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Abstract: To assay new circulating markers related to macrovascular complications (MVC) in type 2
diabetes mellitus (T2DM), we carried out a descriptive cross-sectional study. We recruited 30 controls
(CG), 34 patients with T2DM (DG), and 28 patients with T2DM and vascular complications (DG+C);
among them, 22 presented MVC. Peripheral blood was used to determine redox status (superoxide
dismutase, SOD; catalase, CAT; glutathione reductase, GRd; glutathione peroxidase, GPx; glucose-6-
phosphate dehydrogenase, G6PD) and markers of oxidative damage (advanced oxidation protein
products, AOPP; lipid peroxidation, LPO), nitrite levels in plasma (NOx). Inflammatory markers
(IL-1β, IL-6, IL-10, IL-18, MCP-1, TNF-α) and the relative expression of c-miRNAs were analyzed. The
real-time PCR results showed that the expressions of miR-155-5p, miR-21-5p, miR-146a-3p, and miR-
210-3p were significantly higher in the DG group compared to the CG. The DG+C group presented
statistically relevant differences with CG for four miRs: the increased expression of miR-484-5p,
miR-21-5p, and miR-210-3p, and decreased expression of miR-126a-3p. Moreover, miR-126a-3p was
significantly less expressed in DG+C compared to DG. The application of binary logistic regression
analysis and construction of receiving operator characteristic curves (ROC) revealed two models with
high predictive values for vascular complications presence: (1) HbAc1, creatinine, total cholesterol
(TC), LPO, GPx, SOD, miR-126, miR-484 (Exp(B) = 0.926, chi2 = 34.093, p < 0.001; AUC = 0.913).
(2) HbAc1, creatinine, TC, IL-6, LPO, miR-126, miR-484 (Exp(B) = 0.958, Chi2 = 33.863, p < 0.001;
AUC = 0.938). Moreover, our data demonstrated that gender, TC, GPx, CAT, and miR-484 were
associated with MVC and exhibited higher predictive values (Exp(B) = 0.528, p = 0.024, Chi2 = 28.214,
AUC = 0.904) than classical variables (Exp(B) 0.462, p = 0.007, Chi2 = 18.814, AUC = 0.850). miR-126,
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miR-484, IL-6, SOD, CAT, and GPx participate in vascular damage development in the studied
diabetic population and should be considered for future studies.

Keywords: type 2 diabetes mellitus; cardiovascular disease; T2DM macrovascular complications;
microRNA; oxidative stress; inflammation

1. Introduction

Cardiovascular disease (CVD) is a major vascular complication related to type 2 dia-
betes mellitus (T2DM) and is connected to the high mortality rate of these patients [1]. To
date, there are no reliable markers that allow identifying patients at risk of developing CVD
in diabetes, nor are there an effective treatment aimed at reducing their risk [2]. Vascular
complications include microangiopathies (retinopathy, neuropathy, and nephropathy) and
macroangiopathies, including ischemic heart disease, peripheral arterial vascular disease,
and stroke—all of which are considered to be the result of endothelial dysfunction (ED) [3].
Clinical studies show that strict glycemic control slightly reduces diabetic vascular com-
plications [4]. Vascular damage progresses when the patient remains asymptomatic; if
the diagnosis is not realized in time, the cells acquire a metabolic memory, changing their
metabolism, which is difficult to correct later [5]. The mechanism of ED onset involves
several processes, including high oxidative stress due to metabolic changes experienced by
endothelial cells under hyperglycemia combined with chronic inflammation. Communica-
tion between cells also changes, and several studies have tried to detect different circulating
and exosomal microRNAs (miRNAs) related to the propagation of inflammation and the
development of vascular damage [6,7].

MicroRNAs, circulating small non-coding RNA molecules, have emerged as critical
regulators and potential biomarkers in understanding these complex facets of T2DM [4].
Diabetes interferes with the intricate equilibrium of endothelial function. Likewise, the
inflammatory milieu exacerbates endothelial dysfunction, amplifies vascular permeability,
and initiates atherogenic processes [8]. miRNAs have been evaluated in various in vitro
and in vivo research models related to T2DM [9]. These models often include cell cultures
and animal models that simulate the pathophysiological aspects of diabetes. In cases of
T2DM, dysregulated miRNAs can modulate insulin signaling pathways, compromising
glucose homeostasis [10]. At the same time, abnormal miRNA expression can also affect
lipid metabolism, a significant factor in developing dyslipidemia, a characteristic of car-
diovascular disease [11]. Above all, its participation is notable in regulating inflammatory
and oxidative processes in cells and their release into the circulation. Several of these
miRNAs were studied, but more studies are necessary to correlate the miRNAs expression,
oxidative and inflammatory status, with macrovascular complications. In this study, we
included miR-21, linked to chronic inflammation, and participated in the suppression of
antioxidant signaling. MiR-146a plays a role in the modulation of the NF-κB signaling path-
way, exercising its anti-inflammatory function. miR-155 can target multiple antioxidant
enzymes and play a significant role in maintaining adipose tissue metabolism. A pro-
oxidant effect through the regulation of Nrf2 is exerted by miR-27a, which can contribute
to vascular damage development. MiR-210 has multiple effects on different tissues: it can
activate endothelial progenitor cells to differentiate into endothelial cells, it is considered
hypoxa-miRNA in muscles, and it also induces macrophage inflammatory polarization,
contributing to chronic inflammation. MiR-126 has an antioxidative protective role on
endothelial cells, and miR-484 in diabetes is known since it may be a regulator of insulin
expression by decreasing it in the β pancreatic cells in response to increased glucose. Also,
miR-484 is an interesting miRNA for study because it regulates mitochondria function and
acts on the endothelial nitric oxide synthase (eNOS) in hyperglycemic conditions.

Starting from the previous knowledge that circulating miRNAs, oxidative stress,
and inflammatory events are involved in the pathogenesis of vascular damage leading
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to vascular complications, including macrovascular complications, we hypothesize that
the analysis of selected miRNAs (miR-21, miR-126, miR-146a, miR-155, miR-27a, miR-
210, and miR-484), together with oxidative stress markers, inflammatory parameters,
and demographic/clinical variables in individuals involved in this study, may help to
identify risk factors related to vascular complications, including macrovascular events
in diabetic studied population. For this, we used a descriptive cross-sectional design,
recruiting three groups of participants. If identified, these markers may serve as potential
biomarkers for T2DM-related complications and offer new avenues for diagnostic and
therapeutic intervention.

2. Results
2.1. Characteristics of the Studied Population

The profiles and biochemical parameters of the participants are presented in Table 1.
We recruited 18 women and 12 men in the control group, and 18 women and 16 men in the
patients with diabetes and without vascular complications (DG group). These two groups
were matched by gender (chi2 = 0.323, p = 0.570). Nevertheless, the group of diabetics with
complications (DG+C) had a higher number of male participants (5 women versus 23 men),
so the gender variable influenced the model of vascular complications. It is worth noting
that all groups were recruited in the endocrinology clinic for 10 months. The control group
recruitment was controlled because volunteers from different institutions participated,
always maintaining the parity criteria: gender, age, and BMI. The patient groups were
recruited according to the influx of patients in the indicated period during the consultations
of the physicians who participated in the study.

