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Abstract
Model updating procedures based on experimental data are commonly used in case of his-
toric buildings to identify numerical models that are subsequently employed to assess their 
structural behaviour. The reliability of these models is closely related to their ability to 
account for all the uncertainties that are involved in the knowledge process. In this regard, 
to handle these uncertainties and quantify their propagation, Bayesian inference is fre-
quently employed being able to deal with the effects of parameter uncertainty, observation 
errors and model inadequacy. The computation of the posterior distribution through Bayes-
ian inference needs–however–the evaluation of the likelihood function, which requires 
solving complex multi-dimensional integration problems. To bridge this shortcoming, the 
paper compares two Bayesian inference approaches to show how different approximations 
affect the results of simulated inference: a discrete approach for the likelihood computation 
in the Bayesian Model Updating (BMU) and a Monte Carlo likelihood-free method known 
as Approximate Bayesian Computation (ABC) are reported. As reference, the typology of 
historic masonry towers was considered by using their natural frequencies as experimental 
data for model updating. The two procedures provide very similar results supporting the 
validity of both methods despite ABC turns out to be a more flexible approach.

Keywords Bayesian inference · Approximate Bayesian computation · Model updating · 
Masonry tower · Uncertainty quantification · Experimental data

1 Introduction

In recent decades, the scientific community has paid increasing interest in identifying 
appropriate computational models for historic masonry buildings, with the aim of evaluat-
ing their structural behaviour and performance under exceptional loads. Several modelling 
strategies are proposed in literature, from block-based models to continuum models, and a 
recent detailed review of these approaches and a possible classification for masonry struc-
tures is shown in D’Altri et al. (2020).
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Because of the uncertainties that may affect the geometry of the building, the mechani-
cal response of the masonry and the restraint conditions, the identification of reliable 
numerical models (i.e. model updating) still is a critical issue which necessarily involves 
the use of experimental data. It is therefore essential the development of procedures for 
formally quantifying the uncertainty and for updating the knowledge on unobserved quan-
tities as experimental data are collected. Bayesian inference represents a possible solution; 
it is a well-known approach in civil engineering and its application to existing buildings 
for model updating is motivated by the requirement to solve an inverse-problem, i.e. infer-
ring the unobserved parameters governing a particular observed physics, when different 
sources of uncertainties has led to collect noisy and incomplete data. Furthermore, since 
different parameter values can lead to the same observed physics the problem becomes ill-
conditioned and ill-posed. In this scenario, Bayes’ theorem can be employed for addressing 
inverse problems by using evidence to update the probability of each unknown quantity. As 
a result, the obtained probabilistic solution is able to describe a whole interval of plausible 
model parameters.

However, while the approach is adequately formalized from the theoretical point of 
view, in practice some difficulties still need to be handled.

Firstly, the choice of experimental data and their acquisition procedure. Dynamic moni-
toring of the structural modal parameter under environmental vibration loading is widely 
recognized as a powerful procedure for investigating the evolution of structural health over 
time (Beck et al. 2001; Ubertini et al. 2018; Saisi et al. 2018; Standoli et al. 2021a, 2021b; 
Zini et al. 2022). The dynamic data provide information about the building global response, 
taking into account material properties as well as structural configuration, and variations in 
the dynamic response, compared to a reference configuration, can provide indication about 
damage detection (Pallarés et al. 2021). However, the need to adopt a limited number of 
sensors, or the necessity to employ no-contact techniques, can make these data unable of 
describing the structural complexity. Therefore, no experimental data is expected to pro-
vide an exact representation of how the system output behaves, as well as no model is 
expected to exactly represent the system input/output behaviour. Nevertheless, dynamic 
experimental data can be used to calibrate numerical models to describe not so much the 
single optimal parameters vector, as the family of all plausible values of model parameters 
based on the available data.

Secondly, the evaluation of the likelihood function in Bayesian inference. Indeed, 
despite Bayesian inference is often used in civil engineering for parameters estimation and 
model updating (Rocchetta et al. 2018; Huang et al. 2019; Pepi et al. 2020), in some cases 
the likelihood is analytically intractable, and an approximation is required. On the one 
hand, the likelihood can be computed by following a heuristic approach, using the devious-
ness of the probability distributions of measurement and modelling errors, when dealing 
with low-dimensional spaces and easy-to-evaluate distributions (Simoen et al. 2015). On 
the other hand, the difficulties in computing the likelihood function may be overtaken by 
using likelihood-free methods such as Approximate Bayesian Computation (ABC) (Tavarè 
et al. 1997; Pritchard et al. 1999). This latter solution is typically computationally intensive 
and often involves the employment of metamodels (Rutherford et al. 2005; Ren and Chen 
2010; García-Macías et al. 2021; Teixeira et al. 2021) or the definition of empirical or syn-
thetic likelihood functions (Mengersen et al. 2013; Wilkinson 2014; Price et al. 2018).

