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Abstract

Energy production from clean sources is mandatory to reduce pollutant emis-
sions. Among different options of hidden hydropower potential, Pump-as-
Turbine (PaT) represents a viable solution in pico- and micro-hydropower
applications for its flexibility and low-cost. Pumps are widely available in
the global market in terms of both sizes and spare parts. To date, there
are several PaTs’ performance prediction models in the literature, but very
few of them use optimization algorithms and only for specific and limited
prediction goals. The present work proposes evolutionary Artificial Neural
Networks (ANNs) based on JADE, which is a typology of differential evo-
lution algorithm, to forecast Best Efficiency Point (BEP) and performance
curves of a PaT, starting from the pump operational data. In this model,
JADE is employed as optimizer of basic ANNs to upgrade parameter val-
ues of the learning rate, weights, and biases. The accuracy of the proposed
model is evaluated through experimental data available from the literature
and compared to a basic ANN and two versions of the differential evolution
algorithm. Results are also validated with experiments on a PaT, showing
that the proposed method can achieve an average R2-value of 0.97, which is
5% higher than the one obtained with a basic ANN.
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1. Introduction

Nowadays, fossil fuels such as petroleum, natural gas, and coal are the
main sources of energy, being essential to carry on the daily life activities of
all the human kind. It is estimated that the global primary energy demand
will expand within the year 2030 by approximately 60% compared to the
year 2002 with an average increase of 1.7% per year [1]. Due to the negative
environmental impact caused by the use of traditional energy sources, the
exploitation of renewables has become a mandatory target to meet present
and future challenges [2, 3, 4]. Indeed, it has been predicted that the elec-
tricity generated by renewable energy sources will rise up to 39% by the
year 2050 [5]. Fossil fuels will be replaced by renewable energy in the next
fifty years; among the most known technologies that exploit clean sources,
hydropower is one of the most used with a high penetration in the power
generation sector [6]. Large-scale hydropower has been widely exploited in
the past decades and the main water resources have been already exploited,
especially in the developed countries. New installations are therefore lim-
ited and impose complex challenges, such as the need of collecting a large
amount of water using dams, which are costly and impacting infrastructures,
difficulty on producing electricity in remote and rural areas, and significant
environmental impacts. Within this context micro-hydropower applications
are gaining more and more interest. Micro-hydropower is considered an ef-
fective alternative that benefits the possibility to recover the residual energy
potential from small applications with lower costs [7, 8], the so-called hidden
hydropower potential.

In such a context, the Pump-as-Turbine (PaT) technology is considered
one of the most viable and interesting alternatives in terms of both energy
recovery and power generation. PaTs are common pumps that are used in
reverse mode: the advantages of PaTs are related to their low capital and
O&M costs, as well as their large availability in the market, in terms of
sizes and spare parts, that make them a competitive solution [6]. Further-
more, PaTs can have a payback period five times shorter than conventional
micro hydro-turbines [9]. PaTs are used for recovering energy in several
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applications like water supply systems, water distribution networks, wastew-
ater plants, and irrigation systems. To fasten the wide-spread applications
of PaTs, a reliable forecast model of their performance in turbine mode is
anyway needed; this task has been a significant challenge for both choosing
and applying this technology because pump manufactures provide only the
specifications of the hydraulic machine in pump mode and not in turbine
mode [7]. Indeed, without a reliable figure of the machine’s performance in
reverse mode, the designers cannot choose the proper machine to be used in a
specific installation site and also an economic evaluation of the return of the
investment is not feasible. The performance prediction of PaTs in turbine
mode (BEP + off-design operating conditions) is a quite complex task due
to the fluid flow phenomena that change depending on the single machine
design and operating conditions.

Thanks to the effort of several scientists in the last years, different per-
formance prediction models for PaTs are now available in the literature
[10, 11, 12]. The studies presented in [10, 13] aimed at forecasting the per-
formance of PaTs at their BEP through relationships between the specific
speed (NS) of the PaTs in pump and turbine modes, respectively. Huang et
al. [11] used the relationships between the rotor and the volute to forecast
both flow rate and head of PaTs. Then, the Euler equation was used for
defining the turbomachinery and the velocity vector relations at the inlet
and outlet of the rotor. Novara et al. [12] proposed a methodology based on
fixed-coefficient polynomials by analysing and elaborating the performance
of 113 PaTs. Compared to other prediction models, the accuracy of the head
curves improved by 5%; furthermore, the average mechanical efficiency of
PaTs with varying flow rate has been also compared to a Francis turbine,
showing good results. Mitrovic et al. [14] used the classical hydraulic regu-
lation scheme with the Nedler–Mead simplex direct search algorithm to find
the best available centrifugal PaTs on the market. Up to now, there are still
two main gaps on the performance prediction models of PaTs available in
the literature that indicate room for improvement in the forecast capability:

• while most of the developed models provide now reliable results, they
refer mostly on single-stage radial machines: this is a strong limita-
tion since also other kinds of PaTs (e.g., axial ones) can be used in
several applications; therefore, in such cases, the preliminary perfor-
mance assessment can still be made only through Computational Fluid
Dynamics (CFD) analyses that are complex and expensive. [15];
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• so far, optimization models have not been implemented in the devel-
opment of both BEP and off-design performance prediction models of
PaTs, while they could further contribute to improve the accuracy of
the forecasts.

This paper focuses on the prediction of both the BEP and off-design per-
formance curves of PaTs using a newly developed Artificial Intelligence (AI)-
based model. This model is the combination of evolutionary computation al-
gorithms and Artificial Neural Networks (ANNs). Such models have shown
to be more accurate and robust than traditional or simpler predictive models
in several energy-related applications such as solar radiation prediction [5],
wind power ramp events detection [16], short term load forecast [17], and dew
point cooler prediction [18]. The purpose of using evolutionary algorithms
in neural networks is to reduce the local optimization problem in optimiza-
tion algorithms (e.g., Stochastic Gradient Descent (SGD) and Nesterov) for
training neural networks, which are affected by network hyper-parameters
(e.g., learning rate). In traditional neural networks, the hyper-parameters
are adjusted by an expert based on prior knowledge, which is a very com-
plex task. Evolutionary algorithms can be also useful in automatic hyper-
parameters adjustment. In this paper, evolutionary algorithms are used both
as a network training algorithm and as a hyper-parameter optimizer. In this
regard, JADE approach [19] is used, being considered as a robust and reli-
able evolutionary algorithm. To the best of the authors’ knowledge, there is
no existing research work that employs evolutionary ANNs for PATs’ per-
formance prediction and hydraulic machines so far. The characteristics of
these algorithms should help to increase the forecasting capability that still
misses some accuracy, especially in off-design operating conditions and for
some typology of PaTs. Performance of the designed evolutionary ANN is
compared to other AI models, including regression, a basic ANN and two
differential evolution-based ANN using the data collected from experimental
data.

The paper is organized as follows: Section 2 briefly summarizes some
works related to PaTs performance at both BEP and off-design operating
conditions, and evolutionary ANNs available in the literature. In Section 3,
the characteristics of the dataset used in this work are described. Section 4
proposes an evolutionary ANN that has been developed by employing JADE
approach for the parameters optimization and topology adjusting to improve
the PaTs’ performance prediction. Section 5 evaluates the proposed algo-
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rithm based on different measures, including the comparison between the
results obtained in [7] with those of the proposed ANN based on JADE and
discusses the results. Finally, the conclusions are provided in Section 6.

2. Review of Pump-as-Turbine (PaT) studies and performance pre-
diction models

In the scientific literature there are several studies related to the use of
PaTs that are mainly applied to water supply systems/distribution networks
and industrial plants for energy recovery purposes. Crespo Chacón et al.
[20] presented a methodology for designing a micro-hydropower plant using
PaTs and results were assessed considering a real case study in Southern
Spain. The selection of the most suitable PaT has been carried out by using
equations obtained by [21, 12, 14]; the forecast performance showed slightly
difference with respect to the results measured in the real application. Indeed,
2258e and 8.4 tCO2 were achieved in the real case study, being close to
the estimated ones with the model presented in [22]. Spedaletti et al. [23]
investigated on the use of PaTs in a water supply system of a town located
in the Center of Italy. The study concluded that the size of the PaT has an
impact on the Payback Period (PBP) of the investment. Smaller machines
(1−2 kW ) normally present longer return of the investment (almost 11 years),
while the PBP has been sensibly shortened considering PaT’s power outputs
higher than 3 − 4 kW (almost 6 years). Bekker et al. [24] studied different
technologies for exploiting the low-head hydropower potential available in
wastewater plants. PaTs are also suitable for such applications since high
specific speed machines can operate down to an available head range of 3−30
m.

