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Abstract

Over the last few years, the automotive industry has directed its research to-
ward intelligent vehicles that come with sophisticated driver-assistance tech-
nologies to enhance the safety of drivers and passengers. These systems are
designed to match the human ability to perceive and react to the surrounding
environment in order to help drivers make better decisions, all the way to the
ultimate goal of autonomous driving. A central factor in human perception
is hearing, and deep learning applied to audio signal processing has developed
computational models that can detect and identify sounds in the environment
around the car. This research explores the potential of intelligent monitoring
systems for advanced human-vehicle interaction solutions, specifically focusing
on emergency vehicle detection systems for smart cars. As a first approach,
an algorithm is proposed for generating synthetic audio files to reproduce siren
sounds in multiple noise contexts, which, balanced with urban traffic noises,
are used to train a convolutional neural network for siren/noise classification.
Several acoustic features, source separation techniques, and strategies to reduce
the computational load of the algorithm are studied to identify siren sounds
even in loud background noise. This research also presents a workflow based on
few-shot metric learning for emergency siren detection, which uses prototypical
networks to recognize ambulance sirens without requiring extensive real-world
data collection or domain adaptation strategies. A novel prototype of driver-
assistant for emergency-vehicles detection is also proposed. This device uses
audio-based deep learning algorithms to detect an emergency vehicle approach-
ing through the sound of its siren and computer vision techniques to monitor
the driver’s attention through gaze movements. The innovation lies in the alert-
ing based on the driver’s awareness, which limits warnings only to situations of
actual need. Finally, an audio-visual dataset for driving scene understanding
is presented. Data are representative of different types of roads, urbanization
contexts, weather and lighting conditions. This dataset is a valuable instru-
ment for developing driver-assistance technologies that rely on audio and video
data in single-modality or multimodality and for improving the performance
of systems currently in use. This research shows that the topic of emergency
siren detection and, in general, ambient intelligence in the automotive field
still has great potential for innovation in terms of reliable, customizable, and
cost-effective solutions.
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Chapter 1

Introduction

In recent years, automotive research has shown a growing interest in safety
technologies for drivers and passengers, developing intelligent vehicles with
increasing levels of automation through advanced driver-assistance systems
(ADASs) [1, 2]. These solutions form the basis of autonomous vehicles, in
which different types of sensors replace the human ability to sense the envi-
ronment and react in real time [3–5]. Hearing is a primary factor in human
driving, and deep learning applied to audio signal processing has enabled tech-
nologies to “listen” to sounds, understand them and respond accordingly. The
process of automatically detecting and identifying sound events occurring in
the surroundings of the car alerts drivers in case of distractions, allowing them
to make better decisions and thus preventing traffic accidents.

Recent advances in deep learning have enabled the development of powerful
models that can leverage information from audio data to help recognize po-
tentially dangerous situations, as illustrated in several case studies. The iden-
tification and localization of static or moving sound sources like automobiles,
bicyclists, or pedestrians in environments with narrow, confined, or diffuse ob-
stacles, such as alleys in historic villages or densely built-up or vegetation-rich
areas, can be carried out by directional acoustic detection techniques. These
methodologies are particularly useful in the case of approaching vehicles around
blind corners that can be detected with acoustic sensors before they enter the
driver’s line of sight [6]. Some weather conditions are more accurately rep-
resented by audio than visual data, especially when the distinction between
atmospheric events is subtle (e.g., diffuse moisture or light rain, medium or
high-intensity rain) and as daylight becomes weak. For this reason, the inten-
sity of rainfall on different materials can be estimated through audio data [7]
to activate the windshield wipers and control their speed automatically. Sim-
ilarly, audio-based road wetness detection systems could be employed to alert
the driver or change the tire setup [8, 9]. Classification of roughness and degree
of deterioration of road pavement [10, 11], estimation of speed and density of
vehicular traffic [12, 13] are other topics related to safe driving scenarios that
audio research has successfully developed.
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Chapter 1 Introduction

A key challenge is the reliable and accurate detection of emergency sirens in
traffic noise to alert drivers of the approach of an emergency vehicle and enable
them to prioritize it in rescue operations. For this reason, emergency vehicle
detection systems installed in automobiles are becoming indispensable safety
devices, and research in this area continues to be an active field of study.

1.1 Emergency Vehicle Detection Systems

Emergency-vehicles detection has been an ongoing research topic since the
1950s [14], resulting in the development of several models of emergency vehicle
detection (EVD) systems that have evolved along with sensing technologies.
EVD systems have upgraded from basic electronic devices to advanced digital
systems, with the main goal of helping emergency vehicles reach their destina-
tion more quickly and safely. The proliferation of daily automobile use has led
to increased urban traffic levels and travel times, causing drivers to engage in
activities that divert their attention from driving, such as listening to music
or making business calls. The modern car, equipped with various amenities,
soundproof cabins and high-performance sound systems, also creates an iso-
lated environment where drivers may not be aware of an incoming emergency
vehicle with due timeliness. For this reason, EVD systems demonstrate their
usefulness in several installation contexts. When integrated within the car,
these devices alert drivers of the approach of an emergency vehicle through
warning signals, benefiting people with hearing impairments. When installed
at traffic lights or intersections, they activate reserved lanes.

In the literature, the identification of emergency vehicles has been performed
with several technologies, as evidenced by the wide variety of related patents.
For example, radio frequency-based detectors have been developed using trans-
mitter units installed in emergency vehicles and receiver units placed in cars or
intersections [15, 16]. Other systems employ sensors to detect electromagnetic
data emitted by flashing lights and siren sounds, then transmitted to computer
systems to recognize specific siren patterns [17]. In other devices, GPS is used to
track the location of emergency vehicles and provide the driver with their real-
time position [18]. In addition, image analysis technologies based on computer
vision have been implemented [19, 20], also integrated with sound processing
systems to detect the presence of emergency vehicles out of sight [21].

Audio data processing and analysis have always played an important role in
detecting emergency vehicles, recognizable by the siren sound emitted through
embedded electronic devices. For this reason, emergency siren detection (ESD)
is the main technique behind EVD systems. In the 1960s and 1970s, early
audio-based EVD systems used electrical circuits equipped with analog filters
to select and amplify the sound recorded with external microphones in the
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1.1 Emergency Vehicle Detection Systems

range of siren frequencies [22]. Similar devices, in combination with frequency-
voltage converters, have been designed to detect slow and continuous variations
in the siren signal [23]. Since the 1980s and 1990s, more advanced emergency
siren detectors using digital signal processing techniques have been developed.
These types of equipment convert audio signals into discrete time-frequency
representations. Then, the match with the frequencies of the alarm signal or
the number of peaks detected in a certain period of time after a band-pass filter-
ing process determines the presence of the siren sound [24, 25]. Other devices
include a sound generator installed on the emergency vehicle and a detection
unit on common vehicles. In these systems, the acoustic signal is transduced
into an electric current that is compared with pre-programmed patterns, so any
match is notified to the driver through a display [26]. Emergency-vehicles de-
tectors are becoming increasingly sophisticated today, using technologies such
as machine and deep learning to detect and classify different types of emergency
vehicles. Fully audio-based EVD systems include sound acquisition using mi-
crophones, audio signal segmentation, and computation of spectrograms that
are given as input into pre-trained neural networks [27]. More complex models
employ data fusion techniques to compute and concatenate audio-visual fea-
tures into a single feature vector containing information about the presence of
an emergency vehicle [28]. Some systems also perform the localization of the
emergency vehicle using laser imaging detection and ranging (LiDAR), RADAR
or ultrasonic data [29].

Methods for detecting emergency sirens can be classified according to algo-
rithmic techniques correlated to the type and amount of data required for their
implementation. The most commonly used detection strategies include digital
signal processing, machine learning and deep learning algorithms. Artificial
neural network-based methodologies that exploit a large amount of audio or
multimodal data to compute a model under fully supervised conditions are
currently the most widely used approaches. Most studies have addressed the
problem of the massive volume of data needed to train a neural model by using
datasets computed from synthetic audio collections or siren recordings from
publicly available web resources. However, data generated via algorithm may
not accurately simulate real-world situations, and data acquired with different
devices require standardization procedures.

In addition, the quality and quantity of data are crucial for the implemen-
tation of ESD strategies working in real time. Synthetic data must accurately
mimic the environmental and operational noises of the vehicle where the record-
ing sensors are installed. Alternatively, real-world audio files collected in the
same context as the siren detection device should have a duration of several
hours to ensure the reliability and generalization capability of the neural model.
The ideal situation in terms of data availability is a combination of the above.
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A significant dataset in terms of quantity and quality of data should be used
to train the deep learning model, which is then adapted with fewer examples
to recognize siren sounds and noises in real-world environments. In this sort of
context, data augmentation strategies applied directly to the raw signal (e.g.,
noise addition, distortion, or velocity scaling) or to the time-frequency repre-
sentation (e.g., pitch or time-shifting) [30, 31] of on-board recordings have the
disadvantage of altering the target signal or background, making the use of
synthetic data preferable. Given these premises, the main goals of research on
emergency siren detection are the generation procedures and recording tech-
niques of audio data, which, together with the acoustic features investigation,
enable the development of accurate and customizable detection strategies in
real-world driving scenarios.

1.2 State-Of-The-Art

Many researchers have devoted considerable attention to developing algorithms
for emergency siren recognition through digital signal processing techniques.
These approaches, which involve the manipulation and analysis of discrete dig-
ital signals to extract useful information, have been used alone or in combina-
tion with other advanced approaches such as machine and deep learning. In
particular, deep neural networks have improved the performance of siren recog-
nition algorithms by providing models that can learn the task, adapt to new
data and prove robust to variations in the real-world environment. The follow-
ing is a summary of the most significant recent work in the emergency siren
detection field, distinguished by algorithmic methodologies, with emphasis on
the datasets employed and the findings achieved.

1.2.1 Digital Signal Processing Approaches

The detection and recognition of emergency sirens using digital signal process-
ing techniques have been studied by several researchers. Different approaches
such as pitch detection, two-times Fast Fourier Transform, longest common
subsequence, peak detection and minimum mean square error methods have
been proposed and implemented on low-power microprocessors and microcon-
trollers, with varying results in terms of detection time, false alarm rate and
missing siren signal.

Meucci et al. [32] developed a pitch detection algorithm based on the mod-
ule difference function and peak searching to extract periodic siren signals from
aperiodic ones. The algorithm was implemented on a low-power microproces-
sor, and performance was evaluated both on real signals recorded in city streets
and digitally synthesized signals at different signal-to-noise ratios (SNRs). The
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1.2 State-Of-The-Art

performance of the detector was analyzed by varying several parameters, ob-
taining probability rates from approximately 46% to 98% in the range of SNRs
between -15 dB and 10 dB. Miyazaki et al. [33] used a two-times Fast Fourier
Transform algorithm for siren detection and programmed it on a microcon-
troller. The authors tested the system on pure siren sound, noise, and siren
mixed with noise, also considering the Doppler effect, obtaining an average de-
tection time of about 8 seconds at SNR equal to 0 dB. Liaw et al. [34] proposed
the longest common subsequence method to recognize the sound of an ambu-
lance siren in Taiwan. The approach was applied to compare the sequence of
the input sound, consisting of background noise and music partially overlapped
with siren sounds and the sequence of the ambulance siren, achieving a true
positive rate of 85%. Kiran et al. [35] used a peak detection algorithm coupled
with the minimum mean square error method to detect acoustic siren signals.
The workflow of the system consisted of real-time audio capturing, segmenta-
tion into sequential frames, application of band-pass filtering, spectral analysis,
and peak searching in the frequency domain. Automatic detection of the emer-
gency vehicle siren was performed by measuring the number of peaks at the
siren frequencies present in the audio frames, using in testing a mix of pure
siren signals, sirens immersed in different background noises, and only noise.
The resulting achievement was an autocorrelation time in the siren detection
process of about 7.9 seconds. Other recent studies about siren recognition
employed digital signal processing techniques based on frequency and chrono-
logical data [36] or statistical methods [37].

1.2.2 Machine and Deep Learning Approaches

Recent studies have developed algorithms to identify emergency siren sounds
through machine and deep learning approaches. These works used a variety
of features and classifiers, including hidden Markov models, part-based mod-
els, and support vector machines. In particular, artificial neural networks have
achieved the highest accuracy rates in detecting emergency sirens in different
recording configurations and noise conditions. Some studies proposed frame-
works for classifying and localizing alerting sound events, and promising results
have been obtained using a combination of audio and video-based detection
systems.

Beritelli et al. [38] developed an algorithm for identifying emergency sirens
through speech recognition techniques. The authors used a multi-layer artifi-
cial neural network to classify Mel-Frequency Cepstral Coefficients (MFCCs)
extracted from siren sounds of Italian emergency service vehicles under dif-
ferent recording configurations and additive noise at increasing signal-to-noise
ratios (SNRs). The algorithm achieved an accuracy rate greater than 99% with
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a response time of fewer than 400 milliseconds. Schroder et al. [39] proposed a
hidden Markov model and a part-based model for detecting police siren sound in
clean and noisy environments. The authors used MFCCs and Mel-spectrograms
as acoustic features and tested the classifiers at different SNRs. The part-based
model classifier was the most accurate, achieving an accuracy rate of 86% at
an SNR of -10 dB. Carmel et al. [40] presented a technique for detecting alarm
sounds in noisy environments using support vector machine classifiers. The
authors employed several time-domain and frequency-domain features, such as
Pitch, Short-Time Energy, Zero-Crossing Rate, MFCCs, Spectral Flux, Dis-
crete Wavelet Transform, and Wavelet Packet Transform, achieving an accu-
racy rate equal to 98% per 100 milliseconds audio frame. Marchegiani et al. [41]
proposed a framework for classifying and localizing alerting sound events using
a U-Net [42] architecture. Semantic segmentation was applied to gammatone
spectrograms in a multi-task learning scheme for acoustic event classification.
The experiments concerning the classification task reported an average accu-
racy rate of 94% at SNRs between -40 dB and 10 dB. Other studies based on
artificial neural networks compared several acoustic features [43], implemented
the siren detection algorithm in mobile apps [44, 45] and developed hybrid
audio-video detection systems [46]. Fatimah et al. [47] extracted two sets of
features from the ambulance siren sound. The ensemble bagged trees classifier
with the Fourier decomposition method obtained the best performance with an
accuracy of 98.49%.
Tran et al. [48] illustrated a study for the classification of siren sounds, vehi-
cle horns, and noise. Three models based on convolutional neural networks
(CNNs) were developed: the first combined MFCCs and log-Mel features in a
2D-CNN (MLNet), the second implemented a 1D-CNN (WaveNet) which au-
tomatically learned the features for classification from raw waveform, and at
last, a CNN-based ensemble model (SirenNet) was designed combining the pre-
viously described networks. The experiments showed that SirenNet achieved
an accuracy of 98.24% in the siren sound detection with frames of 1.5 seconds.
Tran et al. [49] recently presented another study based on audio and image
data. The authors devised a modified YOLO [50] model called YOLO-EVD
tailored to the problem of emergency vehicle detection. This model, trained
with a novel dataset for vision-based EVD, obtained a mean average precision
of 95.5%. Additionally, a convolutional neural network called WaveResNet was
implemented for audio-based EVD, which reached an accuracy of 98% in traf-
fic conditions. The integration of the two models formed an audio-visual EVD
system (AV-EVD) with a siren misdetection rate of 1.54%.
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1.3 Motivations and Contributions

This research endeavors to broaden the potential of intelligent monitoring sys-
tems for advanced human-machine interaction technologies in the living envi-
ronment of the automobile. The primary objective is to investigate the field of
emergency siren recognition, which falls under the wider scope of sound-event
detection methodologies embedded within emergency vehicle detection systems.
The literature on emergency siren detection has presented several challenges,
which have been addressed through digital signal processing, machine learning,
and deep learning algorithms. Among these, convolutional neural networks
that learn time-frequency representations of audio signals segmented in short-
time frames have been shown to be the most effective approach for accurate
siren detection in noisy scenarios and in the presence of the Doppler effect. This
study takes as its starting point the best state-of-the-art findings, then improves
upon them by investigating several datasets, neural approaches, and architec-
tures to accurately identify emergency sirens in real-world environments. This
research culminates in an advanced driver-assistance prototype for emergency-
vehicles detection that relies on multimodal data analyzed with deep learning
algorithms.

The main contribution of this work is the implementation of strategies for
emergency siren detection that are reliable, easily customizable in different ve-
hicles and cost-effective, demonstrating that the research area still holds great
scope for innovations. The first objective is to create a neural model capable
of identifying the siren signal in different environmental driving contexts and
generalizing it to ever-changing and unpredictable background noises. In this
regard, an algorithm is proposed to generate synthetic audio files that repro-
duce the sound of sirens in multiple traffic contexts. The siren audio segments
equally balanced with traffic noises and transformed from the amplitude to the
time-frequency domain constitute a dataset to train a convolutional neural net-
work with a supervised approach for siren/noise classification. The selection
and design of acoustic features suitable for the task require considerable exper-
tise on the problem and constitute a significant engineering effort. Therefore,
the accuracy in identifying sirens with several acoustic features is investigated
and compared, highlighting their capability to effectively represent the siren
signal in high background noise contexts and generalize to scenarios unseen
during the training.

The second objective aims at the reduction of the computational load of the
algorithm. For this purpose, the investigation with synthetic data has been ex-
tended to short-time Fourier transform spectrograms as features. A harmonic-
percussive source separation technique has also been applied to improve siren
detection accuracy. The decreased number of network hyperparameters, also
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performed by slicing operations on the time-frequency representations, reduces
the computational load, making it suitable for real-time embedded systems.

In the third phase, the goal of developing an EVD system to be installed in
vehicles leads to testing the previously computed neural models on real data.
At this point, the problem of emergency siren detection is approached with
a different perspective: to find a technique able to accurately identify siren
sounds without the need for adaptation between source and target domains
and without requiring a large collection of real-world data for training a su-
pervised deep learning model. A workflow based on few-shot metric learning
for emergency siren detection is proposed, in which prototypical networks [51]
are trained on publicly available sources or synthetic data in multiple combi-
nations. At inference time, the best knowledge learned in associating a sound
with its class representation is transferred to identify ambulance sirens, given
only a few instances for its prototype computation. The encouraging results
confirm the robustness of meta-learning approaches for real-world applications.

Finally, algorithmic investigations are put into practice through the design
of an advanced multimodal driving-assistance prototype for emergency-vehicles
detection. This system leverages audio and video deep learning algorithms to
detect the approaching of an emergency vehicle through the sound of its siren
and, subsequently, to monitor the driver’s gazer to check his/her awareness.
If the driver demonstrates to be unaware of the situation, the system alerts
attention with an audio-visual warning.

This research also laid the foundation for undertaking a study on driving
scene understanding. For this purpose, a collection of audio and video data
acquired in diverse driving scenarios on board a sensor-equipped research ve-
hicle is presented. This carefully recorded, processed, and labeled multimodal
dataset represents the first fundamental step in the development and improve-
ment of ADASs designed to understand the environment surrounding the car.

The outline of this dissertation is the following. In Chapter 1, the emergency
siren detection topic is introduced, followed by a state-of-the-art mainly focused
on the audio-based approaches and a summary of motivations and contributions
of this work. Chapter 2 gives an overview of the theoretical background of the
data-driven techniques and the performance metrics used to develop the pre-
sented systems. Chapter 3 describes the methodologies to collect the datasets
used in the experiments. Chapter 4 discusses the approaches for emergency
siren detection based on convolutional neural networks in combination with
synthetic data. Meta-learning approaches are described in Chapter 5, where
real-world siren data have been employed to test the algorithms. Chapter 6
outlines an advanced multimodal driver-assistance prototype for emergency-
vehicles detection, and Chapter 7 presents an audio-visual dataset for driving
scene understanding.
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Chapter 2

Background

The emergence of the Internet of Things (IoT) [52] has led to the spread of
advanced devices that connect to cloud computing systems or perform com-
plex computations in vehicles, homes and cities. These technologies have been
developed through data-driven algorithms able to make decisions without hu-
man intervention and replicate the human thought process, enabling computers
to perform previously unimaginable tasks. Through artificial neural networks,
deep learning algorithms learn multiple levels of representation and abstraction
to analyze images, sounds and text. In audio signal processing, deep learning
techniques are used to detect and recognize patterns of real-world sounds. This
chapter provides the historical background, the theoretical description, and the
metrics to evaluate the performance of the main deep neural network architec-
tures employed in this research.

2.1 Deep Learning: Main Historical Events

In 1943, McCulloch and Pitts [53] developed a computational model for neural
networks that employed mathematical principles and algorithms. They referred
to this model as threshold logic, which laid the foundation for dividing neural
network research into two distinct paths. One path focused on the biological
workings of the brain, while the other concentrated on the use of neural net-
works in artificial intelligence. In the late 1940s, psychologist Donald Hebb
proposed a theory of learning based on the concept of neural plasticity, now
known as Hebbian learning [54]. This theory is commonly regarded as a form
of unsupervised learning, and its subsequent developments were early mod-
els for long-term potentiation. In 1950, these concepts were implemented in
computational models through Turing’s B-type machines [55].

In 1958, Rosenblatt [56] developed the perceptron, an algorithm for identify-
ing patterns using a two-layer learning computer network that employed basic
mathematical operations of addition and subtraction. Additionally, Rosenblatt
used mathematical notation to describe circuitry that was not present in the
fundamental perceptron, such as the exclusive-or circuit. At about the same
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time, Widrow and Hoff developed a single-layer linear network and associated
learning rule called ADALINE (Adaptive Linear Neuron) [57]. This network
was used to implement adaptive filters, which are still actively used today.
After the release of a study on machine learning by Minsky and Papert in
1969 [58], progress in the field of neural networks slowed down. The authors
identified two major challenges with the technology at the time. One of these
was that single-layer neural networks were unable to process the exclusive-or
circuit, and the other was that computers were not advanced enough to handle
the extensive computational demands of large neural networks. As a result,
research in this area slowed until computers improved in terms of processing
power. An important development that helped spur progress was the back-
propagation algorithm introduced by Werbos in 1975 [59], effectively resolving
the exclusive-or problem.

In 1980, several events caused renewed interest. Kunihiko Fukushima, work-
ing on computer vision, started developing the Neocognitron [60], a hierarchical
and multilayered neural network. This design was the first deep learning model
using a convolutional neural network. Fukushima’s design helped the comput-
ers learn to recognize and identify visual patterns and also allowed for the
fine-tuning of significant features by manually adjusting the weight of the de-
sired connections. Kohonen made many contributions to the field of artificial
neural networks, also called Self-Organizing Maps [61]. In 1982, Hopfield de-
scribed the recurrent artificial neural network as a content-addressable memory
system [62]. His works persuaded hundreds of highly qualified scientists, math-
ematicians, and technologists to join the emerging field of neural networks.

In the mid-1980s, a method of processing information simultaneously across
multiple systems gained recognition as connectionism. Rumelhart and Mc-
Clelland [63] published a comprehensive study on utilizing this technique in
computer systems to replicate neural functions. The application of back-
propagation was first realized in a practical sense through the work of Yann
LeCun in 1989 at Bell Labs. He used convolutional networks in conjunction
with back-propagation to classify handwritten digits [64, 65], and this system
was later employed to process an abundant amount of handwritten checks in the
United States. Despite initial excitement, the use of artificial neural networks
faced challenges due to the limited resources available with early computer pro-
cessors. Some important advances, such as long short-term memory [66] and
bidirectional recurrent neural networks [67], went mostly unnoticed until later
years.

In the mid-2000s, advancements in technology, such as graphics processing
units (GPUs) and distributed computing, allowed for the widespread deploy-
ment of neural networks, particularly in areas such as image and visual recog-
nition. This technological progress led to the development of the field known as
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.

Figure 2.1: Historical timeline of deep learning evolution.

deep learning. Since then, advances in deep neural networks have not stopped
evolving. Recent progress in statistical models, applications, and algorithms
has resolved issues related to the performance of neural models with layer-by-
layer pre-training methodologies [68] and later with deep residual learning [69].
Novel methods for capacity control, such as dropout [70], have been developed
to mitigate overfitting, or attention mechanisms [71] solve the issue of increas-
ing the memory and complexity of a system without increasing the number of
learnable parameters. Built solely on attention mechanisms, the transformer
architecture [72] has demonstrated compelling success in many areas. Another
key development was the ability to generate realistic data through the invention
of generative adversarial networks [73].

The timeline in Figure 2.1 summarizes the main historical events that have
contributed to the evolution of deep learning.

2.2 Artificial Neural Networks

The human brain is considered the most advanced system of its kind because of
its ability to interpret and analyze information. It is composed of specialized
cells called neurons. Neurons are the structural and functional units of the
nervous system, responsible for storing and processing information and being
able to control various bodily functions. Artificial neural networks, on the other
hand, are engineered systems inspired by the biological brain or “Massively
parallel distributed processors made up of simple processing units having a

11



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 12 — #32
✐

✐

✐

✐

✐

✐

Chapter 2 Background

natural propensity for storing experiential knowledge and making it available
for use” [74].

The basic principles of operation and parallels between biological and arti-
ficial neurons with corresponding mathematical formulations are illustrated as
follows.

2.2.1 The Human Nervous System

The biological neuron is composed of four main parts:

Figure 2.2: The biologi-
cal neuron.

• Dendrites: input terminals that receive elec-
tric pulses from adjoining neurons. Pulses are
weighted by the synaptic input connections.

• Cell Body or Nucleus: processes the incom-
ing electric pulses and generates output spikes
based on a threshold criterion.

• Axon: carries the output pulse towards the
synaptic terminals, which are connected to
subsequent neurons.

• Synapses: output terminals that assign a
weight to a particular input.

The neuron properties can be described in:

• Local simplicity: the neuron receives stimuli (excitation or inhibition)
from dendrites and produces an impulse to the axon, which is proportional
to the weighted sum of the inputs.

• Global complexity: the human brain possesses O(1010) neurons, with
more than 10k connections each.

• Learning: even though the network topology is relatively fixed, the strength
of connections (synaptic weights) can change when the network is exposed
to external stimuli.

• Distributed control: no centralized control; each neuron reacts only to its
own stimuli.

• Tolerance to failures: performance slowly decreases with the increase of
failures.

Biological neural networks can quickly solve complex tasks, such as memo-
rization, recognition, and association.
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2.2.2 Fundamentals of Artificial Neural Networks

An artificial neural network (ANN) is a mathematical model based on cal-
culations inspired by biological neural networks. This model resembles the
brain in two aspects: knowledge is acquired by the network from its environ-
ment through a learning process, and synaptic weights are used to store the
acquired knowledge. Artificial neural networks are constituted by groups of
interconnected information consisting of artificial neurons and processes using
a connectionist approach to computation. In most cases, an ANN is an adap-
tive system that changes its structure based on external or internal information
that flows through the network during the learning phase. In practical terms,
artificial neural networks are non-linear statistical data structures organized
as modeling tools. They can be used to simulate the complex relationships
between inputs and outputs that other analytic functions fail to represent. An
ANN receives external signals on an input layer of nodes (or processing units),
each connected with some internal nodes organized in several levels. Each node
processes the received signals performing a very simple task and transmits the
result to subsequent nodes.

Artificial neurons are individual information-processing units representing
the building blocks of artificial neural networks. Specifically, the model of a
neuron is composed of four basic elements, as shown in Figure 2.3:

• A set of synapses, each characterized by a weight or strength of its own.

• The neural model also includes an externally applied bias.

• An adder for summing the input signals, weighted by the respective
synaptic strengths of the neuron plus the bias; the operations described
here constitute a linear combiner.

• An activation function for limiting the amplitude of the output of a neu-
ron. Typically, the normalized amplitude range of the output of a neuron
is written as the closed unit interval [0,1] or, alternatively, [-1,1].



Figure 2.3: Model of an artificial neuron.
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Figure 2.4: Mathematical description of an artificial neuron.

The mathematical description of the neuron activity, illustrated in Figure 2.4,
can be defined as:

s[n] =
N

∑

j=1

wjxj [n] + b

y[n] = f(s[n])

(2.1)

where

• x1[n], x2[n], · · · , xN [n] are the input signals,

• w1, w2, · · · , wN are the respective synaptic weights of neuron k,

• b (or w0) is the bias,

• s[n] is the output of the linear combination of input signals,

• f(·) is the activation function,

• y[n] is the output signal of the neuron.