This paper aims to compare two Bayesian inference approaches for model updating by 
discussing a framework of realistic inference in case of inaccurate data. In particular, a 
discrete approach for the likelihood computation in the Bayesian Model Updating (BMU) 
and a Monte Carlo likelihood-free method are considered. The first, BMU, was proposed 
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in Monchetti et al. (2022) based on Monte Carlo simulations producing an approximation 
of the continuous problem to a discrete one. The second, known as Approximate Bayesian 
Computation (ABC), was investigated in Kitahara et  al. (2021), Feng et  al. (2020). The 
case of a historic confined masonry tower is analysed as a reference study, and the natural 
periods are selected as observations employed to update the parameters of the numerical 
model.

The rest of the paper is organized as follows: Sect.  2 reports the related works. Sec-
tion 3 outlines the main concepts of Bayesian inference and the two considered approaches 
are defined. The application of these approaches is shown in Sect. 4 by highlighting their 
advantages and limitations through discussion of the results. Section 5 closes this paper by 
reporting conclusions and possible future developments of this study.

2  Related works

The use of dynamic response data in the problem of updating a computational model using 
a Bayesian statistical framework was originally addressed in the late 1990s by  Beck and 
Katafygiotis (1998). Their research has fostered in the following years a growing interest in 
the use of Bayesian inference for model updating in practical engineering applications and, 
at the same time, has been accompanied by an increasing development of computational 
modelling capabilities. Starting from these early studies, to date, a variety of Bayesian 
methods for model updating have been proposed in literature to obtain a family of plausible 
model parameters tuned based on the available experimental information with the aim of 
overcoming the drawbacks of the deterministic optimization procedure.

These approaches were initially applied to numerical case studies and, more recently, 
have been extended in the field of civil engineering to existing structures (e.g. Box and 
Tiao 1992; Beck et al. 2001; Beck 2010; Goller and Schuëller 2011; Arendt et al. 2012; 
Brynjarsdóttir and OʼHagan 2014; Cheung and Bansal 2017; Conde et al. 2018; Rocchetta 
et  al. 2018; Huang et  al. 2019; Pepi et  al. 2020; Pepi et  al. 2021). However, only a few 
contributions are available for masonry structures (e.g. Atamturktur et al. 2012; Beconcini 
et  al. 2016; Campostrini et  al. 2017; Conde et  al. 2018; De Falco et  al. 2018; Ierimonti 
et al. 2021).

In particular, Atamturktur et al. (2012) investigating the choir vaults of the Washington 
Cathedral employed a Bayesian approach in order to assess the sources of modelling error 
and to quantify their contribution to the overall structural response prediction. Beconcini 
et  al. (2016) proposed a probabilistic reliability assessment of heritage buildings under 
seismic and wind loads based on Bayes’ theorem by discussing a practical application 
on a historical aqueduct in Italy. Campostrini et  al. (2017), with the focus of the seis-
mic vulnerability assessment at urban scale, proposed a probabilistic method based on 
a Bayesian approach, and applied it to a façade of a building structural unit in Italy. To 
investigate the causes that have originated damage in a masonry arch bridge, Conde et al. 
(2018) proposed an inverse analysis procedure based on the Bayesian approach formulat-
ing the damaged configuration as a parameter estimation problem. A comparison between 
two model updating procedures, one developed within a deterministic framework and the 
other based on a Bayesian probabilistic approach, was discussed by De Falco et al. (2018) 
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for the model calibration of a masonry bridge in Italy. More recently, a transfer Bayesian 
learning methodology for structural health monitoring of an historic masonry palace has 
been developed in Ierimonti et al. (2021).

These studies show the effectiveness of the application of the Bayesian framework in 
the field of heritage structures with the purpose of model identification as well as dam-
age detection. They also show how for historic constructions the updating process needs 
to be addressed by considering the (usual) scarce amount of information, therefore it 
becomes crucial to understand how limited data can affect model calibration. Recently 
Rocchetta et al. (2018), discussing a procedure for crack detection in mechanical com-
ponents, outlined the importance of explicitly accounting for the relevant sources of 
uncertainties. They presented a comparison between different likelihood functions to 
improve the accuracy and robustness of the whole procedure.

