiliary parameter

̺2
e =

(

1
2
+2p2

1

)

̺2 (7)

obeys to the rule ̺2
e >̺

2 for the admissible α-values.

The nonlinear dynamic system (6) consists of two ho-

mogeneous ordinary differential equations, linearly cou-

pled to each other, governing the free (unconstrained)

active degrees of freedom u and w, playing the role of

Lagrangian coordinates. The second equation is fea-

tured by weak inertial nonlinearities in the relative dis-

placement w. The nonlinearities are of quadratic and

cubic nature, respectively governed by the coefficients

c2 = 4p1 p2̺
2, c3 = 8p2(p2+6p3

1)̺2 (8)

4



which depend linearly on the mass ratio ̺2 and trigono-

metrically on the amplification angle α. This peculiar

kind of nonlinearities is well-known to rise up in con-

sequence of indeformability conditions [44]. From the

mathematical viewpoint, both coefficients c2 and c3 can

easily be proved to grow monotonically with increasing

mass ratios ̺2 and decreasing amplification angles α. In

order to justify this characteristic mechanical behaviour,

it can be pointed out that the quadratic and cubic non-

linearities have geometric origin and are essentially as-

sociated to the constrained displacement components v2

and v4 of the secondary atoms (see also Appendix A).

Therefore, from the physical viewpoint, reducing the

amplification angles maximizes the nonlinearities be-

cause lower α-values determine geometrically larger v-

contributions in the constrained motion of the secondary

atoms, for the same w-displacement in the free motion

of the primary atoms.

The Hamilton’s principle returns also the linear equa-

tions governing the quasi-static equilibrium at the exter-

nal nodes. Denoting by Fℓ and Fr the inter-cellular ex-

ternal forces applied at the left and right external nodes,

respectively, the equations read

uℓ−u= fℓ, ur−u−w= fr (9)

where the dimensionless quantities fℓ = Fℓ/(KeL) and

fr = Fr/(KeL). It may be worth noting that the same

equations can be equivalently expressed in terms of the

internal forces σℓ = − fℓ and σr = fr developed by the

external springs undergoing tension (if σℓ > 0 and σr >

0) or compression (σℓ < 0 and σr < 0).

Collecting all active displacements in the configura-

tional coordinate vector ua = (u,w) and all passive dis-

placements in the vector up = (uℓ, ur), the equations of

motion (6) and the quasi-static equations (9) can conve-

niently be expressed in the matrix form

Müa+Kaaua+Kapup+n(ua, u̇a, üa)= 0 (10)

Kpaua+Kppup = fp

where the mass and stiffness matrices are

M=

[

2(1+̺2) 1+̺2

1+̺2 1+̺2
e

]

, Kaa =

[

2 1

1 1+η

]

(11)

Kap =

[ −1 −1

0 −1

]

, Kpp =

[

1 0

0 1

]

while the stiffness matrix K⊤pa = Kap. The vector of

quadratic and cubic nonlinearities is

n(ua, u̇a, üa)=

(

0

c2(ẇ2+2wẅ)+c3w(ẇ2+wẅ)

)

(12)

and the vector of passive forces is fp = ( fℓ, fr).

Alternately, introducing the active velocity vector

va = (u̇, ẇ) and joining the active velocity and displace-

ment vectors into the state space vector z= (ua, va), the

dynamic system (10) can be expressed as

Aż+Bz+Cup = c(z, ż) (13)

Dz+Kppup = fp

where the governing matrices are

A=

[

O M

M O

]

, B=

[

Kaa O

O −M

]

, C=

[

Kap

O

]

(14)

while the vector of quadratic and cubic nonlinearities at

the right-hand of equation (13) is

c(z, ż)=

( −n(z, ż)

0

)

(15)

and the matrix D=C⊤. It may be worth remarking that,

among the other equivalent expressions of the dynamic

system in the state space, the form (13) preserves the

symmetry of the square matrices A and B.

3. Asymptotic approach to wave propagation

Following a general computational strategy formulated

for determining the nonlinear frequencies and nonlinear

normal modes of structural systems [59], the asymptotic

Method of Multiple Scales can be adopted to determine

in a suited analytical – although approximate – fash-

ion how the dispersion properties (wavefrequencies and

waveforms) nonlinearly depend on the oscillation am-

plitude of the propagating wave.

According with the classic perturbation scheme for

systems with quadratic and cubic nonlinearities [60], a

small dimensionless parameter ǫ≪ 1 can be introduced

for ordering purposes and the solutions of the nonlinear

equation (13) are sought in the approximate form of a

power series expansion truncated at the third ǫ-power

z= ǫ z1(T0,T1,T2)+ǫ2z2(T0,T1,T2)+ (16)

+ǫ3z3(T0,T1,T2)+O(ǫ4)

up = ǫ up1(T0,T1,T2)+ǫ2up2(T0,T1,T2)+

+ǫ3up3(T0,T1,T2)+O(ǫ4)

fp = ǫ fp1(T0,T1,T2)+ǫ2fp2(T0,T1,T2)+

+ǫ3fp3(T0,T1,T2)+O(ǫ4)

where T0 = τ is the fast time-scale characterizing the

harmonic wave motions at the linear frequencies and

T j = ǫ
jτ are slow time-scales ( j = 1, 2). Accordingly,

5



the ordinary time-derivative d/dτ is expressed by the

partial derivatives D j = ∂/∂T j as D0+ǫD1+ǫ
2 D2+ ....

Introducing the expansion (16) into the nonlinear or-

dinary differential equation (13) and equating all the

terms of like ǫ-powers yields a ordered hierarchy of lin-

ear partial differential equation pairs

• Order ǫ AD0z1+Bz1+Cup1 = 0 (17)

Dz1+Kppup1 = fp1

• Order ǫ2 AD0z2+Bz2+Cup2 =b2(z1)

Dz2+Kppup2 = fp2

• Order ǫ3 AD0z3+Bz3+Cup3 =b3(z1, z2)

Dz3+Kppup3 = fp3

where the operators governing the left-hand part of the

equation pairs are independent of the order.

The free propagation of elastic waves through the me-

chanical metamaterial can be analyzed by means of the

Floquet-Bloch theory for linear periodic structures [1].

Accordingly, a class of harmonic wave solutions can be

obtained by enforcing at each ǫn-order (n = 1, 2, 3) the

quasi-periodicity exponential relations

urn = e−ıβuℓn, frn =−e−ıβ fℓn (18)

between the passive variables (two displacements and

two forces) at the opposite sides of the periodic cell.

Equations (18) can conveniently be expressed in the ma-

trix form upn =Luℓn and fpn =N fℓn, where

L=

[

1

e−ıβ

]

, N=

[

1

− e−ıβ

]

(19)

and β is the nondimensional wavenumber, spanning the

one-dimensional Brillouin zone B= [−π, π].
Imposing the quasi-periodicity relations (18) allows

the systematic reduction of the system dimension at

each ǫn-order, by quasi-statically condensing the pas-

sive displacements upn. Consequently, the hierarchy of

equation pairs (17) can be condensed in the reduced

space of the active state space variables zn. Therefore,

after condensation, the free propagation of weakly non-

linear waves through the pantographic metamaterial is

governed by the ordered hierarchy of linear partial dif-

ferential perturbation equations

• Order ǫ AD0z1+ B̃z1 = 0 (20)

• Order ǫ2 AD0z2+ B̃z2 =b2(z1)

• Order ǫ3 AD0z3+ B̃z3 =b3(z1, z2)

where the β-dependent matrix B̃ can be expressed as

B̃=B−CL(L†KppL)−1L†D (21)

and ()† indicates the conjugate transpose. The matrix B̃

is Hermitian (that is B̃† = B̃) by construction, and be-

comes singular at the limit of long wavelengths (β= 0).