The activation function is a non-linear function applied to introduce non-
linear properties in a neural network. Some widely used options are described
as follows.

• The threshold function is commonly referred to as the Heaviside step
function, and its derivative is the Dirac delta function.
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Figure 2.5: The threshold function.

f (s) = 1 if s ≥ 0

f (s) = 0 if s < 0

f ′ (s) = 0 if s < 0

f ′ (s) = ∞ if s = 0

f ′ (s) = 0 if s > 0

(2.2)

• The sigmoid function, whose graph is “S”-shaped, is the most common
activation function used in neural networks. It is defined as a strictly
increasing function that exhibits a graceful balance between linear and
non-linear behavior. An example of the sigmoid function is the logistic
function.







Figure 2.6: The sigmoid function.

σ(s) =
1

1 + e−s

σ′(s) = σ(s)(1 − σ(s))

(2.3)

• The hyperbolic tangent (tanh) function is a scaled and shifted version
of the sigmoid function. Together with the sigmoid function, it has the
pros of simple derivatives and the output bounded between finite values.
The cons relate to info loss due to the short derivative range for high and
small s, where gradients can be close to zero (vanishing gradients).







Figure 2.7: The tanh function.

tanh(s) =
es − e−s

es + e−s

tanh′(s) = 1 − tanh(s)2

(2.4)
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• The Rectified Linear Unit (ReLU) function shows the advantages related
to the linear part that speeds up the computation, especially of gradients.
However, the ReLU function does not allow for negative values, so cer-
tain patterns may not be captured, and output values can be very large
(exploding gradients).







Figure 2.8: The ReLU function.

ReLU(s) = max (0, s)

ReLU’(s) = max (0, 1)
(2.5)

• The Parametric Rectifier Linear Unit (PReLU) is an activation function
similar to ReLU, with the advantage of also assuming negative values.







Figure 2.9: The PReLU function.

PReLU(s) = as for s < 0

PReLU(s) = s for s ≥ 0

PReLU’(s) = a for s < 0

PReLU’(s) = 1 for s ≥ 0

(2.6)

• The Exponential Linear Unit (ELU) is an activation function similar to
PReLU, introduced to solve some limitations of other activation functions
such as ReLU and its variants. As for the PReLU, the advantage of the
ELU function is that it has a non-zero gradient for positive and negative
values of s, which can help speed up convergence during training. In
addition, the ELU function has been shown to perform better than ReLU
and its variants in some scenarios, especially when dealing with noisy
data [75].
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Figure 2.10: The ELU function
(a = 1).

ELU(s) = a(exps −1) for s < 0

ELU(s) = s for s ≥ 0

ELU’(s) = ELU(s) + a for s < 0

ELU’(s) = 1 for s ≥ 0

(2.7)

• The softmax is an activation function that maps a vector s of K real
values into a vector of K real values that sum to 1 so that these values
can be interpreted as probabilities.

softmax(sj) =
exp(sj)

∑K

k=1 exp(sk)
∀j = 1, · · · , K (2.8)

where

◮ sj is the j-th element of the input vector,

◮ exp(sj) is the standard exponential function applied to sj ,

◮

∑K

k=1 exp(sk) is a normalization term to ensure that the output
vector values sum to 1,

◮ K corresponds to the number of model outputs if softmax is the
activation function of the final layer.

The connection between input and output, known as the transfer function, is
learned from data instead of being programmed. Training starts by randomly
assigning weights wj , which are refined as learning progresses.

2.3 Deep Neural Network Architectures

The organization of neurons in an artificial neural network is strongly related
to its purpose. This section provides a concise overview of the neural network
architectures used in this research.

2.3.1 Multi-Layer Perceptron

The multi-layer perceptron (MLP) or multi-layer feed-forward network is an
artificial neural network characterized by one or more hidden layers whose
computation nodes are correspondingly called hidden neurons. Artificial neural

17



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 18 — #38
✐

✐

✐

✐

✐

✐

Chapter 2 Background

Figure 2.11: Multi-layer perceptron.

networks are often referred to as “deep” when they have more than one or two
hidden layers. An MLP with one or more hidden layers and a sufficient number
of non-linear units can approximate any continuous function on a compact input
domain with arbitrary precision.

Multi-Layer Perceptron Architecture

The MLP architecture consists of multiple layers of neurons, each fully con-
nected to those in the previous layer (from which they receive input) and those
in the subsequent layer (which they, in turn, influence).

In a multi-layer neural network composed of M layers of neurons, each neuron
of the k-th layer is connected only to all the neurons of the (k +1)-th layer. No
feedbacks are present, and no connections between neurons of the same layer
are allowed. Thus, the network has no memory and acts instantaneously (feed-
forward). Omitting the n variable for the sake of conciseness, the notation of
a generic MLP architecture, shown in Figure 2.11, is defined in the following:

• M is the number of layers (l index),

• Nl is the number of neurons of the l-th layer,

• s
(l)
k is the induced local field of the k-th neuron at the l-th layer,

• x
(l)
k is the output of the k-th neuron at the l-th layer,

• w
(l)
kj is the weight connecting the j-th neuron at (l − 1)-th layer to the

k-th neuron at the l-th layer; w
(l)
k0 is the bias weight of the k-th neuron

at the l-th layer.

18
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Multi-Layer Perceptron Operations

The mathematical description of the neural activity of the M -hidden-layered
MLP is summarized into two main computational steps.
Given x

(0)
k with k = (1, . . . , N0) the input at layer 0, for all layers l = 1, . . . , M ,

do:

• s
(l)
k =

Nl−1
∑

j=0

w
(l)
kj x

(l−1)
j with k = 1, . . . , Nl and w

(l)
k0 the bias weight,

• x
(l)
k = f(s

(l)
k ) where f(·) is the activation function,

and the output at layer M is yk = x
(M)
k with k = (1, . . . , NM ).

The behavior of an MLP architecture is parameterized by the connection
weights, which are adapted during an iterative process called network training,
composed of two computational phases, a forward and a backward phase. In
the forward processing or propagation, input examples are fed to the input
layer, and the resulting output is propagated via the hidden layers toward the
output layer. During the backward processing or propagation, the error signal
originating at the output neurons is sent back through the layers, and the
network parameters (i.e., weights and biases) are tuned.

Examining in detail the individual computational steps of the algorithm:

1. Forward phase: for each pattern n, the inputs xk[n] and the outputs yk[n]

are evaluated. Specifically, given a set of inputs xk[n] with k = 1, . . . , N0

and n = 1, . . . , Q (Q is the number of input patterns), the aim is to
determine the set of weights w

(l)
kj ∀k, j, l to yield the corresponding outputs

yk[n] with k = 1, . . . , NM .

2. Error computation: ǫn =
∑NM

k=1 E
(M)
k . The network has to approxi-

mate the desired outputs, also called targets, defined as dk[n] with k =

1, . . . , NM and n = 1, . . . , Q (Q also denotes the number of output pat-
terns). The result is achieved by means of the weights adaptation, which
consists in minimizing a suitable Cost function, used to measure the ac-
curacy of this approximation. The standard Mean Square Error (MSE) is
often employed, calculated over all output neurons and all Q input/target
pairs, and defined as:

ǫ =
1

Q

Q
∑

n=1

ǫn ǫn =
1

2

NM
∑

k=1

(dk[n] − yk[n])
2 (2.9)

in which ǫn is the Loss function.

3. Backward phase: gradient-based techniques are widely used to minimize
the Cost function through the local gradient computation δ

(l)
k for k =

1, . . . , Nl and E
(l−1)
k for k = 1, . . . , Nl−1.
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Figure 2.12: Block diagram of the iterative forward and backward processing.

4. Updating weights w
(l)
kj for k = 1, . . . , Nl and j = 0, . . . , Nl−1.

5. Iterative process: repeat for all layers l = (M − 1), (M − 2), . . . , 1.

Several algorithms can be used to minimize the Cost function ǫ, and the
Stochastic Gradient Descent (SGD) is the standard choice, where weights are
updated pattern-by-pattern by computing partial derivatives of the Loss func-
tion. The learning rule for each weight of the network is defined as:

w′(l)
kj = w

(l)
kj − α

∂ǫn

∂w
(l)
kj

for k = 1, . . . , Nl and j = 0, . . . , Nl−1

= w
(l)
kj + αδ

(l)
k x

(l−1)
j

= w
(l)
kj + △w

(l)
kj ,

(2.10)

where w′(l)
kj is the updated weight, w

(l)
kj is the previous weight, and α is the

learning rate. △w
(l)
kj denotes the variation of weight w

(l)
kj at the l-th layer.

Figure 2.12 illustrates the block diagram of the iterative forward and back-
ward processing phases.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are specialized feed-forward neural net-
works that mimic the functioning of the human visual cortex. The main ad-
vantage of this network is the robust pattern recognition system characterized
by a strong immunity to pattern shifts. In standard applications, the input of
a CNN architecture is an image, i.e., a 2D signal with no temporal context.
Convolutional neural networks employ the convolution operation in at least
one of their layers, and their architectures are generally composed of one or
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Figure 2.13: Convolutional neural network.

more convolutional, pooling and feed-forward (also called dense or fully con-
nected) layers. Figure 2.13 illustrates a generic convolutional neural network
architecture.

The convolutional layer performs a convolution between matrices and adds a
scalar bias to produce an output. Then, a non-linearity is applied element-wise.
The convolution operation occurs between the input matrix xi,j and the kernel,
i.e., the 2D filter wi,j (m×m matrix W). Kernels are generally smaller than the
input, allowing CNNs to process large inputs with few trainable parameters.
The 2D convolution operation can be expressed as:

yi,j = wi,j ∗ xi,j =
m−1
∑

a=0

m−1
∑

b=0

w(a,b)x(i−a)(j−b) (2.11)

Convolutional kernels process the input data matrix by dividing it into local
receptive fields, a region of the same size as the kernel, and sliding the local
receptive field across the entire output. Each hidden neuron is thus connected
to a local receptive field, and all the neurons form a feature map matrix. The
weights in each feature map are shared: all hidden neurons aim to detect the
same pattern, just at different locations in the input image. The shape of the
input, the shape of the kernel and the sliding step of the kernel determine the
output shape of the convolutional layer. In particular, the two fundamental
processing paradigms of the convolution operation are padding, which consists
of adding zero pixels around the boundary of the input image to prevent loss
of information, and stride, which is the process of moving the kernel window
more than one element at a time to reduce the output dimensions.

After the convolutional layer, a pooling layer is usually applied to reduce
the feature map dimensions and speed up the computation. The pooling layer
reduces the dimension of the matrix by a rule: a sub-matrix of the input is se-
lected, and the output is the maximum (max-pooling) or the average (average-
pooling) value of this sub-matrix. The pooling process introduces tolerance
against shifts in the input patterns. Together with the convolutional layer, it
allows the CNN to detect if a particular event occurs, regardless of its deforma-
tion or position. The pooling operation aims to introduce robustness against
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Figure 2.14: Convolution (a), max-pooling (b), and average-pooling (c) opera-
tions.

translations of the input patterns.

Finally, at the top of the network, a layer of neurons is applied. This layer
does not differ from the multi-layer perceptron, being composed by a set of
neurons and being fully connected with the previous layer. In Figure 2.14, ex-
amples of convolution, max-pooling and average pooling operations are shown.

The forward phase of a convolutional neural network can be summarized into
the operations occurring in each type of layer:

• In convolutional layers, the input matrix dimension can be assumed with
a N × N size, the kernel matrix dimension is m × m, the convolutional
layer has the size (N − m + 1) × (N − m + 1), and its ij entry is equal to

x
(l)
ij = f

(

b(l) +
m−1
∑

a=0

m−1
∑

b=0

w
(l)
ab x

(l−1)
(i−a)(j−b)

)

= f(s
(l)
ij ) (2.12)

• In pooling layers, the operation consists of taking some p×p region, with
p ∈ N and yielding a single value, which is the maximum (max-pooling)
or the average (average-pooling) of that region.

• In feed-forward layers, standard forward operations are computed.

Similarly, backward propagation in the different types of layers is computed
in this way:

• In convolutional layers, the partial of the error function with respect to
each output of neuron activities is computed and back-propagated from
the output to the convolutional layer. For each entry w

(l)
ab of the kernel

W
(l) at layer l, the chain rule is applied, and the gradient component is

obtained as:
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∂ǫ

∂w
(l)
ab

=

N−m
∑

i=0

N−m
∑

j=0

∂ǫ

∂s
(l)
ij

x
(l−1)
(i−a)(j−b) (2.13)

To compute the weight updates for the convolutional layer, the derivatives
are calculated by applying the chain-rule as follows:

∂ǫ

∂s
(l)
ij

=
∂ǫ

∂x
(l)
ij

f ′(s
(l)
ij ) (2.14)

Finally, the errors are back-propagated to the previous layer:

∂ǫ

∂x
(l−1)
ij

=

m−1
∑

a=0

m−1
∑

b=0

∂ǫ

∂s
(l)
(i+a)(j+b)

w
(l)
ab (2.15)

This means applying a convolution to the derivatives by using the kernel
matrix at layer l, denoted as W

(l) flipped along both axes (with zero-
padding).

• In pooling layers, each value yielded in the forward phase corresponds to
an error coming through the back-propagation. This error is forwarded
to the previous layer with upsampling.

• In feed-forward layers, standard back-propagation operations are per-
formed.

2.4 Optimization Algorithms

Most deep learning algorithms involve optimization in the training phase. The
most widely used is gradient-based optimization, which belongs to the first-
order iterative optimization algorithms. Specifically, optimization is the task
of minimizing some function g(x) by altering x: g(x) is called the objective
function that, in the deep learning field, is also called the Cost, Loss, or error
function. The aim of optimization techniques is reached by doing a small change
ε in the input x to obtain the corresponding change in the output g(x):

g(x + ε) ≈ g(x) + εg′(x) (2.16)

This formulation is based on the calculation of the derivative g′(x). The
gradient descent technique is based on reducing g(x) by moving x in small
steps with the opposite sign of the derivative. The aim is to find the minimum
of the Cost function: when g′(x) = 0, the derivative provides no information
about which direction to move, and this point is defined as stationary point. A
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(a) Convex function. (b) Non-convex function. (c) “Saddle” function.

Figure 2.15: Examples of Cost functions.

local minimum is a point where g(x) is lower than at all neighboring, and it is
no longer possible to decrease g(x) by making infinitesimal steps. The absolute
lowest value of g(x) is a global minimum. The gradient descent algorithm shows
problems with non-convex functions, as the learning process often gets stuck in
a local optimum rather than finding the right way to the global optimum. Also,
most points of zero gradients are not local optima but saddle points located in
large space regions where gradients are close to zero, so the learning process is
slowed. Figure 2.15 illustrates a convex function and examples of functions in
which the problems of local optima and zero gradients emerge. The learning
rule can be specifically modified, resulting in diverse optimization algorithms,
which are outlined below and are the most commonly used.

2.4.1 Stochastic, Batch, and Mini-Batch Gradient Descent

Defined the training set as the set of available input/target Q model pairs,
an epoch consists of the complete presentation of the training set during the
learning process. Parameters, i.e., weights and biases w

(l)
kj with k = 1, . . . , Nl,

j = 0, . . . , Nl−1, and l = 1, . . . , M , are updated at the end of each epoch. On
the other hand, hyperparameters, representing the parameters that describe
the network architecture and the training characteristics, are chosen and set
by the user before the training phase.

One of the hyperparameters that have a key role in optimizing the algorithm
is the number of instances processed at a time during the gradient descent that
results in the model update and determines different convergence trajectories
to the global minimum, as illustrated in Figure 2.16. Different gradient descent
algorithms are defined based on the number of training instances processed.

• Stochastic Gradient Descent (SGD): it represents the case previously ex-
posed, also called online or sequential learning. The gradient is computed
considering a single input pattern (xk[n], dk[n]) with n ∈ {1, . . . , Q} cho-
sen randomly from the training set at each iteration. It yields exactly the
learning rule seen before.
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• Batch Gradient Descent (BGD): the gradient descent algorithm processes
the entire training set simultaneously, calculating all gradients for each
pattern index n and then averaging them across all available Q patterns.

• Mini-Batch Gradient Descent (mBGD): on each step of the algorithm, a
mini-batch of examples (xk[p], dk[p]) with p ∈ {1, . . . , P} and P < Q is
sampled uniformly from the training set. The mini-batch size is typically
chosen to be composed of a relatively small number of examples.

(a) Stochastic Gradient
Descent.

(b) Batch Gradient De-
scent.

(c) Mini-Batch Gradient
Descent.

Figure 2.16: Comparison between the convergence trajectories of SGD, BGD,
and mBGD.

2.4.2 Learning Rate Decay

Learning Rate Decay is a family of strategies that slowly reduces the learning
rate over iterations, to be used in optimization algorithms in order to avoid
exceeding a good minimum. The learning rate determines the size of the steps
taken by the optimizer in adjusting model parameters; a lower learning rate
results in smaller steps, which leads to slower convergence and a reduced risk
of exceeding a minimum point.

A constant learning rate (α) might negatively influence the algorithm per-
formance: if it is set too high, the algorithm can oscillate and become unstable;
if it is too small, the algorithm takes too long to converge. With a variable
learning rate, the complexity of the local error surface is responded to, and
the entire optimization process benefits. Figure 2.17 is explanatory of constant
and variable learning rates in the Cost function minimization process.

One of the most common strategies is to apply to the initial learning rate α0

a reduction factor proportional to the number of epochs achieved, according to
the equation:

α =
k

epoch_number
α0 (2.17)
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(a) Constant α. (b) Variable α.

Figure 2.17: Comparison between constant and variable learning rates.

2.4.3 ADAM Algorithm

ADAM (Adaptive Moment Estimation) [76] is a stochastic gradient descent
optimization algorithm that uses moving averages of the parameters to provide
a running estimate of the second raw moments of the gradients, the mean and
variance. In this way, the algorithm adapts the learning rate for each parameter
based on the historical gradient information, resulting in faster convergence
compared to standard stochastic gradient descent.

ADAM algorithm keeps stored an exponentially decaying average of past
squared gradients v[n] and of past gradients m[n]:

m[n] =β1m[n − 1] + (1 − β1)
∂ǫn

∂w
(l)
kj

(2.18)

v[n] =β2v[n − 1] + (1 − β2)

(

∂ǫn

∂w
(l)
kj

)2

(2.19)

where m[n] and v[n] are estimates of the first moment (the mean) and the
second moment (the variance) of the gradients respectively, hence the name of
the method. As m[n] and v[n] are initialized as vectors of 0 values, it can be
observed that they are biased towards zero, especially during the initial time
steps, when the decay rates are small (i.e., β1 and β2 are close to 1).

Bias-corrected first and second-moment estimates can be computed to solve
the issue:

m̂[n] =
m[n]

1 − βn
1

(2.20)

v̂[n] =
v[n]

1 − βn
2

(2.21)
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Then the ADAM update rule is:

w
(l)
kj [n + 1] = w

(l)
kj [n] −

α
√

v̂[n] + ε
m̂[n] (2.22)

Default values for parameters are: 0.9 for β1, 0.999 for β2, and 10−8 for
ε. ADAM works well in practice and compares favorably to other adaptive
learning-method algorithms.

2.5 Supervised Learning

Any learning process aims to improve the subject’s experience for a certain
task. A neural network is a parametric system that increases task-oriented
experience by adapting its parameters (weights) using the available environ-
mental knowledge (data). The learning process can be performed according to
two main supervision paradigms: supervised and unsupervised, each tackling a
different type of learning problem with a specific type of network architecture.

• In supervised learning, the algorithm makes use of a dataset containing
examples associated with a label or target: it is comparable to learning
with a teacher.

• In unsupervised learning, no labels are attached to the data. There is
no external teacher to oversee the learning process, so the challenge is to
self-discover useful patterns in available data.

Supervised learning is the paradigm assumed in this research. It is a type
of learning where a network is trained using a set of data that includes inputs
and their corresponding outputs. The goal of supervised learning is to have the
network recognize the relationship between the input variables and the output
and then make predictions for unknown outputs. During the training phase,
an algorithm such as back-propagation is used to modify the weights and other
parameters of the network, with the goal of minimizing the overall error in
the training data. This objective is achieved by providing the network with a
significant number of examples to learn from, and the network must also be
able to generalize to new cases it has not seen before.

Given as input a finite sequence S = (x[n], d[n]) with n = 1, . . . , Q of pairs
from X ×D = T (training data), where d[n] is the label or target corresponding
to x[n], the output of the learning algorithm is a mapping function F : X → D

that has the goal to predict d[n] ∈ D given x[n] ∈ X . The purpose of the
learning algorithm is to find a good mapping F between x[n] and d[n] for pairs
from Xu×Du = Tu unseen during the training (testing data). The Loss function
L : D × D → R measures the accuracy of the approximation of d[n] by means
of y[n] = F (x[n]).
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(a) Regression.





(b) Classification.

Figure 2.18: Regression and classification learning problems.

Depending on whether D is continuous or discrete, two types of learning
problems are distinguished: regression or classification, which require different
Loss and, consequently, Cost functions.

• Regression: the algorithm is asked to predict a continuous value given a
certain input. For instance, it outputs a function F : RN0 → R where N0

is the input dimensionality. So, regression models are used to predict a
continuous value.

• Classification: the algorithm is asked to specify to which of C categories
a given input belongs using a function F : RN0 → {1, . . . , C}. Therefore,
the model has to predict which category (class), among some discrete set
of options, an example belongs. The type of classification task depends
on the number of classes and their concurrency (binary, multi-class, and
multi-label).

In Figure 2.18, regression and classification problems are schematized.

2.6 Generalization

The generalization capability of a neural network is its ability to perform well
when it is fed with data unseen during training. Several factors affect the
input-output mapping learned by the neural network, including the size of the
training set, the size of the network, and the complexity of the problem.

The training set is used to train a deep learning model, and the error measure
computed on the training set is the training error. In a regression task, the
model is trained by minimizing the training error, which is computed as follows:

1

Q(train)

Q(train)

∑

n=1

NM
∑

k=1

(dk[n]
(train)

− yk[n]
(train)

)
2

(2.23)
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Figure 2.19: Partitioning of the dataset in training and test sets.

Figure 2.20: Partitioning of the dataset in training, validation, and test sets.

At the same time, a deep learning model aims to minimize the generalization
error, i.e., the expected value of the error on data belonging to the test set,
also called the testing error (Figure 2.19):

1

Q(test)

Q(test)

∑

n=1

NM
∑

k=1

(dk[n]
(test)

− yk[n]
(test)

)
2

(2.24)

The objective of a well-designed deep learning model is to minimize both the
training error and the difference between the training and testing errors. In
computing a neural model, two situations to avoid are underfitting, when the
model cannot achieve a sufficiently low training error, and overfitting, when
the gap between the training and the testing error is too large.

During the training phase, it is common practice to use a subset of the
training set called the validation set (or development set) to monitor the per-
formance of the model during the training phase, generally at the end of a
bunch of q epochs. The validation set is the sample of data used to provide an
unbiased evaluation of a model fit on the training set while tuning the model
hyperparameters (Figure 2.20).

Several strategies for optimizing the generalization capability of a neural
network have been proposed in the literature. One of the most commonly
applied techniques is to use the training duration to find the optimal number
of epochs for the best results.

For this purpose, the early-stopping strategy has been designed, as depicted
in Figure 2.21. For each iteration step i, it consists of performing the network
training for a fixed number of epochs q, evaluating the network performance
on the validation set, and comparing the validation performance at epoch i × q

with the performance at epoch (i − 1) × q. If the error increases, the training
is stopped (a patience factor can be used on the scope).
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Figure 2.21: The early-stopping generalization method.

2.7 Regularization Techniques

In order to obtain more robust models, different techniques have been proposed
to regularize the weight update during neural network training. They aim to
improve the generalization properties of the model, i.e., the ability to perform
on newly unseen data as well as (in a reasonable manner) on the training set.
A brief description of the most common techniques is given in the following
paragraphs.

2.7.1 Dropout

Dropout [70, 77] provides a computationally inexpensive but powerful method
of regularizing a broad family of models. It allows for the reduction of overfit-
ting by preventing complex co-adaptations of neural layers and efficiently eval-
uating various network layouts. The term dropout refers to randomly dropping
out units (both hidden and visible) in a neural network, as shown in Figure 2.22.
During the training, units are randomly frozen: a different network layout is
evaluated at each training batch (or mini-batch). Each is a thinned version of
the network, composed of all the units that survived dropout. Theoretically,
if n is the number of units, dropout allows training a collection of 2n thinned
networks with extensive weight sharing. Each thinned network gets trained
rarely, thus preventing overfitting.

In the training phase, different sets of neurons are activated for each batch of
examples, and a thinned network is sampled. During each batch of examples,
forward and backward processing is performed only on the thinned network.
Gradients for each parameter are then averaged over the batch. During the
testing phase, a single neural network without dropout is used, and the network
weights are scaled-down versions of the trained weights.
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(a) ANN without Dropout. (b) ANN with Dropout.

Figure 2.22: Dropout regularization method.

2.7.2 Batch Normalization

Batch normalization (BN) [78] is a method to reduce the internal covariate
shift, i.e., the change in the distribution of network activations due to the
change of network parameters during the training phase. The variables in
neural layers may take values with varying magnitudes, possibly hampering
the convergence (learning rate compensation effect) even more critically in deep
neural networks. Batch normalization is based on batch statistics and is applied
to the individual layers (optionally, to all of them). The benefits of this method
are the possibility to use higher learning rates without the risk of divergence,
with the consequent acceleration of training speed, and a reduced sensitivity
to weights initialization.

The batch normalization algorithm applies to all vector values of a batch
(or mini-batch) of the training procedure. It takes in input the vector values
x ∈ B of a certain neural layer, where B is the batch, and transforms it as:

BN(x) = γ
x − µ̂B

√

σ̂2
B

− ε
+ β (2.25)

where:

• µ̂B is the mean of x values over the batch B,

• σ̂B is the standard deviation of x values over the batch B,

• γ, β are learnable parameters,

• ε is a small positive constant that prevents the division by 0.

Batch normalization behaves differently in the training and testing phases:
in training, the mean and variance are calculated over a single batch; in testing,

31



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 32 — #52
✐

✐

✐

✐

✐

✐

Chapter 2 Background

the model makes predictions on a sample at a time. Thus, the entire dataset
is used to compute stable estimates of the variable statistics and fix them at
prediction time.

2.8 Evaluation Metrics

The process of assessing the performance of a system involves estimating its
behavior when exposed to new data. The evaluation is considered unbiased
when the system is tested on data unseen during the training phase and with
available reference annotations. The generated output is then compared with
the reference, and metrics are computed to quantify the performance of the
algorithm. The definition of performance and the measurement method may
vary depending on the objectives and specifications of the system. For example,
the accuracy rate may be used to determine the capability of the algorithm to
correctly classify or identify a sound. In contrast, the mean absolute error may
be used to assess the error made by regression models. It is important to note
that no single metric is universally applicable to all algorithms, as each provides
a distinct perspective on the performance of the system. The evaluation metrics
used in the experiments illustrated in this dissertation are explained in the
following. They are distinguished into classification-related metrics employed in
the studies concerning emergency siren detection and regression-related metrics
for the work mentioned in the other contributions.

2.8.1 Classification-Related Metrics

Concerning a classification task, performance evaluation is done by assessing
the predictions made by the system under review against the corresponding
annotations or ground truth. The computation of classification metrics is based
on the count of correct predictions and several types of errors the system makes.
These counts are referred to as intermediate statistics and are established based
on the evaluation protocol. The following definitions apply to the intermediate
statistics for a target sound event:

• True Positive (TP): a correct prediction that indicates the presence of
the event, as denoted by both the system output and the reference.

• True Negative (TN): a correct prediction that indicates the absence of
the event, as denoted by both the system output and the reference.

• False Positive (FP): an incorrect prediction, as the system output indi-
cates the presence of the event, while the reference denotes its absence.

• False Negative (FN): an incorrect prediction, as the system output indi-
cates the absence of the event, while the reference denotes its presence.
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In this research, the emergency siren detection task has been framed as a
single-label binary problem. The intermediate metrics thus reflect the cor-
rect recognition of the single true class without generating false alarms. The
evaluations were carried out using segment-based metrics, demonstrating the
capability of the system to detect fixed-time instances correctly. The perfor-
mance was measured by comparing the ground truth and system output at the
instance level. However, it is paramount to consider the specific requirements
of a problem and the characteristics of the dataset when choosing the right
metric for performance evaluation. For these reasons, in the several experi-
ments conducted for emergency siren detection, the metrics have been selected
according to the dataset composition. In the following, definitions of accuracy,
precision, recall, F-score, and area under the precision-recall curve (AUPRC)
are reported.