In the control group, most participants (22 participants) were in the age range of
40–55 years, compared with 6 participants in the 56–70 range, and 2 participants who were
older than 71 years. It is to be expected that the diabetic patients were older: 37 participants
were in the range of 56–70 years, while the 40–55 range included 9 participants, and
16 participants were over 71 years. However, among people with diabetes, both with
and without complications, there was no significant difference in the age ranges (range
56–70 years: 21 in DG and 16 in DG+C; range 40–55 years: 5 in DG and 4 in DG+C; range
over 71 years: 8 in DG and 8 in DG+C), or in mean age (63.47 ± 1.30 in DG and 64.96 ± 1.68
in DG+C). Therefore, age was not a significant variable in evaluating the predictive model
of vascular complications.

Table 1. Baseline and biochemical parameters of the studied groups.

Parameters CG
(n = 30)

DG
(n = 34)

DG+C
(n = 28) p Value

Age 51.43 ± 1.77 63.47 ± 1.30 a 64.96 ± 1.68 b a,b p < 0.001

Gender (female/male) 18/12 18/16 5/23

Smoking (yes/no) 4/26 1/33 4/24

Physical activity:
Low intensity 4 15 17

Moderate intensity 17 19 10
High intensity 9 0 1

Weight (kg) 70.83 ± 12.67 78.81 ± 15.00 86.66 ± 12.18 b b p < 0.001

BMI (kg/m2) 25.18 ± 3.38 29.84 ± 5.26 a 30.62 ± 4.57 b a,b p < 0.001

Years of diabetes no 13.33 ± 1.85 17.43 ± 2.02

HbA1c (%) 5.37 ± 0.07 6.85 ± 0.16 a 7.11 ± 0.19 b a,b p < 0.001

Glucose (mg/dL) 90.33 ± 14.72 123.5 ± 28.24 a 141.9 ± 48.54 b a,b p < 0.001

Insulin (mU/L) 6.76 ± 0.74 11.51 ± 1.68 a 11.67 ± 2.02 b a,b p < 0.001
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Table 1. Cont.

Parameters CG
(n = 30)

DG
(n = 34)

DG+C
(n = 28) p Value

HOMA-IR Index 1.50 ± 0.23 3.66 ± 0.63 a 3.99 ± 0.66 b
a p < 0.01

b p < 0.001

Creatinine (mg/dL) 0.80 ± 0.16 0.84 ± 0.18 0.98 ± 0.35 b p = 0.019

Urea (mg/dL) 35.41 ± 2.34 42.45 ± 2.47 45.00 ± 4.82 a p = 0.035

Total cholesterol (mg/dL) 198.8 ± 5.79 168.4 ± 6.30 a 136.3 ± 7.50 b,c

a p = 0.003
b p < 0.001
c p = 0.002

TG (mg/dL) 90.33 ± 5.73 165.3 ± 23.20 a 140.3 ± 14.29 b
a p = 0.01
b p = 0.05

HDL (mg/dL) 62.13 ± 2.41 52.65 ± 2.50 a 44.96 ± 2.16 b
a p = 0.01

b p < 0.001

LDL (mg/dL) 119.5 ± 5.21 85.97 ± 5.72 a 66.63 ± 6.32 b a,b p < 0.001

CG: Control Group. DG: T2DM without complications. DG+C: T2DM with complications. All variables presented
a non-normal distribution, and only weight, BMI, and glucose levels had normal distributions. The p values were
calculated by the Kruskal–Wallis test for non-normally distributed variables. A one-way ANOVA followed by a
multiple-comparison post-host test was applied for variables with a normal distribution. Data are presented as
means ± standard error of the mean (SEM), and as mean ± standard deviation (SD) for non-normal and normal
distributed variables, respectively. a p: DG vs. CG; b p: DG+C vs. CG; c p: DG+C vs. DG.

Regarding BMI, the control group included 16 individuals who were a normal weight,
11 who were overweight, and 3 with obesity. As expected, people with diabetes had higher
body mass indexes: 14 were overweight in the DG group and 16 in the DG+C group. Obese
individuals were 13 in the DG group and 11 in the DG+C group. However, it is worth
noting that among all patients with diabetes, BMI was matched between the two groups
(DG and DG+C): chi2 = 4.259, p = 0.119.

Physical activity was classified as:
Low intensity: Activities that do not significantly elevate the heart rate, such as slow

walking or stretching. Moderate intensity: Activities that increase the heart rate and breath-
ing, such as brisk walking or bicycling. High intensity: Activities that require considerable
effort, such as running, or interval training. As expected, significant differences were
observed between the three groups (chi2 = 25.465, p < 0.001). However, physical activity did
not differ between the two groups among all patients with diabetes (chi2 = 3.791, p = 0.188),
or in patients who had macro complications: chi2 = 2.295, p = 0.317.

Both diabetic groups had higher mean HbA1c and glucose levels than the control
group and an increased HOMA-IR index, indicating greater insulin resistance. Regarding
lipid profile, total cholesterol and LDL levels were lower in the diabetic groups, while
triglyceride (TG) levels were higher in both compared to the CG. Additionally, HDL
levels were reduced in both diabetic groups. These findings suggest that participants with
diabetes have poorer glycemic control and increased insulin resistance but exhibit changes
in lipid profiles despite having increased body mass index (BMI).

Table 2 outlines the drug therapies used for patients with microangiopathies and
CVD. Both groups used several glucose-lowering medications, including metformin and
a range of prevalent antihyperglycemic agents. Insulin therapy was more common in
the CVD group. Cholesterol-lowering treatment was more frequently administered in
the microangiopathy group, whereas anticonvulsants were used in the CVD group. Our
analysis of the contingency tables has not revealed a statistical relationship between the
treatments and vascular complications.
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Table 2. Types of medications for patients with Microangiopathies and Cardiovascular Diseases.

Drug Therapy Microangiopathies (n = 6) CVD (n = 22)
21.4% 78.6%

Glucose-lowering medication:
Metformin 66.7% (4/6) 68.2% (15/22)

Duration of treatment (y) 15.39 ± 2.18 16.23 ± 2.13
Antihyperglycemic agents * 83.3% (5/6) 90.9% (20/22)

Duration of treatment (y) 15.32 ± 2.25 13.00 ± 2.94
Insulin sensitive therapy ** 66.7% (4/6) 80.0% (16/22)
Duration of treatment (y) 13.3 ± 2.31 14.66 ± 2.35

Cholesterol-lowering therapy
(statins) 66.7% (4/6) 50.0% (11/22)

Duration of treatment (y) 11.57 ± 2.75 17.78 ± 2.31

Anticonvulsants 0.0% 22.7% (5/22)
Duration of treatment (y) 7.92 ± 2.14

* Antihyperglycemic agents include treatment with the second-line glucose-lowering medication (DPP-4 inhibitors,
SGLT2 inhibitors, GLP-1 receptor agonists); ** Insulin sensitive therapy includes insulin secretagogues and
thiazolidinediones). Painful diabetic neuropathy was treated with anticonvulsants. CVD: Cardiovascular disease.
DPP-4: dipeptidyl peptidase-4. SGLT2: sodium-glucose cotransporter 2. GLP-1: glucagon-like peptide type 1,
y-years.