From the mathematical viewpoint, the lowest order

of the ordered hierarchy of differential equations (20)

establishes a homogeneous (free vibration) problem in

the unknown variable z1. Once all the lowest order solu-

tions (generating solutions) are known, the n-th higher

order establishes a non-homogeneous (forced vibration)

problem in the unknown variable zn, with forcing term

depending on all the lower-order solutions. For the sake

of completeness, the condensed passive displacements

upn and forces fpn can be determined a posteriori at each

order, if necessary. Indeed, they quasi-statically depend

on the active variables zn through the relations

upn =−L(L†KppL)−1L†D zn (22)

fpn =
(

I−KppL(L†KppL)−1L†
)

D zn

where it can be recalled that the rectangular stiffness

matrix D= [Kpa,O], to clarify that the passive variables

do not depend on the active velocities in the zn-vector.

From the methodological viewpoint, it must be re-

marked that the condensation procedure (including the

imposition of the quasi-periodicity relations) is essen-

tially founded on the linearity of the quasi-static rela-

tion Dzn+Kppupn = fpn between the passive and active

variables at each order. In a broader perspective, all

the algebraic manipulations of the governing matrices

are possible by virtue of the linearity of the intercellu-

lar coupling, independently of the coupling dimension.

Specifically, mono-coupled [47] as well as multicoupled

periodic systems [56] characterized by local (namely

intracellular or on-site) nonlinearities could be treated

within the same analytical framework. The condensa-

tion scheme is also formally valid and straightforwardly

extendible to bi-dimensional and three-dimensional pe-

riodic systems, with proper adjustments. Consequently,

the methodological strategy can be considered quite

general, and applicable to a class of mechanical meta-

materials featured by similar periodic microstructures.

3.1. Linear dispersion properties

The linear homogeneous problem governing the lowest

order of perturbation equations (20) can be tackled by

imposing the harmonic solution z1 = y exp(λT0). Elimi-

nating the dependence on the fast time T0 gives the lin-

ear eigenproblem

(

B̃+λA
)

y= 0 (23)
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whose solution returns four eigenpairs (λ, y), composed

by the eigenvalues λi and the corresponding eigenvec-

tors yi, spanning the complete eigenspace of the state

variables (i= 1, ..., 4). By virtue of the B̃-matrix proper-

ties, the eigenproblem (23) is actually satisfied by two

purely imaginary eigenvalues λ1 e λ2 and their com-

plex conjugates λ3 = λ̄1 and λ4 = λ̄2 (where the bar

indicates complex conjugate), which can be ordered in

the diagonal matrix Λ = diag(λ1, λ2, λ3, λ4). The corre-

sponding eigenvectors are complex-valued in the gen-

eral case and can be ordered columnwise in the matrix

Y= [y1, y2, y3, y4]. The eigenvalue and eigenvector ma-

trices can suitably be expressed in the partitioned form

Λ=

[

ıΩ O

O −ıΩ

]

, Y=

[

Φ Φ

−ıΩΦ ıΩΦ

]

(24)

where Ω = diag(ω−, ω+) is the diagonal matrix collect-

ing the two β-dependent wavefrequencies

ω∓ =
[

1
2
J1(β)∓

(

J1(β)2−4J2(β)
)1/2

]1/2

(25)

while Φ = [φ−,φ+] is a two-by-two matrix. It collects

columnwise the two β-dependent waveforms (normal-

ized with respect to the active u-coordinate)

φ∓ =

(

1,
cos β−1+2 (ω∓)2

(1+̺2)− ı sinβ

1+2η−2 (ω∓)2 (

1+̺2
e

)

)

(26)

that can be easily verified to become real-valued vectors

at the limits of long wavelengths (β= 0) and short wave-

lengths (β = ±π). The two β-dependent auxiliary vari-

ables that have been introduced in equation (25) read

J1(β)=
1+̺2

e+2η(1+̺2)+ (̺2−̺2
e) cos β

1−̺4+2(1+̺2)̺2
e

(27)

J2(β)=
η (1−cosβ)

1−̺4+2
(

1+̺2
)

̺2
e

and could be employed to reduce the linear dispersion

properties to a proper invariant representation for mono-

, bi- and three-coupled periodic systems [61, 62].

Within the limit of small (ǫ-order) oscillation am-

plitudes, the wavefrequencies (25) and waveforms (26)

characterize the unitary-amplitude harmonic waves of

the form ua = φ
∓ exp(ıω∓T0− ıβ) that freely propagate

with a certain wavenumber β through the pantographic

metamaterial characterized by the mechanical parame-

ters (̺2, η, α). Therefore, the wavefrequencies ω∓ and

the waveforms φ∓ will be referred to as the linear dis-

persion properties in the following. Without loss of

generality, focus can be put on the forward propagating

waves, described by positive wavefrequencies (ω∓ ≥ 0)

depending on positive wavenumbers β ranging in the

B-subdomain B1 = [0, π]. According to the assump-

tions made for the physical parameters, the discrimi-

nant quantityJ1(β)2−4J2(β) is positive. Consequently,

the inequality ω− ≤ ω+ holds in the entire B1-domain.

Therefore, from the physical viewpoint, the dispersion

functionsω−(β) and ω+(β) describe the lower-frequency

curve (acoustic branch) and the higher-frequency curve

(optical branch) characterizing the dispersion spectrum

of the pantographic metamaterial, respectively. By ex-

tension, ω− and ω+ can also be referred to as the (lin-

ear) acoustic and optical frequencies, respectively. Sim-

ilarly, φ− and φ+ can be referred to as the (linear) acous-

tic and optical waveforms.

The band structure of the linear dispersion spectrum

can be discussed by analytically distinguishing the pass

bands from the stop bands, corresponding to the dis-

tinct frequency ranges in which the harmonic waves can

propagate without attenuation or cannot propagate due

to an exponential spatial decay, respectively. To this

purpose, it may be convenient to invert the relationω(β),

by considering the wavefrequency ω as independent real

parameter and the wavenumber β(ω) as eigenproblem

unknown in the complex plane. The essential advantage

is that the wave propagation problem can straightfor-

wardly be realigned with the well-established method-

ological framework of the transfer matrix techniques,

widely employed to analyze the dispersion properties

of periodic structures with low-dimension intercellular

couplings [61, 63–65]. Indeed, the β-dependent matrix

B̃ can be reformulated in the form

B̃=R0+R1 eıβ +R2 e−ıβ (28)

according to a mathematical procedure generally valid

for one-dimensional periodic systems [66] (but also ex-

tendible to bi-dimensional periodic systems). Conse-

quently, eigenproblem (23) becomes
(

R̃0(ω)+R1 eıβ +R2 e−ıβ
)

y= 0 (29)

with the ω-dependent matrix R̃0(ω) = R0 +ω
2A. By

letting µ= eıβ and multiplying by eıβ, equation (29) can

be reformulated as
(

R1µ
2+ R̃0(ω)µ+R2

)

y= 0 (30)

where the matrices R1 and R2 can be proved to be sin-

gular. For the pantographic metamaterial, the auxiliary

matrices R0,R1,R2 are detailed in Appendix B.1. The

eigensolution is given by the two roots of the quadratic

characteristic polynomial

P(µ)=µ2+J(ω)µ+1 (31)
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Figure 2: Pass and stop regions of the pantographic metamaterial over (a) the parameter space (̺2, η) for the amplification angle α = π/8, (b) the

parameter space (̺2, α) for the stiffness ratio η=1.

where the governing coefficient J(ω) is real-valued

for undamped systems. Since the polynomial is palin-

dromic, its roots are µ1 and µ2 = 1/µ1. Depending on

the coefficient J(ω), three fundamental cases can occur

i) µ1, µ2 complex conjugates if −2<J(ω)< 2.

ii) µ1, µ2 real and distinct if J(ω)<−2∪J(ω)> 2

iii) µ1, µ2 real and coincident if J(ω)=±2

Invoking the formal analogy with the Floquet theory for

the stability of dynamical systems [54, 61, 67], the three

cases correspond to (i) complex-valued roots µ1, µ2 sit-

ting on the unitary circle of the complex plane, identi-

fying pass bands in the frequency axis (the analogous

of stable regions corresponding to elliptic fixed points),

(ii) real-valued roots µ1, µ2 lying inside and outside the

unitary circle of the complex plane, respectively, and

identifying stop bands in the frequency axis (the analo-

gous of unstable regions corresponding to hyperbolic or

reflective hyperbolic fixed points), (iii) real valued and

coincident roots µ1, µ2 sitting on the unitary circle of

the complex plane, identifying boundaries between pass

and stop bands (the analogous of bifurcation loci corre-

sponding to parabolic fixed points). It may be worth

noting that, in the absence of damping, the roots µ1, µ2

of the fundamental case (i) are purely imaginary.