Accuracy

Accuracy is a commonly used metric that measures how often the classifier
makes the correct decision. It is the ratio of the correct outputs from the
system to the total number of outputs:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.26)

Accuracy is a representative metric when the number of positive and nega-
tive examples in the dataset is approximately balanced and when the prediction
concerns a single class. In cases where the dataset is imbalanced, with a large
number of instances of one class and a small number of instances of another, ac-
curacy may not be a reliable measure of performance. In these cases, precision,
recall, F-score and AUPRC are more suitable performance metrics.

Precision and Recall

Precision measures the accuracy of the model in classifying a sample as posi-
tive. It is the ratio of positive samples correctly classified to the total samples
classified as positive, including incorrect classifications:

Precision =
TP

TP + FP
(2.27)

When the model makes many incorrect positive or few positive correct classi-
fications, this increases the denominator and makes the precision small. On the
other hand, the precision is high when the model makes many correct positive
classifications (maximize TP) and fewer incorrect positive classifications (min-
imize FP). Precision reflects how reliable the model is in classifying samples as
positive.
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Recall measures the ability of the model to detect positive samples. It is the
ratio of positive samples correctly classified as positive to the total number of
positive samples:

Recall =
TP

TP + FN
(2.28)

The higher the recall, the more positive samples are detected, which means
the model can correctly classify all the positive samples as positive. A model
with high recall but low precision classifies most positive samples correctly but
has many false positives (i.e., classifies many negative samples as positive). On
the other hand, when a model has high precision but low recall, it is accurate
when it classifies a sample as positive but can only classify a few positive
samples.

F-Score

F-score is a good representation of the overall performance of a classifier when
the data is imbalanced and for multi-class classification. It is the harmonic
mean of precision and recall:

F − score =
2TP

2TP + FN + FP
= 2 ·

(Precision · Recall)
(Precision + Recall)

(2.29)

When working with imbalanced datasets, accuracy alone can be misleading
because a model can achieve high accuracy by predicting the majority class
most of the time. F-score, with its emphasis on both precision and recall,
provides a more comprehensive evaluation of the capability of the model to
handle imbalanced datasets.

Area Under Precision-Recall Curve

The precision-recall curve consists of multiple pairs of precision and recall values
evaluated at different thresholds, such that the tradeoff between the two values
can be seen. This representation is typically used for binary classification in
situations where classes are heavily imbalanced. AUPRC and average precision
(AP) are similar ways of summarizing the precision-recall curve into a single
metric. Specifically, AUPRC is defined as the trapezoidal area under the curve,
while AP is the weighted mean of the precision achieved at each threshold value
n:

AP =
∑

n

(Recalln − Recalln−1) · Precisionn (2.30)

Figure 2.23 illustrates an example of the precision-recall curve that plots the
precision (the fraction of true positive predictions among all positive predic-

34



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 35 — #55
✐

✐

✐

✐

✐

✐

2.8 Evaluation Metrics

Figure 2.23: Example of Precision-Recall curve.

tions) against recall (the fraction of true positive predictions among all actual
positive instances). AUPRC and AP scores range from 0 to 1.

2.8.2 Regression-Related Metrics

Regression metrics are quantitative measures used to evaluate the quality and
effectiveness of regression models. These metrics are able to work on a set of
continuous values and provide a standardized way to assess how well the pre-
dictions of the model align with the actual values. Several common regression
metrics serve various purposes in evaluating the performance of a regression
model. Each metric focuses on different aspects of the predictive capabilities
of the model, such as the magnitude of errors, the variability of predictions,
or the proportion of variance explained. Three of the most commonly used re-
gression metrics, mean squared error (MSE), mean absolute error (MAE) and
mean absolute percentage error (MAPE), are presented as follows.

Mean Squared Error

MSE measures the average of the squared differences between the target values
yi and the values ŷi predicted by the regression model:

MSE =
1

n

n
∑

1

(yi − ŷi)
2 (2.31)

Due to the squaring of differences, MSE assigns greater importance to larger
errors, resulting in a penalty for even small errors. This characteristic can
lead to an overestimation of the inadequacy of the model. However, MSE is
commonly favored over other metrics due to its differentiability, enabling more
effective optimization during the model-building process.
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Mean Absolute Error

MAE measures the absolute differences between the target values yi and the
values ŷi predicted by the regression model:

MAE =
1

n

n
∑

1

|yi − ŷi| (2.32)

MAE exhibits greater robustness to outliers compared to MSE and imposes
less severe penalties on errors. It assigns equal weight to each individual differ-
ence, resulting in a linear score. However, it is not well-suited for applications
that require emphasis on outlier observations.

Mean Absolute Percentage Error

MAPE, also known as mean absolute percentage deviation (MAPD), is a re-
gression metric that measures the average of the absolute percentage errors
between the target values yi and the values ŷi predicted by the regression
model:

MAPE =
1

n

n
∑

1

∣

∣

yi − ŷi

yi

∣

∣ (2.33)

MAPE is commonly used to evaluate the accuracy of predictions in terms of
percentage error. The idea of this metric is to be sensitive to relative errors.
It is scale-independent, meaning it can be used to compare the performance of
models across different datasets or target variables, regardless of their absolute
values. This aspect allows for assessing the performance of the model in a more
interpretable and intuitive manner.

36



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 37 — #57
✐

✐

✐

✐

✐

✐

Chapter 3

Datasets

Any problem solved by machine learning, particularly by deep learning, requires
an adequate amount of data for the parameterization of the algorithms. The
ability to access public databases makes it possible to test approaches to assess
their actual benefit in real-world applications and to compare the performance
of existing algorithms on a common basis of comparison. Although several
public datasets containing emergency sirens are available [79–81], each country
has its own regulations on the characteristics of warning sounds associated with
the different categories of emergency vehicles.

The present study focuses on the detection of ambulance sirens according to
Italian law. This choice required the ad hoc creation of audio data collections
to address the challenge of detecting a specific category of siren sounds. The
following chapter describes both the methodologies for creating synthetic au-
dio data of Italian ambulance sirens and the equipment and procedures used
to record ambulance sirens in the real world. Finally, the acoustic features
involved in this research are presented.

3.1 Siren Audio Data

Machine and deep learning techniques exhibit accurate modeling and general-
ization capabilities because of the data that support them. Specifically, labeled
data have a crucial influence on the development and evaluation of supervised
algorithms in research fields dealing with sound event detection and classifica-
tion.

Well-established and easily accessible reference databases attract the research
community’s interest as readily available study supports, thus accelerating the
progress of related fields. There are many popular databases in research ar-
eas related to audio, such as the ESC50 [82] and the UrbanSound8K [83], for
the classification of environmental and urban sounds, respectively. Considering
the quantity, quality and labeling accuracy of the data contained in the most
well-known public databases such as those mentioned, the process of creating
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a dataset for specific system development is naturally very delicate. The au-
dio data content must have a good diversity of characteristics to broaden the
learning scope, a significant duration for robust modeling, and careful labeling
to represent the aspects of interest. Unfortunately, there is no rule dictating a
minimum amount of data, as it usually depends on the intended use and type of
algorithm. In addition, there are no specific rules regarding the co-occurrence
of environmental sounds.

Therefore, creating a database of emergency siren sounds is a complicated
task, whether it involves collections of audio files generated via algorithms or
recordings in real-world environments. The challenge in synthetic data creation
is related to contextualizing the target signal in scenarios of ever-changing and
unpredictable vehicular traffic and weather conditions, as well as the faithful
reproduction of attenuation phenomena and the Doppler effect associated with
the relative velocity between source and observer. On the other hand, the
issues involved in the recording procedure lie in the effort required in terms of
acquisition times, labeling and processing of audio data. These aspects of the
research conducted are discussed in the following sections.

3.1.1 Siren Audio Data Generated via Algorithm

The implementation of an algorithm for the automated generation of siren
audio files in background noise contexts has the advantage of producing an
audio data collection with controlled quality and content.

In this work, the development of the algorithm began with the selection of
a certain type of siren, specifically the acoustic alarm of an Italian ambulance.
Its characteristics of duration, periodicity, and tone are regulated by the Min-
isterial Decree issued by the Ministry of Transport on October 17th, 1980 [84].
A clean audio file of the Italian ambulance siren, consisting of alternating two
distinct tones at 392 Hz and 660 Hz, was downloaded from web resources. The
siren alarm is composed of two consecutive repetitions of this sequence: the
392 Hz tone for a duration of 1/3 period, followed by the 660 Hz tone for 1/18
period, then the 392 Hz tone for 1/18 period, and finally, the 660 Hz tone for
1/18 period. The total length is (3 ± 0.5) seconds, and the pause between two
sound sequences is expected not to exceed 0.2 seconds. The ambulance alarm
generates a two-tone siren from a square wave, resulting in a signal comprised
of the fundamental frequency and other higher-order harmonics. A single pe-
riod of the siren sound was isolated and repeated to obtain an audio file of
10 seconds. After that, the Doppler effect and attenuation by distance were
applied to the previously generated 10-second ambulance siren.

For the implementation of the Doppler effect, inspiration was taken from the
work done in [85], which is based on the interpolation and de-interpolation of
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(a) (b)

Figure 3.1: Italian ambulance siren waveform (a) and spectrogram (b).

delay lines. A digital delay line is an elementary processing unit that introduces
a time delay between its input and output. Assuming that x[n] is a discrete-
time signal of the causal type (i.e., it takes non-zero values only for n > 0,
while it is equal to 0 for n < 0) and M is the length of the delay in samples,
the output y[n] is equivalent to the input sequence x[n] delayed by a quantity
equal to M :

y[n] = x[n − M ] (3.1)

If the parameter M changes over time, the resulting unit is called a variable-
length delay line and can be used to model and simulate moving acoustic
sources. A software implementation of the delay line, proposed in [86], is
based on the use of a circular buffer of length N . The input signal is written in
the buffer sample by sample, at the position of a write-pointer. This position
is increased by one at every time step. The output signal is read sample by
sample at the position of a read-pointer, delayed by M samples with respect
to the write-pointer. The delay M (i.e., the distance between the read and the
write-pointer) is allowed to vary over time as long as the condition M ≤ N is
met.

It is widely acknowledged that a time-varying delay line can lead to a signif-
icant frequency shift [87]. For this reason, the time-varying delay is commonly
used in creating vibrato and chorus effects [88]. Based on this principle, it is
reasonable to assume that a time-varying delay line could accurately simulate
the Doppler shift. When considering the Doppler shift from a physical per-
spective, it is useful to view the air as a metaphor for a magnetic tape, which
travels from the source to the listener at the speed of sound. In a scenario
where the source and listener remain stationary, the listener hears what has
been recorded by the source. On the other hand, the listener perceives the
Doppler shift when either the source or listener is in movement. This anal-
ogy also works for a computational model based on time-varying delay lines
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of digital signals. If the delay to be implemented is an integer quantity, the
sample of the Doppler-affected signal is given by a sample of the delayed input
signal. Otherwise, when the delay to be implemented is a fractional quantity
represented by the interpolation time between samples n and n + 1, expressed
by α, the output sample is generated from the linear interpolation between
two adjacent samples of the original input signal. In this case, the expression
is derived by truncating the first-order Taylor series expansion and fitting an
approximation of the first-order derivative1:

y[n + α] = αx[n + 1] + (1 − α)x[n] (3.2)

The implementation of the Doppler effect simulation method to be applied
to the siren audio file was focused on specific configurations of approaching
or moving the source away from the receiver according to the principles of
kinematics. Several initial distances and eight directions of motion according
to 45-degree angles of a circumference were treated as case studies. Regarding
the attenuation of the sound wave due to distance, the far-field propagation was
considered, according to which the energy of the spherical wavefront emitted
by a source decreases with the square of the distance from the source [89].
Figures 3.1 and 3.2 show the waveform and spectrogram of a clean siren signal
before and after applying the Doppler effect.

The last step was to create realistic audio files of sirens immersed in traffic
noise contexts. Noise audio files were downloaded from a collaborative database
of recordings [90]. Using pre-processing techniques, they were standardized in
lengths, sampling rates, channels, and bit depth. All audio data were resampled
to 16 kHz with 32-bit depth encoding and made monophonic, then normalized
and split into 10-second files. Siren audio files with attenuation for distance
and Doppler effect were added to urban traffic noises at decreasing SNRs to
simulate rising levels of traffic noise and, thus, more challenging situations for
the emergency siren detection task.

3.1.2 Siren Audio Data Recorded

In May 2021, a campaign of siren recordings was planned and conducted using
a car equipped with eight condenser microphones model Behringer ECM8000.
The installation setup included four microphones inside the passenger com-
partment, with two at the sides of the front seats and two at the rear seats
at seatback height, two in the trunk at the floorboard height, and two be-
hind the license plate on opposite sides. The microphones were connected
via XLR connectors to an eight-channel Roland Octa-Capture soundboard,
which in turn was interfaced via USB to a laptop controlled by an operator

1https://ccrma.stanford.edu/~jos/Interpolation/Interpolation_4up.pdf
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(a) (b)

Figure 3.2: Dopplered Italian ambulance siren waveform (a) and spectrogram
(b).

inside the car. The positions of recording sensors were assigned to all relevant
places of the vehicle: at the front and rear of the passenger compartment, in
the trunk, and externally. The positions inside the passenger compartment
were evenly distributed within the cabin and did not interfere with the view,
the air conditioning vents, or the audio system. The locations of recording
sensors were also carefully planned concerning different utilization. Internal
microphones could be used for the audio equalization system [91]; the trunk
represents a weather-protected environment scarcely affected by the sounds in-
side the passenger compartment and offers other applications, such as asphalt
wetness detection [9]; the installation behind the license plate is a location in
the outdoor setting that combines rapid responsiveness to external signals with
a moderately sheltered condition from wind and weather. Figure 3.3 shows the
microphone setup of the equipped car.

Recordings were performed for seven days, with the car moving in traffic and
stopping at parking areas, always with the engine running. Itineraries were
carefully planned to cover the busiest roads where the transit of ambulances
requires the activation of the siren alarm, focusing on the most populated city of
the Marche Region in Italy. High-traffic suburban areas near the main hospital
and central urban areas were explored. Sirens were recorded in several contexts:
adjacent to a construction site, along a coastal road, in a suburban area near
a shopping center and a residential neighborhood, in the city center, and on
a high-speed road. Different driving settings were considered: stationary with
the engine running, at moderate speed with frequent stops in urban areas, and
at high speed in suburban locations.

Recordings were carried out separately in eight channels, corresponding to
the eight microphones, with 44.1 kHz sampling rate and 32 bit-depth, and saved
in wav format for a total of 18 audio tracks of approximately 10 hours and
30 minutes. The content of each track was analyzed, and the portion of the
audio file in which the siren sound was audible, even weakly, with reference
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(a) Layout of the microphone positions.

(b) Position 2.

(c) Positions 5–6.

(d) Position 8.

Figure 3.3: Setup of the car equipped with audio recording devices.

to the channels corresponding to the external microphones, was selected and
labeled as siren. Spectrogram visualization helped identify the presence of the
fundamental frequencies and the upper harmonics of the two siren tones for
correctly labeling the audio files.

3.1.3 Acoustic Features

The time-domain representation of a sound signal, or waveform, is not straight-
forward to interpret directly. For this reason, frequency and time-frequency do-
main representations that provide features of sound signals more closely with
human perception have been used for years. In this section, a brief description
of the representations employed in the present research is provided.

STFT Spectrograms

The short-time Fourier transform (STFT) is a popular method for analyz-
ing speech and audio signals because it is simple to use and computationally
efficient. The STFT breaks down an audio signal into smaller overlapping seg-
ments, called windows, and calculates the frequency spectrum for each window
using the Fast Fourier Transform. This results in a representation of the signal
that shows how its frequency content changes over time. The formula for the
STFT is given by:
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STFT [f, t] =

L−1
∑

n=0

s[n] · w[t]e−j2πfn, (3.3)

where STFT [f, t] is a function that indicates how the spectral content of the
signal evolves over time, with time represented by the row index t and frequency
represented by the column index f . s[n] is the audio signal, L is the window
length, and w[t] is the Hanning window function. The choice of window func-
tion and window length determines the trade-off between time and frequency
resolution, with a larger window length resulting in better frequency resolu-
tion at the expense of poorer time resolution. The STFT allows for adjustable
time-frequency sampling to control the resolution of the final representation,
called the STFT spectrogram.

Log-Mel Spectrograms

Log-Mel spectrograms are widely used acoustic features for sound event de-
tection and classification tasks. The feature computation begins with a set
of short-time Fourier transform spectra. They are calculated from an input
signal divided into frames lasting between 20 and 40 milliseconds since the sig-
nal is not subject to significant changes on a short-term scale. The Mel filter
bank, composed of a set of triangular filters in the Mel scale, simulates the
overall frequency selectivity of the human auditory system using the frequency
warping:

Mel(f) = 2595 log10(1 +
f

700
) (3.4)

The filter bank is then applied to the power spectra to generate a Mel spectro-
gram. Finally, logarithmic scaling is applied to obtain the log-Mel spectrogram.

Gammatone Spectrograms

Gammatone spectrograms or gammatonegrams [92] are the results of the ap-
plication of a set of bandpass filters in the equivalent rectangular bandwidth
(ERB) scale after STFT computation on input signals. This type of filter
bank, characterized by a band whose amplitude increases with the central fre-
quency fc, was introduced to describe the impulsive response of the human
auditory system and represents the auditory perception, emphasizing audible
frequencies. The impulse response centered in a given frequency fc takes the
expression:

g(t, fc) =

{

atn−1e−2πbt cos(2πfct + φ) if t ≥ 0

0 otherwise
(3.5)
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Chapter 3 Datasets

where a controls the gain, n is the filter order, b is filter bandwidth, φ is the
phase of the carrier, and fc is central frequency.

3.1.4 Harmonic Filtering

For many applications, it is necessary to consider only the harmonic or percus-
sive part of an audio signal, but sometimes sounds are neither fully harmonic
nor percussive, such as clapping, rain, and vehicle engine noise. The harmonic
content of an audio signal often plays a relevant role in its identification. To
improve the performance of a classification algorithm, a source separation tech-
nique that reduces the percussive and residual components and enhances the
harmonic ones, as described in [93], can be applied to tonal sounds occurring
in the presence of background noise, such as emergency sirens. The principle
of this technique is based on the spectrogram decomposition method inspired
by the sines+transients+noise (STN) audio model [94]:

S = H + P + R (3.6)

where H contains the harmonic, P the percussive, and R the residual compo-
nents not included in H or P .

This decomposition technique was first developed in [95]. The audio signal
is transformed from the amplitude to the frequency domain through the STFT
computation. Then, a median filter is applied horizontally and vertically to
obtain one spectrogram with the accentuated harmonic components and the
other with the percussive ones. Two separation factors (βh, βp) ≥ 1 are defined
to increase the harmonic-to-percussive ratio and vice versa in the spectrogram.
The choice of a harmonic βh > 1 allows clearly harmonic components to be
retained and percussive and residual components to be eliminated.

The librosa [96] library includes a median-filtering harmonic percussive source
separation function, and the margin parameter defines both the separation fac-
tors. If margin=1, a spectrogram is decomposed in S = H + P ; if margin> 1,
a spectrogram is decomposed in S = H + P + R, with a greater harmonic or
percussive separation according to the values assigned to (βh, βp).
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Convolutional Neural Networks for

Emergency Siren Recognition

Convolutional neural networks (CNNs), which have become popular in com-
puter vision for visual recognition and image classification [97, 98], have also
been successfully applied in the audio fields of speech [99] and music analy-
sis [100, 101]. Their scope has been extended to the detection and classification
of environmental sounds characterized by varied and chaotic structures, demon-
strating their effectiveness in capturing energy modulation patterns across time
and frequency [102]. They also have the ability to learn and identify spectro-
temporal features representative of different classes of sounds, even if part of
the sound is masked by noise [103–105]. However, the limited initial exploration
of CNNs in classifying environmental sounds can be attributed to the paucity
of labeled data. This problem is crucial for deep neural networks, which need a
significant amount of training data to learn from input to output a non-linear
function that can generalize with good performance on data unseen during
the training phase. For this purpose, research has devised strategies to over-
come the problems encountered and obtain a wide availability of labeled data,
thereby improving the potential of CNNs in the fields of sound event detection
and classification [106, 107].

The generation of synthetic datasets is a strategy for obtaining data of the
desired numerosity with controlled characteristics and accurate labeling. This
section discusses the experiments for emergency siren recognition with convo-
lutional neural networks by employing synthetic audio data to derive datasets
for training neural models. Again with synthetic datasets, these models have
been tested to assess their capability to generalize to increasingly variegated
and challenging scenarios. Also, different acoustic features and optimization
strategies to reduce the network hyperparameters have been investigated.
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4.1 CNN-based Approach with Synthetic Dataset

In this first phase of the research, the main objective focused on developing a
reliable emergency siren recognition system based on convolutional neural net-
works. The robustness of the solution has been related to the identification of
siren tone components in time-frequency representations computed from fixed-
length audio files in contexts with vehicular traffic noise and adverse weather
conditions. The work concentrated on generating synthetic audio data from
which acoustic features have been computed and defining the neural architec-
ture to realize such a system. The comparison of the performance obtained with
three datasets and two different acoustic features provided important insights
into the accurate identification of siren sounds.

4.1.1 Proposed System

The proposed system is an approach based on the deep neural architecture pre-
sented in [41], where the detection and localization of acoustic alerting events in
urban scenarios have been performed in a multitasking learning scheme, along
with signal denoising. In this study, the encoding path of such architecture has
been taken up and adapted to siren/noise classification. The whole system con-
sists of an acoustic feature computation phase and a classification phase. The
acoustic feature computation phase transforms the time-varying audio signal
into acoustic spectral features. Then, the classification phase takes the feature
vectors as input and maps them into a binary classification of ambulance siren
presence or absence. The network parameters have been computed in a super-
vised manner, using the annotations of fixed-length audio segments as one hot
target vector.

Acoustic Feature Computation

The acoustic feature computation procedure operated on 0.5-second mono au-
dio signals sampled at 16 kHz. Two spectrogram-like representations have been
used and compared: log-Mel and gammatone spectrograms. The choice of these
acoustic features is related to their effectiveness demonstrated in similar work.
Log-Mel spectrograms have shown good performance in audio tagging [108]
and sound event detection tasks [109]. Similarly, gammatonegrams have been
proven to be robust in identifying sound events in contexts where noise is sig-
nificant [110, 111]. Log-Mel spectrograms have been computed by filtering the
magnitude spectrum of the STFT with a filter bank consisting of 40 filters
uniformly spaced in the Mel frequency scale, while the gammatone filter bank
comprised 64 filters in the ERB frequency scale. For each segment, the STFT
has been calculated on frames with a Hanning window of 25 ms, a hop size of
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4.1 CNN-based Approach with Synthetic Dataset

(a) Log-Mel spectrogram. (b) Gammatone spectrogram.

Figure 4.1: Comparison of acoustic feature representations of a siren sound in
background noise.

10 ms, and a fast Fourier transform of 1024 points. The resulting spectrograms
have been converted to a logarithmic scale to accommodate human perception
of volume. All audio files have a duration of 0.5 seconds, so the resulting fea-
ture matrix x ∈ R

D1×D2 has a shape of 51 × 40 for log-Mels and 51 × 64 for
gammatonegrams. Both representations have been saved as grayscale images
at a resolution of 496 × 368 pixels. The librosa toolbox [96] has been used to
extract log-Mel features, and gammatone spectrograms have been computed
according to the Python adaptation of the algorithm described in [92]. Fig-
ure 4.1 compares log-Mel and gammatone spectrograms of a siren audio file in
background noise.

CNN Architecture

The architecture of the convolutional neural network employed for emergency
siren recognition is shown in Figure 4.2. The first stages of the model are CNN
blocks, where convolutional layers act as feature map extractors on the input
representations. At the end of each block, max-pooling is used to halve the
dimensions of the feature maps output from the convolutional layers. Finally,
the feature maps are flattened and passed to densely connected layers that deal
with the classification task.

Figure 4.2: CNN architecture for noise/siren classification.
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Layer Kernel size Stride Nums of filters

Input - - -
Conv1 (3,3) (1,1) 4
Conv2 (3,3) (1,1) 4
Pool1 (2,2) (2,2) -
Conv3 (3,3) (1,1) 8
Conv4 (3,3) (1,1) 8
Pool2 (2,2) (2,2) -
Conv5 (3,3) (1,1) 16
Conv6 (3,3) (1,1) 16
Pool3 (2,2) (2,2) -
FC1 - - 10
FC2 - nums of classes nums of classes

Table 4.1: Configuration of the CNN.

The CNN consists of six convolutional layers and two fully connected layers.
The convolutional part is organized into three blocks with the same structure
but a different number of filters. The first convolutional block comprises two
convolutional layers with a 3 × 3 kernel and 4 filters, and an exponential linear
unit (ELU) activation function is applied after each of them. The final layer of
each block performs a 2 × 2 max-pooling with a stride equal to 2. The number
of feature channels doubles in the subsequent two convolutional blocks, from 4

to 8 to 16. Then, the feature maps are flattened and given as input to a fully
connected layer with 10 units. Finally, a softmax activation function is applied
in the last layer, returning an output vector representing probabilities that an
input feature vector x belongs to the noise or siren class. Details of the CNN
architecture are presented in Table 4.1.

To confirm its effectiveness, the reference neural architecture [41] was an-
alyzed through a grid search [112] of the network hyperparameters aimed at
its optimization in relation to the characteristics of the input dataset. In par-
ticular, the investigation focused on the convolutional layers and activation
functions on the intermediate layers. Concerning the convolutional layers, the
numerosity of the dataset and the reduced complexity of the input represen-
tations did not require the inclusion of additional convolutional blocks. This
aspect made it possible to contain the number of hyperparameters of the net-
work. Adding dropout or batch normalization layers also did not make sig-
nificant improvements. In terms of activation functions, investigations with
both the ReLU and ELU activation functions yielded better results with the
latter in terms of speed and classification performance. The explanation lies
in the characteristics of the ELU activation function. Like the ReLU, the ELU
has a linear part for positive values. However, it also admits negative values
in a reduced range that allows the mean values to be closer to zero, similar
to the batch normalization process. For this reason, the reduced variation in
forward-propagated information enables rapid convergence, speeding up the
computation. In addition, the saturation plateau in its negative regime allows
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4.1 CNN-based Approach with Synthetic Dataset

(a) Spectrogram of noise type (A). (b) Spectrogram of noise type (B).

Figure 4.3: Examples of traffic noise spectrograms.

for learning a more robust and stable representation, providing better perfor-
mance in classification [75].

4.1.2 Dataset

Three sets of audio segments equally balanced between sirens and noises have
been collected to compute the acoustic features. Siren audio files with attenu-
ation for distance and Doppler effect have been generated using the procedure
described in Section 3.1.1 and added to urban traffic noises at decreasing SNRs.
Noise audio files used for both siren and noise classes have been downloaded
from web resources [90]. All the audio files have been pre-processed to stan-
dardize their characteristics. They have been resampled to 16 kHz, encoded to
32-bit depth, made monophonic through the amplitude averaging of each audio
channel, and normalized. Finally, they have been split into 0.5-second chunks
with an overlap of 10 ms.

The datasets created for training have been called training sets (A), (B),
and (A+B). The training set (A) comprises 64 000 audio segments, of which
32 000 are urban traffic noises, and the remaining 32 000 are siren sounds mixed
with traffic noise with spectral content mostly below 2500 Hz. Also, the train-
ing set (B) consists of 64 000 audio segments with the siren/noise distribution
equal to the training set (A); the only difference is that the traffic noise spec-
tral content added to siren audio files is mostly below 5500 Hz. The training
set (A+B) is the sum of the previously described datasets. Siren audio files
that compose the training sets have been generated with SNRs of 0 dB, -5 dB,
-10 dB, and -15 dB. Figure 4.3 presents examples of spectrograms computed
on background noises used to generate the synthetic siren audio files for each
dataset.