A comprehensive classification of the various sources of uncertainty was originally 
proposed in Kennedy and O’Hagan (2001) where the model discrepancy was formally 
introduced as an uncertainty in the simulator prediction. The central role of the model 
discrepancy was then deepened in Brynjarsdóttir (2014). They showed that an ana-
lyst that does not account for model discrepancy may lead to biased and over-confi-
dent parameter estimates and predictions. Indeed, as reported in Beck (2010), since no 
model of the system is expected to give perfect predictions, it is important to explicitly 
quantify the uncertain prediction errors in the likelihood evaluation. However, despite 
in literature are proposed Bayesian methods based on the likelihood evaluation, most of 
them rely on strong assumptions of normality and independence to overcome the dif-
ficulties in writing down analytically the likelihood function. It is therefore becoming 
increasingly important to define a procedure allowing to easily take into account many 
different sources of uncertainty to provide a realistic description of the behaviour of 
the system. Observed data are often linked to mechanical properties through complex 
systems of differential equations, thus the introduction of the uncertainty produces very 
complex likelihood functions. Furthermore, each point-wise evaluation of such func-
tions would require running finite element (FE) models to use its solution in complex 
integral evaluations.

To overcome these difficulties one may rely on likelihood-free methods such as 
Approximate Bayesian Computation (ABC) to bypass any likelihood definition. 
Recently, this issue has been attracting the attention of other research groups (among 
others, Chaudhuri et  al. 2018; Feng et  al. 2020; Kitahara et  al. 2021). In particular, 
Chaudhuri et  al. (2018) reviewed the empirical likelihood ABC methods investigated 
in literature and proposed an easy-to-use method applied to some illustrative examples. 
Feng et  al. (2020) resorted to ABC methods, but they did not adopt a Bayesian per-
spective instead, they aimed at finding optimal values of the model parameters. More 
recently, Kitahara et  al. (2021) developed a two-step ABC updating framework using 
dynamic response data, by using the adaptive Kriging model applied to a numerical 
example in order to reduce the computational effort. To the best of the authors’ knowl-
edge, ABC methods have not yet been investigated in the model updating of existing 
buildings. A first attempt is provided in the present paper by overcoming the required 
computational effort through the definition of a metamodel, as shown in the following 
sections.
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3  Bayesian inference

Bayesian inference is aimed to obtain the posterior probability density function p
(
�|DE

)
 , 

i.e. the distribution of the unknown quantities 
(
�

)
 given knowledge of the data 

(
DE

)
 , by 

using Bayes’ theorem:

where p
(
�

)
 denotes the prior probability of the unknown quantities, and p

(
DE|�

)
 is the 

probability of the data given the unknown quantities which is proportional to the likeli-
hood. The denominator is a normalizing factor necessary to ensure that the integral of the 
posterior distribution equals one (Box and Tiao 1992). The prior distribution allows includ-
ing the expert judgment in the analysis, and can be interpreted as a measure of relative 
plausibility of the initial hypothesis. The likelihood function results from the probabilistic 
model assumed for the data, and quantifies how likely are certain values of � in the light of 
the observed data. The computation of the normalizing constant in Eq.  (1) may be chal-
lenging, except for the special case of conjugacy, i.e. when the posterior distribution fol-
lows the same parametric form as the prior distribution (Gelman et al. (2013)). To solve 
this problem, a common strategy is to resort to Bayesian simulated inference, in particular 
to Monte Carlo (MC) and/or Markov Chain Monte Carlo (MCMC) methods (Robert and 
Casella (2013)). The computation of posterior quantities becomes even more complex 
when the likelihood function is intractable, i.e. its analytical form is elusive or it is compu-
tationally demanding to evaluate. The definition of a tractable likelihood function often 
requires simplification of the reality based on strong assumptions of independence and nor-
mality of the involved random variables. In general terms, it should be considered a numer-
ical mechanical model M which reproduces the observed physical phenomenon. It requires, 
as an input, the vector of unknowns � = (�,X) ∈ ℝ

m+n . It is characterized by m independ-
ent unknown random parameters � = (�1,… , �m ), and n latent variables X = (X1,… ,Xn ). 
Note that random parameters are unknown and unobservable characteristics, while latent 
variables appear as unknown but fixed quantities that are only observable in principle, not 
in practice.