2.2. Differential Patterns of miRNA Expression in Studied Population

The real-time PCR results showed that the plasma levels of miR-155-5p, miR-21-5p,
miR-146a-3p, and miR-210-3p were significantly higher in the DG group compared to the
control group (p < 0.05) (Figure 1b,d,e,g). DG+C group presented statistically relevant
differences compared to CG for four miRNAs: the expression was increased for miR-484-5p
(Figure 1c), miR-21-5p (Figure 1d), and miR-210-3p (Figure 1g), but it was decreased for
miR-126a-3p (Figure 1a). Moreover, miR-126a-3p was significantly less expressed in DG+C
compared to DG (Figure 1a). Only miR-27a-3p did not present significant differences in its
relative expression.
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Figure 1. The relative expression of (a) miR-126, (b) miR-155, (c) miR-484, (d) miR-21, (e) miR-146a,
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2.3. Oxidative Status Markers in Studied Samples

Determination of the extracellular oxidative status, which reflects the damage pro-
duced in the blood cells’ balance between oxidant production and antioxidant defenses,
was conducted by analyzing plasma LPO (lipid peroxidation), AOPP (advanced oxidation
protein products), and NOx (nitrite) levels. DG and DG+C patients showed substantially
increased levels of all two markers, with p < 0.05 for LPO and p < 0.01 for AOPP, compared
to the CG (Figure 2a,b). In DG patients, NOx and LPO levels were increased (Figure 2a,c).
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Determination of intracellular oxidative status included the measurement of antioxi-
dant enzyme activities (SOD, CAT, and G6PD) and glutathione cycle components (GSSG,
GSH, GRd, and GPx) in erythrocytes. In terms of antioxidant enzymes, there was a sig-
nificant decrease in SOD activity in both diabetic groups (p < 0.05) (Figure 3a). Catalase
activity showed no significant differences between the groups (Figure 3b), while G6PD
activity was lower in the DG and DG+C groups compared to the control group (p < 0.01,
mboxemphp < 0.05, respectively) (Figure 3c).
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Figure 3. Assessment of oxidative stress markers in erythrocytes from diabetic patients without
complications (DG), with vascular complications (DG+C), and controls (CG): (a) superoxide dismutase
(SOD), (b) catalase (Cat), (c) glucose-6-phosphate dehydrogenase (G6PD), (d) glutathione reductase
(GRd), (e) glutathione peroxidase (GPx), and (f) glutathione disulfide to reduced glutathione ratio
(GSSH/GSH). Data are presented as means ± standard error of the mean (SEM). p values from
Kruskal–Wallis test. Comparisons between groups are indicated in the graphs. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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GRd activity was markedly decreased in both diabetic groups compared to controls
(p < 0.001, Figure 3d), whereas GPx activity was significantly increased in the same groups
(p < 0.001 and p < 0.05, respectively) (Figure 3e). Finally, the GSSG/GSH ratio was markedly
increased in the DG group (p < 0.001) and in the DG+C group (p < 0.01) in comparison to
the control group (Figure 3f).

2.4. Inflammatory Status and Correlations Between Studied Markers and Clinical Profile

Among inflammatory markers measured in three studied groups, significantly in-
creased levels were detected for IL-6, IL-8, IL-18, and MCP-1 in the DG and DG+C groups
compared to the CG group (Figure 4a,b,d,e). However, no significant difference was ob-
served between the DG and DG+C groups. IL-10 and TNF-α did not show significant
differences among the CG, DG, and DG+C groups.
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Figure 4. The concentration of pro- (IL-6, IL-8, IL-18, MCP-1, and TNF-α) and anti-inflammatory
cytokines (IL-10) in plasma samples from diabetic and control groups. (a) IL-6; (b) IL-8; (c) IL-10;
(d) IL-18; (e) MCP-1 and (f) TNF-α were assessed. Data are presented as means ± standard error of
the mean (SEM). p values from Kruskal–Wallis test. Comparisons between groups are indicated in
the graphs. * p < 0.05 and *** p < 0.001.

Pearson correlations analysis revealed the following significance between oxidative
stress status, inflammatory markers, and biochemical variables in diabetic patients:

Positive correlations between:
LPO and total cholesterol (r = 0.278, p = 0.032).
LPO and TG (r = 0.285, p = 0.029).
LPO and HOMA-IR (r = 0.281, p = 0.036).
AOPP and TG (r = 0.763, p < 0.001).
GRd and HOMA-IR (r = 0.255, p = 0.050).
And negative correlations between:
CAT and total cholesterol (r = −0.363, p = 0.004)
SOD and total cholesterol (r = −0.272, p = 0.035)
IL-10 and HOMA-IR (r = −0.300, p = 0.036)
TNFα and HOMA-IR (r = −0.248, p = 0.050)
Then, the dates of diabetic patients were adjusted for gender, age, and BMI. The

negative correlations between CAT and TC, CAT and LDL, IL-10, and HOMA-IR were
conserved. Moreover, other correlations were found (see Table 3).
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Table 3. Summary of significant Pearson correlations between oxidative stress and inflammatory
markers and biochemical variables for diabetic patients adjusted for gender, age, and BMI.

Glucose HbA1c HOMA-IR Total
Cholesterol LDL Creatinine

r p r p r p r p r p r p

GPx −0.068 0.638 −0.134 0.352 −0.297 0.036 −0.323 0.022 −0.234 0.102 0.066 0.651

GRd 0.324 0.022 0.095 0.514 −0.047 0.745 −0.101 0.485 −0.100 0.490 0.087 0.548

Catalase −0.044 0.764 0.020 0.892 0.127 0.258 −0.410 0.003 −0.404 0.004 −0.209 0.146

G6PD 0.074 0.608 0.001 0.997 −0.115 0.566 −0.297 0.036 −0.325 0.021 −0.051 0.725

GSH −0.163 0.257 −0.185 0.200 0.030 0.836 −0.302 0.033 −0.288 0.042 0.144 0.319

IL-8 0.130 0.424 0.104 0.521 −0.010 0.953 0.330 0.022 0.336 0.061 −0.068 0.677

IL-10 −0.167 0.302 −0.177 0.274 −0.365 0.020 0.037 0.819 0.062 0.697 0.062 0.703

MCP-
1 −0.215 0.183 −0.171 0.290 −0.087 0.595 −0.047 0.771 −0.058 0.714 0.366 0.020

Here, we evaluated possible correlations between the miRNAs expression profile,
biochemical parameters, and inflammatory markers. Firstly, we correlated these parameters
in all participants and detected the following correlations:

MiR-21 showed a significant positive correlation with Glucose (r = 0.295, p = 0.006),
HbAc1 (r = 0.272, p = 0.012), and a negative correlation with total cholesterol (r = −0.231,
p = 0.033) and LDL (r = −0.275, p = 0.011).

MiR-126 presented a positive correlation with TG (r = 0.344, p = 0.001).
Mir-146a presented positive correlations with glucose (r = 0.491, p < 0.001), and HbAc1

(r = 0.326, p = 0.003).
MiR-155-5p showed a significant positive correlation with HbAc1 (r = 0.251, p = 0.021),

and with glucose (r = 0.471, p < 0.001).
MiR-484 was negatively correlated with total cholesterol (r = −0.287, p = 0.009), and

with LDL (r = −0.293, p = 0.007).
MiR-210 showed a positive correlation with HbAc1 (r = 0.266, p = 0.014), but a negative

correlation with total cholesterol (r = −0.359, p = < 0.001), LDL (correlation = −0.356,
p-value < 0.001), and TNF-α (correlation = −0.239, p-value = 0.042).

In diabetic patients, we detected a positive correlation between miR-126 and TG
(r = 0.413, p = 0.001), between miR-146a and glucose levels (r = 0.424, p = 0.002), and miR-
155 was positively correlated with glucose (r = 0.408, p = 0.002). Otherwise, miR-210 showed
a negative correlation with TNF-α (r = −0.290, p = 0.037) (Figure 5a–d).

After we adjusted all diabetic patients’ parameters for gender, BMI, and age, two
correlations were observed: between miR-146a and glucose (r = 0.376, p = 0.007) and
between miR-155 and glucose (r = 0.409, p = 0.004).