Also, three datasets have been created for the testing phase, called test sets
(a), (b), and (a+b). The test set (a) includes seven collections of 12 000 audio
segments, of which 6000 are noises, and 6000 are sirens mixed with noise with
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Dataset Class (label) Samples SNR (dB)

Training (A)
Noise (0) 32 000 -
Siren (1) 32 000 0,-5,-10,-15

Training (B)
Noise (0) 32 000 -
Siren (1) 32 000 0,-5,-10,-15

Training (A+B)
Noise (0) 64 000 -
Siren (1) 64 000 0,-5,-10,-15

Test (a)
Noise (0) 6000 -
Siren (1) 6000 × 7 SNRs 0,-5,-10,-15,-20,-25,-30

Test (b)
Noise (0) 6000 -
Siren (1) 6000 × 7 SNRs 0,-5,-10,-15,-20,-25,-30

Test (a+b)
Noise (0) 12 000 -
Siren (1) 12 000 × 7 SNRs 0,-5,-10,-15,-20,-25,-30

Table 4.2: Dataset composition.

spectral content similar to the training set (A). The siren audio files have been
generated at several SNR values, equal to 0 dB, -5 dB, -10 dB, and -15 dB as
for the training set, with the addition of -20 dB, -25 dB, and -30 dB to evaluate
the capability of the neural model to generalize the siren recognition at SNRs
unseen during the training. The same subdivision has been assigned to test
set (b), whose siren files present a background noise with similar characteristics
to the training set (B); the test set (a+b) is the sum of the previous ones.

Detailed information on the dataset composition is shown in Table 4.2.

4.1.3 Experimental Setup

Training Settings

The CNN has been trained on the three datasets (training (A), training (B),
and training (A+B)) and tested for each test set distinguished by SNRs. Train-
ing cases (A) and (B) have been tested with both test sets (a) and (b); train-
ing case (A+B) has been tested with test set (a+b). Figure 4.4 schematizes
the structure of the dataset and the combinations of training and test sets
employed in the experiments.

The training configurations include the use of “same”1 padding for the input
of each convolution, a “He uniform”2 kernel initializer, a learning rate of 0.0001,
ADAM [76] optimization, binary crossentropy loss function, and a split of 80%
for the training phase and 20% for the validation phase. The algorithm has
been implemented in the Python programming language, and the experiments
have been performed using Keras [113] and Tensorflow [114] as the backend.

1https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D (accessed on
28 February 2023)

2https://www.tensorflow.org/api_docs/python/tf/keras/initializers (accessed on 28
February 2023)
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4.1 CNN-based Approach with Synthetic Dataset

Figure 4.4: Diagram of the training/test sets combinations used in the experi-
ments.

Performance Metrics

Performance in testing has been assessed by comparing the results in the clas-
sification task in terms of accuracy rate and F-score. Specifically, the accuracy
can be considered a representative metric because the datasets are balanced
between only two classes. At the same time, the F-score, representing the bal-
ancing precision and recall on the positive class, emphasizes the capability of
correctly identifying examples of the positive siren class.

4.1.4 Results

The following tables summarize the results of the experiments performed under
mono- and multi-scenario conditions.

Results in Mono-Scenarios

Table 4.3 shows the outcomes of the neural model trained with the training
set (A) and tested on test sets (a) and (b) at the same SNRs used in training
(from -15 dB to 0 dB). The performance of gammatonegrams (GTs) and log-
Mel spectrograms (log-Mels) are compared. The best results are provided by
the test set (a) in combination with GTs, achieving an accuracy rate equal to
95.00% and an F-score of 97.74% at -15 dB, which gradually increases along
with signal-to-noise ratios. On the other hand, performance with the test set (b)
and GTs decreases significantly for SNRs less than -5 dB. In all experiments,
the performance of log-Mel spectrograms follows the trend of GTs, but they
yield lower scores than gammatonegrams.

Table 4.4 shows the results obtained by the neural model trained with the
training set (B) and tested on test sets (a) and (b) at the same SNRs used in
training, comparing the GTs and log-Mel findings. Again, the model trained
and tested on datasets with similar background noise frequency ranges, together
with gammatone spectrograms, performs best. Considering the test set (b)
and GTs, both the accuracy rate and F-score at -15 dB are equal to 99.87%
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Training (A)

SNR (dB)
Test (a) Test (b)

GTs log-Mels GTs log-Mels

Acc (%) F (%) Acc (%) F (%) Acc (%) F (%) Acc (%) F (%)
0 100 100 93.94 93.93 96.75 96.64 95.72 95.80
-5 98.77 98.75 92.69 92.58 93.63 93.19 79.04 75.38

-10 95.01 94.75 91.94 91.79 66.67 50.02 62.47 45.35
-15 95.00 94.74 91.92 91.76 50.11 0.50 57.56 33.42

Table 4.3: Results of the neural model trained with the training set (A) and
tested on test sets (a) and (b) at the same SNRs used in training.

and reach 100% for the highest SNRs. As in the previous experiments, the
performance of the model computed with log-Mels is lower than that of GTs.

Training (B)

SNR (dB)
Test (a) Test (b)

GTs log-Mels GTs log-Mels

Acc (%) F (%) Acc (%) F (%) Acc (%) F (%) Acc (%) F (%)
0 86.55 84.46 67.37 57.26 100 100 98.79 98.79
-5 55.76 20.65 56.01 24.72 100 100 98.30 98.30

-10 50.00 0.00 49.19 1.45 100 100 89.41 88.39
-15 50.00 0.00 48.79 0.00 99.87 99.87 83.98 81.46

Table 4.4: Results of the neural model trained with the training set (B) and
tested on test sets (a) and (b) at the same SNRs used in training.

Results in Multi-Scenarios

Table 4.5 shows the outcomes of the experiments performed with the ensemble
datasets at the same SNRs used during the training. The best results are
achieved by GTs, with accuracy rates between 94.97% and 99.78% and F-scores
between 94.72% and 99.78% for SNRs ranging from -15 dB to 0 dB. Again, in
all the tests GTs outperform log-Mels.

Training (A+B)

SNR (dB)
Test (a+b)

GTs log-Mels

Acc (%) F (%) Acc (%) F (%)
0 99.78 99.78 95.63 95.63
-5 99.34 99.34 94.70 94.65

-10 98.10 98.07 92.71 92.52
-15 94.97 94.72 92.00 91.76

Table 4.5: Results of the neural model trained with the training set (A+B) and
tested on test set (a+b) at the same SNRs used in training.
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Results in Conditions Unseen in Training

Finally, Table 4.6 presents the experimental results for emergency siren recogni-
tion in the best-performing configurations of the previous cases for SNRs unseen
in training. It is noteworthy that, for all three training and testing setups, the
models can generalize emergency siren recognition even under very high noise
conditions, up to an SNR of -30 dB. The best outcomes can be observed with
datasets (A,a) and ensemble datasets ((A+B),(a+b)).

Training (A) Training (B) Training (A+B)

SNR (dB)
Test (a) Test (b) Test (a+b)

GTs log-Mels GTs log-Mels GTs log-Mels

Acc (%) Acc (%) Acc (%) Acc (%) Acc (%) Acc (%)
-20 95.00 91.92 93.91 83.79 94.62 91.63
-25 95.00 91.92 90.00 83.79 94.37 91.44
-30 95.00 91.92 90.00 83.79 94.37 91.41

Table 4.6: Results obtained with the corresponding training and test sets at
SNRs not used in training.

4.1.5 Remarks

The following conclusions can be drawn based on the results of the analysis:

• In single-scenario experiments with affine background noise (Training
(A)–Test (a), Training (B)–Test (b)), the models performed exceptionally
well, even at low signal-to-noise ratios.

• In single-scenario experiments with non-affine background noise (Train-
ing (A)–Test (b), Training (B)–Test (a)), the models showed a loss of
performance as SNR decreased.

• In multi-scenario experiments, the model demonstrated good performance
even at low SNRs.

• The experiments that test the previously computed best models on datasets
comprising SNRs unseen during the training show good generalization
capability, especially in mono-scenario with datasets (A,a) and in multi-
scenario.

• In all simulations, gammatone spectrograms have been found to be an
effective acoustic representation, yielding better results than those ob-
tained with log-Mel spectrograms.

The considerations that can be deduced from the results concern the learn-
ing mechanisms of the neural network. In particular, the high accuracy in the
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emergency siren recognition task in the case of affine training and test sets
suggests that during the training, the model has learned the characteristics of
both the siren sound and the background noise. Confirming this, in the experi-
ments with non-affine background noise, F-score values near or equal to zero at
low SNRs indicate the complete inability of the network to distinguish sirens
in contexts unseen in the training phase when the traffic noise is significant.
Therefore, strategies have been required to be developed to avoid model over-
fitting on training data, e.g., increasing their variability in terms of background
noise typologies. In fact, the purpose of the research includes as a primary goal
that siren sound recognition occurs in a generalized manner in several road and
urbanization contexts.

Furthermore, the siren spectrograms with low-spectral background noise (A-
type noise) in both mono and multi-scenario conditions showed improved re-
sults at signal-to-noise ratios unseen during the training. This aspect gives a
better understanding of the patterns that make siren sounds recognizable in a
time-frequency representation. Spectrograms with high harmonic components
not obscured by background noise improve the pattern recognition capability
of siren frames. So, strategies for noise reduction and enhancement of the
fundamental and harmonic frequencies of siren tones can provide significant
improvements in the emergency siren recognition task.

Finally, considerations are drawn about the effectiveness of signal representa-
tion by different acoustic features. The experiments have shown better results
with gammatonegrams than with log-Mel spectrograms, but further experi-
ments elucidated how to improve the performance of this latter. Specifically,
increasing the number of frequency bins provides greater resolution of the time-
frequency representation and thus allows for higher accuracy rates. At the same
time, computing acoustic features not as images but as feature vectors elim-
inates the performance loss associated with the conversion of the grayscale
image to an array. So, this initial study on emergency siren recognition also
provided insight into the best ways to process the source signal. Given these
assumptions, log-Mel spectrograms with an appropriate number of frequency
bins have been preferred to gammatonegrams in subsequent investigations, as
the triangular filter bank is computationally less onerous and more suitable for
implementations in embedded devices.

4.2 CNN-based Approach with Improved Synthetic

Dataset and Harmonic Filtering

Research on emergency siren recognition with convolutional neural networks
has been extended based on the results of the experiments described in Sec-
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tion 4.1.4.

In particular, the model accuracy in recognizing siren sounds in background
noise contexts similar to those used in training led to the design of strate-
gies for reducing the overfitting of the model to the training data. To this
end, the research involved creating a synthetic dataset of sirens in variegated
multi-scenario conditions with different noise frequency distributions between
training and test sets. The benefit of a neural model trained on multiple back-
ground noises is that it can identify and learn siren alarm patterns regardless
of the characteristics of the noise in which it is immersed and thus recognize
them in ever-changing and unpredictable scenarios.

In addition, the network capability to correctly identify siren frames in which
the upper harmonic components of the signal are unmasked led to experimen-
tation with the harmonic-percussive source separation technique introduced in
Section 3.1.4. The role of the harmonic filter is to enhance the fundamental
and harmonic frequencies of the two siren tones and reduce the background
noise, producing time-frequency representations that highlight the frequency
bands of the target signal.

Finally, the computational load associated with training a neural model with
gammatone spectrograms in the form of images suggested exploring strategies
to reduce the number of network hyperparameters, thus facilitating the imple-
mentation of the algorithm in real-time embedded systems.

In the following paragraphs, the composition of the proposed multi-scenario
synthetic dataset, computation of acoustic features, details of filtering tech-
niques applied to the audio file collection, and strategies to reduce the compu-
tational load of the algorithm without loss of performance are explained.

4.2.1 Materials and Methods

The adopted methodology begins with the creation of a synthetic dataset that
consists of siren sounds mixed with multiple types of background noise. The
convolutional neural network used in the previous experiments, adapted and
optimized to the new input data, is then trained on this dataset, and its per-
formance is evaluated at different signal-to-noise ratios. Gammatone spectro-
grams, which have been shown to perform well under high noise conditions in
previous research, are used to define the baseline. The performance of this
model is then compared with the outcomes of short-time Fourier transform
spectrograms, which represent an algorithmic solution to calculate acoustic
features at a low computational cost. The results of STFT spectrograms com-
puted using the unfiltered dataset are improved by applying a harmonic filtering
technique on the audio segments at increasing separation factors between har-
monic, percussive and residual components of the audio signal. The harmonic
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filtered dataset that provides the best performance is employed in experiments
aimed at reducing network hyperparameters. To this end, several ranges of
frequency bands of the spectrograms are sliced to further reduce the size of
the time-frequency representations as input to the network. Finally, the accu-
racy of the model is reevaluated using the sliced spectrograms, assessing the
relevance of the harmonic components of the signal in the emergency siren
detection task.

Datasets

A novel synthetic audio collection has been created with the same techniques,
structure and numerosity outlined in Section 4.1.2. As for the previous dataset,
the audio files have been equally balanced between noise recordings and simu-
lated ambulance sirens in background noise contexts. However, this improved
version includes a more variegate range of background noises. Thirty-four audio
files containing a variety of environmental noises, such as car and motorcycle
engines, horns, alarms, rain, human conversation, and nature sounds like birds
chirping, have been downloaded from web resources [90] for a duration of over
5 hours. They have been added to siren audio files with attenuation for dis-
tance and the Doppler effect in several configurations of velocity and directions.
These types of noises have been selected as they are challenging to be classified
by the algorithm: frames containing tonal components may cause false positive
classifications by the neural model; additionally, some noises, such as heavy
rain, can overpower siren tones even at high signal-to-noise ratios, potentially
resulting in false negatives.

The audio collection has been pre-processed, resulting in monophonic audio
segments of 0.5-second duration at a sampling rate of 16 kHz and 32-bit en-
coding. Considering the numerosity of the previous audio segment collection
suitable for training a neural model, this dataset has also been organized with
the same criteria. The training set comprises 32 000 noise and 32 000 siren au-
dio files (SNRs equal to -15 dB, -10 dB, -5 dB, and 0 dB), and the test set 6000
noise and 6000 siren audio files for each SNR used in the training set, with
the addition of -30 dB, -25 dB, and -20 dB. Figure 4.5 shows examples of siren
spectrograms in several background noises used in the experiments, each with
a duration of 10 seconds and at different signal-to-noise ratios.

Four additional collections have been created from this unfiltered collection
of audio files, resulting from applying the median-filtering harmonic-percussive
source separation technique described in Section 3.1.4. Harmonic separation
factors equal to 1, 3, 5, and 8 have been considered and applied to the unfiltered
audio files to assess the extent to which residual and percussive components
of traffic noise affect the siren sound. Figure 4.6 shows an example of a siren
spectrogram without noise, with urban traffic noise in the unfiltered situation

56



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 57 — #77
✐

✐

✐

✐

✐

✐

4.2 CNN-based Approach with Improved Synthetic Dataset and Harmonic Filtering

(a) Siren + engine noise
(SNR=-10 dB).

(b) Siren + wet road
traffic noise

(SNR=-5 dB).

(c) Siren + heavy rain
noise

(SNR=0 dB).

(d) Siren + people talking
and rain noise
(SNR=-5 dB).

(e) Siren + cars and
seagull noises

(SNR=-15 dB).

(f) Siren + percussive
noise

(SNR=-10 dB).

Figure 4.5: Spectrograms of sirens with different types of noises.

and after the harmonic filter application with different separation factors.

Acoustic Feature Computation

The choice of input features was informed by the findings of the previous exper-
iments in emergency siren recognition. Gammatone spectrograms, enhancing
acoustic features within the audible range, especially at low frequencies, have
been shown to perform well under high background noise conditions. For this
reason, they have been used to define the baseline to be reached or overcome
with a low computational cost model employing STFT spectrograms as input
features. The difference between a gammatone and an STFT spectrogram is
that, in the former type, the frequency sub-bands of the ear have high reso-
lution for low frequencies and widen for high frequencies, whereas the STFT
spectrogram has a constant bandwidth for all frequency channels.

To reproduce similar training conditions as in previous experiments, the gam-
matonegrams have been integrated into 64 frequency bins using the procedure
described in [92] and saved as grayscale images at a resolution of 496 × 368

pixels. STFT spectrograms have been extracted by computing discrete Fourier
transforms (DFTs) on short overlapping windows using the librosa [96] library.
Again, 0.5-second audio segments with a sampling rate of 16 kHz have been de-
composed with an STFT characterized by a Hanning windowed signal length
of 1024 and a hop size of 512 samples. Amplitude spectrograms have been then
converted to the dB scale and saved as 2D arrays of size 17 × 513.
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(a) Siren. (b) Unfiltered siren +
noise.

(c) Harmonic filtered siren
+ noise (margin=1).

(d) Harmonic filtered siren
+ noise (margin=3).

(e) Harmonic filtered siren
+ noise (margin=5).

(f) Harmonic filtered siren
+ noise (margin=8).

Figure 4.6: Comparison between unfiltered and harmonic filtered siren spectro-
grams at different separation factors.

Further investigation on acoustic features has been performed by processing
the STFT spectrograms with slicing operations to keep only a specific range
of frequencies and thus reduce the dimension of the input. For this purpose,
the frequency bin centers have been indexed, and rows of the time-frequency
matrix above a specific value have been eliminated. The spectrogram reduction
criteria have been based on the ranges of values that include the fundamental
frequencies and upper harmonic components of the two tones of the Italian
siren, having frequencies equal to 392 Hz (G4) and 660 Hz (E5).

STFT spectrograms have been subject to slicing operations to create four
datasets:

1. the first with a maximum frequency of 700 Hz, which includes the two
fundamental tones (or first harmonics);

2. the second with a maximum frequency of 1400 Hz, which includes the
first upper octaves (or second harmonics);

3. the third with a maximum frequency of 2800 Hz, which includes the sec-
ond upper octaves (or fourth harmonics);

4. the fourth with a maximum frequency of 5600 Hz, which includes the
third upper octaves (or eighth harmonics).

Figure 4.7 shows the spectrum of a siren audio file according to the Italian
law with the indication of the main harmonic components.
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Figure 4.7: Spectrum of a siren audio file according to the Italian law.

CNN Architecture

The convolutional neural network described in Section 4.1.1 has been taken as
the neural architecture for the baseline. For training the model at low computa-
tional cost, this network has been adapted to take as input 2D arrays of specific
shapes (num_row, num_columns, num_channels). An optional dropout layer
has been inserted between the two convolutional layers in each block repeti-
tion to prevent overfitting, controlled by the drop_rate parameter specifying
the proportion of activations to be dropped. In the experiments, the dropout
rate was tuned with a grid search for the optimal rate, which was found to be
between 0% and 15%.

4.2.2 Experiments

The convolutional neural network has been trained with the settings specified
in Section 4.1.3, using the accuracy rate as the performance metric.

The experiments have been conducted in the order dictated by the workflow,
specifically:

1. The first experiments compared the performance of gammatone spectro-
grams, which have defined the baseline, and STFT spectrograms com-
puted from the unfiltered audio collection.

2. The second round of simulations involved STFT spectrograms computed
from the harmonic-filtered datasets with increasing separation factors to
evaluate the improvements provided by this technique in the emergency
siren recognition task.

3. Finally, the third group of experiments aimed to reduce the network hy-
perparameters by decreasing the size of the input features. The harmonic
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Dataset Features
Input size

(channels-last)
Number of

hyperparameters

Unfiltered GTs (368, 496, 1) 460897
Unfiltered STFTs (513, 17, 1) 25057
Harmonic (margin=1,3,5,8) STFTs (513, 17, 1) 25057
Harmonic sliced fundamental STFTs (45, 17, 1) 6177
Harmonic sliced octave I STFTs (90, 17, 1) 8097
Harmonic sliced octave II STFTs (180, 17, 1) 11617
Harmonic sliced octave III STFTs (359, 17, 1) 18657

Table 4.7: Comparison of the number of network hyperparameters.

STFT spectrograms that performed best in the previous round of simu-
lations have been subjected to slicing operations in the various frequency
ranges related to the harmonic components of the siren signal. The result-
ing datasets have been input into the neural network, and the accuracy
rates have been compared with the previous results.

Table 4.7 illustrates the datasets employed in the experiments, the type of
acoustic features computed from them, and the input tensors size that deter-
mines the total number of network hyperparameters.

4.2.3 Results and Discussion

In this section, experimental results in the order in which they have been per-
formed and their evaluations are presented and discussed.

The first round of experiments compares the performance of models com-
puted with gammatonegrams (GTs) and STFT spectrograms (STFTs) extracted
from the unfiltered audio collection. Table 4.8 presents the testing accuracy
obtained with GTs and STFTs at decreasing SNRs. The network trained and
tested with GTs achieves an average accuracy of 96.27% and validates the re-
sults of the previous research, confirming that GTs are excellent features for
sound event detection in conditions of significant noise. STFTs reach an aver-
age accuracy of 92.20%, providing comparable outcomes to GTs only at SNR
equal to 0 dB. For lower SNRs, their performance decreases significantly as the
background noise level increases.

Unfiltered Dataset

GTs STFTs

SNR (dB) Acc (%) Acc (%)
0 98.16 97.62
-5 97.63 95.63

-10 96.11 90.28
-15 93.18 85.26

Avg acc (%) 96.27 92.20

Table 4.8: Comparison between GTs and STFTs testing accuracy.
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The second part of the experiments involves STFT spectrograms computed
from filtered audio files with the aim of improving the previous outcomes. Ta-
ble 4.9 presents the testing accuracy achieved with harmonic datasets with
increasing separation factors (margin). The best results are obtained by ap-
plying a margin parameter equal to 3, which returns an average accuracy of
96.72%. Also, the harmonic dataset with a margin of 1 achieves a comparable
average accuracy equal to 96.35%. For higher separation factors (5 and 8),
a gradual loss of performance at low SNRs is denoted. These results indicate
that the residual components may not have a significant impact, as experiments
with low margin parameters of 1 and 3 demonstrate a successful decomposition
of the spectrogram, allowing to keep the harmonic components. On the other
hand, the decreased performance of harmonic datasets with separation factors
of 5 and 8 suggests that the process of separating the residual components also
removes part of the harmonic components of the target signal, which therefore
loses its sharpness.

Harmonic Datasets

margin=1 margin=3 margin=5 margin=8

SNR (dB) Acc (%) Acc (%) Acc (%) Acc (%)
0 98.97 99.08 98.70 98.53
-5 98.65 98.76 98.28 97.94

-10 96.29 96.55 94.78 94.38
-15 91.50 92.50 87.45 85.63

Avg acc (%) 96.35 96.72 94.80 94.12

Table 4.9: STFTs testing accuracy at different separation factors.

The third group of simulations concerns the spectrograms that achieved the
best accuracy in the previous experiment (harmonic dataset with a margin

coefficient equal to 3), processed by slicing operations. Table 4.10 shows that
accuracy rates improve with wider frequency ranges. For a frequency range up
to 5600 Hz (third octave), the performance is excellent for SNRs of 0 dB and -
5 dB and comparable to the experiments without slicing. The average accuracy
equal to 94.02% is a good result, considering that a network hyperparameters
reduction of 25% compared to the full spectrogram has been applied. Overall,
these findings confirm that the energy contribution of harmonic components
has a relevant role in the siren detection task.

The generalization capability of the models that provided the best results is
evaluated by testing their performance at signal-to-noise ratios unseen during
the training phase, equal to -20 dB, -25 dB, and -30 dB. Table 4.11 reports the
accuracy rates comparing the unfiltered dataset with GTs, and the harmonic
dataset (margin equal to 3) with STFTs. The results confirm the robustness of
gammatone spectrograms under high noise conditions and highlight the com-
parable performance of STFTs when using the harmonic filtering technique.
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Harmonic Sliced Datasets

1° harm
(fundamental)

2° harm
(octave I)

4° harm
(octave II)

8° harm
(octave III)

SNR (dB) Acc (%) Acc (%) Acc (%) Acc (%)
0 92.87 98.50 98.73 99.42
-5 83.67 93.19 94.79 98.28

-10 76.28 85.10 88.70 93.69
-15 72.42 81.78 83.83 84.67

Avg acc (%) 81.31 89.64 91.51 94.02

Table 4.10: STFTs test accuracy at different frequency ranges.

Unfiltered Dataset Harmonic Dataset

GTs STFTs

SNR (dB) Acc (%) Acc (%)
-20 90.15 88.07
-25 89.34 86.30
-30 89.32 86.25

Table 4.11: Comparison between GTs and harmonic STFTs testing accuracy
for SNRs unseen in training.

4.3 Conclusions

This research confirmed the effectiveness of convolutional neural networks in
the general field of sound event detection and, specifically, for emergency siren
recognition. The robustness of these algorithms is largely due to their ability to
take as input the time-frequency representations of the signals, which provide
detailed information about the acoustic properties of the sound.

One of the main challenges of this research involved the selection of the most
suitable acoustic features for the task to be used as input for the convolutional
neural network. In this regard, gammatone spectrograms have proven to be
a very effective choice, as they closely approximate the auditory response of
the human ear, enhancing low frequencies. However, gammatone spectrogram
computation is intensive and can pose a challenge for real-time applications.
This issue can be overcome by using STFT spectrograms in combination with a
harmonic-percussive source separation technique. STFT spectrograms reduce
the computational load of the algorithm, and the harmonic filtering enhances
the tonal components of the siren signal, providing comparable performance to
gammatonegrams.

The studies described in this section have been carried out using synthetic
datasets. Subsequent research has focused on developing strategies to compute,
from synthetic or non-task-related datasets, robust models that are capable of
recognizing emergency siren sounds in real-world environments.
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Few-Shot Learning for Emergency

Siren Detection

Few-shot learning is a branch of deep learning that bases the learning of new
concepts on few examples from each class instead of requiring a large amount
of labeled data like traditional deep learning algorithms. Although supervised
learning with one or a limited number of examples has been a topic of in-
terest for several years in computer vision [115, 116], its application to audio
signal processing has only been a recent development. Among the different
few-shot techniques [117, 118], task-invariant embedding methods have proven
well-suited for audio classification. The central idea behind these approaches
is that an embedding function is learned from a large-scale training set. This
prior knowledge is employed to directly discriminate between similar and dis-
similar instances of new classes during the inference by leveraging similarity
measures.

In the fields of sound event detection and acoustic scene classification, the
literature has explored several approaches to address the challenge of deep
learning with limited audio data. The study in [119] is a pioneering work that
focuses on transfer learning strategies in comparison with prototypical net-
works [51], using a fixed taxonomy in training and testing rather than through
the concept of meta-learning. In [120, 121], an analysis of meta-learning models
applied to acoustic event detection is presented, demonstrating the superiority
of these methods in generalizing to new audio events, compared to supervised
solutions based on fine-tuned convolutional neural networks. The effectiveness
of five different few-shot learning methods, enhanced by an attentional similar-
ity module to detect transient events for sound event recognition, are discussed
in [122].

The promising results obtained from few-shot learning have sparked further
research in the audio field, leading to the development of strategies to extend
the application to more complex and challenging tasks, such as multi-label
classification [123], rare sound event detection [124], continual learning [125],
unsupervised and semi-supervised learning [126], and sound localization [127].
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The application of few-shot learning techniques to an open-set sound event
detection problem is presented in [128]. The authors evaluate and compare
several few-shot metric learning methods to identify keywords in audio files.
The problem is formulated as a binary classification, with keywords belonging
to the positive set and all other words constituting the negative set. The results
demonstrate the capability of the method to generalize to unseen languages and
its potential in audio domains beyond speech.

Recently, the use of few-shot neural networks has been extended to a vari-
ety of audio recognition domains, including keyword spotting in devices with a
vocal interface [129], bioacoustic event detection [130], sound anomaly detec-
tion in industrial machinery [131], speaker identification and activity recogni-
tion [132], automatic drum transcription [133], and recognition of underwater
acoustic signals in impulsive noise environments [134].

These examples highlight the versatility and potential of few-shot learning in
audio applications. An unexplored area is related to emergency siren detection
and deserves to be studied properly. In fact, a system able to learn acoustic
features from a reduced amount of data can be extremely useful for a feasible
and customizable emergency vehicle detection device embedded in vehicles.

5.1 Proposed Approach

This section presents a solution for emergency siren detection, built on pro-
totypical networks and compared with a convolutional baseline. First, the
few-shot metric learning strategies are illustrated, then an overview of the pro-
posed emergency siren detection (ESD) workflow is given, and finally, the neural
architectures employed in this work are described.