Once the roots µ1, µ2 of the characteristic polynomial

are known, the complex-valued wavenumber β can be

determined by inverting the relation µ= eıβ, yielding

β= arg (µ (ω))− 1
2
ı log

(

|µ(ω)|2
)

(32)

which, for the fundamental cases, returns (i) real-valued

wavenumbers β ∈ B of the dispersion curves falling

within the pass bands, (ii) imaginary-valued wavenum-

bers β of the attenuation curves falling within the stop

bands, where the opposite of the imaginary part stands

for the attenuation factor of the decaying wave, (iii) real-

valued wavenumbers β= nπ (with n ∈Z).

For the metamaterial under investigation, the coeffi-

cient governing the palindromic polynomial (31) is

J(ω)=
2
(

2η−̺2ω2 csc2α
) (

r1ω
2−1

)

+4ω2
(

r2ω
2+1

)

2η+̺2ω2(1−cot2 α)
(33)

where r1 = 2(̺2 + 1) and r2 = ̺
4 − 1. The transition

between the pass and stop regions in the frequency-

parameter space is associated to the (ω, α, η, ̺2)-loci sat-

isfying the condition (iii), requiringJ(ω)=±2. For the

pantographic metamaterial, the subcondition J(ω) = 2

defines the locus T r
ps =

⋃{ω2
1
, ω2

2
}, while the subcondi-

tionJ(ω)=−2 defines the locus Tps =
⋃{ω2

3
, 0}, where
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(a)
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(b)

η
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Figure 3: Loci in the mechanical parameter space (α, η, ̺2): (a) locus Ls corresponding to vanishing of the stop band, (b) locus Lp corresponding

to vanishing of the optical pass band.

the ω2-functions are analytically determined as

ω2
1 =

1

1+̺2
, (34)

ω2
2 =

4η sin2 α

1+̺2+cos(2α)(̺2−1)
,

ω2
3 =

1+2η

1+̺2 cot2 α

Moreover, the locus Tss corresponding to the vanishing

of the J(ω)-denominator is associated to the boundary

separating two stop subregions (from hyperbolic to re-

flective hyperbolic fixed points or viceversa in the anal-

ogy with the Floquet theory).

Figure 2 illustrates the pass bands (yellow regions

with acoustic band PA and optical band PO) and stop

bands (white regions) of the pantographic metamate-

rial over a significant portion of the parametric spaces

spanned by the (̺2, η)-pair (Figure 2a) and the (̺2, α)-

pair (Figure 2b). The band structure is characterized

by two fully separated pass bands. The low-frequency

pass band is associated to the acoustic branch, while the

high-frequency pass band is associated to the optical

branch of the spectrum. The pass bands are separated

by a stop band (band gap), whose amplitude normalized

with respect to its centerfrequency (relative band gap

amplitude) can be determined analytically as

∆=
|min(ω1, ω3)−ω2 |

min(ω1, ω2)+ 1
2
|min(ω1, ω3)−ω2 |

. (35)

The relative band gap amplitude ∆ is mainly depen-

dent on the mass ratio ̺2 and the stiffness ratio η. In

particular, both the band gap amplitude at the numera-

tor and the centerfrequency at the denominator decrease

for increasing ̺2-values. For sufficiently large η-values,

both the band gap amplitude and the centerfrequency

increase for growing η-values.

The band structure shows the existence of parameter

combinations corresponding to the vanishing of either

the stop band or the optical pass band. These particular

conditions are associated to the relations ω2
1
=ω2

2
(van-

ishing stop band) and ω2
1
= ω2

3
(vanishing optical pass

band). The corresponding loci Ls and Lp in the param-

eter space are defined analytically as

Ls : η− 1+̺2 cot2 α

2(1+̺2)
= 0, (36)

Lp : η+
̺2(1−cot2 α)

2(1+̺2)
= 0

and are illustrated in Figure 3. Focusing first on the lo-

cusLs, for a fixed mass ratio ̺2, the stiffness ratio η sig-

nificantly grows up for decreasing inertia amplification
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Figure 4: Frequency band structure of the pantographic metamaterial (a) pass band (acoustic PA and optical PO) and stop band versus the mass ratio

̺2 for amplification angle α= π/8 and stiffness ratio η= 1, (b)-(e) complex-valued spectra with dispersion curves (blue branches lying in the light

blue plane) and attenuation curves (red branches lying in the light red planes) for the mass ratios ̺2
1
= 9/100,̺2

s , ̺
2
p, ̺

2
2
= 121/100.

angles α. Differently, for large α-values, the stiffness

ratio η is less sensitive to variations of the mass ratio

̺2. Then, considering the locus Lp, for a fixed stiff-

ness ratio η, the mass ratio ̺2 significantly increases for

growing α-angles. Differently, for small α-values, the

mass ratio ̺2 is less sensitive to variations of the stiff-

ness ratio η. From equations (36) it is straightforward

to demonstrate that – for fixed ̺2 – the locus Lp occurs

at lower η-values (for fixed α) or at lower α-values (for

fixed η) with respect to the locus Ls.

The planar section S of the band structure reported

in Figure 2 for fixed parameters α = π/8, η = 1 is il-

lustrated in Figure 4a. The pass bands (yellow regions

with acoustic band PA and optical band PO) and stop

bands (gray subregions) are plotted versus the varying

parameter ̺2, together with the transition curves cor-

responding to the loci T r
ps (black lines) and Tps (gray

line). The curve corresponding to the locus Tss is also

identified (dashed red line) and the points belonging to

the loci Ls (black dot) and Lp (gray dot) are marked.

For each region and pass-to-stop transition curve, the

position of the Floquet multipliers µ1, µ2 with respect

to the unitary circle in the complex plane is schema-

tized. A selection of complex-valued spectra illustrat-

ing the frequency ω versus the real and imaginary parts

of the wavenumber β for significant ̺2-values is also re-

ported (Figure 4b-e). The spectra are featured by disper-

sion curves in the (ω,ℜ(β))-plane (blue lines), covering

the frequency range of the pass bands, and attenuation

curves in the (ω,ℑ(β))-plane (red lines), covering the

frequency range of the stop bands. The vanishing of the

band gap can be observed for the significant mass ratio

̺2
s ∈Ls in Figure 4c, caused by the crossing between the

acoustic and optical curves at the limit of short wave-

length (β= π). Furthermore, the vanishing of the optical

pass band can be observed for the significant mass ra-

tio ̺2
p ∈Lp in Figure 4d, caused by the β-independence

of the optical curve. It is worth noting that a qualitative

change in the behaviour of the attenuation curves occurs

when moving from low to high values of the mass ratio

̺2 (compare Figures 4b and 4e).
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3.2. Wave propagation in nonlinear regime

Since the left-hand governing matrices A and B̃ in the

cascade of equations (20) are independent of the order,

the linear waveforms obtained from the first-order equa-

tion represent a suited base to apply a systematic change

of coordinates at each order. Specifically, if the matrix

Φ is conveniently built by employing properly orthonor-

malized waveforms ϕ∓ = n∓φ∓, the mass-orthogonality

relation Φ†MΦ = I holds. The two orthonormalization

factors n∓ are reported in Appendix B.2. Therefore,

moving to the orthonormal coordinates qk = (q−
k
, q+

k
) and

pk = (p−k , p
+
k ) through the relation

zk =

(

uak

vak

)

=

[

Φ O

O Φ

] (

qk

pk

)

(37)

the ordered hierarchy of perturbation equations reads

• Order ǫ D0p1+Ω
2q1 = 0 (38)

D0q1−p1 = 0

• Order ǫ2 D0p2+Ω
2q2 =d2(q1,p1)

D0q2−p2 = g2(q1,p1)

• Order ǫ3 D0p3+Ω
2q3 =d3(q1,p1,q2,p2)

D0q3−p3 = g3(q1,p1,q2,p2)

where the operators governing the left-hand part of the

equation pairs are still independent of the order. The

not-null right-hand terms, which can also be referred to

as defects of homogeneity, read

d2 =−D1p1−d2(q1,p1)ϕw (39)

g2 =−D1q1

d3 =−D1p2−D2p1−d3(q1,p1,q2,p2)ϕw

g3 =−D1q2−D2q1.