Also, we analyzed the correlations between the expressions of miRNAs and markers of
oxidative and inflammatory status in diabetic patients, and it was adjusted for age, gender,
and BMI (Table 4). It should be noted that in both analyses, there is a positive correlation
between miR-21 and LPO, between miR-126 and LPO, between miR-27a and LPO, and
between miR-210 and CAT. In addition, a negative correlation between miR-21 and SOD
was found.
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Table 4. Summary of significant (p < 0.05) Pearson correlations (r) between plasma miRNA levels
and oxidative stress measurements in all participants, diabetic patients, and adjusted for age, gender,
and BMI.

miRNA Oxidative Stress
Parameters r-Value p-Value

Diabetic patients

miR-21 SOD −0.346 0.009
LPO 0.266 0.048

miR-126 LPO 0.424 <0.001

miR-27a LPO 0.321 0.017

miR-210 CAT 0.413 0.001

Diabetic patients were adjusted for age, gender, and BMI.

miR-21 SOD −0.289 0.036

miR-126 LPO 0.447 0.001
AOPP 0.281 0.046

miR-27a LPO 0.425 0.003
AOPP 0.288 0.047

miR-210 CAT 0.312 0.029
LPO 0.292 0.042

miR-484 CAT 0.360 0.039

2.5. Evaluation of the Diagnostic Accuracy of Biomarkers Related to Diabetes and Macrovascular
Complications in T2DM

We performed the binary logistic regression analysis to find markers with significant
predictive value for diabetes development (p-value and Exp(B)). Receiving operator char-
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acteristic (ROC) curves were generated to facilitate a more visual and direct comparison
between three selected models (Figure 6):
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Model A includes classical biochemical parameters for diabetes diagnosis: HbA1c,
creatinine, TC, HOMA-IR, and BMI were selected. The following values were obtained
for this model: AUC (95%) = 0.986, Exp(B) = 2.036, Chi2 = 71.008, p < 0.001, Cox and Snell
R2 = 0.566, and Nagelkerke R2 = 0.788.

We proposed two models B that included the following:
Model B1: miR-21, miR-155, AOPP, GRd, MCP-1: AUC (95%) = 0.978, Exp(B) = 2.632,

Chi2 = 57.645, p < 0.001, Cox and Snell R2 = 0.566, and Nagelkerke R2 = 0.819.
Model B2: miR-210, miR-155, LPO, GRd, BMI: AUC (95%) = 1.000, Exp(B) = 2.037,

Chi2 = 103.920, p < 0.001, Cox and Snell R2 = 0.718, and Nagelkerke R2 = 1.000.
We found that the combination of miR-210 and miR-155 expression levels with LPO,

GRd, and BMI had a predictive value for the development of diabetes that is similar to, or
greater than, that of a classical diagnostic parameter, including HbAc1. Moreover, future
studies could consider miR-21, AOPP, and MCP-1 independent predictors of T2DM risk.

To identify markers related to vascular complications in diabetic patients, we per-
formed binary logistic regression analysis for each marker. We then selected those markers
with a significant p-value and AUC values greater than 0.650. We constructed three models,
one of which included classical parameters (Model 1): Glucose, HbAc1, creatinine, HOMA-
IR, TC, TG, and gender. Another two models included HbAc1, creatinine, TC, and newly
studied markers (Models 2 and 3). In Table 5, we described the statistical dates of these
three models:

Table 5. Proposed models for predicting the risk of vascular complications in diabetic patients.

Model AUC
(95%) Exp (B) ϕ2 p R2 (Cox y

Snell)
R2 (Nagelk-

erke)

Model 1 (Glucose,
HbAc1, creatinine,
HOMA-IR, total

cholesterol, TG, gender)

0.845 0.727 25,724 <0.001 0.363 0.488
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Table 5. Cont.

Model AUC
(95%) Exp (B) ϕ2 p R2 (Cox y

Snell)
R2 (Nagelk-

erke)

Model 2 (HbAc1,
creatinine, total

cholesterol, LPO, GPx,
SOD, miR-126, miR-484)

0.913 0.926 34,093 <0.001 0.481 0.642

Model 3 (HbAc1,
creatinine, total

cholesterol, IL-6, LPO,
miR-126, miR-484)

0.938 0.958 33,863 <0.001 0.513 0.685

Finally, to identify markers related to macrovascular complications (MVC), we per-
formed binary logistic regression analysis on all diabetic patients (62 patients: 34 patients
with T2DM without complications (DG), plus 28 patients with T2DM and vascular compli-
cations (DG+C), relating them to those who had macrovascular complications at the time
of the study. We then conducted a Receiver Operating Characteristic (ROC) curve analysis,
In Table 6, the Area Under the Curve (AUC), Odds Ratio (OR), and p-values were included.
In Table 6, the predictive values for the markers that meet the statistical parameters are
marked in bold. We selected those markers with a significant p-value and AUC values
greater than 0.600. Based on these results, we constructed the ROC curve for the model
that included TC, GPx, CAT, Gender, and miR-484.

We found that the combination of detected markers was able to significantly predict the
risk of developing macrovascular complications in diabetics, even with a higher predictive
value than the model that included the classic parameters: HbAc1, creatinine, HOMA-IR,
BMI, sex, and total cholesterol. The application of ROC curve analysis to this model to
evaluate its predictive value resulted in an area under the curve (AUC) of 0.904, while the
AUC for the classic parameters was 0.850 (Figure 7).
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Figure 7. Receiver-operating characteristic (ROC) curve analysis of two models proposed for sig-
nificantly predicting the risk of development macrovascular complications in the studied diabetic
patients. Model I included a combination of assayed predictors: gender, total cholesterol, GPx, CAT,
miR-484 (Exp(B) 0.528, p = 0.024, Chi2 = 28.214, AUC = 0.904(95%). Model II included classical
variables: gender, total cholesterol, HbAc1, creatinine, HOMA-IR, BMI (Exp(B) 0.462, p = 0.007,
Chi2 = 18.814, AUC = 0.850(95%).
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Table 6. Representation of the predictive values for developing macrovascular diabetic complications
among diabetic patients calculated by binary logistic regression analysis and COR curves analysis.

AUC, (95%) Exp (B) = OR p

HbAc1 0.488 0.929 (0.530–1.631) 0.797

Total cholesterol 0.786 0.968 (0.949–0.987) <0.001

Creatinine 0.461 0.658 (0.087–4.943) 0.677

HOMA-IR 0.593 1.021 (0.893–1.167) 0.762

LPO 0.491 0.999 (0.339–2.939) 0.998

AOPP 0.524 1.000 (0.981–1.020) 0.990

CAT 0.681 1.000 (1.000–1.000) 0.033

GPx 0.711 1.051 (1.009–1.094) 0.012

GRd 0.623 1.375 (0.949–1.992) 0.085

GSSG/GSH 0.555 0.138 (0.000–46.142) 0.495

G6DH 0.608 1.192 (0.917–1.550) 0.181

SOD 0.603 1.001 (1.000–1.002) 0.212

NOX 0.556 0.970 (0.921–1.021) 0.194

IL-6 0.529 1.113 (0.860–1.441) 0.416

IL-8 0633 0.750 (0.502–1.121) 0.100

IL-10 0.539 0.973 (0.808–1.171) 0.771

IL-18 0.558 1.006 (0.997–1.015) 0.158

MCP-1 0.485 1.000 (0.995–1.005) 0.968

TNF-a 0.595 0.979 (0.949–1.010) 0.122

miR-21 0.600 1.003 (0.999–1.007) 0.103

miR-126 0.577 0.994 (0.985–1.003) 0.179

miR-146 0.516 1.002 (0.998–1.006) 0.296

miR-155 0.508 1.000 (0.997–1.003) 0.980

miR-484 0.674 1.004 (1.001–1.008) 0.008

miR-27a 0.566 1.002 (0.997–1.008) 0.465

miR-210 0.597 1.003 (0.999–1.008) 0.152

3. Discussion

In this study, we counted 22 patients with macrovascular complications among 62 pa-
tients with diabetic disease. We analyzed the circulating markers’ relationship with all
cardiovascular complications, including macrovascular complications.