5.1.1 Few-Shot Metric Learning

Few-shot learning aims to solve a classification task given a target domain built
on few examples. Hence, it is necessary to adopt strategies to create a model
with generalization capability and quick adaptation to new domains. The few-
shot metric learning approach usually employs a training set different from the
test set. Training is performed in a C-way K-shot fashion, where C represents
the number of classes (ways) and K the instances (shots) of each class employed
in each iteration. This training method mimics the configurations that will arise
at inference time, preferring large datasets and a high number of iterations to
learn how to discern between different classes given only few input examples.
The robustness of the model is evaluated with a metric-based function that
returns the similarity measure between instances of the same class.
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Figure 5.1: Episodic training procedure (5-way 5-shot example) of few-shot
metric learning.

Episodic Training

A common strategy in few-shot metric learning algorithms is the episodic train-
ing [135]. For this purpose, the training set has been organized in F folders,
each containing a set of M labeled samples T = {(x1, y1), . . . , (xm, ym)}M

m=1.
The feature vectors xm ∈ R

D have a fixed dimension D, and the labels ym ∈

{1, . . . , L} represent the L classes. A folder is selected in each iteration (episode),
and a mini-batch of data is sampled randomly. A part of the
mini-batch constitutes the support set, composed of C × K examples
S = {(x1, y1), . . . , (xi, yi)}

C×K
i=1 where feature vectors xi ∈ R

D and labels
yi ∈ {1, . . . , C}, with C ≤ L. The remaining samples define the query set,
composed of C × q examples Q = {(x1, y1), . . . , (xj , yj)}C×q

j=1 . The embed-
ding function fφ incorporates the support set S and query set Q into a lower-
dimensional hypothesis space. Due to the reduction in tensor dimensionality
and a meaningful representation in the transformed space, similar examples rel-
ative to the task are close, while dissimilar examples are easily differentiable.
The metric function gsim performs the similarity measure between the support
and the query set embeddings, hence the definition of few-shot metric learning.
Different metric functions can be used, fixed, or with learnable parameters.
The training is repeated until the minimization of the loss function Lφ, repre-
senting the prediction error of the samples in Q conditioned by the comparison
with the representation in S.

Figure 5.1 illustrates the episodic training procedure, from the random se-
lection of support and query sets to the embeddings generation, and finally to
the similarity measure in an iterative process to minimize the loss function.
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Figure 5.2: Open-set testing procedure of few-shot metric learning.

Open-Set Testing Procedure

The traditional few-shot testing method assumes that only U < F folders
containing R < L classes are used in training. The embedding model must be
optimized to transfer the knowledge learned to classify samples of the (L − R)

classes in the (F − U) folders. Again, the support set S of size C × K and the
query set Q with the instances to be classified are constructed. The problem
thus posed is “closed-set” because samples belonging to C well-defined classes
are classified.

This work aims to detect samples of only one target class given few la-
beled instances for the embedding generation. Classifying samples of other
categories, whose characteristics need not be necessarily known, is not of in-
terest. The problem of discerning between one positive class and the negative
rest is called “open-set” and is reduced to a binary classification task. At
inference time, a positive support set P = {(x1, ypos), . . . , (xi, ypos)}p

i=1 con-
sisting of a small number of labeled target samples and a negative support
set N = {(x1, yneg), . . . , (xj , yneg)}n

j=1 containing examples that do not belong
to the category of interest are randomly selected. The remaining instances
compose the positive and negative query sets. As in training, the embedding
function fφ incorporates the support and query sets; the similarity module gsim

compares the embeddings and returns the probability that the query sample
belongs to the positive class. The algorithm must have generalization capabil-
ities to find the similarity between the embeddings of the (unlabeled) target
samples and those computed from the positive support set, discriminating from
the negative class.

Figure 5.2 shows the open-set testing procedure, from the random selection
of the positive and negative support sets to the embeddings generation, and fi-
nally to the similarity measure between the query and the positive support
embeddings.
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5.1.2 Overview of the ESD Workflow

Contributions of the Work

The main purpose of this research is to provide a comprehensive analysis of
few-shot metric learning capabilities in the real-world application of emergency
siren detection. A general overview of the objectives of the work is illustrated
as follows.

• An analysis of the performance of prototypical networks is presented,
employing datasets extracted from three distinct audio collections with
different characteristics. The impact of the dataset features and the train-
ing/test example combinations on the performance of each prototypical
model is thoroughly investigated.

• The proposed method applies the knowledge learned by the few-shot mod-
els in discriminating similar or dissimilar instances from a specific audio
collection to detect a target sound belonging to a different dataset. In
this case, the target is the ambulance siren sound recorded in real-world
contexts according to the procedures described in Section 3.1.2, to be
recognized using only a few examples for the prototypical embedding
computation.

• The focus of this study is on a real-world application. For this reason, the
analysis is designed to provide valuable information on the most suitable
placement of the sound recording sensor, comparing eight microphone
positions inside and outside the cabin.

• The effectiveness of the few-shot technique is validated by comparing it to
a convolutional baseline with and without fine-tuning using few examples
of the target domain. In addition, noise filtering strategies are evaluated
to enhance the performance of the analyzed models.

Pipeline of the Proposed Method

In the following, the pipeline of the proposed approach is outlined in detail.

1. Best few-shot models computation: the raw audio has been pre-processed
and transformed into log-Mel spectrograms, organized, and given as input
to prototypical networks. Because the episodic training in several C-way

K-shot combinations returned different performance in the test phase,
the model that obtained the best output has been saved for the next
step. This procedure has been repeated for three datasets extracted from
diverse audio file collections, obtaining three best-performing C-way K-

shot prototypical models.
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2. Best few-shot models evaluation: siren and noise audio recordings have
been pre-processed and transformed into log-Mel spectrograms, split over
eight audio channels corresponding to eight sensor positions. The best-
performing C-way K-shot models obtained in step (1) have been used to
make predictions about new data taken from the recordings for the ESD
task, repeating the procedure for each audio channel.

3. Analysis of prototypical outcomes: the experiments performed in step (2)
have provided classification scores distinguished by training model and
recording channel, so the best-performing dataset and sensor locations
have been selected to compute the baseline models.

4. Baseline models computation: the raw audio belonging to the collection
that provided the best prototypical results has been pre-processed, and
then log-Mel spectrograms have been computed and organized in a suit-
able way as input to the CNN employed for the baseline. The network
has been trained in two ways: without domain adaptation and with fine-
tuning by using combinations of few data taken from the target dataset.

5. Baseline models evaluation: the recordings have been tested on the base-
line models computed in step (4), and the results have been compared
with few-shot best outcomes (step (3)).

6. Harmonic filtered experiments: after applying the harmonic-percussive
source separation technique described in Section 3.1.4, log-Mel spectro-
grams have been extracted again from the recordings. The inference
operations in steps (2) and (5) have been repeated and compared to the
experiments with unfiltered data.

Figure 5.3 presents the block diagram of the proposed approach for emer-
gency siren detection.

5.1.3 Neural Network Architectures

Prototypical Network

The peculiarity of a prototypical network is the generation of a representation
µc of each class, called prototype. Given Sc = {(x1, y1), . . . , (xc, yc)}K

c=1 (the
support set belonging to the c-class), the prototype µc is the mean vector of
the embedded support samples, computed through the embedding function fφ

with learnable parameters φ:

µc =
1

K

∑

(xc,yc)∈Sc

fφ(xc). (5.1)
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Figure 5.3: The block diagram of the proposed approach for emergency siren
detection.

Given a similarity function gsim, represented by the squared Euclidean dis-
tance d, the prototypical network computes the relationship between a query
sample xq ∈ Q and the prototypes via a softmax over distances in the embed-
ding space:

pφ(y = c | xq) =
exp(−d(fφ(xq), µc))

∑

c′ exp(−d(fφ(xq), µc′))
, (5.2)

where pφ(y = c | xq) represents the normalized probability distribution that xq

belongs to the c-class. The training process is done by minimizing L(φ) (the
negative log-probability of the true c-class via stochastic gradient descent):

L(φ) = − log pφ(y = c | xq). (5.3)

Consequently, in each training episode, the model learns the similarity be-
tween query samples and the corresponding prototypes belonging to randomly
chosen C-classes.

Prototypical architecture, illustrated in Figure 5.4, is based on the convolu-
tional block defined in [136], consisting of a convolutional layer with a 3 × 3

kernel and 64 filters, a batch-normalization layer, and a ReLU activation layer.

69



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 70 — #90
✐

✐

✐

✐

✐

✐

Chapter 5 Few-Shot Learning for Emergency Siren Detection

g
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Figure 5.4: Architecture of a prototypical network.

The sequence of four convolutional blocks, each followed by a 2×2 max-pooling
layer, composes the embedding function fφ. In the learning process, the fea-
ture maps of the support set prototypes and the query set are flattened and
concatenated to be compared through the similarity function gsim.

Convolutional Neural Network

The neural architecture used for the baseline is the convolutional neural net-
work designed and optimized for emergency siren recognition, as described in
Section 4.1.1.

5.2 Materials and Methods

This section presents the audio file collections used in the experiments. Then,
the description of the pre-processing operations on audio data, the feature
computation, the network training settings, and the performance metrics are
provided.

5.2.1 Datasets

For training, three audio collections have been selected. Non-task-related
datasets have been extracted from the Spoken Wikipedia Corpora [137] and
UrbanSound8K [83] audio databases. Additionally, the synthetic audio file
collection described in Section 4.2.1 and called “A3Siren-Synthetic” has been
employed. For inference, the dataset has been computed from an audio col-
lection of recordings performed onboard the equipped vehicle mentioned in
Section 3.1.2, called “A3Siren-Recordings.”
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Spoken Wikipedia Corpora

The Spoken Wikipedia Corpora (SWC) is an audio collection of volunteer read-
ers of Wikipedia articles. The English-language corpus consists of 1339 audio
files totaling about 395 hours of recordings from various readers. The audio
files, characterized by ogg format, are monophonic with a sampling rate of
44.1 kHz and 32-bit encoding. They are associated with metadata, some of
which have textual annotations aligned to the words (start and end time in
milliseconds).

In an SWC audio file, a specific word pronounced by a reader represents the
target class. A C-way K-shot training episode has been performed by taking a
support set with C classes (different words) and K instances per class (examples
of the same word) contained within a folder (corresponding to a reader). An
additional number of instances per class composed the query set. The episodic
training has been set up with C-way K-shot ranging from 2-way 1-shot to
10-way 10-shot and a query set of 16 instances per class. Thus, readers with at
least 2 target words repeated 26 times have been kept, considering only audio
files with temporally aligned words. Out of 208 readers and more than 2000
classes, 75% have been assigned to the training, 10% to the validation, and 15%
to the test. Audio segments have been selected by taking a 0.5-second window
in the center of each instance. At inference time, the knowledge acquired to
recognize the similarity between the same words spoken by a reader has been
transferred to detect a target word (positive set p) discriminating from various
random samples of non-target words (negative set n) within an audio file of a
reader assigned to the test.

UrbanSound8K

UrbanSound8K (US8K) includes 8732 urban sounds of duration less than or
equal to 4 seconds divided into 10 classes and 10 folders, totaling about 8.75
hours. All audio files are in wav format, about 92% of which are stereo and the
remaining 8% mono, with sampling rates ranging from 8 kHz to 192 kHz and
encoding between 4-bit and 32-bit. The excerpts have been taken from field
recordings available at [90].

The training, validation, and test folders have been split with a 7:1:2 ratio,
leaving the distribution of the audio files within each folder unchanged and
applying standardization operations. In a training episode, a folder (US8K
fold) has been selected. C classes (environmental sounds) and K instances per
class (examples of the same class also from different audio files) ranging from
2-way 1-shot to 10-way 10-shot have been included in the support set. The
query set consisted of the remaining instances not used in the support set. The
same positive and negative set definition criteria described for the SWC dataset
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have been applied for the testing phase. In this case, training and testing
have been performed with a fixed taxonomy because, during the inference,
classes already seen in training have been used. It is not a limitation at this
stage because the final purpose is not to evaluate the performance of few-
shot techniques on the US8K dataset but to apply different models to siren
recordings and compare the outcomes.

A3Siren-Synthetic

A3Siren-Synthetic1 (A3S-Synth) is the “improved” audio collection described
in Section 4.2.1 to train and test the convolutional neural network implemented
for the siren/noise classification task. To carry out the few-shot experiments,
the training data have been organized into 16 folders, each containing 2000
noise and 2000 siren audio segments. Because only two classes are present,
the episodic training has been performed with C-way K-shot equal to 2-way

1-shot, 2-way 5-shot, and 2-way 10-shot. The A3S-Synth training collection
has been split into 75% for training and 25% for validation. For evaluating
the models, 300 noise and 300 siren audio segments for each SNR have been
randomly selected from the A3S-Synth test collection and organized in sepa-
rate folders. This audio collection has also been employed to train the CNN
model representing the baseline as a comparison to the performance of few-shot
techniques. In the experiments with the CNN, the organization of the original
A3S-Synth training audio files has been left unchanged. Again, the split has
been 75% for training and 25% for validation.

A3Siren-Recordings

A3Siren-Recordings1 (A3S-Rec) is the audio collection recorded during the ac-
quisition campaign performed in May 2021 with the equipment and procedures
described in Section 3.1.2. Out of 18 audio tracks, only recordings containing
siren events have been considered for the experiments, identifying 6 tracks for
about 3 hours and 39 minutes. After the standardization and labeling oper-
ations, audio files were split into 0.5-second segments. All the siren segments
have been assigned to the positive set. Given the wide availability of urban
traffic noise, samples preceding each siren event for the duration of one minute
have been chosen and attributed to the negative set. Figure 5.5 illustrates the
proposed audio selection method, and Table 5.1 shows the A3Siren-Recordings
composition.

Siren and noise audio segments have been organized in two ways: (i) in
separate folders, each containing the samples selected in the individual record-

1https://github.com/michelacantarini/Few-Shot-Emergency-Siren-Detection

(accessed on 28 February 2023)
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Figure 5.5: A3S-Rec positive and negative audio data selection method.

Recording Siren (s) Noise (s) Location

20210506-1652 53 60 construction site
20210506-1714 19 60 coastal road
20210507-1421 38.5 60 shopping center
20210507-1426 38 60 residential suburb
20210507-1536 26 60 high-speed road
20210507-1640 25 60 city center

Total 199.5 360

Table 5.1: A3S-Rec audio file composition and recording environment.

ings; and (ii) in a single folder in which all audio files are mixed regardless of
the original track. The first strategy allows the algorithm to be evaluated in
identifying the siren sound in a specific background noise context. In a single
recording, the siren detection task is performed by contextualizing the target
sound within a background noise where the siren gradually appears with a low
signal level. The second data arrangement aims to discriminate between siren
sounds and traffic noises not belonging to the same recording. In this way, the
capability of the network to recognize siren sounds in several background noises
is assessed. In both cases, the siren detection task is performed separately in
the eight channels of the audio tracks.

5.2.2 Experimental Setup

Prototypical networks have been trained with the episodic method in several
(C, K) configurations. The validation process has also been performed in an
episodic way at the end of a chosen number of training episodes. After each
validation step, the average loss was compared with the previous value, and
the learned parameters of the model that returned the best performance were
stored for testing. The training setup consisted of a learning rate equal to 0.001,

73



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 74 — #94
✐

✐

✐

✐

✐

✐

Chapter 5 Few-Shot Learning for Emergency Siren Detection

Adam [76] optimizer, and 60 000 episodes, of which 1000 were for validation and
every 5000 for training, saving the model that performed best in the validation
stage.

Then, the baseline model compared with the few-shot methods has been com-
puted with and without fine-tuning for domain adaptation. First, the CNN was
trained for 100 epochs with a learning rate equal to 0.001, a decay rate of 0.1
every 30 epochs, and Adam optimizer, saving the model that performed best in
validation. Then, the previously trained model was adapted with several (p, n)

instances of the new task, according to the (p, n) combinations employed for
prototypical support embeddings. Because few data have been chosen for do-
main adaptation, the network was prone to quick overfitting. For this reason,
all the convolutional layers have been frozen, and only the two last linear layers
have been re-trained with a low learning rate and a small number of epochs.
Training has been performed with 20 epochs, Adam optimizer, decreasing learn-
ing rate between 0.0001 and 0.00001, and the early-stopping regulated by the
training loss.

Performance has been evaluated in terms of the area under precision-recall
curve (AUPRC). Both for prototypical networks and the fine-tuned baseline,
the random selection of positive and negative instances could have affected
the results because of the variability of the sample characteristics, even within
the same class. So, the experiments have been repeated ten times with dif-
ferent random (p, n) examples, and the AUPRC scores have been averaged to
generalize the performance over the available data.

5.3 Experiments and Discussion

5.3.1 Few-Shot Model Analysis

The first step of the experiments consisted of finding the best-performing
(C, K, p, n) combinations for the classification of a target word (SWC), an en-
vironmental sound (US8K), and an ambulance siren (A3S-Synth) as illustrated
in Figure 5.6. For all three datasets, the experimental results correlate better
scores with higher (C, K, p, n): the best prototypical models are the 10-way

10-shot cases for the SWC and US8K datasets, the 2-way 10-shot for the A3S-
Synth dataset. The A3S-Synth dataset presents the best score with an AUPRC
equal to 0.99 employing (p, n) = (5, 50) and 0.96 averaged over all the (p, n)

combinations. In the following, the experimental results are analyzed for each
dataset by varying (C, K, p, n).
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Figure 5.6: AUPRC results for prototypical networks trained and tested with
SWC, US8K, and A3S-Synth in several (C, K, p, n) combinations.
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Analysis of Results Varying C Ways

Optioning multiple values of C ways is allowed only for multiclass datasets,
so the first analysis interests the SWC and US8K experiments by fixing C =

(2, 5, 10) and averaging the AUPRC scores over all the (K, p, n) configurations.
In both datasets, many C ways improve the average scores: multiclass train-
ing expands the prior knowledge of the model by increasing the discriminative
capability among many classes of sounds and facilitating the discernment be-
tween examples belonging to new classes at the inference stage. A possible
explanation for the lower performance of US8K is that it comprises only ten
classes, and few classes in training are limiting for constructing a model with
high generalization capability.

Analysis of Results Varying K Shots

The investigation proceeds with the evaluation of the impact of different K

values within the same C-way setting. For the SWC, many K shots return
better performance: a higher number of examples creates a prototype that
more closely collects the patterns of the original class. Also, for the A3S-Synth,
many K shots improve the AUPRC score. The 1-shot condition is the least
effective, and at the same time, there is no substantial improvement between the
5-shot and 10-shot settings. Finally, the dataset that shows the least benefit in
using multiple K shots in the prototype generation is the US8K. These results
are related to the characteristics of the dataset. Using a dataset with clean
recordings and low interclass variability, such as the SWC, more instances for
the embedding computation create a more representative feature vector that
facilitates the mapping between the positive queries and the corresponding
support prototype. On the other hand, the low inter-class variance of support
examples with significant background noise levels, stationary sounds, or other
sounds not adequately represented by a 0.5-second time window, such as for
the US8K and A3S-Synth datasets, could penalize the prototype representation
with many examples.

Analysis of Results Varying (p,n) Instances

The outcomes of individual C-way K-shot cases by varying (p, n) are now ex-
plored. For all datasets and (C, K, n) configurations, the performance of proto-
typical networks with p = 5 is better than p = 1 because the prototype created
by one example is not always representative of an entire class. On the other
hand, increasing n does not provide univocal results for all datasets. With
the SWC and A3S-Synth, an improvement in AUPRC scores as n increases is
noticed, and the n = 50 case returns the best results in all simulation contexts.
Hence, using more examples to create the negative support prototype enhances
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the capability of the network to classify the positive instances correctly. How-
ever, this is not the case with the US8K dataset, which shows a similarity
between n at inference time and K in the training phase, where increasing
shots do not produce a more robust prototypical representation.

5.3.2 Siren Detection with Prototypical Networks

Evaluation within Individual Recordings

This analysis has assessed the ESD task within individual recordings composed
of audio segments with only traffic noise and others with additional sirens
gradually arising from the background. In this way, the models have been tested
to promptly identify the target sound in contexts where the background noise
is significant, variable, and unpredictable. In the experiments, the performance
of the recording sensors has been analyzed for each microphone position inside
and outside the passenger compartment to evaluate which setup can provide
the best response.

The results of the best prototypical models trained with the SWC, US8K,
and A3S-Synth datasets, respectively, and tested on the individual audio tracks
of the A3S-Rec dataset, are presented. For the sake of conciseness, complete
results for each (p, n) combination are reported only for channels 7–8 that
achieved the best performance, as shown in Table 5.2. For channels 1–6, the
AUPRC scores averaged over all (p, n) combinations are shown in Table 5.3.

SWC US8K A3S-Synth

(p, n) ch7 ch8 ch7 ch8 ch7 ch8

(1,1) 0.68 ± 0.07 0.68 ± 0.07 0.69 ± 0.07 0.68 ± 0.08 0.69 ± 0.10 0.70 ± 0.10
(5,1) 0.75 ± 0.06 0.72 ± 0.07 0.74 ± 0.06 0.73 ± 0.07 0.75 ± 0.12 0.76 ± 0.10

(10,1) 0.75 ± 0.06 0.73 ± 0.06 0.74 ± 0.05 0.73 ± 0.07 0.75 ± 0.11 0.75 ± 0.09
(1,5) 0.71 ± 0.08 0.69 ± 0.10 0.67 ± 0.08 0.66 ± 0.10 0.77 ± 0.07 0.76 ± 0.09
(5,5) 0.77 ± 0.09 0.77 ± 0.09 0.73 ± 0.08 0.73 ± 0.09 0.73 ± 0.08 0.73 ± 0.09

(10,5) 0.78 ± 0.09 0.76 ± 0.09 0.74 ± 0.08 0.73 ± 0.09 0.83 ± 0.08 0.84 ± 0.07
(1,10) 0.71 ± 0.11 0.70 ± 0.11 0.68 ± 0.10 0.67 ± 0.10 0.68 ± 0.10 0.67 ± 0.10
(5,10) 0.80 ± 0.09 0.78 ± 0.10 0.75 ± 0.09 0.74 ± 0.10 0.85 ± 0.06 0.86 ± 0.07

(10,10) 0.80 ± 0.10 0.80 ± 0.10 0.75 ± 0.09 0.75 ± 0.09 0.86 ± 0.08 0.89 ± 0.05
(1,50) 0.72 ± 0.09 0.72 ± 0.09 0.69 ± 0.09 0.67 ± 0.09 0.79 ± 0.09 0.79 ± 0.08
(5,50) 0.81 ± 0.09 0.79 ± 0.11 0.74 ± 0.10 0.73 ± 0.10 0.87 ± 0.05 0.88 ± 0.06

(10,50) 0.82 ± 0.09 0.82 ± 0.10 0.77 ± 0.08 0.76 ± 0.09 0.89 ± 0.05 0.90 ± 0.05

avg 0.76 ± 0.09 0.75 ± 0.09 0.72 ± 0.08 0.71 ± 0.09 0.80 ± 0.08 0.81 ± 0.08

Table 5.2: AUPRC of the best SWC, US8K, and A3S-Synth prototypical models
tested on individual recordings of channels 7–8 of the A3S-Rec dataset.

The three models provide outcomes with the same trend in all audio channels:
in most cases, the AUPRC scores increase along with (p, n). As expected, the
scores obtained from the A3S-Synth-trained model are better than the SWC
ones, followed by the US8K model outcomes. The A3S-Synth dataset provides
the best performance in the combination (p, n) = (10, 50) with an AUPRC
score of 0.90 at channel 8, and among the several models, it benefits most
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Model ch1 ch2 ch3 ch4 ch5 ch6

SWC 0.71 ± 0.11 0.71 ± 0.10 0.71 ± 0.11 0.73 ± 0.10 0.67 ± 0.13 0.68 ± 0.12
US8K 0.70 ± 0.13 0.68 ± 0.11 0.70 ± 0.12 0.69 ± 0.12 0.67 ± 0.13 0.66 ± 0.13
A3S-Synth 0.70 ± 0.11 0.72 ± 0.09 0.71 ± 0.10 0.74 ± 0.11 0.68 ± 0.13 0.67 ± 0.11

Table 5.3: Average AUPRC of the best SWC, US8K, and A3S-Synth proto-
typical models tested on individual recordings of channels 1–6 of the A3S-Rec
dataset.

from multiple support examples. From the comparison of the AUPRC values
between different microphone positions, the sensors behind the license plate
(positions 7–8) demonstrated the best performance, followed by those inside the
passenger compartment (positions 1–4) and finally in the trunk (positions 5–6).

Evaluation with Internal Labeling

In the previous simulations, audio segments have been annotated by listening to
the audio signals recorded by the sensors behind the license plate and applying
the same label to all channels, as the audio data of the external microphones
show the two tones of the ambulance siren sooner than the other positions.
The behavior of the sensors inside the passenger compartment has also been
investigated, focusing on the influence of the sound attenuation of the cockpit.
As the chassis is made of soundproofing material, it acts as a barrier to the entry
of the siren sound when its level is below the transmission loss of the enclosure
at the siren tones frequencies. This fact results in a shorter duration of siren
sound events in the internal recordings than in the external ones. To indirectly
assess the influence of cockpit attenuation in the ESD task, the experiments
have been repeated after revising the annotations for internal channels 1, 2, 3,
and 4. Figure 5.7 shows spectrograms of the same siren occurrence recorded
by sensors inside the passenger compartment and behind the license plate. In
the example, the siren sound in the first 5 seconds of the internal recording is
attenuated; thus, the internal labeling considers this audio segment as noise.

Tables 5.4, 5.5, and 5.6 present test results on the data corresponding to
channels 1-2-3-4 of the internally labeled A3S-Rec dataset, using the best
SWC/US8K/A3S-Synth prototypical models.

For all the datasets and (p, n) settings, the outcomes of the recordings with
internal labeling present equal or better AUPRC scores than those with exter-
nal annotations, with an average relative percentage increment of up to 7%.
The performance improvement with the internal labeling is correlated to the
noise class attribution of uncertain siren events resulting from cockpit sound at-
tenuation and internal car noise. Whereas the impact of the attribution of not
clearly identifiable siren events to the noise class is reflected in higher scores,
the algorithm exhibits delayed responsiveness in the siren recognition. Thus,
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Figure 5.7: Spectrograms of siren recordings acquired by sensors inside (top)
and outside (bottom) the passenger compartment with different labeling crite-
ria for the internal channel.

external labeling has been taken as a reference for an unbiased comparison of
the effectiveness of the acquisition sensors.

Among the internal sensors, the microphone at position 4 provides the best
scores. One possible reason is that ambulances often approached the equipped
car from the same direction of travel during the acquisition campaign. Thus,
the alarm sound first impacted the rear, incurring less reflection from the source
to the recording sensors on the back. The better response of the sensor at po-
sition 4 compared to the specular one could be due to the operator sitting near
position 3, which represented an absorption surface for the incoming sound.