Two scalar quantities have been introduced to account

for the nonlinearities at the second order

d2 = c2(ϕ⊤wp1)2+c2(ϕ⊤wq1)(ϕ⊤w D0p1) (40)

and at the third order

d3 = 2c2(ϕ⊤wp1)(ϕ⊤wp2)+2c2(ϕ⊤wq1)(ϕ⊤wD0p2)+ (41)

+2c2(ϕ⊤wq1)(ϕ⊤w D1p1)+2c2(ϕ⊤wq2)(ϕ⊤wD0p1)+

+c3(ϕ⊤wq1)(ϕ⊤wp1)2
+c3(ϕ⊤wq1)(ϕ⊤wq1)(ϕ⊤w D0p1)

where the complex-valued column vector ϕw = (ϕ−w, ϕ
+
w)

collects the second components of the orthonormalized

waveforms ϕ∓. It can be demonstrated that ϕw is real-

valued according to the mass ortho-normalization re-

ported in the Appendix.

The general solution of the homogeneous equation

pair (38a,b) at the lowest ǫ-order is the superposition

of two real-valued, T0-periodic and mutually orthogo-

nal solution pairs (generating solutions). Specifically,

the low-frequency generating solution (q−1 ,p
−
1 ) and the

high-frequency solution (q+1 ,p
+
1 ) read

q∓1 =A∓(T1,T2) a∓0 eıω
∓T0 +cc (42)

p∓1 = ıω
∓A∓(T1,T2) a∓0 eıω

∓T0 +cc

where a−
0
= (1, 0) and a+

0
= (0, 1) are the canonical base

vectors of the two-by-two q-space and p-space, while

cc stands for the complex conjugate of all the preceding

terms. From the mathematical viewpoint, the variables

A−(T1,T2) and A+(T1,T2) are complex-valued unknown

amplitudes, depending on the slow time scales T1 and

T2. According to the Multiple Scale Method, the high

(second and third) order pairs of perturbation equations

(38) have to be attacked to explicitly determine the func-

tions A−(T1,T2) and A+(T1,T2).

From the physical viewpoint, the first-order asymp-

totic solution q−
1

describes the dominant (lowest

order) component of the nonlinear elastic wave

ua = A−(T1,T2)ϕ− exp(ıω−T0 − ıβ), freely propagating

in space with the acoustic waveform ϕ−(β) and fast

mono-harmonically oscillating in time with the low-

frequency ω−(β) for a certain wavenumber β. Due to

the quadratic and cubic nonlinearities, the unitary am-

plitude of the wave oscillations is slowly modulated by

the modulation amplitude A−(T1,T2). Similarly, the

first-order asymptotic solution q+
1

describes the domi-

nant (lowest order) component of the nonlinear elastic

wave ua = A+(T1,T2)ϕ+ exp(ıω+T0− ıβ), freely propa-

gating in space with the optical waveform ϕ+(β) and fast

mono-harmonically oscillating in time with the high-

frequency ω+(β) for a certain wavenumber β. Due to the

nonlinearities, the unitary amplitude of the wave oscilla-

tions is slowly modulated by the modulation amplitude

A+(T1,T2).

Since the two nonlinear waves are expected to not

interact with each other in the absence of internal res-

onances, it is convenient to study the two T0-periodic

solutions individually. Therefore, one or the other of

the generating solutions (42) is considered, so that the

superscripts − and + must be intended as mutually ex-

clusive in the following. The considered oscillation fre-

quency ω− or ω+ is referred to as the leading frequency.

Substituting the mono-harmonic solution (q−
1
,p−

1
) or

(q+
1
,p+

1
) in the ǫ2-order equation pair (38c,d) yields

D0p2+Ω
2q2 =d∓2 (q∓1 ,p

∓
1 ) (43)

D0q2−p2 = g∓2 (q∓1 ,p
∓
1 )
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where the two defects of homogeneity play the role

of bi-harmonic forcing terms (with frequencies ω∓ and

2ω∓) with unknown amplitudes

d∓2 =−ıω∓D1A∓ a∓0 eıω
∓T0 + (44)

+c2(ω∓)2A∓Ā∓(ϕ∓w)2 ϕw+

+3c2(ω∓)2(A∓)2(ϕ∓w)2 ϕw e2ıω∓T0 +cc

g−2 =−D1A∓ a∓0 eıω
∓T0 +cc

where the (T1,T2)-dependence of the amplitudes A± and

Ā± has been dropped for the sake of synthesis. The c2-

proportional contribution of the quadratic nonlinearities

to the defect of homogeneity d±2 can be recognized in (i)

the T0-independent term with amplitude A±Ā± and (ii)

the T0-dependent term with amplitude (A∓)2, harmoni-

cally oscillating with double the leading frequency ω∓.
Since at least one contribution in d±

2
and g±

2
oscillates

with the leading frequency ω∓, primary resonance with

one or the other frequencies in the Ω2-matrix occurs.

Therefore, solvability conditions must be invoked to re-

move resonant (secular) terms, in order to preserve uni-

form perturbation expansions. The solvability condition

can be imposed at each order by stating the adjoint lin-

ear homogeneous problem

D0p̃+ q̃= 0 (45)

D0q̃−Ω2p̃= 0

with the mutually exclusive T0-periodicities q̃(0) =

q̃(T∓0 ) and p̃(0) = p̃(T∓0 ) on one or the other linear pe-

riods T−0 = 2π/ω− and T+0 = 2π/ω+. Therefore, the solv-

ability condition requires the orthogonality between the

solutions of the adjoint problem

q̃∓ =−ıω∓B∓a∓0 eıω
∓T0 +cc (46)

p̃∓ =B∓a∓0 eıω
∓T0 +cc

and the defects of homogeneity of the equation pair

(43). The orthogonality can be stated as

∫ T∓
0

0

(

(p̃∓)†g∓2 + (q̃∓)†d∓2
)

dτ= 0. (47)

Recalling that the product (a∓0 )⊤a∓0 = 1, the solvability

condition requires that D1A∓ = 0 and D1Ā∓ = 0. Conse-

quently, the complex conjugate modulation amplitudes

A∓ and Ā∓ do not depend on the slow time-scale T1. Im-

posing solvability, the particular solutions of the equa-

tion pair (43) read

q∓2 =A∓ Ā∓(K∓c a∓0 +K∓o a±0 )+ (48)

+ (A∓)2(Q∓c a∓0 +Q∓o a±0 ) e2ıω∓T0 +cc

p∓2 = 2ıω∓(A∓)2(Q∓c a∓0 +Q∓o a±0 ) e2ıω∓T0 +cc

where the modulation amplitudes must be understood

to depend on the slowest time scale only, that is A∓(T2)

and Ā∓(T2). The relevant complex-valued quantities

K∓c = c2ϕ
∓
w(ϕ∓w)2, K∓o = c2

ϕ±w(ϕ∓w)2(ω∓)2

(ω±)2
(49)

Q∓c =−c2ϕ
∓
w(ϕ∓w)2, Q∓o = 3c2

ϕ±w(ϕ∓w)2(ω∓)2

(ω±)2− (2ω∓)2

multiply the contributions of the second order solution

q∓
2

that are collinear (direction a∓
0

in the q-space, sub-

script c) and orthogonal (direction a±0 in the q-space,

subscript o) to the generating first order solution q∓1 . Fi-

nally, the complementary solution of the equation pair

(43) can be normalized to zero without loss of gener-

ality, because it is mono-harmonic (with frequency ω∓)

and collinear to the first-order solution q∓
1

.