A comprehensive analysis of the redox status, antioxidant system, and oxidative
damage in blood samples revealed significant increases in LPO and AOPP levels in patients
with T2DM with complications compared to the control group, indicating the deterioration
of vascular status caused by the disease, which corresponds to studies in animal models [12]
and in diabetic patients [13]. In the present study, we found an increase in nitrite and nitrate
(NOx) in DG, but this increase was not observed in DG with VCs. The NOx are indirect
products of nitric oxide synthase (NOS), and we cannot confirm that these molecules are
the results of inducible NOS (iNOS). Still, we can ensure that iNOS isoenzymes are induced
in proinflammatory conditions, which is expected in diabetes [14].

The antioxidant defense of diabetic patients was measured by activities of SOD, CAT,
and GRd. The SOD enzyme is the first antioxidant defense, and its activity was decreased
in both groups of patients. This result is consistent with our previous study in the Mexican
population [15]. Thus, we can infer that both the European and Mexican populations share
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specific characteristics of T2DM in addition to those already well described, which may
well be related to short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA)
that modify the intestinal microbiota causing dysbiosis and increasing oxidative stress in
T2DM [16]. In this study, we did not analyze the participants’ diets, but emerging studies
have shown that an altered microbiota composition related to a high-fat diet and SCFA
can alter intestinal permeability and trigger an immune response [2]. Cu/Zn dependent
cytoplasmatic SOD is an enzyme sensitive to high oxidative stress. And although there are
studies that have detected an increase in SOD [17], most of the studies in human samples
and animal diabetic models also reported decreased SOD activity [18]. Although our
previous study [15] reported an increased CAT activity, we did not find differences between
the three groups in Spanish participants and diabetic patients. However, within the group
of diabetics, patients who had macro complications presented CAT values significantly
higher than the rest of the patients: without complications vs. with macro complications:
34939.7 ± 1399.6, n = 22, vs. 31502.7 ± 894.3, n = 40, p = 0.035 (data not presented in results).
Also, we detected a negative correlation between CAT and total cholesterol in diabetic
patients adjusted for gender and BMI (r = −0.363, p = 0.004), which suggests that its lower
antioxidant activity is related to the worst lipid profile.

Although catalase is involved in the catalysis of H2O2 into H2O, other enzymes, like
GPx and GRd, play a predominant role in the redox state maintenance. However, the binary
logistic regression analysis for developing complications in our population calculates that
CAT and GPx have a significant predictive value and demonstrate a high AUC value. We
observed a decrease in GSH levels in line with the reduction in GRd activity in both diabetic
groups, which may be partly related to the reduction in NADPH availability. The NADPH
may be used by aldose reductase to form sorbitol from glucose in the alternative polyol
pathway under hyperglycemic conditions [19]. Furthermore, decreased G6PD activity leads
to decreased NADPH levels, limiting GRd activity. Considering the antioxidant metabolism
of glutathione, these results would explain the elevated GSSG/GSH ratio in patients with
T2DM compared to the control group, an indicator of elevated oxidative stress. In the
diabetic group, adjusted for gender and BMI, we found a negative correlation between GPx
and cholesterol, and between GPx and HOMA-IR, and a positive correlation between GRd
and glucose. Moreover, GPx activity was considered a risk factor in the model for MVCs
among diabetic patients.

It has been shown that hyperglycemia induces G6PD activity and expression profiling
in different tissues in animal models in the early stages of the disease [20]. However, it
seems that the progression of diabetes eventually leads to a decrease in G6PD activity, as we
found in this study [15]. Recently, it was demonstrated that individuals of African ancestry
with a G6PD deficient risk allele presented an increased risk of diabetes complications, like
retinopathy and neuropathy [21]. Although in our study, we did not find a correlation
between decreased G6PD activity and glycemic status, the negative correlations between
G6PD and total cholesterol and LDL levels point to the relation of this enzyme with
metabolic changes. Our study suggests that GPx and GRd should be considered markers
requiring further analysis due to their involvement in developing vascular complications.

As expected, this study demonstrates significantly increased IL-6, IL-8, IL-18, and
MCP-1 expression in patients with diabetes, with and without VCs, compared to the
control group. However, no significant differences existed in IL-1, IL-10, or TNF-α levels.
Interestingly, IL-6, a difference from our previous study in the Mexican population, had no
significant predictive value for the development of diabetes or cardiovascular complications.
This may be because the entire Mexican population had a high BMI; in exchange, the DG+C
group had a significantly higher BMI than the control group in the current study, indicating
that increasing IL-6 may be related to obesity. The correlations found in diabetic patients
between IL-8, IL-18, and molecular damage markers, such as AOPP and LPO, demonstrate
their involvement in oxidative damage (Table 3). Notably, MCP-1 showed a negative
correlation with GRd and a positive correlation with creatinine levels in diabetics adjusted
for gender and BMI (Table 3). In addition, only MCP-1 had a high predictive value for the
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development of diabetes and CVD, as shown by the regression logistic analysis and the use
of this model represented by the ROC curve.

Monocyte Chemoattractant Protein-1 (MCP-1), also known as CCL2, is a chemokine
that plays a crucial role in the immune response by recruiting monocytes, memory T cells,
and dendritic cells to sites of inflammation [22]. MCP-1 is one of the key mediators
of inflammation, and its utility as a biomarker is supported by its ability to reflect the
underlying inflammatory state that drives the progression of T2DM and its cardiovascular
disease [23]. Moreover, we found a significant negative correlation between MCP-1 levels
and GRd activity (MCP-1/GRd: r = −0.339, p = 0.025), which points to its participation
in the development of oxidative stress. Elevated expression of MCP-1 in adipose tissue
and other organs in type 2 diabetes promotes the migration and activation of macrophages,
thereby amplifying the inflammatory process through the secretion of pro-inflammatory
cytokines and reactive oxygen species (ROS) [24]. We propose to pay attention to the study
of this marker. Furthermore, we found that MCP-1 is included in the predictive model for
diabetes (Model B1).