(p, n) ch1 ch2 ch3 ch4

(1,1) 0.71 ± 0.09 0.71 ± 0.08 0.69 ± 0.10 0.71 ± 0.09

(5,1) 0.74 ± 0.09 0.73 ± 0.10 0.75 ± 0.10 0.75 ± 0.07

(10,1) 0.75 ± 0.09 0.76 ± 0.08 0.75 ± 0.10 0.75 ± 0.09

(1,5) 0.71 ± 0.11 0.71 ± 0.10 0.69 ± 0.10 0.75 ± 0.09

(5,5) 0.79 ± 0.09 0.78 ± 0.08 0.79 ± 0.10 0.79 ± 0.09

(10,5) 0.79 ± 0.08 0.79 ± 0.08 0.79 ± 0.09 0.80 ± 0.09

(1,10) 0.72 ± 0.10 0.72 ± 0.10 0.70 ± 0.09 0.75 ± 0.09

(5,10) 0.79 ± 0.09 0.78 ± 0.09 0.79 ± 0.09 0.80 ± 0.09

(10,10) 0.81 ± 0.07 0.82 ± 0.07 0.81 ± 0.08 0.82 ± 0.08

(1,50) 0.71 ± 0.10 0.72 ± 0.09 0.71 ± 0.10 0.77 ± 0.09

(5,50) 0.80 ± 0.08 0.80 ± 0.08 0.80 ± 0.09 0.81 ± 0.09

(10,50) 0.81 ± 0.07 0.82 ± 0.07 0.81 ± 0.08 0.82 ± 0.10

avg 0.76 ± 0.09 0.76 ± 0.08 0.76 ± 0.09 0.78 ± 0.09

Table 5.4: AUPRC of the best SWC prototypical model tested on the A3S-Rec
dataset, considering internal labeling for the recordings of channels 1–4.
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(p, n) ch1 ch2 ch3 ch4

(1,1) 0.69 ± 0.12 0.67 ± 0.10 0.67 ± 0.11 0.68 ± 0.09

(5,1) 0.72 ± 0.13 0.68 ± 0.10 0.70 ± 0.12 0.72 ± 0.11

(10,1) 0.70 ± 0.13 0.69 ± 0.10 0.70 ± 0.12 0.72 ± 0.11

(1,5) 0.71 ± 0.14 0.68 ± 0.13 0.68 ± 0.11 0.69 ± 0.11

(5,5) 0.72 ± 0.13 0.72 ± 0.14 0.73 ± 0.13 0.76 ± 0.12

(10,5) 0.75 ± 0.14 0.73 ± 0.14 0.75 ± 0.13 0.77 ± 0.12

(1,10) 0.70 ± 0.14 0.69 ± 0.13 0.69 ± 0.14 0.69 ± 0.12

(5,10) 0.74 ± 0.15 0.72 ± 0.16 0.74 ± 0.14 0.76 ± 0.12

(10,10) 0.76 ± 0.13 0.74 ± 0.15 0.76 ± 0.13 0.78 ± 0.12

(1,50) 0.70 ± 0.14 0.68 ± 0.13 0.69 ± 0.13 0.70 ± 0.12

(5,50) 0.75 ± 0.14 0.72 ± 0.15 0.75 ± 0.14 0.78 ± 0.12

(10,50) 0.77 ± 0.14 0.74 ± 0.15 0.76 ± 0.14 0.79 ± 0.11

avg 0.73 ± 0.14 0.71 ± 0.13 0.72 ± 0.13 0.74 ± 0.11

Table 5.5: AUPRC of the best US8K prototypical model tested on the A3S-Rec
dataset, considering internal labeling for the recordings of channels 1–4.

(p, n) ch1 ch2 ch3 ch4

(1,1) 0.66 ± 0.10 0.65 ± 0.08 0.65 ± 0.12 0.68 ± 0.11

(5,1) 0.70 ± 0.12 0.68 ± 0.11 0.72 ± 0.10 0.75 ± 0.10

(10,1) 0.70 ± 0.13 0.69 ± 0.10 0.71 ± 0.11 0.75 ± 0.11

(1,5) 0.69 ± 0.11 0.68 ± 0.08 0.67 ± 0.10 0.70 ± 0.10

(5,5) 0.76 ± 0.12 0.77 ± 0.09 0.76 ± 0.10 0.80 ± 0.10

(10,5) 0.77 ± 0.11 0.77 ± 0.09 0.78 ± 0.10 0.81 ± 0.09

(1,10) 0.69 ± 0.11 0.69 ± 0.07 0.69 ± 0.09 0.71 ± 0.09

(5,10) 0.77 ± 0.11 0.78 ± 0.08 0.78 ± 0.10 0.81 ± 0.09

(10,10) 0.79 ± 0.11 0.81 ± 0.07 0.80 ± 0.08 0.82 ± 0.09

(1,50) 0.69 ± 0.11 0.69 ± 0.10 0.70 ± 0.10 0.71 ± 0.10

(5,50) 0.77 ± 0.12 0.79 ± 0.09 0.79 ± 0.10 0.81 ± 0.10

(10,50) 0.80 ± 0.10 0.81 ± 0.08 0.80 ± 0.09 0.83 ± 0.10

avg 0.73 ± 0.11 0.74 ± 0.09 0.74 ± 0.10 0.77 ± 0.10

Table 5.6: AUPRC of the best A3S-Synth prototypical model tested on the
A3S-Rec dataset, considering internal labeling for the recordings of channels
1–4.

Evaluation Across All Recordings

In this set of experiments, the few-shot techniques have been assessed across
all the recordings. The detection in individual recordings can be interpreted as
identifying the background noise perturbation produced by the siren signal. On
the other hand, the detection across all recordings represents a more challenging
task performed in several acoustic contexts, varying both in terms of sound
intensity and spectral content. Channels 4, 7, and 8 have been considered
in the experiments as they provided the best results in the analysis within
individual recordings. The experiments have been conducted with support sets
composed of p ∈ {10, 20, 50} and n = 50 to evaluate the influence of increasing
positive support examples.
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5.3 Experiments and Discussion

Table 5.7 presents the prototypical results across all the recordings acquired
by microphones in positions 4-7-8. Again, with a fixed n = 50, a more signifi-
cant number of p improves the scores, and the best outcomes are obtained by
the A3S-Synth model with data belonging to channel 7.

Training set (p,n) ch4 ch7 ch8

SWC
(10,50) 0.59 ± 0.05 0.72 ± 0.07 0.76 ± 0.04
(20,50) 0.62 ± 0.05 0.77 ± 0.02 0.78 ± 0.03
(50,50) 0.64 ± 0.05 0.81 ± 0.03 0.80 ± 0.02

US8K
(10,50) 0.59 ± 0.05 0.65 ± 0.03 0.66 ± 0.03
(20,50) 0.62 ± 0.04 0.67 ± 0.02 0.69 ± 0.02
(50,50) 0.63 ± 0.02 0.67 ± 0.01 0.69 ± 0.01

A3S-Synth
(10,50) 0.67 ± 0.03 0.82 ± 0.02 0.82 ± 0.02
(20,50) 0.73 ± 0.05 0.84 ± 0.02 0.83 ± 0.03
(50,50) 0.73 ± 0.03 0.86 ± 0.02 0.85 ± 0.02

Table 5.7: AUPRC of the best prototypical models tested across all recordings
of channels 4-7-8 of the A3S-Rec dataset.

In addition, noise reduction effects have been considered by applying the
harmonic-percussive source separation technique [93] to the A3S-Rec dataset.
Table 5.8 presents prototypical results across all the recordings acquired by
microphones in position 4-7-8 after harmonic filtering with a separation factor
βh = 3. An appreciable improvement provided by the filtering operations is
observed, especially for the external channels. The best AUPRC scores are
attributed to the A3S-Synth model with data belonging to channel 8.

Training set (p,n) ch4 ch7 ch8

SWC
(10,50) 0.67 ± 0.05 0.86 ± 0.01 0.88 ± 0.01
(20,50) 0.71 ± 0.02 0.86 ± 0.01 0.87 ± 0.01
(50,50) 0.71 ± 0.02 0.86 ± 0.00 0.88 ± 0.01

US8K
(10,50) 0.60 ± 0.05 0.76 ± 0.02 0.80 ± 0.03
(20,50) 0.62 ± 0.04 0.78 ± 0.02 0.82 ± 0.02
(50,50) 0.62 ± 0.03 0.78 ± 0.02 0.83 ± 0.02

A3S-Synth
(10,50) 0.70 ± 0.04 0.85 ± 0.02 0.90 ± 0.01
(20,50) 0.75 ± 0.02 0.87 ± 0.01 0.91 ± 0.01

(50,50) 0.75 ± 0.02 0.86 ± 0.01 0.91 ± 0.00

Table 5.8: AUPRC of the best prototypical models tested across all recordings
of channels 4-7-8 of the A3S-Rec dataset with harmonic filter.

Analyzing the experiments with the harmonic filtered dataset, the results
show that channels 7–8 yield better performance than channel 4. One possible
explanation is that the high noise in the external recordings is easily separated
and assigned to the percussive and residual components, emphasizing the har-
monic siren sound. In cleaner internal recordings, filtering operations do not
improve appreciably over unfiltered audio data. Additionally, using more posi-
tive examples often does not lead to better outcomes. The reason is that in the
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filtered condition, spectrograms highlight the harmonic content of the signal,
and therefore even few instances can create a representative prototype.

The AUPRC scores of the filtered audio data of channel 7 are lower than
those of channel 8. Despite being in specular positions, the microphone at
position 7 is located on the left side of the license plate. The corresponding
recordings may be affected by noises with tonal components from cars in the
other direction of travel, which explains the loss of performance with the filtered
audio data.

5.3.3 Siren Detection with Baseline

The last experiments involved classifying the audio files of the A3S-Rec dataset
with the baseline computed by the CNN described in Section 4.1.1, using the
A3S-Synth dataset for the training. The CNN performance has been evaluated
across all the recordings with and without fine-tuning for domain adaptation.
For a comparison with prototypical networks, the same (p, n) combinations of
instances used to construct the support embeddings have been employed to
update the weights of the two last linear layers.

Table 5.9 presents the outcomes of the baseline model without fine-tuning
tested across all the recordings of A3S-Rec (channels 4-7-8) in unfiltered and
harmonic filtered conditions.

Filtering ch4 ch7 ch8

no 0.60 0.65 0.65

harmonic 0.62 0.64 0.64

Table 5.9: AUPRC of the baseline model without fine-tuning across all the
recordings of channels 4-7-8 of the A3S-Rec dataset.

Although the results do not differ significantly, the best scores are attributed
to the external channels in the unfiltered conditions, with an AUPRC equal
to 0.65. The reason is the affinity between source and target domains, as
the synthetic siren audio files have been generated simulating siren alarms
immersed in urban traffic noise in the outdoor environment. On the other hand,
inference on filtered data shows a slight decrease in performance at channels
7-8. Because the training was conducted on unfiltered data and the filtering
accentuates any harmonic components, generic tonal sounds recorded by the
external sensors may be confused with the siren alarm.

Table 5.10 illustrates the results of the baseline model with fine-tuning, again
in unfiltered and harmonic filtered conditions.

The analysis of the fine-tuned baseline results mirrors the trend of prototyp-
ical AUPRC scores with the A3S-Synth model, shown in Tables 5.7 and 5.8. In
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Filtering (p, n) ch4 ch7 ch8

(10,50) 0.45 ± 0.07 0.78 ± 0.04 0.80 ± 0.02
no (20,50) 0.65 ± 0.03 0.81 ± 0.01 0.81 ± 0.01

(50,50) 0.70 ± 0.03 0.84 ± 0.02 0.83 ± 0.01

(10,50) 0.57 ± 0.07 0.82 ± 0.01 0.84 ± 0.02
harmonic (20,50) 0.71 ± 0.04 0.83 ± 0.01 0.86 ± 0.01

(50,50) 0.73 ± 0.03 0.85 ± 0.01 0.88 ± 0.02

Table 5.10: AUPRC of the baseline model with fine-tuning in several (p, n)
combinations across all the recordings of channels 4-7-8 of the A3S-Rec dataset.

both unfiltered and harmonic filtered conditions, many (p, n) instances for fine-
tuning improve the classification performance. Again, the effectiveness of the
noise reduction technique is proven by the best results obtained with filtered
data belonging to the external channels. For the internal channel, fine-tuning
with only 10 positive examples decreases the performance of the baseline with-
out domain adaptation. In this case, few positive examples affected by cockpit
attenuation and rapid model overfitting lead to erroneous learning of the siren
class.

This aspect shows an additional advantage of prototypical networks in the
low-data regime. Whereas the convolutional neural network used for the base-
line has been trained with few epochs to reduce the problem of overfitting on
the fine-tuning data, for prototypical networks, this excessive adaptation does
not affect the results due to the distance-based metrics, as investigated in [119].

In Table 5.11, the relative percentage increase of the few-shot achievements
with respect to (CNN + fine-tuning) is presented.

Filtering (p, n) ch4 ch7 ch8

(10,50) 48.8% 5.7% 3.0%
no (20,50) 12.8% 4.6% 2.6%

(50,50) 4.4% 1.8% 2.0%

(10,50) 21.6% 4.1% 6.6%
harmonic (20,50) 6.0% 4.3% 4.8%

(50,50) 2.5% 1.0% 4.0%

Table 5.11: AUPRC relative percentage increase from fine-tuned baseline to
best prototypical score across all the recordings of channels 4-7-8 of the A3S-
Rec dataset.

In almost all cases, the most significant increments occur in the combination
(p, n) = (10, 50) and decrease with higher p values. This fact indicates that
by increasing the (p, n) examples, AUPRC scores of the fine-tuned baseline ap-
proximate the few-shot outcomes. However, prototypical networks demonstrate
their superior efficacy because they perform equally well with a very limited
amount of support instances. In addition, the improvement with the lowest
number of data used in the (p, n) = (10, 50) combination is more evident in the
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case of the internal microphone, meaning that the few-shot solution performs
better than the (CNN + fine-tuning) when the mismatch between training and
testing conditions is high.

5.3.4 Remarks

Summarizing the findings of the experiments from an algorithmic point of view,
higher values of (C, K, p, n) are correlated with better scores. Multiclass train-
ing helps to expand the prior knowledge of the model and increase its discrim-
inative capability among many sound classes, facilitating discernment between
examples belonging to classes unseen during the training. In addition, the nu-
merosity of the instances contributes to the creation of a prototype that more
faithfully collects the patterns of the original class. According to this principle,
using multiple examples to create positive and negative support prototypes
at the inference stage can improve the network performance in classification.
However, one aspect that should not be overlooked is the characteristics of the
dataset used in training. The robustness of the model depends on intra- and
interclass variability, background noise levels, stationarity of sounds and their
duration. Additionally, a training set with affinities with the target domain
can aid in the classification task. A significant advantage over convolutional
neural networks in the low data regime is also related to the overfitting aspect,
which in prototypical networks does not affect the results due to distance-based
evaluation metrics.

Experiments were conducted with relation networks [136] but did not perform
as well as prototypical networks. The difference in performance is attributed
to the method used to generate embeddings, particularly considering the high
noise level in the recordings. In the relation embedding method, feature maps
are summed element-wise, amplifying the noise representation over the siren.
On the other hand, the advantage of the prototypical embedding method is
the noise and siren feature maps averaging and the consequent redistribution
of the noise among all frequencies.

Finally, from an installation perspective, this research has provided insights
into the implementation of emergency vehicle detection systems embedded in
cars. The key findings are outlined as follows:

• The optimal location for the acquisition sensor is behind the license plate
outside the vehicle. This position is less susceptible to cabin attenua-
tion and provides a quick response to siren sound detection. However,
weatherproof sensors are necessary due to the exposure to the elements.

• High external noise levels can affect siren detection. Therefore, incorpo-
rating a noise reduction filter, such as the one proposed in this study, can
improve the performance of external sensors.
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• Sensors inside the passenger compartment can be used with deployment
benefits. Despite the disadvantages of cockpit soundproofing, people talk-
ing, or the sound system, internal microphones in a weather-protected
environment are more cost-effective and require less maintenance than
external ones.

• In situations where an ambulance is approaching a car in the same direc-
tion of travel, the most common and dangerous scenario, the rear of the
vehicle represents the best microphone placement.

In conclusion, based on the extensive experiments conducted, prototypical
networks have been shown to be a reliable and resilient method for detect-
ing emergency sirens. In particular, few-shot methods can be applied to fine-
tune algorithms that can be customized for different car models. With an
extremely limited number of recordings made on board a specific type of ve-
hicle, pre-trained neural models for the emergency siren detection task can be
employed without the need for adaptation between source and target domains.
Traditional fine-tuned convolutional models with a small number of instances
have achieved slightly lower performance than prototypical networks, which
increased with the number of instances used. Evaluations of the most suitable
algorithm for the task to be undertaken must therefore be made on a case-by-
case basis, in accordance with the amount of data available, their quality, and
by screening different solutions.

85



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 86 — #106
✐

✐

✐

✐

✐

✐



✐

✐

“PhDthesis_MC” — 2023/5/15 — 23:50 — page 87 — #107
✐

✐

✐

✐

✐

✐

Chapter 6

A Novel Prototype of Emergency

Vehicle Detection System

As a culmination of the algorithmic investigations regarding emergency siren
detection, this study illustrates the design of a complete prototype of an emer-
gency vehicle detection system. This solution focuses on real-time monitoring
of the acoustic scenario and understanding the driver’s behavior by employing
audio and video techniques based on deep learning. The system leverages sound
recognition algorithms to detect the approaching of an emergency vehicle from
the sound of its siren. When this happens, the intelligence of the system mon-
itors the driver’s gaze and evaluates his/her awareness using computer vision
algorithms. The integration of these technologies into a commercial vehicle,
the creation of new datasets, and the challenges encountered are described as
follows.

6.1 Architecture of the Prototype

The proposed emergency vehicle detection system is designed to interact di-
rectly with the driver in case of an approaching emergency vehicle. The main
objectives expected from such a system are to constantly monitor the occur-
rence of emergency vehicles, check if the driver is aware of the approaching
vehicle, and provide an audio or visual warning if the driver appears unaware.

Emergency vehicle detection relies exclusively on computational audio pro-
cessing, taking advantage of automatic siren recognition algorithms. On the
other hand, driver awareness can be verified by using computer vision algo-
rithms to extract key information from gaze activity. Rapid movements di-
rected toward the left, rear, and right mirrors are of particular interest, repre-
senting the driver’s search for the source of sound and indicating the awareness
of the context. Driver gestures have been studied in a preliminary experimental
phase, finding that drivers often direct their gaze to the mirror with small head
movements when they hear a siren coming from behind the car.
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Chapter 6 A Novel Prototype of Emergency Vehicle Detection System

Figure 6.1: Flow diagram of the expected behavior of the system.

The device falls under modern advanced driver-assistance systems developed
to support the driver in potentially dangerous situations. It does not meet high
or full driving automation requirements under Levels 4 and 5 of the industry
standard [138]. These levels refer to scenarios where the car can operate without
human presence or intervention, such as pulling over to the side of the road or
slowing down. However, the device is intended to assist the driver by providing
suggestions on how to respond to hazardous situations.

The flow diagram of the system is depicted in Figure 6.1. The audio ac-
quisition device detects the siren sound in real time, which then activates the
camera to track the driver’s awareness, focusing on the head pose, gaze orien-
tation, and eye status sequentially. If the driver is found to be unaware of the
emergency vehicle, the system issues an audio-visual alert.

6.1.1 Hardware Architecture

The proposed prototype requires a set of hardware components described as
follows:

• Audio sensors to monitor the external acoustic scene.

• Image sensors directed toward the driver’s face.

• A computational unit for processing the data acquired from the sensors in
real time, running the classification algorithms and the glue logic software
designed to implement the flow diagram in Figure 6.1.

• A head-up display (HUD) to alert the driver when required by the con-
text.
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6.1 Architecture of the Prototype

Figure 6.2: Overview of the hardware components of the emergency vehicle
detection prototype.

All these devices have been installed on a research vehicle, a Mercedes A-Class,
provided by a project partner supporting this study. The car has also been used
to collect the datasets needed to train and test the algorithms. An overview of
the hardware components involved with the prototype is shown in Figure 6.2.

The software is designed to be run on a single computing device that is ef-
ficient and compact to fit the limited space and power supply of the car. The
device must have the sufficient computing power to enable real-time execution
of both audio and video detection algorithms. Off-the-shelf components have
been selected to create a working prototype quickly and with minimal addi-
tional effort. An x86 machine has been chosen due to its ability to host a
graphics processing unit (GPU) to accelerate deep learning and image process-
ing algorithms while still operating with low power consumption. Although
any x86 personal computer could work, the Intel NUC currently represents
the smallest form factor for x86 computers that can accommodate an external
GPU, such as the GTX 1650 GPU. This small GPU is specifically designed to
fit the NUC, and the maximum power consumption of the system is 60 W in the
worst case. During the prototyping stage, a power inverter was used to convert
the 12 V DC outlet of the car into a 230 V AC source to power the equipment.
The NUC also features USB and HDMI connectors and is compatible with any
GNU/Linux distribution, allowing for convenient software development.

ECM8000 omnidirectional measurement condenser microphones have been
chosen as acoustic sensors. The microphones have been placed according to the
setup illustrated in Section 3.1.2, and previous studies in Chapter 5 provided
the advantages and disadvantages of each installation. Microphones inside the
passenger compartment are unsuitable for recording external sounds as they
may pick up interference from conversations or radio. Also, the cabin insulation
can attenuate the signals. Recording sensors in the trunk are simultaneously
affected by cabin soundproofing and mechanical component noise. Placing the
sensor externally, such as behind the license plate, is optimal for detecting
sounds from outside, especially from the back, where the driver may have
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Chapter 6 A Novel Prototype of Emergency Vehicle Detection System

Figure 6.3: Detail of vision system, with the dashboard of the prototype car
fitted with (1) the DVS camera and (2) the GNSS receiver.

difficulty perceiving an incoming emergency vehicle. An eight-channel Roland
Octa-Capture soundboard has been used to capture sound with the NUC, as a
maximum of eight microphones are sufficient to cover all these positions.

For the evaluation of vision sensors, two distinct technologies have been
considered: a standard RGB camera and a dynamic vision system (DVS), also
known as event camera. The standard RGB camera is the IDS UI-3160CP-
C-HQ, a USB 3.0 camera equipped with a 2/3" global shutter CMOS sensor
PYTHON 2000 from Onsemi. This camera boasts a full resolution of 2.3 MP
(1920 × 1200 pixels) and a frame rate of up to 165 fps. As for the DVS, the
DAVIS 346 camera has been evaluated, which can provide both grayscale frames
and event data, including location, polarity, and timestamp. Both cameras are
synchronized with a pulse-per-second signal generated from an external GPS
receiver, based on the u-blox NEO-M8 GNSS device with an external antenna.
The position of the camera and GNSS are depicted in Figure 6.3.

6.1.2 Software Architecture

The system architecture of the prototype involves executing several tasks in
parallel, which are accomplished by running parallel threads with distinct func-
tionality. Python has been selected as the programming language to implement
the software architecture due to its ability to support multi-threading, create
flexible graphic user interfaces (GUI), run on multiple operating systems, and
bind to popular deep learning, audio processing, and image-processing libraries.

The main process includes the GUI and audio-video processing tasks. The
GUI is created using the Kivy1 library and resembles a car dashboard. Once

1https://kivy.org (accessed on 28 February 2023)
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6.1 Architecture of the Prototype

Figure 6.4: The graphic user interface of the EVD prototype.

Figure 6.5: Overview of the software nodes involved of the EVD prototype.

started, it displays the detection status and provides a visual alert when a siren
is detected, as shown in Figure 6.4. The audio thread employs the sounddevice

python library and registers a callback function to process audio frames. The
callback function calls a previously trained torch2 neural model to detect sirens
in traffic and noisy signals.

When the siren is detected, a signal is sent to the video thread to indicate
the presence of a siren. At this point, the video processing pipeline evaluates
if the user’s gaze is directed towards the mirrors (i.e., left, right, and rear
view mirrors) to ensure eyes are looking for signs of an emergency vehicle. A
similar signal is sent when the siren disappears. An overview of the software
architecture is provided in Figure 6.5, where NC stands for neural classification.

6.1.3 Deep Learning Algorithms

The siren sound recognition and driver face monitoring systems, which are part
of the prototype, are based on deep learning algorithms. Pre-trained models
adapted to the target task have been used for consistency between audio and
visual recognition techniques. Convolutional models trained on synthetic data

2https://pytorch.org (accessed on 28 February 2023)
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and fine-tuned with real-world data recorded with the microphones behind the
license plate of the research car have been used for emergency siren detection
algorithms. In addition to the siren detection, the overall vision system for
driver monitoring consists of three subsystems: pose of the head, gaze ori-
entation, and status of eyes. The visual recognition techniques used for each
subsystem, along with the datasets employed and preliminary experiments con-
ducted, are briefly explained.

Head Pose Estimation

The head pose estimation has been performed by extracting 3D facial land-
marks from RGB or gray-scale images (IR images could also be used for this
purpose). MediaPipe Face Mesh [139] has been used, which estimates 468 3D
face landmarks from a single camera without requiring deep data. The pose
of the head has been estimated from a subset of landmarks, and the main
angles in terms of roll, pitch, and yaw have been derived. To reduce the com-
putational load, the area that includes the passenger has been excluded from
the computation. An example of landmark detection inside the testing vehicle
using MediaPipe Face Mesh is shown in Figure 6.6a.

Gaze Estimation

The gaze estimation has been necessary to evaluate whether the driver’s gaze
is directed to a region of interest when the approaching emergency vehicle
occurs. Both deep and RGB, as well as IR images from Intel RealSense D455,
have been used to estimate gaze. Different areas or screens of interest have been
defined, namely the front windscreen, the left mirror, and the rear-view mirror.
The data from the Intel RealSense D455 camera have been integrated into the
Eyeware toolchain3 to estimate the head pose and track the driver’s gaze.
The developed module outputs the head pose (cross-checked with the pose
estimated using MediaPipe), the direction of the user’s gaze, and the screen
that the driver’s gaze hits. All the data are in a global reference system that is
centered on the camera. Figure 6.6b shows an example of gaze estimation using
RGB frames. The data are then shared with other applications to correlate the
head pose and gaze with the siren detection application.

Eye Status Estimation

Three main sub-images are extracted from the landmarks obtained. Two of
these images correspond to the left and right eyes, while the third corresponds
to the lips (mouth). The status of the eyes and mouth (opened/closed) is

3https://github.com/eyeware (accessed on 28 February 2023)
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(a) (b) (c)

Figure 6.6: Mesh map for facial landmarks and extracted landmarks (a),
gaze estimation from vision system (b), and images of opened/closed eyes (c).

estimated based on these images. A dataset has been created for the scope,
composed of 10 000 images of male and female faces belonging to different age
ranges and races found on web resources using the SerpApi4 web scraper. The
Facemesh algorithm has been executed to extract facial landmarks, and the
eyes have been selected using a bounding box around the landmarks belonging
to the left and right eyes. An offset of 20 pixels has also been applied to the
bounding box to include more data. An example of images extracted from the
created dataset is shown in Figure 6.6c.

Experimental Setup of the Vision System

Data augmentation has been applied by flipping and performing small rota-
tions (±10°). A MobileNet V2 [140] model has been chosen, where 80% of the
sample has been used for training and the remaining 20% for validation. Bi-
nary cross-entropy has been set as the loss function for the two classes, which
are opened/closed eyes. Transfer learning has been performed by adopting a
pre-trained set of weights from Imagenet [141] to adapt the model for the task.
Fine-tuning has also been conducted to enhance the overall performance of the
model. The resulting training and validation accuracy is above 97.5%. The
model could also be further optimized to reduce its weight using TF lite [142]
converter. A small reduction in accuracy (97%) has been found from prelimi-
nary results, but a 3.5x performance gain has been achieved regarding the time
required to predict a single frame.

6.1.4 Open Challenges

The prototype of the emergency vehicle detection device based on driver aware-
ness is an innovative system and presents no significant problems for its engi-
neering, as acoustic and miniature imaging sensors are already integrated into
commercial cars. The main challenge is perfecting the deep algorithms and
expanding the acoustic and visual detection case histories. On the audio side,

4https://serpapi.com (accessed on 28 February 2023)
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(a) Gaze monitoring sys-
tem.

(b) Interface in warning
state.

(c) Interface in ordinary
traffic state.

Figure 6.7: Images from the demonstration video of the EVD prototype.

reducing latencies and minimizing the size of audio frame sizes used by the
siren detection algorithm is necessary to make the system suitable for real-
world scenarios. In addition, the system needs to generalize to all siren sounds
used by emergency vehicles in different countries. From a computer vision per-
spective, there are several challenges, including the generalization capability
of the developed models to a wide range of faces and detection based only on
head pose for drivers wearing sunglasses. Other challenges include detection
robustness under different lighting conditions and data security from a privacy
perspective. In addition, human factors must be considered when deploying
the EVD system. The driver must be aware of the system’s presence, and the
warning information provided must be clear and not distracting.

In conclusion, the results from the feasibility investigation of the prototype
system have shown promising outcomes that will be assessed in a real-world
testing campaign. Meanwhile, the demo of the prototype has been presented
in a video recorded inside the semianechoic chamber of the Department of In-
formation Engineering at Università Politecnica delle Marche, Italy. Figure 6.7
shows images of the driver’s face detection and gaze monitoring system and the
display with and without warnings presented during the demonstration. The
full video can be watched at the link https://youtu.be/WjyewoCm7NU.
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Chapter 7

An Audio-Visual Dataset for

Driving Scene Understanding

The field of perception systems for self-driving cars is expanding rapidly with
numerous applications in industry and academia [143]. Of particular interest
is the development of technologies for the automatic understanding of driving
scenarios, which is becoming more feasible due to the increasing availability
of large quantities of driving data. These technologies have the potential to
be used in a range of applications, from advanced driver-assistance systems
to fully autonomous driving. Audio-visual information is paramount to fully
understanding real-world scenarios, as visual and auditory modalities provide
complementary information. Visual data help identify features of the road
infrastructure traveled, landscape, and natural or artificial lighting; audio pro-
vides information about traffic noise or nature sounds, adverse weather condi-
tions, and reverberant environments (e.g., tunnels, underground parking lots).
Effective automatic solutions must be able to handle a broad range of sound
scenes and sensing conditions, including those that are noisy, sparse, and with
moving sources. The ideal system should be able to adapt to changing condi-
tions and maintain robust performance in all situations.