Substituting the mono-harmonic first order solution

(q−1 ,p
−
1 ) or (q+1 ,p

+
1 ) and the corresponding second or-

der solution (q−
2
,p−

2
) or (q+

2
,p+

2
) in the ǫ3-order equation

pair (38e,f) gives

D0p3+Ω
2q3 =d∓3 (q∓1 ,p

∓
1 ,q

∓
2 ,p

∓
2 ) (50)

D0q3−p3 = g∓3 (q∓1 ,p
∓
1 ,q

∓
2 ,p

∓
2 )

where the two defects of homogeneity play the role

of bi-harmonic forcing terms (with frequencies ω∓ and

3ω∓) with unknown amplitudes

d∓3 =−ıω∓D2A∓ a∓0 eıω
∓T0 + (51)

+ (ω∓)2(A∓)2Ā∓R∓3ϕw eıω
∓T0 +

+ (ω∓)2(A∓)3C∓3 ϕw e3ıω∓T0 +cc

g∓3 =−D2A∓ a∓0 eıω
∓T0 +cc

where the complex-valued coefficients multiplying the

(ω∓)-harmonic and (3ω∓)-harmonic terms read

R∓3 = 2c3(ϕ∓w)3+2c2

(

S∓c (ϕ∓w)2+S∓oϕ∓wϕ±w
)

(52)

C∓3 = 2c3(ϕ∓w)3+14c2

(

Q∓c (ϕ∓w)2+Q∓oϕ∓wϕ±w
)

and the auxiliary complex-valued quantitiesS∓c = 2K∓c +
3Q∓c and S∓o = 2K∓o +3Q∓o have been also introduced.

Since at least one contribution in d±
3

and g±
3

oscillates

with the leading frequency ω∓, primary resonance with

one or the other frequencies in the Ω2-matrix occurs in

equations (50). Therefore, a solvability condition must

be imposed to preserve uniform perturbation expansion

by removing resonant (secular) terms. Similarly to the

second order, the solvability condition requires the or-

thogonality between the defects of homogeneity (51)
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and the solutions of the adjoint problem (46). There-

fore, imposing the orthogonality condition returns the

modulation equations on the amplitude

D2A∓ =− 1
2
ıω∓R∓3ϕ∓w(A∓)2Ā∓ (53)

while an analogous equation is found for the complex

conjugate amplitude Ā∓. Introducing the convenient po-

lar form A∓(T2) = 1
2
a∓(T2) exp(ı γ∓(T2)) and separating

imaginary and real parts, equation (53) gives the cou-

pled system of ordinary differential equations

D2a∓ = 0, D2γ
∓=− 1

8
R∓3ϕ∓wω∓(a∓)2 (54)

The former equation states that the amplitudes a∓ are in-

dependent of the slow scale T2, while integrating the lat-

ter equation establishes that the phase angles γ∓ linearly

depend on the slow scale T2 according to the function

γ∓(T2)= γ∓◦ − 1
8
R∓3ϕ∓wω∓(a∓)2T2 (55)

where γ∓◦ are constant phases assessable by imposing

suited initial conditions. Therefore, the sought T2-

dependent complex-valued amplitudes A± finally read

A∓(T2)= 1
2

a∓ eı γ
∓(T2) (56)

and, consequently, the first-order solutions (q∓
1
,p∓

1
) and

second order solutions (q∓
2
,p∓

2
) are fully determined.

The third-order solutions (q∓3 ,p
∓
3 ) can also be fully

determined by imposing the solvability conditions (53)

and solving the equation pair (50), yielding

q∓3 = (A∓)2Ā∓(R∓c a∓0 +R∓o a±0 ) eıω
∓T0 + (57)

+ (A∓)3(C∓c a∓0 +C∓o a±0 ) e3ıω∓T0 +cc

p∓3 =−ıω∓(A∓)2Ā∓(R∓c a∓0 −R∓o a±0 ) eıω
∓T0 +

+3ıω∓(A∓)3(C∓c a∓0 +C∓o a±0 ) e3ıω∓T0 +cc

where the relevant auxiliary quantities

R∓c = 1
4
R∓3ϕ∓w, R∓o =R∓3

ϕ±w(ω∓)2

(ω±)2− (ω∓)2
(58)

C∓c =− 1
8
C∓3ϕ∓w, C∓o =C∓3

ϕ±w(ω∓)2

(ω±)2− (3ω∓)2

multiply the contributions of the third order solution q∓
3

that are collinear (direction a∓
0

in the q-space, subscript

c) and orthogonal (direction a±0 in the q-space, subscript

o) to the generating first order solution q∓
1

. As with the

second order, the complementary solution of the equa-

tion pair (50) can be normalized to zero without loss of

generality.

As major consideration inherent to the perturbation

theory, it must be remarked that the asymptotic consis-

tency of the second-order solution (48) and the third or-

der solution (54) is mathematically subordinated to the

absence of wavefrequency ratios ω+ : ω− ≈ 1 (one-to-

one internal resonance or nearly resonance), ω+ : ω− ≈
1/2 or ω+ : ω− ≈ 1/3 (one-to-two or one-to-three sub-

harmonic internal resonances), as well as ω+ : ω− ≈ 2

or ω+ : ω− ≈ 3 (two-to-one or three-to-one superhar-

monic internal resonances). For a fixed wavenumber β,

subharmonic resonances can certainly be excluded, due

to the positiveness of the discriminant J1(β)2−4J2(β).

Differently, superharmonic internal resonances may oc-

cur for particular combinations of the mechanical pa-

rameters. Since the adopted asymptotic strategy actu-

ally requires some specific mathematical refinements to

account for internal resonance conditions [59, 68], the

analyses in the following are limited to the general case

of non-resonant metamaterials (namely featured by fre-

quency ratios ω+ −ω− = O(1), ω+ − 2ω− = O(1) and

ω+−3ω− =O(1) for the selected wavenumber β).

3.3. Nonlinear dispersion properties

The asymptotic wave solution achieved by virtue of the

method of multiple scales furnishes – as complementary

and valuable outcome – the explicit parametric func-

tions of the nonlinear dispersion properties, intended as

the amplitude-dependent wavefrequencies ̟∓(a∓) and

waveforms ψ∓(a∓) of the time-periodic elastic waves

freely propagating through the pantographic material.

Focusing first on the nonlinear wavefrequencies, the

polar form (56) of the complex-valued amplitude A± can

be expressed in the convenient form

A∓(τ)= 1
2

a∓ eı (γ
∓
◦+ǫ

2ω∓
2
τ) (59)

where ω∓
2
= − 1

8
R∓

3
ϕ∓wω

∓(a∓)2 and the ordering relation

T2 = ǫ
2τ has been recalled to come back from the slow

time-scale T2 to the real time τ. The τ-dependent form

of the amplitude A∓(τ) can properly be employed to ex-

press the first-order solution (42) in the form

q∓1 (τ)= 1
2
a∓a∓0 eıγ

∓
◦+ı(ω∓+ǫ2ω∓2 )τ +cc (60)

which actually describes mono-harmonic τ-periodic os-

cillations. Indeed, the τ-multiplierω∓+ǫ2ω∓
2

can be me-

chanically interpreted as the nonlinear frequencies ̟∓

of the τ-periodically oscillating waves, quadratically de-

pending on the oscillation amplitude

̟∓ =ω∓+ǫ2ω∓2 =ω
∓− 1

8
ǫ2R∓3ϕ∓wω∓(a∓)2. (61)
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Since the second-order frequency correction can be ex-

pressed in the compact form ω∓
2
= κ∓

2
(a∓)2, the relevant

quadratic coefficient

κ∓2 =− 1
8
R∓3ϕ∓wω∓ =−

Y∓
c3

4ω∓
+

(Y∓c2)2(3ω±)2

ω∓(3ω∓)2(2ω±)2
+ (62)

+
Y∓c2Y±o2(3ω∓)2

ω∓(3ω±)2(2ω±)2

(

8(ω∓)2−11(ω±)2

(ω±)2− (2ω∓)2

)

is referred to as the effective nonlinearity coefficient.