We included miR-126 in the proposed model to predict the risk of vascular compli-
cations in diabetic patients (Models 2 and 3). For some years now, Olivieri’s studies have
shown a significant increase in miR-21-5p and a decrease in miR-126-3p in T2DM with car-
diovascular events vs. all the other diabetic patients [25]. Several studies have subsequently
been conducted that confirm these findings. According to Dehghani, miR-126 gradually
decreases in prediabetic patients and those with T2DM compared to healthy controls [26].
Furthermore, this study suggests a negative correlation between miR-126 expression and
NF-kB of peripheral blood mononuclear cells, pointing to its anti-inflammatory effect.
miR-126 has a protective role on endothelial cells against oxidative damage, inducing SIRT1
and SOD2 expression, and it is implicated in the positive regulation of the response of
endothelial cells to vascular endothelial growth factor (VEGF), which is an angiogenic
growth factor involved in mitogenesis and permeability processes [27]. In the current study,
c-miR-126 showed decreased expression in DG+C compared to CG and DG. This result
is based on several recent studies. In our previous study of the Mexican population, its
expression was decreased. Moreover, miR-126 and miR-21, GPx, and AOPP levels were
proposed as possible biomarkers of vascular damage in T2DM patients [15]. Some analyses
indicate that hyperglycemia reduces the concentration of miR-126 in the heart and plasma,
contributing to diabetic microangiopathy and macroangiopathy [28]. MiR-126 presented a
positive correlation with TG (correlation = 0.344, p-value = 0.001) in all participants and in
diabetic patients. This correlation is not maintained in diabetic patients adjusted for gender,
age, and BMI, but a new positive correlation between miR-126 and LPO was detected. This
study’s specific finding is that the control group has higher cholesterol and LDL levels than
the two diabetic groups. This lipid profile is worse than expected in people who do not
have diabetes and meet the inclusion criteria, just as patients who have better lipid profile
controls have likely undergone cholesterol-lowering therapy. However, oxidative damage
in blood samples from patients with diabetes corresponds to the high levels of LPO and
the positive correlations between LPO and cholesterol, as well as between LPO and TG.

We demonstrated that circulating levels of miR-155 were up-regulated in plasma
derived from diabetic group patients (DG) concerning CG. Likewise, there is a trend of
an increase in the DG+C group, but this is not significant. One recent study suggested
that c-miR-155-5p can be used as a potential circulating biomarker for T2DM and is es-
pecially useful, along with other inflammatory markers, in identifying obese patients
with a risk of developing DM2 [29]. Among multiple functions of the miR-155, highly
expressed by hematopoietic cells, it is involved in an innate immune response, playing a
pro-inflammatory role [30,31]. Nonetheless, miR-155 expression could change depending
on the different phases of inflammation [32]. Several studies described the participation
of circulating miR-155 in diabetes development: a significant decrease in serum levels
of miR-155 has been observed in type 2 diabetes mellitus (DMT2) patients compared to
healthy controls [33–35]. At the same time, an increase in miR-155 expression has been
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detected in several studies [36,37], including type 1 diabetes [38]. There is no consensus on
the relationship between miR-155 expression levels and diabetic complications, but it seems
that miR-155 may play a significant role in maintaining adipose tissue metabolism [39].
Our study detected a positive correlation between miR-155 expression and glucose levels in
the entire population, in all diabetics, and the diabetic group adjusted by gender, BMI, and
age. Moreover, including miR-155 in the model for diabetic risk assessment significantly
increased this model’s significance. This finding correlates with previous data, such as
the up-expression of miR-155 in conditions of hyperglycemia found in both in vitro and
in vivo studies [40,41]. However, we have not detected that deregulation of miR-155 has
significant predictive risk value for macrovascular diabetic complication development.

Previous studies reported the overexpression of miR-210 in the peripheral blood
of patients with T2DM [42] and in exosomes from the serum of T2DM patients with
obesity [43]. In our study, both groups of diabetics had significantly higher expression of
miR-210 than the control group (Figure 1g). Moreover, we found a positive correlation of
miR-210 with HbAc1 but a negative correlation with total cholesterol, LDL, and TNF-α.
Then, diabetic participants were adjusted for age, gender, and BMI, the correlation between
miR-210 and TNF-α was lost. This can point out that glucose and lipid metabolisms are
involved in regulating miR-210. Previous studies have found that miR-210 expression was
significantly increased in the intimae layer of diabetic patients with atherosclerosis [44]
and in the aorta of the animal model of high-fat-fed rats [45]. MiR-210 has a wide range
of physiological functions. miR-210 expression was significantly increased, promoting
NF-κB dependent proinflammatory cytokine expression and inhibiting SOCS1 (suppressor
of cytokine signaling 1), thus inducing macrophage polarization from M2 to M1 state and
contributing to a fatty tissue chronic inflammation and insulin resistance that could end up
in obesity-induced T2DM [46]. In this study, diabetic patients presented an improved lipid
profile, which could have influenced the relationship between miR-210 expression and
lipid levels (cholesterol and TG) to be contrary to that expected. Furthermore, the negative
correlation between miR-210 and TNF-alpha disappeared when diabetics were adjusted
for age, gender, and BMI. Furthermore, it is worth noting that in this last case, miR-210
showed a positive correlation with LPO and CAT, pointing to its possible contribution to
the damage caused by diabetes. This statement is reinforced when we see that the B2 model
that includes miR-210 and miR-155, LPO GRd, and BMI presents a maximum predictive
value for the risk of developing diabetes (AUC = 1.000, Figure 6c).

MiR-146a-3p stands out as one of the initial miRNAs documented as an anti-inflammatory
miR with its ability to inhibit NF-κB activation by decreasing the levels of IL-1 receptor-associated
kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) [47,48]. The expression level of
mR-146a varies in different samples (plasma, PBMC, pancreas) and responds to other treatments,
ages, and sex [48]. Recently, it was studied that down-regulated miR-146a-5p participates in
improving the HG-INS-1 (mouse pancreatic cells in hyperglycemic conditions) cell proliferation
and insulin secretion in vitro [49]. The increase in miR-146a expression during inflammation is
likely a part of a negative feedback mechanism to prevent excessive production of proinflamma-
tory cytokines [50]. Mir-146a presented a positive correlation with glucose in diabetic patients
(correlation = 0.424, p-value = 0.002, Figure 5b), but its relationship with inflammatory markers
was not detected in our study.

Previous studies reported up-regulated miR-27a expression in the serum of T2DM
patients with nephropathy and animal models [51,52]. MiR-27a is recognized as a regulator
of adipogenesis and lipogenesis, influencing macrophage polarization by inducing the
proinflammatory M1 phenotype, brown adipogenesis, cholesterol homeostasis, and the
secretion of inflammatory factors [53,54]. In our study, significant differences between
groups were not found. However, we found positive correlations between miR-27a and
LPO in diabetic patients and between miR-27a and LPO/AOPP in diabetic patients adjusted
for age, gender, and BMI. This possible correlation between the relative expression of miR-
27a and markers of oxidative cell damage is in agreement with the findings of Song J. et al.,
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who suggested that miR-27a can contribute to the promotion of oxidative stress by targeting
the Nrf2/Keap-1 pathway in the development of the T2DM [53].

Although several studies report a significant increase in miR-21 relative expression in
diabetic patients, its relationship with diabetic complications is unclear. Moreover, dynamic
miR-21 expression based on the sample type and type of diabetic complication relates to the
tissue where it originated. Akpinar et al. reported the decreased expression of miR-21-3p in
diabetic patients with increased albuminuria and suggested its association with the devel-
opment of diabetic nephropathy [55]. Furthermore, it was reported that exosomes derived
from macrophages induced by THP-1IL4 (THP1-IL4-exo) polarized primary macrophages
to an anti-inflammatory phenotype and control their lipid metabolism. These effects were
related to the capacity for THP1-IL4-exo to modulate levels of cellular miRNAs, including
an increase in miR-21-5p and miR-146a-5p [56]. MiR-21-5p also improves adipocyte glucose
uptake by modulating the PTEN-AKT pathway, protecting against insulin resistance [57].
However, elevated expression of circulating miR-21 has been reported in patients with
metabolic syndrome [58] and pre-diabetes [59]. Also, increased miR-21 relative expression
was reported in patients with diabetic cardiovascular complications [15], diabetic retinopa-
thy [60], cardiomyopathy [61], in patients with previous major cardiovascular events [25],
and with nephropathy [62]. Our results demonstrated that elevated levels of miR-21 were
associated with increased LPO and reduced SOD antioxidant activity in diabetic patients,
including adjusted for age, gender, and BMI. The positive correlation between miR-21
expression and glycemic parameters (glucose and HbAc1 levels) indicates its participation
in diabetes development. Our data also demonstrate that the inclusion of miR-21 in model
B1 for predictive risk of diabetes is in accordance with La Sala´s study [63] and confirms
the participation of miR-21 as a predictor of oxidative stress damage in patients with a high
risk of T2DM.