In this framework, the experimental data represent observable random variables 
whose generative process can be reproduced through a numerical model, the so-called 
“simulator”. They, as reported in Kennedy and O’Hagan (2001); Arendt et al. (2012); 
Brynjarsdóttir (2014), can be expressed according to the following mathematical 
formulation:

where DE =
(
D

E

1
,… , D

E

k

)
 is the vector of k random variables representing experimental 

data, dM
(
�

)
 denotes the outputs of the computer model, i.e. the simulator, b is a bias term, 

and � represents the random measurement error. Note that the input of the simulator is the 
vector of unknowns � = (�,X) . Therefore, given a certain value of � , Eq.  (2), combines 
two sources of uncertainties (Kennedy and O’Hagan (2001): the model inadequacy, i.e. the 
difference between the simulator and the real behaviour of the system, and the observation 

(1)p
(
�|DE

)
=

p
(
DE|�

)
p
(
�

)

∫ p
(
DE|�

)
p
(
�

)
d�

(2)D
E = d

M
(
�̄�
)
+ b + 𝜖
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error. These terms represent the discrepancy between the reality and its approximations 
obtained from the simulator and from the acquisition of experimental data, respectively. 
From Eq. (2), it is apparent that DE is a random vector whose randomness is induced by the 
randomness of the observation error and the bias term (given certain values of � ). This ran-
dom vector has a probability density function, p

(
DE|�

)
 , that can be obtained as the convo-

lution of two probability distributions according to the total probability theorem:

where, D = dM
(
�

)
+ b is the actual behaviour of the system and, given D , the values of 

the experimental data depend only on the measurement errors, being conditionally inde-
pendent from �.

The two probability density functions (PDFs) p
(
DE|D

)
 and p

(
D|�

)
 derive from the 

distributional assumptions on � and b . It follows that the way in which the probability 
distributions for these two sources of uncertainty is specified affects the easiness of 
computation of the integral in Eq. (3). Alternatively, two additional hypotheses can be 
considered: (i) the object of the inference procedure is the vector of parameters ( �) and, 
(ii) the bias term is equal to zero because the whole discrepancy between the output of 
the model and the real behaviour of the system may be led back to latent random varia-
bles X . In this simplified scenario, the likelihood function is thus modelled by consider-
ing the PDF of the observation error.

Given the posterior distribution for � , the posterior distribution for θ is provided by 
marginalizing over X , as shown in the following equation:

where c = ∬ p(�)p(x)p
(
DE|�, x

)
dxd� is the normalizing constant and L

(
�,DE

)
= ∫ p(x)p

(
DE|�, x

)
dx 

is the likelihood. Note that both the computation of c and L
(
�,DE

)
 require numerical 

approximations and may be challenging. In particular, multiple pointwise evaluation of 
L
(
�,DE

)
 would be demanding because also the evaluation of p

(
DE|�, x

)
 itself may require 

numerical approximation of the integral in Eq. (3) based on multiple runs of FE model. In 
this framework, the computational cost of these evaluations often makes the implementa-
tion of standard MCMC methods prohibitive and requires novel likelihood-free approaches 
(Huang et al. (2019)).

Hereinafter, the solution of Eq. (4) is obtained following two approaches which differ in 
the computation of L

(
�,DE

)
 : the first, a BMU approach, is based on a discrete approxima-

tion of the likelihood and the second, an ABC method, overcomes the problem of comput-
ing the likelihood through a likelihood-free approach. Their applicability is discussed next 
(in Sect. 4).

(3)p
(
DE|�

)
= ∫ p

(
DE|D, �

)
p
(
D|�

)
dD = ∫ p

(
DE|D

)
p
(
D|�

)
dD

(4)
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=� p

(
�, x|DE
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dx =
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dx
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(
DE|�, x
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dx

=c−1p(�)� p(x)p
(
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dx

=c−1p(�)L
(
�,DE
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3.1  Bayesian model updating (BMU): a discrete approximation of likelihood

Model updating allows the identification of the unknown system properties whenever new 
information is acquired. Different techniques are proposed in the literature to compute the 
high-dimensional integrals which usually are involved in the definition of the posterior dis-
tributions. For small dimensional problems, when the number of involved latent variables 
and variables to be inferred is limited, their continuum joint-space can be discretized and 
the integrals involved in Eq. (4) can be solved via numerical solution. This approach is pro-
posed in Monchetti et al. (2022) where the large number of required simulations necessary 
to reproduce the continuum joint-space is decreased by using Latin Hypercube sampling 
technique. Note that this procedure is a simplification of the problem which is applied 
when the dimension of the vector of unknowns is limited. Moreover, this approach is fea-
sible only when one assumes known and tractable PDFs for b and � , otherwise the evalu-
ation of the integral in Eq. (3) would become too challenging. However, in this simplified 
scenario, as discussed in Sect. 4, the aim is to obtain a prompt solution for the Bayesian 
inference, by taking the following actions:

To sum up, the discrete approximation of the likelihood function is workable when (i) a 
parametric setting of the errors and the latent variables is available and, (ii) the continuum 
joint-space of the parameters is simple enough to solve the integral L

(
�,DE

)
 (i.e. Equa-

tion (4)) via numerical solutions. It is worth noticing that assuming the numerical model 
as perfect ( b = 0 , with probability 1) and that there are not observation errors ( � = 0 , with 
probability 1), the probability in Eq. (3) is equal to 1 only when DE is exactly equal to the 
model output with � given as an input. The posterior distribution thus becomes a point of 
mass over the exact solution of the inverse problem. This particular condition underlines 
that, even an exact solution to the deterministic optimization problem is reliable only when 
any discrepancies from the numerical model is completely impossible. In summary, the 
proposed BMU shows the benefit of not needing the use of metamodels but, as a defi-
ciency, the number of involved variables to be inferred must necessarily be limited.
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3.2  Approximate Bayesian computation (ABC): a likelihood‑free approach

ABC (Sisson et al. (2018)) is a class of likelihood-free methods for drawing posterior infer-
ence when the likelihood function is unavailable, intractable or computationally demand-
ing to be computed. The key idea of this method traces back to Rubin (1984) and is to 
convert samples from the prior distribution into samples from the posterior. The only 
requirement is the ability to produce samples from a simulator, beyond that from the prior. 
The method is based on the comparison between observetions and data produced by the 
simulator, the so-called pseudo-data,DS . In particular, the primal ABC algorithm (Tavaré 
et al. 1997; Pritchard et al. 1999) proceeds by: (i) drawing N parameter proposals �1,… , �N 
from the prior distribution, (ii) giving each parameter proposal as input to the simulator to 
get N pseudo-dataset DS

1
,… ,DS

N
 and, (iii) accepting only parameters �j such that DS

j
= DE.

The described procedure returns a sample from the exact posterior distribution. How-
ever, the sampling scheme described above may be very inefficient with high-dimensional 
data, or infeasible when dealing with continuous data. Thus, the exact equality constraint at 
the final step is usually relaxed by introducing a distance function, d

(
DS,DE

)
 , and a posi-

tive threshold, �.
The resulting algorithm can be summarized as follows:

The output of this algorithm is a sample from the following approximate posterior 
distribution:

where d
(
DS,DE

)
 and � are the two sources of approximation. Note that as long as 

d
(
DS,DE

)
 is a proper distance function, as � goes to zero the approximate posterior dis-

tribution converges to the true posterior distribution. The reader is referred to Sisson et al. 
(2018) for further details on the method.

This approach avoids the analytical (or numerical) evaluation of p
(
DE|�

)
 allowing to 

specify whatever probability distribution for each of the considered sources of uncertainty. 
Furthermore, many latent variables can be introduced in the model to take into account 
all the sources of uncertainty, thus making the simulator as close as possible to the real-
ity. However, realistic simulators are often computationally demanding, and Algorithm 2 
requires a huge number of simulations to get an adequate number of accepted parameter 
proposals. Hence, a possible strategy to reduce the computational burden is to approximate 
the simulator through an emulator, i.e. a metamodel. Note also that the procedure reported 
in Algorithm  2 represents the primal ABC algorithm, but more sophisticated sampling 
schemes can be implemented to improve the efficiency of the method (e.g. Sisson et  al. 
(2018)).

(5)