In the past decade, research in computer vision produced a wide variety of
real-world driving datasets, which have provided researchers with opportuni-
ties to develop new algorithms. Most of the best-known datasets concentrate
on specific perception tasks due to the high expenses incurred during data
collection and annotation. The KITTI dataset [144] is a pioneering work in-
cluding recordings in urban, highway, and rural scenarios performed with stereo
cameras and a LiDAR sensor during the daytime for 1.5 hours. More challeng-
ing scenarios have been collected in nuScenes [145], consisting of 5.5 hours of
driving data recorded by multiple sensors in urban, residential, natural, and
industrial sites, and in the Waymo [146] dataset that offers 6.4 driving hours in
suburban and downtown areas, both recorded in daytime and nighttime with
varying weather conditions. The relatively small size of these collections posed
new challenges to the construction of vision-based large-scale datasets. A sig-
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nificant example is the ONCE [147] dataset that comprises 144 hours of video
data in multiple contexts, time of the day, and weather conditions, recorded
with LiDAR sensors and cameras.

While there is a great deal of related work in the computer vision area,
datasets on machine listening focus mainly on sound event detection [148–
150] and acoustic scene classification [151–153] in urban environments. Also,
few works exist on audio-visual classification, e.g., involving dynamic environ-
ments [154], urban scenes [155], and urban traffic data [156]. Visual-acoustic
multimodal data have been collected with an instrumented car in [157]to im-
prove driving pleasantness by monitoring the state of the vehicle interior and
in [158] for obstacle detection and tracking under vehicle vertical dynamics
excitation caused by road anomalies.

To the best of our knowledge, multisensor and multimodal recordings con-
ducted in real-world scenarios with significant duration and consistent audio
and video quality aimed at a complete comprehension of the car’s surroundings
are not available on public databases. For this reason, an audio-visual dataset
for driving scene understanding, called “A3CarScene,” has been created and is
presented in the following.

7.1 A3CarScene Dataset

A3CarScene is an audio-visual dataset comprising more than 31 hours of audio
and video data recorded while driving a research car on public roads. The
sensor equipment consists of eight microphones installed inside and outside
the passenger compartment and two dashcams mounted on the front and rear
windows of the vehicle. Acquisitions were made in the Marche Region, located
in the center of Italy and characterized by variegated landscapes, from the coast
in the east to the hilly areas in the center and the Apennine mountains in the
west. Regarding its urbanization, the Marche Region presents two main urban
centers (Pesaro and Ancona) and many towns with their respective suburban
belts, exurban areas with industrial sites and infrastructure connections, and
rural lands with scattered villages. The recording campaign was carried out in
October and November 2022 for 14 days, covering different routes for a total
of 1500 km. The itineraries were planned to encompass diverse areas, focusing
on the central part of the region due to logistical reasons. Figure 7.1 shows
the location of the Marche Region and the routes traveled during the recording
campaign.
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(a) (b)

Figure 7.1: Location of the Marche Region in Italy (a) and routes traveled with
the equipped car (b).

7.1.1 Experimental Design, Materials and Methods

Acquisition Stage

A Mercedes A-Class research car model equipped with audio and video sensors
was used for the recording campaign. This vehicle and the related audio setup
have already been employed in other works and have been described in Sec-
tion 3.1.2. Recordings were made with either only the driver or, at most, one
passenger on board. The car was driven within the speed limits imposed by
the road infrastructure and with the windows either open or closed as desired.
No music sources were activated during driving, and no dialogue was present.

The audio system, including eight condenser microphones connected to an
eight-channel audio interface, was integrated with video devices. The video
equipment consisted of two cameras Mi DashCam 1S attached with the dedi-
cated mount to the front and rear windows of the car. The front camera was
secured to the right of the rearview mirror so as not to interfere with the driver’s
view, while the rear camera was placed in the high-center position of the rear
window. The cameras were powered via a USB cable connected to the USB
ports included in the car. Video data were captured with a 1920×1080 pixels
resolution and variable fps for up to 30 fps and saved 2-minute segments in mp4
format. The two cameras are equipped with an internal clock that enables the
synchronization of video data. Audio data recording is optional and has been
enabled to facilitate synchronization with audio devices.
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Device Main Specifications

Behringer ECM8000
microphone

Type: elect. condenser. Polar Pattern: omnidirectional.
Impedance: 200 Ohms. Sensitivity: 70 dB.
Frequency Response: 20-20 000 Hz.
Connector: gold-plated XLR. Phantom Power: +15 to +48 V.
Weight: 136 g.

Roland Octa-Capture
audio interface

Number of audio channels: 8.
Nominal Input Level: input jack 1–6 (XLR type) -56 to -6 dBu,
input jack 7–8 (XLR type) -50 to +0 dBu.
Nominal Output Level: +0 dBu (balanced). Headroom: 16 dB.
Input Impedance: input jack 1–6 (XLR type) 5 k ohms (balanced),
input jack 7–8 (XLR type) 10 k ohms (balanced).
Output Impedance: 1.8 k ohms (balanced).
Frequency Response 44.1 kHz: 20 Hz to 20 kHz (+0/-2 dB).
Power Supply: DC 9 V (AC adaptor). Current Draw: 1.45 A.
Dimensions: 283.8 (W) x 157.9 (D) x 50.4 (H) mm.
Weight: 1.32 kg

Mi DashCam 1S

Dimensions: 87.5 (W) x 18 (D) x 53 (H) mm. Input: 5 V, 1.5 A.
Image Sensor: Sony IMX307. Resolution: 1080 p.
Camera: FOV 140°, F1.8, 6-glass lens. Frame Rate: variable.
Working Frequency: 2412–2472 MHz.
Operating Temperature: -10 °C–60 °C.

Table 7.1: Main technical specifications of audio and video recording devices.

Figure 7.2: Setup of audio and video recording system.

Data were collected by driving planned routes and acquiring real-time audio
and video data. Before departure, a check of the operation of all devices was
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7.1 A3CarScene Dataset

carried out by initiating test recordings. The audio recordings were activated by
turning on the audio interface and starting 8-channel recording using the open-
source software Audacity1 installed on the onboard laptop. Video recordings
started automatically with the connection to the power supply.

Table 7.1 lists the main technical specifications of audio and video recording
devices, and Figure 7.2 schematizes the configuration of the audio and video
devices.

Processing Stage

Processing operations were carried out to synchronize audio and video data
and to apply data protection laws. Specifically, the following procedures were
performed for each recording associated with a specific route.

• Video data from each camera, recorded in 2-minute segments, were merged
into a single video file and exported in mp4 format at 25 fps. The syn-
chronization of front and rear videos was verified by comparing the time-
frequency representations of the audio acquired by each camera. Open-
source software kdenlive2, based on the ffmpeg [159] library, and Audac-
ity, were used to perform the processing operations on video and audio
data, respectively.

• Using the audio tracks recorded by the cameras, video data were aligned
with the eight-channel recordings from the microphones, which were then
exported to separate tracks in wav format, keeping the 44.1 kHz sampling
rate and 32-bit encoding unchanged.

• To comply with General Data Protection Regulation guidelines, license
plates and faces were censored with the open-source python tool Dash-
camCleaner3. It is based on the YOLOv5 [160] algorithm for automatic
license plate and face recognition using pre-trained models with different
parameters that adjust training image resolutions, network depths, and
dataloaders. Video files were blurred with 720p_medium_mosaic option,
kernel radius of the gaussian filter of 30, and the quality of the resulting
video equal to 5.

• Lastly, video and audio data for each itinerary were played simultane-
ously in the kdenlive software for the manual labeling phase. For each
class, markers were applied corresponding to the start and end of each
homogeneous context in the road, urban, meteorological, and temporal
domains and annotated in a csv file.

1https://www.audacityteam.org/ (accessed on 28 February 2023)
2https://kdenlive.org/en/
3https://github.com/tfaehse/DashcamCleaner (accessed on 28 February 2023)
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Figure 7.3: Organization of audio and video files inside a folder.

7.1.2 Data Description

The dataset consists of 400 files (320 audio and 80 video recordings). The files
are organized into 14 folders, named with the acquisition date yyyymmdd, and
each folder contains all audio and video files recorded on the same day. The
duration of the files is variable, depending on the length of the itinerary or
the cuts applied to individual recordings. The synchronized audio and video
files inside each yyyymmdd folder are named with the criterion file_type-device-

yyyymmdd-part. Audio recordings were stored in eight-channel tracks and ex-
ported separately, so audio-type files report the channel number (ch1–ch8) of
the corresponding microphone as the device. Videos were shot with two cam-
eras, where C1 is the frontal and C2 is the rear video device. Figure 7.3 shows
the generic contents of a folder.

All key information for the scene understanding process of automated ve-
hicles has been accurately annotated. For each route, scene annotations with
beginning and end timestamps report the type of road traveled (motorway,
trunk, primary, secondary, tertiary, residential, and service roads), the degree
of urbanization of the area (city, town, suburb, village, exurban and rural areas),
the weather conditions (clear, cloudy, overcast, and rainy), the level of light-
ing (daytime, evening, night, and tunnel), the type (asphalt or cobblestones)
and moisture status (dry or wet) of the road pavement, and the state of the
windows (open or closed). Annotations are consistent for audio and video files
and are reported in text files in csv format. The metadata folder contains the
annotations of each recording date (metadata-yyyymmdd.csv) plus an overall
one (metadata.csv), for a total of 15 csv files.

Table 7.2 shows the structure of metadata files reporting the name of the file
(filename), timestamps (start_time and end_time), area identification number
(id), and labeling categories (road_type, deg_urb, weather, light, pav_type,
pav_wetness, and window). Each labeling category lists the corresponding
attributes (or classes) that have been assigned.

The individual columns of the annotation files are explained in detail as
follows.

• filename is the string common to audio and video filenames, expressed
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filename start_time end_time id road_tipe deg_urb . . . windows

yyyymmdd-part hh:mm:ss hh:mm:ss xx label_1 label_2 . . . label_7

Table 7.2: Structure of annotation files (*.csv).

by the date and the part of the recording belonging to the same day
(yyyymmdd-part).

• start_time and end_time are the timestamps in which the scene has
uniform labeling, expressed in hh:mm:ss format.

• id represents the number that identifies the area covered, ranging from
001 and 407. The id can indicate a single road section or a group of
neighboring roads belonging to the same type of infrastructure and degree
of urbanization. The purpose of the id assignment is related to the split
of the dataset into training and test sets so that routes different from
those used in the training phase can be chosen for inference.

• road_type represents the road classification typology according to Open-
StreetMap (OSM) [161], the free geographic database updated and main-
tained by a community of volunteers through open collaboration. The
choice of this classification is related to the worldwide use of OSM and
international equivalence between road infrastructure types. In the fol-
lowing, the description of the infrastructures traveled and the equivalence
with the Italian regulations according to the Legislative Decree No. 285
of April 30, 1992 “Codice della Strada”4 are given.

1. Motorway: limited access highway with tolls and interchanges (in
Italy, A-category road).

2. Trunk: ring road or expressway, also a road of minor importance
having interchanges instead of grade-separated intersections (in Italy,
B-category road).

3. Primary: national, regional, or provincial road of major importance,
e.g., that connecting provincial capitals and thus of national signif-
icance (in Italy, B-category road).

4. Secondary: another regional or provincial road of minor importance
(in Italy, C-category road).

5. Tertiary: main urban road (in Italy, D-category road).

6. Residential: road in an urban residential area (in Italy, E-category
road).

4(https://www.bosettiegatti.eu/info/norme/statali/1992_0285.htm) (accessed on 28
February 2023)
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Figure 7.4: Degree of Urbanisation map of the Marche Region in Italy.

7. Service: a service way to access, for example, a non-residential area,
a parking lot, or a private area (in Italy, F-category road).

• deg_urb represents the classification that indicates the character of an
area. It is inspired by the “Degree of Urbanisation” [162], a methodology
for the delineation of cities and urban and rural areas for international
and regional statistical comparison purposes endorsed by the United Na-
tions Statistical Commission. The Degree of Urbanisation classifies the
entire territory of a country along the urban-rural continuum, combin-
ing population size and density thresholds to capture the full settlement
hierarchy. Global Human Settlement data with global coverage, as illus-
trated in Figure 7.4, can be viewed interactively on the web5. According
to the Degree of Urbanisation legend, territories are represented by the
following attributes.

1. City: urban center.

2. Town: dense and semi-dense urban cluster.

3. Suburb: suburban and peri-urban cells.

4. Village: rural cluster.

5. Exurban area: low-density grid cells (industrial sites, rural or mixed-
use areas).

6. Rural area: very low-density rural grid cells.

• weather describes the weather conditions detected during the route. The
options are:

5https://ghsl.jrc.ec.europa.eu/visualisation.php# (accessed on 28 February 2023)
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1. Clear: sunny sky with no or insignificant cloud cover.

2. Cloudy: sky with clouds but not completely covered.

3. Overcast: sky completely covered with clouds.

4. Rainy: overcast sky with light to moderate to significant rainfall.

• light relates to the time of day when recordings were made and passage
in closed environments with artificial lighting (tunnels, covered parking
lots). The following lighting conditions occur in the recordings: daytime,
evening, night, and tunnel.

• pav_type represents the type of road pavement encountered in the routes,
i.e., asphalt or cobblestones.

• pav_wetness indicates the moisture of the road pavement (dry or wet).

• window indicates the state of the windows during the recordings (open or
closed). This feature is not descriptive of the car’s surroundings but was
included to assess the impact of the external noise on the performance of
the audio sensors inside the passenger compartment.

The dataset includes 31 hours, 20 minutes and 8 seconds of recordings for
each audio and video sensor. The individual classes in each labeling cate-
gory are imbalanced proportionally to the territory characteristics and weather
conditions encountered during the acquisition campaign. Figure 7.5 shows ex-
amples of video frames of the routes with some associated annotations.

7.2 Value of the Data and Future Insights

This study lays the foundation for a strand of research aimed at understanding
the environment surrounding automobiles. In the emerging paradigm of in-
creasingly less model-centric and more data-centric artificial intelligence [163],
data quality, quantity, and engineering are essential for building reliable and
efficient AI-based systems.

This large-scale audio-visual dataset provides a wide range of driving scenar-
ios, showing several road infrastructures, including pavement types and wet-
ness, diverse urbanization contexts, and varying weather and lighting condi-
tions. Understanding the type of road infrastructure being traveled allows for
the automatic activation of advanced driver-assistance systems suitable to the
context. For example, driving on a motorway requires speed control and appro-
priate distancing from vehicles in the same lane. At the same time, a residential
street may feature pedestrian or cyclist crossings, so object detection becomes
paramount. The degree of urbanization makes it possible to contextualize the
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Figure 7.5: Video frames of the A3CarScene dataset with some associated an-
notations.

area and provide relevant suggestions to the driver, such as the nearest services
in rural and exurban areas or traffic advisories in urban centers. Detection of
weather and lighting conditions has immediate feedback in the activation of
windshield wipers and headlights, while tire alignment can be automatically
changed based on pavement characteristics and moisture.

Thus, the information gathered from this study is a valuable asset for those
involved in developing and testing advanced driver-assistance systems, as well
as for automotive research in general. The data obtained from different sen-
sor configurations, including acoustic and visual signals, facilitate the technical
evaluation and design of intelligent systems. Researchers and developers can
leverage the real-world dataset obtained from this research to train and evalu-
ate deep learning algorithms for driving scene recognition using audio, video,
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or a combination of both. In addition, the dataset may be useful for manu-
facturers who wish to compare the effectiveness of their systems with those of
competitors.

The studies to be undertaken will focus on the potential of data, espe-
cially audio data, in understanding the driving scenario. The experiments
will be conducted in a single mode, and the performance resulting from au-
dio data in single-modality will be compared with that obtained from video
data and in multimodality. Suitable architectures for this study are the L3-Net
(“look, listen and learn”) [164] model, designed to learn the correspondence
between audio and video inputs by predicting whether they are correlated, and
the OpenL3 [165] network, an open-source implementation pre-trained on Au-
dioSet [79]. An optimal solution has been proposed in [155] and is based on
OpenL3, in which the auditory scene recognition and visual scene recognition
are performed separately, and the subsequent results are concatenated to ob-
tain multimodal outcomes. In this specific case, multi-annotations should be
considered for the design of the neural architecture, which involves the use of
separate classification branches or the study of advanced multi-label learning
strategies [166]. Investigating the correlation between the various features and
the contribution each makes to the target task is another aspect of research
that needs to be pursued.

Finally, the dataset is also suitable for other applications not covered at this
stage. By extending the labeling to objects and acoustic signals of interest, it is
possible to perform tasks that include, but are not limited to, the identification
of road damages, intersections, and warning acoustic signals, as well as object
recognition and detection of obstacles out of sight.
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Chapter 8

Other Contributions

This section presents two research studies involving acoustic themes from differ-
ent perspectives. The first study is in the field of building acoustics and focuses
on a predictive tool for the speech transmission index in school environments.
The second study describes a series of experiments aimed at understanding
the characteristics and production modalities of the sound in a vintage musical
instrument: the Rhodes electric piano.

8.1 A Predictive Tool for the Speech Transmission

Index Assessment

Speech communication is a complex phenomenon that involves different modal-
ities of speaker-listener interactions in conversational environments and encom-
passes the aspects of speech quality, vocal effort, perceptual delays, and speech
intelligibility. In particular, speech intelligibility, defined as the “rating of the
proportion of speech that is understood,” [167] assumes a key role in environ-
ments where the focus is on speech understanding, such as lecture rooms. For
this reason, acoustical standards and guidelines currently in use are designed
to ensure good speech intelligibility by defining reference values of acoustical
descriptors to maximize the occupant comfort and functional performance of
educational environments.

The present research focuses on one of the acoustic descriptors for school
buildings, the speech transmission index (STI), “a physical metric that is well
correlated with the intelligibility of speech degraded by additive noise and re-
verberation” [168]. A prediction tool was implemented either stand-alone or
in combination with an artificial neural network to calculate the STI values of
school classrooms, and the results were compared with the findings of measure-
ments made in classrooms of different grades, building types, and sizes.
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8.1.1 Materials and Methods

Speech Transmission Index and Reference Standards

As mentioned, STI is an objective descriptor to predict the intelligibility of
speech transmitted from talker to listener by a transmission channel, whose
measurement procedures, prediction methods and reference values are regu-
lated by standards. Specifically, IEC 60268-16 [169] (BS EN 60268-16 [170])
defines the methodologies for the objective rating of speech intelligibility by
the speech transmission index, including both measurement procedures and
computational methods. The direct STI measurement technique applies a spe-
cific test signal to the transmission channel, and by analyzing the received
signal, the speech transmission quality of the channel is derived and expressed
in a value between 0 and 1. On the other hand, STI can be calculated with a
method called “statistical” or “indirect” from the measurement of reverberation
time (RT) in specific positions of the analyzed room. The UNI 11532-1 [171]
standard describes the general aspects common to all application areas that
best represent the acoustic quality of an environment. This standard presents
reference values in relation to the use destination of the environment, predic-
tion methods, and evaluation techniques that constitute a common operational
methodology, referring to IEC 60268-16. It also incorporates the concept of “in-
telligibility rating for speech communications” expressed in UNI EN ISO 9921,
consisting of a discrete qualification that depends on the range in which the STI
falls according to a five-point scale of speech comprehension quality (bad, poor,
fair, good, excellent), as shown in Table 8.1. Finally, UNI 11532-2 [172] defines
acoustic quality descriptors and specific reference values for the educational
sector.

STI values IR

0.00<STI≤0.30 Bad
0.30<STI≤0.45 Poor
0.45<STI≤0.60 Fair
0.60<STI≤0.75 Good
0.75<STI≤1.00 Excellent

Table 8.1: Correlation between speech transmission index (STI) and intelligi-
bility rating (IR) according to UNI 11532-1.

Characteristics of Lecture Rooms and Measurement Equipment

In this research, direct measurements of the RT have been performed in thirty-
five classrooms of several grades belonging to buildings with different structural
characteristics and construction areas located in the Marche region in Italy by
applying the assessment procedure described in UNI 11532-2. For each class-
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8.1 A Predictive Tool for the Speech Transmission Index Assessment

room, the STI has been calculated with the indirect method described in the
IEC 60268-16, and the intelligibility rating expressed in UNI EN ISO 9921 has
been assigned. The measurement campaign has been conducted in a heteroge-
neous sample of school buildings in terms of structure type, year of construction,
educational stages, activities performed, built area, materials, and construction
techniques. Design documentation has been collected for each school building,
and the geometric survey and visual analysis of classroom finish materials have
been conducted.

ID Type Name of room
length width height surface volume

[m] [m] [m] [m2] [m3]

1 SCH 1 University 140/1 18.2 9.0 3.4 163.8 556.9
2 SCH 1 University 140/2 11.9 8.8 3.9 105.2 410.3
3 SCH 1 University 140/3 15.3 8.9 3.9 136.5 537.6
4 SCH 1 University 155/D1 12.3 8.9 3.4 109.4 371.9
5 SCH 1 University 155/D2 12.3 8.9 3.4 109.4 371.9
6 SCH 1 University 155/D3 12.3 8.9 3.4 109.4 371.9
7 SCH 1 University 155/D4 12.3 8.9 3.4 109.4 371.9
8 SCH 1 University 160/1 10.2 8.9 3.4 90.9 309.1
9 SCH 1 University 160/2 10.4 8.9 3.4 93.2 317.0
10 SCH 1 University AT1 13.4 9.3 3.0 125.2 375.7
11 SCH 1 University AT2 13.8 9.3 3.0 128.6 385.9
12 SCH 1 University AT3 17.9 6.3 3.0 113.1 339.4
13 SCH 1 University EN1 11.3 8.9 3.4 100.7 342.3
14 SCH 1 University EN3 11.2 6.4 3.4 71.4 242.7
15 SCH 1 University S1 7.5 7.4 3.0 55.5 166.5
16 SCH 1 University S2 10.4 10.6 3.5 110.2 385.8
17 SCH 1 University S3 14.3 16.2 3.0 231.7 695.0
18 SCH 2 Primary 1B 7.3 6.8 3.3 49.6 163.8
19 SCH 2 Primary 2A 7.8 7.4 3.3 57.7 191.2
20 SCH 2 Primary 3A 6.8 6.1 3.3 41.5 136.9
21 SCH 3 Primary 2C 7.4 6.8 3.0 50.3 151.0
22 SCH 3 Primary 3C 7.8 7.4 3.0 57.3 172.0
23 SCH 4 Primary 4B 7.9 7.5 3.0 59.3 177.8
24 SCH 4 Primary 4A 8.1 7.8 3.0 63.4 190.3
25 SCH 5 Secondary 1 7.9 7.3 3.1 57.3 177.6
26 SCH 5 Secondary 2 7.9 7.5 3.2 59.2 189.3
27 SCH 5 Secondary 3 8.0 7.6 3.1 60.1 186.3
28 SCH 6 Secondary 4 6.8 6.7 3.0 45.2 135.5
29 SCH 6 Secondary 5 7.3 6.4 3.0 46.7 140.0
30 SCH 7 Secondary 6 8.4 6.7 4.4 56.3 247.6
31 SCH 7 Secondary 7 10.7 7.5 6.5 80.3 521.6
32 SCH 7 Secondary 8 7.1 7.3 3.0 51.7 155.1
33 SCH 8 Secondary 9 7.2 6.2 3.0 44.6 133.9
34 SCH 8 Secondary 10 7.8 6.7 3.0 52.3 156.8
35 SCH 8 Secondary 11 6.0 9.0 3.0 53.8 161.3

Table 8.2: List of classrooms indicating school type (school number and grade),
name of the room, and geometric dimensions.

The list of geometric dimensions of each classroom is provided in Table 8.2.
The acoustic characterization of the classrooms has been carried out in com-
pliance with ISO 3382-2 [173] for the RT30 measurement procedure at the po-
sitions defined in the UNI 11532-2 standard. Four positions have been selected
(P1–P4), three along the longitudinal axis of the classroom and one represen-
tative of the most unfavorable condition in terms of distance from the speaker
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and proximity to the noise produced by the indoor plant.

The system setup comprised a laptop and an Edirol FA-101 external firewire
soundcard connected to an Echo Speech Source (Type 4720). This small active
loudspeaker box provides calibrated acoustic signals through the Dirac room
acoustics software, and placed at a human speaker position (1.50 m from the
floor). The signal has been acquired with a B&K 2250 sound level meter that
outputs the impulse response and reverberation time. Measured RT30 and
computed STI descriptors for each classroom are presented in Table 8.3.

ID RT30 [s]
STI

IR

P1 P2 P3 P4 avg

1 0.77 0.57 0.52 0.46 0.43 0.50 ± 0.06 fair
2 0.70 0.52 0.40 0.37 0.34 0.41 ± 0.08 poor
3 0.67 0.60 0.58 0.35 0.33 0.47 ± 0.14 fair
4 0.69 0.63 0.57 0.54 0.52 0.57 ± 0.05 fair
5 0.65 0.62 0.57 0.54 0.52 0.56 ± 0.04 fair
6 0.72 0.55 0.51 0.53 0.49 0.52 ± 0.03 fair
7 0.68 0.60 0.55 0.54 0.52 0.55 ± 0.03 fair
8 0.78 0.59 0.42 0.51 0.39 0.48 ± 0.09 fair
9 0.80 0.58 0.50 0.45 0.40 0.48 ± 0.08 fair
10 0.68 0.73 0.61 0.59 0.45 0.60 ± 0.11 fair
11 0.56 0.70 0.60 0.60 0.56 0.62 ± 0.06 good
12 0.61 0.82 0.62 0.54 0.50 0.62 ± 0.14 good
13 0.75 0.61 0.56 0.55 0.41 0.53 ± 0.09 fair
14 0.72 0.56 0.52 0.49 0.43 0.50 ± 0.05 fair
15 1.81 0.29 0.25 0.28 0.29 0.28 ± 0.02 bad
16 1.81 0.28 0.26 0.28 0.27 0.27 ± 0.01 bad
17 1.80 0.25 0.28 0.29 0.30 0.28 ± 0.02 bad
18 0.78 0.66 0.64 0.62 0.57 0.62 ± 0.04 good
19 1.20 0.54 0.57 0.54 0.53 0.55 ± 0.02 fair
20 1.20 0.53 0.56 0.55 0.54 0.55 ± 0.01 fair
21 1.38 0.48 0.50 0.52 0.48 0.50 ± 0.02 fair
22 0.99 0.54 0.61 0.54 0.47 0.54 ± 0.06 fair
23 0.82 0.57 0.62 0.63 0.59 0.60 ± 0.03 fair
24 1.50 0.44 0.47 0.41 0.39 0.43 ± 0.04 poor
25 0.83 0.62 0.60 0.59 0.54 0.59 ± 0.03 fair
26 1.14 0.58 0.55 0.53 0.50 0.54 ± 0.03 fair
27 0.85 0.57 0.58 0.57 0.56 0.57 ± 0.01 fair
28 1.36 0.54 0.49 0.49 0.43 0.49 ± 0.05 fair
29 0.96 0.58 0.56 0.49 0.44 0.52 ± 0.06 fair
30 0.63 0.77 0.70 0.70 0.70 0.72 ± 0.04 good
31 0.81 0.64 0.49 0.47 0.47 0.52 ± 0.08 fair
32 0.66 0.65 0.53 0.51 0.51 0.55 ± 0.07 fair
33 0.67 0.54 0.52 0.49 0.55 0.53 ± 0.03 fair
34 2.15 0.38 0.31 0.33 0.34 0.34 ± 0.03 poor
35 2.00 0.44 0.37 0.38 0.38 0.39 ± 0.03 poor

Table 8.3: Measured RT30 (average), STI (P1–P4 and average), and IR (referred
to average STI) for classrooms under acoustic speech intelligibility assessment.