Finally, the relative expression of miR-484 was significantly increased in patients with
T2DM and complications compared to healthy participants in our study population. The
seed sequence of the 3ÚTR of mRNA for endothelial nitric oxide synthase (eNOS) is one
of the targets of miR-484, and it is reasonable to speculate that miR-484 plays a role in en-
dothelial dysfunction so that it can be involved in cardiovascular disease [64]. Interestingly,
miR-484 showed high expression levels in human ischemic heart samples and in diseased
endothelial progenitor cells and plasma from patients with coronary atherosclerotic heart
disease [65,66]. Dachshund family transcription factor 1 (DACH1) is among the targets
of miR-484 [67]. Low DACH1 expression in mouse cardiac endothelial cells promotes
worse endothelial cell development and migration, altering vascular endothelial cells’
functioning [68]. Moreover, in rats on myocardial ischemia–reperfusion injury conditions,
miR-484 reduces Fis1 protein expression levels [65], a protein that inhibits mitochondria
fission. In addition, the involvement of miR-484 in diabetes is known since it may be a
regulator of insulin expression—decreasing it in the pancreatic β cells in response to in-
creased glucose [69]. The increase in miR-484 expression is related to MCV risk appearance
in our studied population. Moreover, miR-484 is included in the two predictive models
for developing cardiovascular complications, considerably increasing its statistical value.
Furthermore, among the miRNAs studied in our population, it has the most significant
predictive value for developing macrovascular complications. For this reason, further
research on specific mechanisms for regulating endothelial injury by miR-484 in T2DM and
its complications is required.

A limitation of this study was the reduced sample size per group. However, this study
provides valuable information for future studies with more participants. Moreover, longi-
tudinal studies are needed to identify and validate circulating miRNA-based signatures
associated with T2DM complications. Additionally, the group of patients with T2DM and
vascular complications included a different number of men and women than the other
two groups due to randomized recruitment, although there were no significant differences
in studied parameters between genders. In the future, clinical departments dedicated to
T2DM in hospitals should be linked to basic research areas to send samples and thus make
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research into molecular biomarkers and their applicability to the patient’s clinical condition
more robust. The goal is to make medicine increasingly more personalized. These markers
will provide vital information for the search for new treatments.

4. Materials and Methods
4.1. Study Cohort and Setting

This study employed a cross-sectional design to investigate the complex interplay
between miRNAs expressions, oxidative stress markers, inflammatory parameters, and
demographic/clinical variables in individuals diagnosed with type 2 diabetes mellitus
(T2DM). Participants were recruited from the outpatient clinics of three hospitals in An-
dalusia, including the Endocrinology and Nutrition Unit of University Hospital San Cecilio
of Granada and the Province and the High-Resolution Hospitals of Alcalá la Real and
Alcaudete City. A total of 92 participants were divided into 3 groups: (1) 30 controls (CG),
(2) 34 patients with T2DM without vascular complications (DG), and (3) 28 patients with
T2DM with vascular complications (DG+C), all with their usual treatment. Recruitment
was carried out on a discretionary basis, meeting the inclusion and exclusion criteria.

The Ethics Committee of the Andalusian Regional Government, overseeing the two
participating hospitals, approved the study protocol. The registration number is 1653-N-21.

All patients provided informed consent. All study groups comprise adult partici-
pants over 40 years old and diagnosed with T2DM, according to the American Diabetes
Association (ADA) criteria, and at least five years prior, and of both genders.

Control (CG): Healthy volunteers with normal responses to glucose and insulin, with-
out a family history of first-degree diabetes, who did not have any endocrine, vascular,
cardiac, or inflammatory pathologies and were not taking any concomitant medication.
T2DM patients without vascular complications (DG): Patients with controlled type 2 dia-
betes mellitus, normal creatinine levels, and no vascular complications. T2DM patients with
vascular complications (DG+C): Patients with type 2 diabetes mellitus that had micro- (dia-
betic retinopathy, nephropathy, and neuropathy) or macrovascular complications (stroke,
coronary artery disease, and peripheral arterial insufficiency). All vascular events were
documented in the patient’s clinical file or clinical assessment, with your usual treatment
assigned by your doctor, which includes antidiabetic drugs.

The general exclusion criteria included the existence of severe liver dysfunction,
systemic disorder and evidence of malignant disease, amputations, stage III to V renal
insufficiency of the Kdigo obtained by CKD-EPI, or who have other diseases, such as
inflammatory, infectious, or autoimmune diseases, or epilepsy, before being diagnosed
with T2DM.

To estimate the sample size to be considered, we used the proportion formula:
n = [(1.96)2 (p) (1 − p)]/d2, p = First approximation to the population proportion to
be estimated in decimals (p = 0.153). In this study, the result was 12.4. If we round to 12
and consider that we will describe at least three possible markers, there would be at least
36 patients per group, so we proposed an analysis of 35–36 subjects per group. However,
in practice, we could only recruit 34 diabetic patients without complications. In the con-
trol group, we recruited 33, but 3 of them were pre-diabetics. The group of T2DM with
complications was more challenging to recruit; we recruited 28 participants.

Peripheral blood from the participants was collected from the antecubital veins in tubes
containing EDTA after a 10–12 h overnight fast. Following centrifugation at 3500 r/min
for 15 min at 4 ◦C, plasma, and red blood cell aliquots were stored at −80 ◦C until further
testing. Medical history and anthropometric parameters (weight and height) were collected
during medical visits.

4.2. Biochemical Analysis

Biochemical and hematological parameters were analyzed in the participating hospi-
tals’ clinical analysis service area. Glucose, creatinine, urea, triglycerides, total cholesterol,
HDL-cholesterol, and LDL-cholesterol were assayed by colorimetric enzymatic methods
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using a Cobas c501 analyzer (Roche Diagnostics, Mannheim, Germany). The insulin levels
were detected by electrochemiluminescence immunoassay “ECLIA” by a Cobas e801 ana-
lyzer (Roche Diagnostics, Mannheim, Germany), and glycosylated hemoglobin (HbA1c)
was measured by an ion-exchange high-performance liquid chromatography (IE-HPLC)
method using a Tosoh HLC-723-G8 analyzer (Tosoh, Japan). The homeostasis model assess-
ment for insulin resistance (HOMA-IR) was calculated using the equation: [fasting plasma
glucose (mg/dL) × fasting insulin (µU/mL)/405.

4.3. MicroRNA Expression Analysis

MiRNAs were isolated from 100 µL of plasma using the miRNeasy Serum/Plasma
Advanced (Qiagen, Barcelona, Spain, cat. no. 217204), following the manufacturer’s
instructions. An external standard, 5 µL of cel-miR-39-30 (assay 478293_mir), was added
to evaluate RNA extraction efficiency and as the internal control. Reverse transcription
and qPCR for selected miRNAs were performed using the TaqMan MicroRNA Advanced
kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol.
Mature extracted miRNAs (2 µL) were modified by extending the 3′ end by poly(A)
addition; then, the 5′ end was lengthened using an adaptor ligation reaction in a final
volume of 15 µL. Finally, the modified miRNAs were reverse transcribed in a final volume
of 30 µL, and 5 µL of the RT reaction products were amplified by a miR-Amp reaction,
obtaining a uniform pool of cDNA.