p
𝛿,d

(
𝜃|DE

)
∝ ∫ p(𝜃)p

(
DS|𝜃

)
l
{
d
(
DS

,DE
)
< 𝛿

}
dDS = p(𝜃)∫ p

(
DS|𝜃

)
l
{
d
(
DS

,DE
)
< 𝛿

}
dDS
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3.3  Experiment

In this section, as illustrative example, a confined medieval masonry tower is considered 
to make a comparison between the two approximate Bayesian inference BMU and ABC 
approaches previously introduced. The considered tower has a quite regular geometry 
(see Fig. 1): the height is about 38 m and the base cross-section sizes 6.8 × 6.9 m which 
gradually narrows along the height. Geometric of the tower was acquired combining 
terrestrial laser scanning techniques and traditional surveys. The walls are constituted 
by a multi-leaf stone masonry whose thickness ranges from 2.3 to 1.5 m. The internal 
and external faces of the walls are made with a soft stone masonry, whereas the internal 
core (despite it is not visible) is likely composed of heterogeneous stone blocks tied by 
a good mortar. At the lower levels the tower is integrated to an urban context built in the 
same or later period. This characteristic architectural context interacts with the tower 
and affects its dynamic behaviour by introducing some complexities in the model iden-
tification. The effective height of the tower, i.e. the length of the portion of the tower 
that is free from the restraint offered by adjacent buildings, strongly affects the estima-
tion of the natural periods as discussed in Bartoli et al. (2017a); Bartoli et al. (2019). 
However, its determination may not be straightforward since it involves the quality of 
the restraints provided by the adjacent buildings and this parameter is usually uncertain 
(additional information on this parameter could be provided by adding as information 
the mode shapes).

Available experimental data for this tower are the first two natural periods along the two 
main directions; they are T1 = 0.73s and T2 = 0.60s (Pieraccini 2017).

As shown in Fig. 1, a three dimensional FE model is built to represent the masonry 
tower and to reproduce its dynamic behaviour. Even though the numerical model 
is always a rough simplification of the reality, it is essential to understand the sys-
tem behaviour and to evaluate the effect of the input parameters on the structure out-
put. Indeed, there are quantities usually considered as known and fixed despite their 

Fig. 1  Illustrative example (left) and its numerical model (right)
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uncertainty (e.g. some geometric data or the restraint conditions offered by the soil) 
and others whose uncertainty is directly modelled through probability function (e.g. the 
lateral buildings interaction and the mechanical properties of the masonry). The uncer-
tainty around these parameters fosters the discrepancy between the model output and 
the reality and it is taken into account in the bias term b . However, some of these vari-
ables may be explicitly modelled as latent variables allowing the definition of their pos-
terior distributions. In such a case, as described in Sect. 3, to get the posterior distribu-
tion of the unobservable variables it is needed to marginalize with respect to the all 
the latent variables considered in the model. More in detail, by considering the specific 
application herein introduced, the elastic modulus ( E ) of the masonry and the effective 
height ( H)  of the tower (i.e. the height of the unrestrained part of the tower, Bartoli 
et al. 2017b) were chosen to represent the vector collecting the unknowns. In particular, 
the effective height is considered as the factor determining the discrepancy from the 
simulator and the reality. It is explicitly modelled as a latent variable, but its posterior 
distribution is not evaluated.

Looking at Eq.  (4), � represents the elastic modulus of the masonry ( E ) and X the 
effective height ( H ). For these unknown quantities the chosen probability distributions 
are shown in Fig. 2 and Fig. 3. Note that, the prior probability distribution of the elastic 

Fig. 2  Prior distribution of the Elastic Modulus of the masonry (left) and measurement uncertainty (right)

Fig. 3  Latent variable corresponding to North–South direction (left) and East–West direction (right)
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modulus of the masonry is selected according to the reference values reported in NTC 
(2018) and CNR (2013) and a sensitivity analyses on the effect of different prior distri-
butions on the posterior ones is reported in Monchetti et al. (2022).

Figure 2 shows the prior distribution of the elastic modulus of the masonry and the 
measurement uncertainty of the experimental observations. Note that the elastic modu-
lus of the masonry is hypothesized as homogeneous along the height of the tower as a 
lognormal distribution with standard deviation equal to 273.98  MPa and mean value 
1600 MPa. For both the natural periods the measurement error is considered as a zero 
mean Gaussian distribution with standard deviation equal to 0.01  s. Figure  3 shows 
the latent variables along the two main directions of the tower (North–South and 
East–West). In the North–South direction the effective height is simulated through a 
lognormal distribution with standard deviation corresponding to approximatively 1  m 
and mean equal to 25 m. In the East–West direction the urban context is different and, 
keeping standard deviation 0.98 m, the mean value is equal to 23 m.

In the following, BMU and ABC methods are applied and compared by considering the 
same probability distributions.

3.4  Bayesian model updating (BMU): application

BMU method has required the evaluation of the likelihood function and the run of the FE 
model, following the Algorithm 1 previously introduced. In this case, the limited number 
of parameters to be inferred allows to discretize the continuum joint-space of � and X . In 
this manner, the integrals which define the likelihood function and the normalizing fac-
tor are solved via numerical solution. The high number of required simulations is reduced 
by using Latin Hypercube Sampling (LHS) technique to N = 40 thousand runs of the FE 
model. The results, in terms of posterior distributions of the elastic modulus are discussed 
next.