Specifically, the κ∓
2

-coefficient qualitatively character-

izes the amplitude-dependent behavior of the nonlinear

frequencies. A hardening behavior (κ∓2 > 0) or a soften-

ing behavior (κ∓
2
< 0) can occur for different parameter

combinations, depending on the linear frequencies and

the linear waveforms that define the auxiliary quantities

Y∓c3 = c3(ω∓)2(ϕ∓w)4 (63)

Y∓c2 = c2(ω∓)2(ϕ∓w)3

Y∓o2 = c2(ω∓)2(ϕ∓w)2ϕ±w

It is worth remarking that the effective nonlinearity co-

efficient can even be null (κ∓
2
= 0) for a locus Lℓ of par-

ticular parameter combinations, characterizing nonlin-

ear metamaterials with amplitude-independent frequen-

cies ̟∓.
The nonlinear wavefrequencies ̟∓ are illustrated in

Figure 5, where the ratios̟∓/ω∓ are reported versus in-

creasing amplitudes a∓ for different mass ratios ̺2. The

amplitude-dependent wavefrequency ratios are referred

to the particular non-resonant metamaterial N , charac-

terized by the mechanical parameters α = π/5, η = 1 at

the wavenumbers β= π/2 (Figures 5a,b) and β= 7/10π

(Figure 5c). The corresponding linear frequencies are

ω− = 0.432 and ω+ = 0.963 (for β= π/2) and ω− = 0.576

and ω+ = 0.910 (for β= 7/10π).

Looking at the nonlinear wavefrequencies ̟∓ at the

lower wavenumber β = π/2, the results highlight soft-

ening behaviour of both the nonlinear acoustic and op-

tical frequencies, which is due to the dominant role

played by the cubic (c3-dependent) inertial nonlineari-

ties over the quadratic (c2-dependent) ones. The back-

bone curves obtainable for fixed ̺2-values (continuous

mesh lines) show that the optical frequency decrement

̟+/ω+ is greater than the acoustic frequency decrement

̟−/ω− for increasing amplitudes. In fact, the same

frequency reductions are reached for acoustic-to-optical

amplitude ratios up to a−/a+ = 5. This finding can be

justified by noting that the nonlinear optical waveform

ϕ+ is strongly polarized on the configuration degree-

of-freedom w (with polarization factor Λw = 0.779, see

[21]), which is the only affected by nonlinearities. From

the qualitative viewpoint, a certain mass ratio ̺2 can

be found to determine a maximum in the nonlinear

decrement of the optical frequency ̟+/ω+ at large am-

plitudes a+ (see for instance the iso-amplitude curves

marked by the dashed mesh lines in Figure 5b). On the

contrary, the nonlinear decrement of the acoustic fre-

quency ̟−/ω− monotonically increases for increasing

mass ratios ̺2 (iso-amplitude dashed curves in Figure

5a).

Looking instead at the nonlinear acoustic frequency

̟− at the higher wavenumber β = 7/10π, it is inter-

esting to note that the backbone behaviour is softening

for small ̺2-values, while becomes hardening for large

̺2-values. This behaviour change occurs for a partic-

ular mass ratio ̺2
ℓ
∈ Lℓ. For a fixed value ̺2 = 1, the

regions of the (η, β)-parameter space corresponding to

hardening acoustic behaviour (for several α-values in

red-yellow scale) are non convex and internal to the lo-

cus Lℓ (black boundaries of the red-yellow scaled re-

gions) illustrated in Figure 5d. In general, the harden-

ing behaviour occurs for short wavelengths combined

with large stiffness ratios. Furthermore, the hardening

region reaches its maximum extent for α-values around

π/4 and becomes thinner while moving towards larger

β and lower η for higher values of the α-angles. For the

sake of completeness, it can be remarked that the non-

linear optical frequency ̟+ at the higher wavenumber

β = 7/10π maintains instead a softening behaviour for

all the ̺2-values.

Focusing on the nonlinear waveforms, the time-

dependent and amplitude-dependent auxiliary variable

θ∓ = γ∓◦ +
(

ω∓+ǫ2ω∓2
)

τ can be introduced to express the

first-order solution (42) in the trigonometric form

q∓1 = a∓a∓0 cos θ∓ (64)

p∓1 =−ω∓a∓a∓0 sin θ∓

Similarly, the second-order solutions (48) and third-

order solutions (57) for displacements can also be ex-

pressed in the more convenient trigonometric form

q∓2 =
1
2
(a∓)2(K∓c a∓0 +K∓o a±0 )+ (65)

+ 1
2
(a∓)2(Q∓c a∓0 +Q∓o a±0 ) cos 2θ∓

q∓3 =
1
4
(a∓)3(R∓c a∓0 +R∓o a±0 ) cos θ∓+

+ 1
4
(a∓)3(C∓c a∓0 +C∓o a±0 ) cos 3θ∓

where it is worth noting that, differently from the uncou-

pled first-order solutions q∓1 , the higher-order solutions

q∓
2

and q∓
3

are featured by nonlinear contributions from

both the principal coordinates.

The ordered solutions (64) and (65) can be employed

to reconstruct the trigonometric form of the principal
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Figure 5: Nonlinear dispersion properties of the pantographic metamaterial N: (a),(b) acoustic and optical nonlinear frequencies for β = π/2, (c)

acoustic nonlinear frequency for β=7/10π, (d) Lℓ-bounded regions of acoustic hardening behaviour in the parametric space (α, η, β).

coordinate solution q∓ = ǫ q∓1 + ǫ
2q∓2 + ǫ

3q∓3 +O(ǫ4).

Therefore, the reconstructed solution allows also to de-

termine a proper asymptotic approximation of the non-

linear normal waveforms ψ− and ψ+. In analogy with

the definition of nonlinear normal modes in structural

dynamics [69, 70], the nonlinear normal waveforms can

be intended as amplitude-dependent forms in the config-

urational coordinates, associated to the low-dimensional

invariant manifolds M− and M+ in the phase space

of the principal coordinates. Specifically, the manifold

M− is fully determined in the space of the principal co-

ordinates q = (q−, q+) once the second (slave) coordi-

nate q+ is analytically related to the first (master) co-

ordinate q− in the reconstructed solution q−. Conse-
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Figure 6: Nonlinear dispersion properties of the pantographic metamaterial N: (a) second and third order acoustic manifoldsM−
2

and M−
3

, (b)

second and third order optical manifoldsM+
2

andM+
3

.

quently, the invariant manifold M− in the state space

corresponds to the nonlinear acoustic waveform ψ− in

the space of the configurational coordinates ua. Simi-

larly, the manifoldM+ is fully determined in the space

of the principal coordinates q = (q−, q+) once the first

(slave) coordinate q− is expressed in terms of the second

(master) coordinate q+ in the reconstructed solution q+.

Consequently, the invariant manifold M+ in the state

space corresponds to the nonlinear optical waveformψ+

in the space of the configurational coordinates ua.

From the operational viewpoint, equations (64) for q−
1

and p−1 establish the first-order solutions q− = ǫa− cos θ−

and p− =−ǫa−ω− sin θ−. By substitution in the second-

order and third-order solutions (65) for q+, the manifold

M− is approximated by the principal coordinate relation

M− =M−2 +M−3 : (66)

q+ =H+2 (q−)2+G+2 (p−)2+H+3 (q−)3+G+3 q−(p−)2

which topologically corresponds to a cubic surface in

the three-dimensional phase space F − spanned by the

principal coordinates (q−, p−, q+). The manifoldM− is

locally tangent at the F −-origin to the manifoldM−
1

of

the linear waveform (defined by the equation q+ = 0)

corresponding to the phase planeP− spanned by the co-

ordinates (q−, p−). The higher-order terms of the man-

ifoldM− can be referred to as the second-order man-

ifold M−
2

and third-order manifold M−
3

, for the sake

of synthesis. Similarly, equations (64) for q+
1

and p+
1

establish the first-order solutions q+ = ǫa+ cos θ+ and

p+ =−ǫa+ω+ sin θ+. By substitution in the second-order

and third-order solutions (65) for q−, the manifoldM+
is approximated by the principal coordinate relation