STI Prediction with Simulation Tool

According to the UNI 11532-1 standard, predictive methods are allowed to
compute the room impulse response in indoor environments in order to op-
timize the acoustic descriptor under consideration. For this purpose, a fully
predictive tool of speech transmission index in room acoustic environments,
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8.1 A Predictive Tool for the Speech Transmission Index Assessment

Figure 8.1: Block diagram of the pyeSTImate tool.

called pyeSTImate1, has been developed. This application aims to compute
the STI without recourse to direct measurements of reverberation times. RIRs
can be simulated with different techniques in the literature, given the geometry
of the room, constituent materials, furniture and kind of occupants, and source
and receivers’ positions. After calculating reverberation times from the RIRs,
STIs are determined using the indirect method. The extensive case history
of classroom measurements has been used to fine-tune the simulator settings:
comparing the STI values derived from the measured RTs and the results of dif-
ferent simulation methods allowed us to assess which settings most accurately
reproduce the actual environment. The result is a tool for acoustics engineers
suitable for the analysis of existing rooms, as well as for the renovation and
design of new spaces.

The core of the pyeSTImate tool is pyroomacoustics [174], a software pack-
age aimed at the rapid development and testing of audio array processing al-
gorithms, properly adapted and extended to predict the STI from dimensional
room data, materials, and source/receiver positions. As illustrated in Fig-
ure 8.1, pyeSTImate is composed of two main blocks. The first, based on py-
roomacoustics, returns the simulated room impulse responses according to three
simulation methods of the user’s choice (image source method or ISM [175],
ray tracing [176, 177], and hybrid ISM/ray tracing modeling). After the simu-
lation of room impulse responses follows the calculation of reverberation times
in octave bands, which is given as input to the second part of the algorithm
designed for STI computation using the indirect method and, consequently, the
intelligibility rating of the room.

STI Prediction with Artificial Neural Network

Whereas pyeSTImate requires detailed input geometric data, especially regard-
ing the surfaces to be associated with each material, in some cases, only some
of this information is available, e.g., floor plans and photos of the room. To ad-

1https://github.com/michelacantarini/pyeSTImate (accessed on 28 February 2023)
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dress this issue, the algorithm has been adapted to generate a synthetic dataset
of classrooms characterized by randomly chosen sizes and materials, and in each
of them, the average speech transmission index over four listening positions has
been calculated. The dataset, composed of reduced input data compared to the
full pyeSTImate tool, has been employed to train an artificial neural network
(ANN) capable of predicting STI with good approximation by providing only
classroom size and material characteristics. This further application estimates
the speech transmission index and speech comprehension quality with very lim-
ited details about the target room, demonstrating its usefulness in preliminary
acoustic analyses.

A dataset of 1000 classrooms has been generated, keeping as features only
the geometry (length, depth, and height) and the absorption and scattering co-
efficients in octave bands of the interior finishes. An ANN has been devised to
solve a regression problem and predict a continuous value between 0 and 1. To
find the model that has the greatest generalization capability and provides the
best results with data unseen during the training, the performance of the algo-
rithm has been investigated by varying the size of the training set, the number
of hidden layers and neurons in each of them through a grid search [112]. The
experiments have been carried out with training sets of 100 and 1000 examples
and neural architectures composed of one, two and three hidden layers, each
with a number of nodes between 8 and 1024. For training, the entire dataset
has been randomly split into training and validation sets, with 80% and 20%
of the total number of samples, respectively. For testing, the 35 classrooms
already investigated with instrumental measurements have been considered.
Training has been performed with the ReLU activation function in the hidden
layers, a learning rate equal to 0.001, Adam [76] optimizer, and 5000 epochs
with the early-stopping.

Performance Metrics

The following metrics have been monitored to evaluate the accuracy of the tool
in comparison with the results of in situ measurements:

• the absolute error (AE), absolute percentage error (APE) and intelligi-
bility rating error (IRE) between average STI values from measurements
and simulations in each classroom;

• the mean absolute error (MAE), mean absolute percentage error (MAPE)
and mean intelligibility rating error (MIRE) over classrooms belonging
to schools of the same grade and the entire test set of classrooms.

If the (mean) absolute error and (mean) absolute percentage error represent
a regression loss between STI values, the metric (mean) intelligibility rating
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error quantifies the error associated with the discrete classification of the speech
comprehension quality. The MIRE values fall in the range [0,1] and can also be
expressed as a percentage. A label from 1 to 5, where 1 indicates bad quality
and 5 corresponds to excellent quality has been assigned to the five attributes
of the speech comprehension quality scale (bad, poor, fair, good, excellent). The
ratio of the absolute value of the difference between the measured and simulated
IR labels and the range of the actual values averaged over the number of the
analyzed classrooms provides the mean intelligibility rating error, defined in
Equation (8.1) as:

MIRE(l, l̂) =
1

nsamples

nsamples−1
∑

i=0

|li − l̂i|

max(l) − min(l)
(8.1)

where

• li is the true intelligibility label of the ith sample,

• l̂i is the predicted intelligibility label of the ith sample,

• max(l) − min(l) represents the range of the actual values,

• nsamples is the number of samples in the test set.

In addition to the previously mentioned metrics, the accuracy of the results
has also been monitored in terms of just noticeable difference, the subjective
limen representing the discernible difference of a room acoustic parameter. The
study associated with the just noticeable difference in STI, i.e., the variation
in STI values for which 50% of subjects can perceive the difference, determined
a STI JND equal to 0.03 in simulated sound fields, but a STI JND of 0.1 is
considered more realistic in everyday listening situations [178]. For this reason,
the number of JND units (STI JNDs) between STI values from measurements
and simulations have been calculated with both thresholds.

8.1.2 Results

Assessment of Speech Intelligibility through pyeSTImate

Table 8.4 summarizes the mean absolute error (MAE), mean absolute percent-
age error (MAPE), mean intelligibility rating error (MIRE), and mean just no-
ticeable difference units with thresholds equal to 0.03 (mean STI JNDs(0.03))
and 0.1 (mean STI JNDs(0.1)) computed for classrooms of the same grade and
overall the classrooms.

From the exploration of the summary results, the best performance are ob-
tained from the RIR simulation methods of ray tracing and hybrid rather than
the ISM modeling. The main issue of the ISM simulator is the choice of the
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Classrooms MAE MAPE
(%)

MIRE
(%)

mean STI
JNDs(0.03)

mean STI
JNDs(0.1)

ISM

University (IDs 1–17) 0.11 27.68 15.29 3.7 1.1
Primary (IDs 18–24) 0.05 9.34 5.71 1.7 0.5
Secondary (IDs 25–35) 0.07 13.53 3.64 2.3 0.7
Overall 0.09 19.56 9.71 2.9 0.9

Ray tracing

University (IDs 1–17) 0.05 13.97 4.71 1.7 0.5
Primary (IDs 18–24) 0.03 5.79 0.00 1.1 0.3
Secondary (IDs 25–35) 0.05 10.23 1.82 1.8 0.5
Overall 0.05 11.16 2.86 1.6 0.5

Hybrid

University (IDs 1–17) 0.05 14.16 4.71 1.7 0.5
Primary (IDs 18–24) 0.03 5.56 0.00 1.0 0.3
Secondary (IDs 25–35) 0.05 10.13 1.82 1.8 0.5
Overall 0.05 11.17 2.86 1.6 0.5

Table 8.4: Comparison of errors between average STIs from measurements and
simulations.

maximum order of reflections to be assigned. This model assumes the walls
as perfect reflectors, so later reflections due to scattering are not considered,
and the activation of the reverberant tail is performed through a sufficiently
large number of assigned reflections. This aspect affects the reverberation time
estimation and, consequently, the STI values. With regard to simulations using
pure ray tracing and hybrid ISM/ray tracing methods, the most accurate mod-
eling of RIRs is provided by ray-tracing-based methods due to the contribution
of scattering in the simulation of diffuse reflections. Examining the results for
groups of same-grade classrooms, all three simulation methods report more ac-
curate STIs for primary classrooms, and in particular, the hybrid method yields
the lowest MAE and MAPE values of 0.03 and 5.56%, respectively, correct intel-
ligibility ratings in all classrooms, and mean STI JNDs within both thresholds.
Next, the secondary classrooms also present the best achievements with the
hybrid method, returning MAE equal to 0.05, MAPE equal to 10.13%, MIRE
of 1.82% (1 incorrect prediction out of 11 classrooms), mean STI JNDs(0.03)
equal to 1.8, and mean STI JNDs(0.1) within the threshold. Finally, for univer-
sity classrooms, the ray tracing method gives MAE of 0.05, MAPE of 13.97%,
MIRE of 4.71% (4 incorrect predictions out of 17), mean STI JNDs(0.03) of
1.7, and mean STI JNDs(0.1) within the threshold.

Assessment of Speech Intelligibility through Deep Learning Models

As in the previous assessment of speech intelligibility through pyeSTImate,
Table 8.5 reports the overall summary of the results calculated for the same
grade and overall classrooms. Specifically, the comparison of errors between
average STIs computed by the ANN and pyeSTImate, and between the ANN
outcomes and measurements are presented.

From the analysis of the results, the lowest STI errors in individual, same-
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Classrooms MAE MAPE
(%)

MIRE
(%)

mean STI
JNDs(0.03)

mean STI
JNDs(0.1)

Comparison with
pyeSTImate

University (ID 1–17) 0.07 15.39 9.41 2.4 0.7
Primary (ID 18–24) 0.04 8.54 5.71 1.5 0.4
Secondary (ID 25–35) 0.04 8.14 3.64 1.3 0.4
Overall 0.06 11.74 6.86 1.9 0.6

Comparison with
measurements

University (ID 1–17) 0.10 27.28 11.76 3.5 1.0
Primary (ID 18–24) 0.05 9.03 5.71 1.6 0.5
Secondary (ID 25–35) 0.07 13.34 5.45 2.2 0.7
Overall 0.08 19.25 8.57 2.7 0.8

Table 8.5: Comparison of errors between average STIs from ANN and pyeSTI-
mate, and from ANN and measurements.

grade and overall classrooms are found between ANN predictions and tool
outputs. The motivation is related to the dataset used to train the ANN
because the neural network learned the relationship between input data and
STIs generated by the simulation tool, so the inaccuracy of the deep learning
model must be added to the one associated with the simulator. In fact, the
comparison with measurements returns in most case studies amplified errors
with respect to the comparison with pyeSTImate outcomes.

8.1.3 Remarks

This research suggests an important role of prediction methods in speech intel-
ligibility in the main acoustic feature dimensions. The results have shown that
comparable measurements and calculations starting from real input data are
surprisingly informative on the level of acoustic detail and the degree to which
listeners are able to utilize it for speech comprehension. In the experiments, the
pyeSTImate tool has shown good accuracy in predicting speech transmission
indices for small and wide classrooms, regardless of grade, year of construction,
and finishing materials. Also, the implementation of an artificial neural net-
work that can predict the speech transmission index in lecture rooms with a
discrete approximation and a reduced number of input data can be considered a
fast method for preliminary assessments of speech intelligibility in classrooms.

In summary, the predictive tool has demonstrated versatility and compu-
tational robustness that enable its use for preliminary assessments of speech
intelligibility, to design the optimal type of scholar buildings and for sound
amplification systems in classrooms in compliance with the Italian regulation.
This study represents a starting point for several future works. Some insights
for further research include the sensitivity analysis of the tool results to varying
absorption and scattering coefficients of materials, the implementation of com-
plex geometries, and the design of an interface for data entry. The deep learning
model can be improved with a training set obtained from real measurements
or innovative methods for generating synthetic data.
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8.2 A Study on the Tone Characterization of the

Rhodes Electric Piano

The Rhodes electric piano is an electromechanical keyboard device that was
first released in 1946 [179] and was subsequently produced for over four decades,
becoming an iconic instrument now commonly known as the electric piano.
Despite some academic works discussing its operating principle and propos-
ing several physical modeling strategies [180–182], the inharmonic modes that
characterize the attack transient have not been the subject of a dedicated in-
vestigation. The present study aims to fill this gap by analyzing the spectrum
at the pickup output, using a psychoacoustic model to assess the perceptual
relevance of the inharmonic components and then conducting scanning laser
Doppler vibrometry [183] experiments on the Rhodes asymmetric tuning fork.
The investigation compares the modes of the Rhodes piano to those of its in-
dividual parts, enabling the extraction of important information about their
roles and their relation with natural modes. Based on this analysis, numerical
experiments are conducted to demonstrate the intermodulation of the modes
caused by the magnetic pickup and to allow the tones produced by the Rhodes
from the collected data to be closely matched. With the advent of sampling
synthesis and physical modeling, the Rhodes piano has again been the subject
of interest from musicians, with a vast number of sampling libraries and digital
emulations of its peculiar timbre. For this reason, the extraction of the distri-
bution of the most relevant modes found throughout the keyboard range of the
Rhodes piano can give valuable insights for sound synthesis purposes.

8.2.1 Main Components of the Rhodes Piano

The Rhodes electric piano was designed and perfected by Harold Rhodes from
World War II to the 1980s. This musical instrument is composed of a harp
that hosts asymmetric metal forks, a piano-like action, and a set of pickups,
one per fork. The forks are composed of a thin rod called the tine, and a bigger
beam known as the tonebar. The fundamental mechanism of sound production
is relatively straightforward: the action of the keyboard expedites a hammer
that impacts the tine. Subsequently, the free extremity of the tine oscillates
in the presence of an electromagnetic pickup, leading to the production of a
time-dependent voltage at the extremity. The electrical signal is subsequently
amplified. The keyboard operation comprises a damping mechanism to inhibit
tine vibration when a key is released. Additionally, a sustain pedal is provided
to preclude dampers from stopping the notes, as in an acoustic piano.

Figure 8.2a shows a picture of a Mark I Stage Rhodes with the cover lid
removed and the harp lifted from its operating position. The asymmetric tuning
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(a) Overall view of Mark I Stage Rhodes.

(a)

(b)

(c)

po (d)

(a)

(b)(b)(b)(b)

(c)

po (d)(d)

pd

(b) Details of the Rhodes F1 tuning fork.

Figure 8.2: The Rhodes electric piano: overall view and tuning fork detail.

forks and their pickups are shown upside down, on top. The hammers and the
tine dampers are standing at rest position below. On the front panel, the
Rhodes hosts two knobs and an output jack connector left right above the
keyboard. Figure 8.2b depicts a 3D rendering of the asymmetric tuning fork
of the Rhodes piano, the resonating element patented by Harold Rhodes. The
tuning fork comprises two prongs with different shapes and masses connected
by a metal joint: the component in (a) represents the tonebar that also has the
function to constrain the fork to the wooden harp, and (b) depicts the tine that
is hit by a plastic hammer with neoprene tip (c). Finally, in (d), the pickup at
the end of the tine is also shown. The pickup-tine distance pd and offset p0 are
particularly important in determining the spectral envelope, as they greatly
impact the distortions added to the resulting spectrum.

8.2.2 Experimental Analysis of the Inharmonic Overtones

Modal Analysis of the Tones at Pickups

As the Rhodes is an electroacoustic instrument, modal analysis has been carried
out by recording several tones from the output of pickups. Each tone has been
captured via the piano output jack at a 48 kHz sampling rate, using a Focusrite
2i2 soundcard. The frequency domain analysis has been performed through
discrete Fourier transform using 8192 bins and a Blackman-Harris window.

Figure 8.3a presents the DFT of the attack of a pp (pianissimo) F3 tone,
exhibiting the fundamental f0 and the first five harmonics, along with several
inharmonic tones. Earlier research suggested that the tine oscillates following a
sinusoidal motion; thus, all harmonics should be generated by the pickup non-
linearity. However, some modes arise that are not harmonically related to the
fundamental (B). Of these, mode (A) is below the fundamental, and mode (C)
is separated from it by exactly f0. Modes (I), (L) and (M) have no harmonic
relation with the fundamental, and each displays lower and higher ancillary
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(a) Spectrum of a pp F3 tone attack,
recorded at the pickup output for 200 ms
after the onset.

(b) Audibility of the inharmonic tones
and their sidebands of the F3 pickup
tone.

Figure 8.3: Modal analysis at the pickup and related psychoacoustic model.

modes that are spaced by exactly f0. This aspect suggests some modulation
occurring between the fundamental and these inharmonic modes, referred to
as sideband partials or, simply, sidebands.

A psychoacoustic model that considers the effects of frequency masking [184]
according to a Bark-scale asymmetric spreading function shifted down by 10 dB,
and the hearing threshold [185] has been employed to understand the percep-
tual relevance of the inharmonic components. The curve obtained from this
operation is compared to the F3 pickup tone in Figure 8.3b. As can be seen,
some of the harmonics (A–D) are louder than the audibility threshold. The
same applies to mode (E) and some of its sideband partials (F–G). Partials (H)
and (I) are clearly perceivable as well as their sidebands.

Modal Analysis of the Tuning Fork

The presence of strong non-linearities affects the tone of the Rhodes, adding
components potentially absent in the tuning fork. Their evidence in the pickup
output tone requires an investigation method that allows direct measurement
of the tuning fork. A scanning laser Doppler vibrometer (SLDV) has been used
to analyze the operational vibration of the tuning forks in a Rhodes piano. The
SLDV system consists of a Polytec laser doppler vibrometer head (OFV-303), a
velocity decoder, a controller, and a personal computer for data processing. The
setup measures the operational deflection shapes of the tuning forks allowing
for the identification of modes and their vibration in space.

Experiments have been conducted to measure the free response of the entire
tuning fork assembly, with both the tine and the tonebar being probed. Addi-
tionally, the tuning forks have been disassembled, and both components have
been stimulated to measure the uncoupled free response of each one alone. Ex-
tensive measurements have been carried out, examples of which are mentioned.
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(a) Spectra of an F3 tonebar hit by the
piano hammer with pp (black dashed
line) and mf (gray thick line) dynamics.
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(b) Modes of the Rhodes wood harp ob-
tained by averaging nine points.

Figure 8.4: Spectra of an F3 tonebar and the wood harp after hammer impact.

An experiment involving the tonebar assembled and stimulated by means
of the corresponding hammer at the installation position is described in Fig-
ure 8.4. Figure 8.4a shows the comparison between the spectra of an F3 tonebar
hit by the piano hammer with pp and mf dynamics. The two tones exhibit
several modes below the fundamental (marker D) and overtones with different
magnitudes. The third and fourth harmonics appear in the mf tones (gray lines
between E and F) due to their increased magnitude. In Figure 8.4b, the Rhodes
wooden harp after the F3 key percussion presents several modes between 10 Hz
and 100 Hz and only modes (A) and (B).

The same experiment has been performed by pointing the laser of the vi-
brometer at the tine mounted on the instrument, as shown in Figure 8.5a.
Figure 8.5b displays the spectra extracted from the disassembled F1 tine and
tonebar separately. As can be seen, the subfundamental is present in the
tonebar only, as well as a small tone (E), very close to (D).

Summarizing the SLDV analyses, the following conclusions can be drawn
about the vibration of the asymmetric tuning fork.

• The tine and the tonebar both show a strong fundamental, as observed
by high-speed camera recordings from [181].

• At least one sub-fundamental mode, introduced by the tonebar, is always
present but with a variable frequency.

• Inharmonic modes with ratio 7× and 20× are often observed on F1 and
F3 notes, while the mode at 39× has been more rarely seen.

• No evidence of sidebands can be found in SLDV experiments.

• The harp is responsible for several modes, however, these can be observed
only in vertical transverse tonebar oscillations and are not found in the
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(a) Spectral content of the tine of F1
Rhodes tuning fork mounted on the in-
strument.

(b) Spectra of individual tine (solid line)
and tonebar (dashed line) of the F1
Rhodes tuning fork.

Figure 8.5: Comparison between the spectra of the F1 tine mounted on the
instrument and F1 tine and tonebar analyzed separately.

tine motion.

• The tuning mass has little effect on the sub-fundamental modes, while it
greatly affects the fundamental and the higher natural modes, however,
with no clear correlation with the change in pitch of the fundamental.

• The same applies to the presence of the tonebar that can influence the
frequency of the modes by a small amount with no clear correlation. The
most important contribution of the tonebar is the enhancement of the
fundamental sustain and reduction of the duration of other overtones.

Effect of the Magnetic Pickup

The magnetic pickup is responsible for the generation of harmonic overtones in
response to the approximately sinusoidal oscillation of the tine. In addition to
harmonic overtones, the Rhodes tone also presents inharmonic overtones with
sideband partials as seen in Figure 8.3a. Since no evidence for these partials
has been found in the laser vibrometer experiments, it can be argue that this is
an effect of the pickup non-linearity. To assess this thesis a discrete-time model
based on the modal analysis has been constructed. The model is formulated
as follows.

y(t) =
dg(x(t))

dt
, (8.2)

where g(·) is the magnetic field and x(t) is the tine displacement, approximated
as a sum of decaying sinusoidal modes and the pickup-tine offset po:
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(a) F1 simulated tone and pickup out-
put.
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(b) F3 simulated tone and pickup out-
put.

Figure 8.6: Simulated tone with the sub-fundamental (thick gray line) and
without the sub-fundamental mode (dashed), compared to the recorded pickup
output (solid thin line).

x(t) = po +
∑

i

Aie
−λt · sin(2πfit), (8.3)

where Ai is the amplitude of the ith mode and λ determines the rate of
the exponentially-decaying envelope. The magnetic field is calculated follow-
ing [181] and stored in a lookup table [186], linearly interpolated to generate
the output. The discrete-time derivative is approximated using the backward
scheme x[n] − x[n − 1].

The frequency, amplitude and decay rate of the main modes of a F1 and F3
tones have been extracted. Specifically, the fundamental, the sub-harmonic,
and the three main inharmonic modes, detailed in Table 8.6 have been taken.
To complete the model, the pickup-tine distance and offset have been measured.

F1 F3

Frequency Ratio Amp Decay Frequency Ratio Amp Decay

35.8 Hz 0.83 -38 dB -9.1 dB/s 102.5 Hz 0.58 -9 dB -138 dB/s
42.7 Hz 1 -10 dB -8.2 dB/s 175.8 Hz 1 -4.5 dB -12 dB/s

306.2 Hz 7.2 -65 dB -21.1 dB/s 1307 Hz 7.4 -59.5 dB -294 dB/s
881.8 Hz 20.6 -65 dB -67.7 dB/s 3636 Hz 20.7 -54.8 dB -37 dB/s

6814 Hz 38.7 -46.8 dB -161 dB/s

Table 8.6: Modes frequency, magnitude and decay detected from SLDV tine
recordings used in the simulations: F1 and F3.

The outcomes of the model are shown in Figure 8.6 compared to the pickup
output. As can be seen, the match of the first harmonics is very close, as well as
the amplitude and frequency of the inharmonic tones and their sidebands. Fur-
thermore, the presence of the sub-fundamental approximates quite well some
of the sidelobes seen in the pickup output. Additional low frequency modes
could be estimated to synthesize the missing modes, if these are perceptually
relevant.
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8.2.3 Remarks

The tone production mechanism of the Rhodes electric piano has been studied,
focusing on the inharmonic components, as they constitute a notable aspect of
the timbre. The findings of the experiments demonstrate that they can derive
from the natural modes of the tuning fork or sidebands generated by intermod-
ulation at the pickup. Despite having a small amplitude, these components
have been shown to be perceptually relevant using a psychoacoustical model.
A laser doppler vibrometer has been used to analyze the modes of the two main
prongs of the Rhodes fork, namely, the tonebar and the tine. The inharmonic
overtones in the Rhodes timbre are shown to be related to transverse modes
of the tine and have specific ratios to the fundamental. Five natural modes
of vibration have been identified: the sub-fundamental, the fundamental, the
second mode, the third mode, and the fourth mode. The role of the tonebar
has also been assessed, showing that it produces the sub-harmonic tone and
enhances the sustain of the fundamental. It has been demonstrated that the
pickup generates the sidebands, and the model is sufficiently precise in fitting
the observed Rhodes spectra using a signal-based approximation, including the
generation of these modes and the pickup non-linearity. After these experi-
ments, the ratio of the first six natural modes can be extracted from recordings
of Rhodes tones, discarding the sidebands. The results are consistent with the
laser vibrometer experiments and allowed for finding two additional natural
modes in the lower range of the instrument. The findings provided in this
research may serve as a starting point for further studies, e.g., regarding new
materials and production processes for the asymmetric tuning fork or digital
algorithms for modal synthesis.
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Conclusions and Future

Perspectives

In this dissertation, deep learning approaches applied to audio signal process-
ing in the automotive field have been investigated, paying particular attention
to the topic of emergency siren detection. The potential of deep learning algo-
rithms in this research area has significant practical implications. By accurately
detecting the sounds of emergency sirens and alerting their proximity to the
driver, these computational models implemented in emergency vehicle detec-
tion systems can improve driver and passenger safety and reduce the response
time of emergency services.

The first three chapters of this thesis provided an overview of the main moti-
vations behind this research and described the elements that involve the system
design process. In Chapter 1, the topic of emergency siren detection has been
introduced with a historical survey of the technologies developed in patents of
emergency vehicle detection systems. In a review of the state-of-the-art, the
main works concerning algorithmic innovations have been outlined with refer-
ence to digital signal processing methodologies and the more recent and more
effective machine and deep learning approaches. A summary of the rationale
and contributions featured in this research has also been presented. Chapter 2
provided an overview of the theoretical background of the neural networks and
related optimization, generalization and regularization strategies used in the
development of the systems. The metrics for evaluating the performance of the
algorithms have been briefly explained. Chapter 3 presented the methodolo-
gies for creating datasets of Italian ambulance siren sounds, moving from an
algorithmic approach to real-world data collection. The acoustic features used
for time-frequency representations have been described from a computational
point of view.

The following two chapters detailed neural approaches and research achieve-
ments on the emergency siren detection task. In Chapter 4, synthetic datasets
have been designed to train convolutional models and test their performance.
The accuracy obtained at this stage confirmed the reliability of convolutional
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neural networks in detecting emergency siren sounds, even in noisy environ-
ments. These results encouraged the development of strategies to reduce the
computational cost of the algorithm without loss of accuracy. The study re-
vealed the effectiveness of harmonic filtering in enhancing the tonal components
of the siren and reducing background noise, which has also been employed in
follow-up studies. Chapter 5 addressed the detection of emergency siren sounds
recorded in real-world contexts using meta-learning approaches. Prototypical
networks trained with datasets unrelated to the target task have been able to
compute high-performance neural models. They recognized similar instances
of classes unseen in training from a reduced dataset without relying on domain
adaptation strategies. In this context, the research also focused on the perfor-
mance of multiple recording sensors installed in the car. From the results, it
has been possible to gain insights on the most suitable microphone installation,
significant for developing an emergency vehicle detection system.

After the algorithmic research, Chapter 6 presented a novel prototype of an
emergency vehicle detection device leveraging deep learning algorithms. The
system relies on computational audio processing to detect an emergency ve-
hicle approaching. Then, the driver awareness verification is performed with
computer vision techniques applied to face and gaze movements that condition
the alerting system. The prototype has been tested in a demo performed in
the controlled environment of a semianechoic chamber. Finally, Chapter 7 in-
troduced a dataset recorded with a research vehicle fitted with audio and video
sensors driven on public roads. The dataset comprises more than 30 hours of
data for each sensor, collected by covering 1500 km on diverse roads and land-
scapes under varying weather conditions, both day and night. The annotations
provide all the necessary information for scene understanding. This extensive
dataset, analyzed with artificial neural networks, can be leveraged to develop
novel driving assistance technologies that rely solely on audio or video data or
employ a combination of both.

Overall, this dissertation has contributed to the advancement of the field of
sound detection in the automotive industry and has demonstrated the potential
of deep learning algorithms to address real-world problems related to sound
processing. Future research could further explore the topics faced in this study.
The work on emergency siren detection has provided insights for improving
current performance and extending the investigation to further applications.
While improvements mainly concern the reduction of the latency time and
the recognition of sirens from countries worldwide, future developments can
deal with localization and tracking to be implemented in the prototype of the
emergency vehicle detection system. The device thus designed could also be
combined with a detector of the presence of vehicles alongside the car to enable
automatic pulling over. The dataset for the acoustic scene understanding has
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also left wide scope for new research, starting from the realization of a baseline
of acoustic-visual scene recognition to the extension to additional tasks such
as urban sound event detection and classification, as well as the recognition of
objects, road breakdowns and out-of-sight obstacles.
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