3.5  Approximate Bayesian computation (ABC): application

The ABC procedure is implemented as described in Algorithm 2. In principle, the simula-
tor should be a function which (i) takes as input the elastic modulus of the masonry, � = E ; 
(ii) imputes the values of the latent variables ( X = [H1,H2] , the effective heights); (iii) run 
the FE model to compute the first two natural periods of the tower; (iv) returns the simu-
lated data with an additive error of measurement. All the random variables are sampled 
from the probability distributions illustrated in Fig. 2 and 3. However, the computational 
burden of the FE model does not allow to run the high number of simulations necessary 
in the ABC method. Thus, a third-order cubic Response Surface Method (RSM) is used to 
build a metamodel or emulator (Myers et al. 2016) in order to reproduce the k-th natural 
period of the tower; see Eq. (6):

The polynomial metamodel is built by obtaining the coefficients pij,k (Table 1) through 
the least-square estimator (Han and Zhang 2012); in this way the trend of the FE model 
performance is reproduced (Fig. 4) and � represents the error. This latter term, herein neg-
ligible, could be treated as a statistical error normally distributed with zero mean.

(6)
Tk(�,X) =p00,k + p

10,k ⋅ � + p
01,k ⋅ X + p

20,k ⋅ �
2 + p

11,k ⋅ � ⋅ X

+ p
02,k ⋅ X

2 + p
30,k ⋅ �

3 + p
21,k ⋅ �

2

⋅ X + p
12,k ⋅ � ⋅ X

2 + p
03,k ⋅ X

3 + �
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In order to assess the goodness of fit of the response surface in Eq. (6), the coefficient 
of determination is evaluated. For the present application it approaches 1 for both the two 
natural periods considered.

For the sake of comparison with BMU, the two posterior distributions are computed: the 
one based only on the first observed period, and the one based on the first and the second 
observed periods. The two distributions have been approximated running two independent 
ABC procedures. Recalling that the quality of the approximation of the posterior distribu-
tions provided by ABC algorithms depends on the tolerance threshold � , the sensitivity of 
the results to different choices were also investigated. Each value of � was computed using 
the �-quantile method (Beaumont et al. (2002)). Table 2 displays the value of the thresh-
old and the number of retained simulations corresponding to three different choices of � . 
The absolute value of the difference between observed and simulated data was employed 
as distance metric when using only the first period. When considering both periods the 

Fig. 4  Response surfaces of the first two natural periods in the range of the unknown parameters

Table 2  ABC tolerance 
thresholds and sample sizes 
corresponding to three different 
quantiles

ABC α Sample sizes δ
1

δ
2

(a) 0.0001 103 1.4 ×  10–5 1.4 ×  10–3

(b) 0.001 104 1.4 ×  10–4 1.4 ×  10–2

(c) 0.1 106 1.4 ×  10–1 4.63 ×  10–2

Fig. 5  Posterior distributions of E derived by ABC with three different tolerance thresholds
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Euclidean distance was employed. Figure 5 show the posterior distributions. All the results 
are obtained with N = 10 millions of iterations.

4  Results and discussion

The results of the application of the two BMU and ABC Algorithms introduced in Sect. 3 
are shown in Fig.  6 where the posterior distributions of the elastic masonry ( E ) of the 
masonry are compared to the prior ones. The results of BMU are represented through a 
green line and the results of ABC with a yellow one. On the left, the figure shows the 
results of the two algorithms in the case of using the first observed period and, on the 
right, the figure represents the results in the case of using both the first and the second 

Fig. 6  Comparison between BMU and ABC b in terms of posterior distributions of E 

Table 3  BMU versus ABC–
Percentiles and IQR of the 
posterior PDFs of E [MPa] in the 
case of DE = (T

1

)

E [MPa] Percentiles IQR

25th 50th 75th

Prior 1396 1576 1756 360
BMU 1664 1808 1934 270
ABC(a) 1636 1749 1883 243
ABC(b) 1631 1753 1892 261
ABC(c) 1624 1750 1888 264

Table 4  BMU versus ABC–
Percentiles and IQR of the 
posterior PDFs of E [MPa] in the 
case of DE =

(
T
1

;T
2

)

E [MPa] Percentiles IQR

25th 50th 75th

Prior 1396 1576 1756 360
BMU 1790 1898 2024 234
ABC(a) 1761 1871 1993 232
ABC(b) 1765 1873 1991 226
ABC(c) 1739 1854 1979 240
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observed periods. Figure 6, as well as Tables 3 and  4, show that BMU is comparable to 
ABC in terms of median value and interquartile range (IQR). All the posterior distributions 
give evidence that the value of the elastic modulus is greater than what is suggested only 
by prior knowledge. Moreover, the introduction of the second period produces a further 
increase in the median value.