M+ =M+2 +M+3 : (67)

q− =H−2 (q+)2+G−2 (p+)2+H−3 (q+)3+G−3 q+(p+)2

which topologically corresponds to a cubic surface in

the three-dimensional phase space F + spanned by the

principal coordinates (q+, p+, q−). The manifoldM+ is
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locally tangent at the F +-origin to the manifoldM+
1

of

the linear waveform (defined by the equation q− = 0)

corresponding to the phase planeP+ spanned by the co-

ordinates (q+, p+). The higher-order terms of the man-

ifoldM+ can be referred to as the second-order mani-

foldM+2 and third-order manifoldM+3 , for the sake of

synthesis. The auxiliary coefficients employed in the

manifold approximation read

H±2 =
K∓o +Q∓o

2
, G±2 =

K∓o −Q∓o
2(ω∓)2

, (68)

H±3 =
R∓o +C∓o

4
, G±3 =

R∓o −3C∓o
4(ω∓)2

where H±
2

and G±
2

are the coefficients of the quadratic

terms, sufficient to define the second-order manifolds

M∓2 , whileH±3 and G±3 are the coefficients of the cubic

terms, sufficient to define the third-order manifoldsM∓
3
,

in the phase-plane coordinates (q∓, p∓).

The second-order manifoldsM∓
2

(blue surfaces) and

the third-order manifolds M∓
3

(yellow surfaces) are

reported in Figure 6 for the pantographic metamate-

rial N at the wavenumber β = π/2. The nonlinear

acoustic manifolds M−
2

and M−
3

are portrayed in the

three-dimensional phase space F − (Figure 6a), while

the nonlinear optical manifolds M+
2

and M+
3

are por-

trayed in the three-dimensional phase space F + (Fig-

ure 6b). The black dots mark the tangency points be-

tween the manifolds and the invariant planes P− and

P+ associated with the corresponding linear waveforms

(bounded by dashed lines). From the geometric view-

point, the second-order acoustic manifoldM−
2

is a hy-

perbolic paraboloid, whereas the second-order optical

manifold M+
2

is an elliptic paraboloid. Furthermore,

both the third-order acoustic and optical manifoldsM∓
3

show symmetry and anti-symmetry with respect to the

planes p∓ = 0 and q∓ = 0, respectively. The topolog-

ical difference between the shapes of the second- and

third-order manifolds determine directions in the plane

P∓ with same-sign and opposite-sign contribution to the

distortion of the linear manifold. From the quantita-

tive viewpoint, the comparison between the manifolds

show that the optical manifolds generally present larger

principal curvatures with respect to the acoustic ones,

corresponding to stronger amplitude-dependent distor-

tions of the linear manifolds. This result can be jus-

tified by recalling that the nonlinear optical waveform

ϕ+ is strongly polarized on the configuration degree-of-

freedom w, which is the only affected by nonlineari-

ties. It is worth remarking that the quantitative preva-

lence of the second-to-third order manifold is strongly

dependent on the parameter combination and, even for

the same metamaterial, on the wavenumber β.

Recalling the change of variables ua =Φq, the mani-

foldsM− andM+ can also be expressed in the space of

the configuration variables ua as

M− : ua = q−ϕ−+
[

H+2 (q−)2+G+2 (p−)2
]

ϕ++ (69)

+
[

H+3 (q−)3+G+3 q−(p−)2
]

ϕ+

M+ : ua = q+ϕ++
[

H−2 (q+)2+G−2 (p+)2
]

ϕ−+

+
[

H−3 (q+)3
+G−3 q+(p+)2

]

ϕ−

Non-trivial initial conditions q−(τ◦) = a and p−(τ◦) = 0

can be assigned into ua forM−. Therefore, dividing by

a to adopt a suited vector normalization, the third-order

approximation of the nonlinear acoustic waveform is

ψ− =ϕ−+
(

aH+2 +a2H+3
)

ϕ+ (70)

while, with analogous assignments of the initial condi-

tions and normalization forM+, the third-order approx-

imation of the second nonlinear optical waveform is

ψ+ =ϕ++
(

aH−2 +a2H−3
)

ϕ− (71)

From the physical viewpoint, it can be remarked that

the nonlinear waveforms ψ∓ are conveniently expressed

in the standard base of the orthogonal linear waveforms

ϕ∓. Specifically, the nonlinear acoustic waveform ψ− is

asymptotically approximated by linearly combining the

linear acoustic waveform ϕ− (dominant part) and the op-

tical waveform ϕ+ (small part), scaled by an amplitude-

dependent combination coefficient. On the contrary,

the nonlinear optical waveform ψ+ is asymptotically

approximated by linearly combining the linear optical

waveform ϕ+ (dominant part) and the acoustic wave-

form ϕ− (small part), scaled by an amplitude-dependent

combination coefficient.

4. Numerical validation

An independent validation of the asymptotic approxi-

mations that analytically express the invariant manifolds

can be provided by directly integrating the nonlinear

equations of wave motion (see also [71, 72]). Therefore,

the free undamped wave propagation is simulated by nu-

merical solutions of the nonlinear equations (13), where

the internal constraints up = −L(L†KppL)−1L†D z and

fp = (I−KppL(L†KppL)−1L†)D z are imposed between

passive and active variables and the changes of coordi-

nates ua =Φq and va =Φp are applied. Different sets

of initial conditions (displacement q0 and velocity p0 at

time τ = τ0) are properly selected among the dynamic

states belonging to the invariant manifoldsM∓, accord-

ing to the asymptotic approximation.
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Figure 7: Comparison between numerical solutions (red curves) and analytical invariant manifolds associated with the nonlinear waveforms of the

pantographic metamaterialN: (a) orbits vs acoustic manifoldM−, (b) orbits vs optical manifoldM+.

As fundamental result, all the numerical integrations

confirm the effectiveness of the asymptotic technique in

determining the invariant nonlinear waveforms ψ− and

ψ+ of the metamaterial. Indeed, the numerical time-

histories of motion q(τ) are systematically verified to

describe periodic orbits in the range of small oscilla-

tion amplitudes. For the particular non-resonant meta-

material N , Figure 7 illustrates three stable periodic

responses corresponding to different initial conditions,

superimposed to the invariant manifolds M− and M+
defined by the coordinate relations (66) and (67). The

Table 1: Initial conditions (I.c.) for the numerical integration of the

nonlinear equations governing the wave motion.

Lattice Coordinates

(Manifold) Master Slave (×10−4) I.c.

(q−
0
, p−

0
)= (0.10,0) (q+

0
, p+

0
)= (20.369,0) I1

N (M−) (q−
0
, p−

0
)= (0.20,0) (q+

0
, p+

0
)= (78.447,0) I2

(q−
0
, p−

0
)= (0.25,0) (q+

0
, p+

0
)= (120.208,0) I3

(q+
0
, p+

0
)= (0.01,0) (q−

0
, p−

0
)= (0.866,0) I4

N (M+) (q+
0
, p+

0
)= (0.03,0) (q−

0
, p−

0
)= (7.459,0) I5

(q+
0
, p+

0
)= (0.04,0) (q−

0
, p−

0
)= (12.964,0) I6

growing (q0,p0)-values of the initial conditions for each

set of numerical solutions are reported in Table 1, for

the sake of reproducibility. It is worth noting that the

initial conditions for the optical manifold M+ (condi-

tions I4-I6) are significantly smaller (of about one or-

der of magnitude with respect to the conditions I1−I3

for the acoustic manifold M−), due to the larger non-

linearities affecting the principal coordinates in the as-

sociated equations. The satisfying agreement between

the numerical results (red curves traced by ten periods

of oscillation) and the analytical solutions (gray mani-

foldsM− andM+) can be appreciated by noting how all

the periodic solutions sit on the manifold surfaces with

fine qualitative and quantitative approximation. Consis-

tently with the Multiple Scale Method, the asymptotic

approximation tends to gradually degrade for larger ini-

tial conditions, which may violate the basic assumption

of small oscillation amplitudes.

A further validating comparison is reported in Figure

8, where the numerical integrations (magenta circles)

and the analytical solutions (black lines) are portrayed.