Real-time PCR was performed in a final volume of 20 µL, using a mix of TaqMan
Fast Advanced Master Mix with miRNA TaqMan Advanced Assays specific for each
miRNA (miR-21-5p: assay 477975_mir; miR-126-5p: assay 477888_mir; miR-146a-3p: assay
478714_mir; miR-155-5p: assay 483064_mir; miR-484-5p: assay 478308_mir; miR-27a-3p:
assay 478384_mir; miR-210-3p: assay 477970_mir) (Thermo Fisher Scientific, Waltham, MA,
USA), through the Agilent Technologies Stratagene Mx3005P System (Agilent Technologies,
Madrid, Spain).

All reactions will be performed in triplicate using a QuantStudio 7 Pro Real-Time
PCR System, Thermo Fisher Scientific, Waltham, MA, USA, following the manufacturer’s
instructions. Data were analyzed using SDS 2.3 and RQ Manager 1.2 software, and relative
expression levels of each miRNA were calculated using the 2−∆∆Ct method. A threshold
(Cts) less than 33 will be selected for PCR data analysis. The expression of each patient’s
miRNA was calculated against the Ct of the control group on the plate.

4.4. Determination of Inflammatory Parameters

HCYTA-60K-07 Human Cyto Panel for IL-1β, IL-6, IL-10, IL-8/CXCL8, IL-18, MCP-
1/CCL2, and TNF-α (Invitrogen, Madrid, Spain) was used to analyze the profile expression
of cytokines in the plasma fraction, following the manufacturer’s instructions. A Luminex
200 system (LX200) of Luminex xMAP technology (Thermo Fisher Scientific, Madrid,
Spain) was used to analyze each cytokine based on the corresponding standard curve. The
concentrations were determined using Luminex Xponent Solution Software 3.1 (Luminex
Corporation, Austin, TX, USA) and were expressed in pg/mL.

4.5. Measurement of LPO and AOPP Levels

LPO levels were determined using a commercial colorimetric kit (KB03002, Bio-
quochem kit, BQC Redox Technologies, Asturias, Spain) that estimates both malondi-
aldehyde (MDA) and 4-hydroxyalkenals. All procedures were conducted according to the
manufacturer’s instructions. Absorbance was read at 586 nm, and LPO concentration was
expressed in nmol/mL.

AOPP levels were quantified using spectrophotometry on a microplate reader, fol-
lowing the method described by Witko-Sarsat et al. [70]. A standard curve was generated
using a chloramine-T solution in the presence of potassium iodide (concentration range:
0–100 nmol/mL) and 20 µL of acetic acid. The absorbance of the reaction mixture was
measured at 340 nm against a blank containing 200 µL of PBS, 10 µL of potassium iodide,
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and 20 µL of acetic acid. AOPP concentration was expressed in nmol/mL of chloramine-
T equivalents.

4.6. Measurement of GSH and GSSG Levels

Reduced glutathione (GSH) and glutathione disulfide (GSSG) levels were determined
in washed red blood cells using O-phthalaldehyde as a fluorescent reagent. Standard
curves for GSH and GSSG were utilized for quantification. Fluorescence of the samples was
measured at 350 nm excitation and 420 nm emissions using a microplate fluorescence reader
(FLx800; BioTek Instruments Inc., Charlotte, VT, USA), following the method described by
Hissin and Hilf [71]. The results were expressed as µmol/g Hb.

4.7. Measurement of GPx, GRd, SOD, CAT, and G6PD Activities

The glutathione peroxidase (GPx) and glutathione reductase (GRd) activities were
spectrophotometrically measured following NADPH oxidation for 3 min at 340 nm in
a 96-well plate spectrophotometer (PowerWaveX; BioTek, Washington, DC, USA). The
GRd activity was measured using a kit (703202; Cayman chemical, Ann Arbor, MI, USA).
Enzyme activities were expressed as µmol/min/g Hb, following the method described
by Jaskot et al. [72]. The activity of Cu/Zn-superoxide dismutase (SOD) was measured
indirectly by monitoring the absorbance of adrenochrome at 490 nm appearance from
adrenaline at a pH of 10.2 [73]. SOD activity was expressed as U/mg Hb (1 unit = 50%
inhibition of auto-oxidation of epinephrine). The CAT activity was measured following
the decomposition of H2O2 at 240 nm, according to Aebi´s method [74]. The Erythrocyte
G6PD activity was determined by measuring the rate of change in absorbance at 340 nm,
due to the reduction in NADP+, using the G-6PD kit (Cromakit, S.L., Granada, Spain). All
enzyme activities were determined in the erythrocyte fraction.

4.8. Nitrite Plus Nitrate Determination

Due to the high instability of nitric oxide, the determination of the nitrites (NOx),
the compounds formed after the reaction of nitric oxide with water, must be measured
indirectly. Moreover, NOx is rapidly oxidized to nitrates, which should be reduced again
to NOx with nitrate reductase to obtain a reliable value of nitric oxide produced during
inflammation. The concentration of NOx was measured following the Griess reaction,
which converts nitrite into a colored compound, spectrophotometrically detected at 550 nm.
Plasma levels of NOx plus nitrates are expressed in mol/L.

4.9. Statistics

The data were analyzed using SPSS version 27.0 (WPSS Ltd., Surrey, UK), and graphs
were generated using GraphPad Prism v. 6.0 for Windows scientific software (Graph-
Pad Software Inc., La Jolla, CA, USA). The continuous data were tested for normality
using the Shapiro–Wilk test, and Levene´s statistics verified the homogeneity of vari-
ance. The data were reported as mean ± standard deviation (SD) or mean ± standard
error of mean (SEM) for normal and non-normal data, respectively. One-way ANOVA
followed by multiple-comparison with post-host test was used for variables with normal
distribution. For data that did not fit the normal distribution, the Kruskal–Wallis test was
performed. A Pearson´s test was performed to determine correlations between quantitative
variables. Receiver operating characteristic (ROC) curves were constructed to evaluate
the diagnostic value of miRNAs and other markers. The area under the curve (AUC) and
95% confidence intervals (CI) were calculated to determine specificity and sensitivity. A
binomial logistic regression analysis explored the association between plasma miRNAs,
oxidative/inflammatory biomarker levels, and the presence of diabetes/complications.
Results are displayed as odds ratios (ExpB) and 95% confidence intervals (CIs). Differences
were considered statistically significant at p values < 0.05.
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5. Conclusions

To summarize, in the studied Spanish Andalusian population, we found two models
with high predictive value for vascular complications presence: (1) HbAc1, creatinine, total
cholesterol (TC), lipid peroxidation (LPO), glutathione peroxidase (GPx), superoxide dis-
mutase (SOD), miR-126, miR-484. (2) HbAc1, creatinine, TC, IL-6, LPO, miR-126, miR-484.
These results included classical clinical variables and new biomarkers that have reflected
the complex pathophysiology of this metabolic disease. Moreover, despite having a limited
population, we have described the model associated with macrovascular complications
using the binary logistic regression analysis and ROC curve analysis. This model included
gender, total cholesterol, GPx, catalase activity (CAT), and miR-484; it exhibited higher pre-
dictive values than classical variables. Our findings suggest that further studies should be
conducted in a larger population to validate the battery of diagnostic markers for macrovas-
cular complications. Furthermore, in the future, healthcare providers treating diabetic
patients should consider using molecular markers to guide their treatment decisions. In
this sense, miRNAs could be used as a therapeutic tool.
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