As already noted, the quality of the approximation of the ABC’s results depends both 
on the value of the tolerance threshold, δ , and on the goodness of fit of the metamodel. The 
sensitivity of the results to different tolerance thresholds was investigated (see Table  2). 
Generally speaking, the lower is the threshold, the higher is the quality of the approxima-
tion. Looking at Fig. 5 and Table 2 it is possible to observe that the posterior distributions 
corresponding to lower �-values tend to be slightly less diffuse. On the other hand, a small 
threshold corresponds to a lower size of the sample involved in the computation of poste-
rior quantities. In the case at hand, the results are only slightly affected by δ (see Table 2 
and Fig. 5).

It is worth noting that the results of the two methods are very similar in terms of shape 
of the posterior distributions (see Fig. 6). This fact gives support to the validity of both the 
approaches and guarantees that the metamodel produces a good approximation of the FE 
model. Indeed, BMU does not involve any metamodel but rather uses simulations output-
ted by the FE model. Thus, ABC results that resemble BMU results give strong evidence 
that the error induced by the metamodel, i.e. discrepancies due to the term ω in Eq. (6), is 
negligible.

Both the methods are sensitive to the choice of the prior distributions and the parametric 
form of the bias, b , and measurement error � . An analysis of this sensitivity was performed 
for the BMU approach in Monchetti et al. (2022), but results are extendable to the ABC 
approach.

All the comparisons between the two methods are effective only because the number of 
parameters to be inferred is restricted and the model is simple enough to allow the com-
putation via numerical solution of the integrals involved in the BMU algorithm. In more 
complex cases, BMU becomes infeasible, whereas ABC continues to be a very flexible 
solution. Indeed, even when introducing a greater number of latent variables in the model, 
ABC only requires the ability of imputing their values when running the simulator. This 
means also that one can assume whatever PDFs for these random variables, since no ana-
lytical evaluations of that functions are needed.

5  Conclusions and future research

This paper was aimed at investigating strengths and weaknesses of two different Bayesian 
methods: BMU and ABC. The comparison was carried out by considering a representative 
case study dealing with the structural typology of confined historic masonry towers. Both 
BMU and ABC were implemented to infer the posterior distribution of the elastic modulus 
by using natural period data. The results show the effectiveness of the two procedures that 
have led to very similar results.

Both methods provide approximate posterior distributions, but they have different 
sources of approximations. BMU relies on a numerical approximation of the integrals 
involved in the computation of the likelihood function and of the normalizing constant of 
the posterior distribution. This approximation is achieved through a discretization of the 
space on which the unknown quantities are defined and the more finely is the discretization 
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the smaller is the approximation error. ABC avoids the computation of that integrals 
relying on a Monte Carlo approximation of the likelihood function based on a rejection 
scheme. Therefore, the quality of the posterior distribution depends on the value of the 
chosen threshold, � . Both the methods require multiple evaluations of the FE model and a 
very low value of the threshold, as well as a very fine discretization, can be achieved at the 
cost of a high number of simulations. However, ABC algorithms require a huge number 
of iterations to get a proper sample size. Accordingly, to reduce the computational cost, 
the simulator involving the FE model was approximated through a statistical model: the 
emulator. This solution introduced a further source of approximation in the ABC procedure 
but the results show that (in the case at hand), the ABC procedure is only slightly affected 
by these sources of uncertainty as it leads to results consistent with those of the BMU 
approach.

It is worth noting that the comparison between the two methods is feasible in this frame-
work only because the number of parameters and latent variables is restricted. Further-
more, the PDF assumed for all the unknown quantities are characterized by the easiness of 
evaluation. Otherwise, numerical solutions of the integrals involved in the BMU algorithm 
would be infeasible. More sophisticated models may be developed in order to reduce the 
discrepancy between the real behaviour of the system and the observations. One solution 
would be involving statistical models in the formalization of the generative process of data. 
On the one hand, it would allow to introduce additional sources of uncertainty besides the 
additive errors; on the other hand, replacing mathematical models (such as the FEM con-
sidered so far) with complex stochastic relationships may make the likelihood function 
more complex. This latter aspect needs to involve specific Bayesian simulated inference 
approaches and an example is provided by Approximate Bayesian Computation.
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