Particularly, the analytical asymptotic solutions q∓ are

reconstructed as specified in Subsection 3.3 and trun-

cated to the third order, after the reabsorption of the ǫ-

parameter according to the Multiple Scale Method. So-

lutions corresponding to different initial conditions be-

longing to either the acoustic nonlinear manifold (Fig-
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Figure 8: Comparison between numerical solutions (black circles) and analytical solutions (magenta lines) with detection of the Poincarè points

(dots): (a),(b) periodic response with initial conditionsI1 and I3 belonging to the nonlinear acoustic manifoldM−; (c),(d) periodic response with

initial conditionsI4 and I6 belonging to the nonlinear optical manifoldM+.

ures 8a,b) or the optical nonlinear manifold (Figure

8c,d) are considered and projected onto the phase planes

P− and P+. An excellent agreement can be appreciated

for smaller (I1 and I4) and larger (I3 and I6) initial

conditions. For both the manifolds, the master coor-

dinates show a response dominated by the first-order

harmonic component q∓1 , whereas the slave coordinates

show a response strongly characterized by the super-

harmonic components of the higher-order solutions q∓
2

and q∓
3
. This latter aspect is qualitatively recognizable

by the double loop featuring the periodic orbits in the

phase planes of the slave coordinates (P+ in Figures

8a,b, and P− in Figures 8c,d). It is interesting to note

the peculiar effect of the constant contribution in the

second-order solutions q∓
2

, which causes the orbits to

shift from the P±-origin, as more evident in the slave

coordinate responses lying on the optical manifoldM+.
In the phase plane, the Poincaré points are also identi-

fied (magenta and black dots), by sampling the response

at period 2π/̟∓ [73]. The solution periodicity is con-

firmed by the single point representation of the Poincaré

map in the planes P∓, while the satisfying matching be-

tween analytical and numerical solutions is verified by

the almost perfect coincidence between the respective

points (closeness between magenta and black dots).

Conclusions

A one-dimensional microstructured lattice is proposed

as minimal physical realization of a mechanical pan-

tographic metamaterial with inertia amplification. The

cellular microstructure is characterized by a straight de-

formable chain of principal atoms connected with pairs

of eccentric secondary atoms, serving as tunable local

inertia amplifiers. A discrete six degrees-of-freedom

model is formulated to govern the undamped vibrations

of the periodic tetra-atomic cell, according to a finite

kinematic description. Imposing the axial indeforma-

bility of the interatomic connections (pantograph arms)

allows the dimensional reduction to a condensed two-

degrees-of-freedom model, fully described by a set of

three independent nondimensional parameters (mass ra-

tio, stiffness ratio, amplification angle). The rigid cou-

pling generates quadratic and cubic inertial nonlineari-

ties in the high-amplitude oscillation regime.

A general asymptotic approach, originally developed

for nonlinear normal modes of structural systems, is

employed to analytically determine the nonlinear dis-

persion properties of the pantographic metamaterial.

Specifically, the Multiple Scale Method is adopted to

reduce the governing equations of motion to an ordered

hierarchy of linear ordinary differential problems, in
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which the Floquet-Bloch theory can be applied to study

the free propagation of harmonic waves. The method-

ological strategy can be considered quite general, and

applicable to a class of mechanical metamaterials fea-

tured by similar periodic microstructures with local (in-

tracellular) nonlinearities.

The linear dispersion properties are analytically de-

termined by solving the wavenumber-dependent eigen-

problem governing the lowest hierarchical order. The

dispersion spectrum is composed by a low-frequency

acoustic branch and a high-frequency optical branch.

The band structure of the pantographic metamaterial

is parametrically investigated by establishing invariant

conditions for the pass and stop bands, according to the

formal analogy with the Floquet theory for the stabil-

ity of dynamical systems. As major theoretical achieve-

ment, the exact boundaries of the acoustic and optical

pass bands, as well as the existence conditions and nor-

malized amplitude of the stop band, are analytically as-

sessed in the multi-dimensional parameter space. As

functionally relevant finding, the centerfrequency of the

stop band is found to significantly decrease with the rel-

ative mass of the inertia amplifiers, proving the suitabil-

ity of the pantographic metamaterial to serve as low-

frequency metafilter. Consequently, all the mechanical

parameters can potentially work as design variables for

spectral optimization purposes. For a certain parameter

combination, the dispersion spectrum of real frequen-

cies versus complex wavenumbers is discussed for dif-

ferent values of the mass of the inertia amplifiers. Prop-

agation and attenuation branches are distinguished in

the pass and stop bands, respectively.

Considering non-resonant lattices, the solution of the

wavenumber-dependent problems governing the higher

hierarchical orders allows to obtain the nonlinear dis-

persion properties. First, the nonlinear frequencies are

determined as analytical functions of the parameters,

quadratically depending on the oscillation amplitudes.

In the general case, the acoustic and optical frequencies

exhibit the typical softening behavior caused by domi-

nant cubic nonlinearities in inertially nonlinear systems.

However, particular regions corresponding to hardening

acoustic frequencies can be identified in the parameter

space. Second, each nonlinear waveform is analytically

obtained as combination of the two linear waveforms.

Differently from the nonlinear frequencies, the small

combination coefficient is found to linearly and quadrat-

ically depend on the oscillation amplitude. Further-

more, the invariant manifolds associated with the non-

linear waveforms are parametrically determined both in

the space of the principal coordinates and in the space

of configurational variables.

A non-resonant lattice is selected to discuss and com-

pare the nonlinear dispersion properties corresponding

to different wavenumbers in the first Brillouin zone.

The analytical solutions are successfully validated by

running out numerical simulations of the amplitude-

dependent free wave oscillations. Particularly, a satisfy-

ing agreement is systematically obtained from the direct

comparison between the invariant manifolds predicted

by the asymptotic strategy for the nonlinear waveforms

and the stable periodic orbits described by the numeri-

cal solutions in the state space of the principal coordi-

nates. Finally, an excellent matching between the ana-

lytical and numerical Poincaré maps is also achieved.
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Appendix A. Hamiltonian action

The forth-order approximation of a nondimensional ki-

netic energy for the periodic tetra-atomic cell of the pan-

tographic metamaterial reads

K = 1
4
(2+̺2+4p2

1̺
2)ẇ2+ (1+̺2)(u̇2+ u̇ẇ)+ (A.1)

+4p1 p2̺
2wẇ2+4p2(6p3

1+ p2)̺2w2ẇ2

whereas the nondimensional elastic potential energy

takes the form

U = u2+uw+ 1
2
(1+η)w2+ 1

2
(u2
ℓ +u2

r )+ (A.2)

−uuℓ−uur−wur

Introducing the work done by the external forcesW =
fℓuℓ+ frur, the Hamiltonian action between two instants

of time t1 and t2 takes the integral expression

H =
∫ t2

t1

(K−V) dt (A.3)

whereV=U−W is the total potential energy. Accord-

ing to the Hamilton’s principle, the Hamiltonian action

can be imposed to be stationary to obtain the nonlinear

equations of motion (6) and (9).
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Appendix B. Linear dispersion properties

Appendix B.1. Matrices R0, R1, R2

The auxiliary matrices R0, R1, R2 necessary to define

the eigenproblem (28) read

R0 =

[

Kaa−K2
ap O

O M

]

, R1 =−
[

KapJKap O

O O

]

,

(B.1)

R2 =−
[

KapJ⊤Kap O

O O

]

, J=

[

0 1

0 0

]

Appendix B.2. Mass orthonormalization

The orthonormalized waveforms ϕ∓ employed in the

change of coordinates (37) are determined by multiply-

ing the waveforms φ∓ by the mass-normalization factors

n∓ =
2 |ω∓|

φ∓w
(

(

φ∓
)†

Kφ∓
)1/2
=

√
2 |ω∓|

φ∓w
(

U∓φ
)1/2

(B.2)

where φ∓w is the second component of the waveform φ∓

and the positive quantityU∓φ is the elastic potential en-

ergy associated to the unitary-amplitude harmonic wave

propagating with frequency ω∓.
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