However, as stated by all the previously mentioned studies, the applica-
tion of PaTs requires the accurate knowledge of their performance in reverse
mode, and thus prediction models are required to assess the operation of
these hydraulic machines. The analytical approach of Huang et al. [11] is a
work for predicting the flow rate and head of PaTs in off-design operating
conditions in pump or turbine mode. Even though a relationship between
the rotor and the stator was used, detailed information about the geometrical
factors of a PaT are required. Due to the difficulty of getting the geomet-
rical parameters from pump manufacturers, some studies tried to develop
techniques to predict the PaTs performance in turbine mode using operating
data of PaTs in turbine mode obtained through experimental campaigns. A
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mechanism for predicting curves and rotational speed of a PaT through a
Hermite polynomial chaos expansion has been developed in [25]. Novara et
al. [12] designed a similar methodology based on fixed-coefficient polynomi-
als to predict the performance curves of PaTs based on the BEP knowledge.
A data-driven model based on a large set of data was presented by Rossi
et al. [6] that was validated with three different centrifugal PaTs, showing
good accuracy. The off-design performance of PaTs was predicted through
correlations involving the non-dimensional analysis and the normalization
method; however, this model requires the knowledge of both flow rate and
head factors of the PaTs in turbine mode.

Since detailed geometrical information about pump data cannot be ob-
tained easily from pump manufacturers, some papers formulated analytical
equations to find correlations between data in pump mode and those in tur-
bine mode to forecast the BEP of PaTs in turbine mode. Some studies
focused on developing analytical methodologies to evaluate flow rate, head,
and efficiency of PaTs in turbine mode [26]. However, this methodology is
based on a limited number of PaTs that lead to good accuracy only for the
machines belonging to a narrow range of specific speed NS.

The prediction of both BEP and off-design operating conditions has at-
tracted the attention of several scientists. In this regard, a statistical model
has been developed by Barbarelli et al. [21] based on the experimental per-
formance data of 12 PaTs. Recently, Rossi et al. [7] developed a PaTs’ per-
formance prediction model based on ANN for both the BEP and the PaTs’
performance curves forecast. Their results led to a flow rate forecast error
of 5.18% and a head forecast error of 1.85%. In addition, a physics-based
simulation model has been developed by Venturini et al. [27] that used an
optimization procedure to identify the non-available performance and geo-
metrical data of the machine, evaluate the specific parameters, and finally
predict the PaTs’ performance curves.

3. Dataset description

In this study, a dataset that includes the performance of 32 PaTs in both
pump and turbine modes has been used [7]. The physical performance values
were converted into non-dimensional parameters to feed the ANNs; among
them, the specific speed (NS) is the non-dimensional parameter that better
characterizes the functioning principle of a turbomachinery and its design
as well (Eq. 1). In the case of the same NS values, the machines have the
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similar fluid dynamic behaviour and belong to the same typology [7]. The
flow coefficient (ϕ), the head coefficient (ψ), and the power coefficient (λ) are
the other non-dimensional parameters included in the dataset. The previous
mentioned values are obtained using Eqs. (2), (3), and (4), respectively.

NS = ω

[
rad

s

] √
Q [m3/s]

4

√
(g [m/s2] ·H [m])3

(1)

ϕ =
Q [m3/s]

ω [rad/s] · (D [m])3
(2)

ψ =
g [m/s2] ·H [m]

(ω [rad/s])2 · (D [m])2
(3)

λ =
P [W ]

ρ[kg/m3] · (ω [rad/s])3 · (D [m])5
(4)

Table 1 lists the minimum and the maximum values of the non-dimensionless
parameters constituting the dataset, which includes nine variables: six of
them are inputs, while the remaining three are outputs.

Table 1: Main non-dimensional parameters of the 32 PaTs used in this work

Parameter Symbol Min Max

In
p
u
t

Flow coefficient ϕ 0.001 0.127

Head coefficient ψ 0.007 0.146

Mechanical efficiency η 0.44 0.87

Power coefficient λ 0.0001 0.0102

Specific speed NS 0.28 2.24

Rotational speed ω 78.54 256.06

O
u
tp
u
t

Output 1 ϕt/ϕtBEP 0.17 1.75

Output 2 ψt/ψtBEP 0.29 2.60

Output 3 ηt/ηtBEP 0.01 1.00
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4. Evolutionary ANN for PaT’s performance forecasting

In this section, an evolutionary ANN algorithm using JADE is proposed.
JADE approach is considered as an optimizer for the ANN’s hyper-parameters
and ANN training algorithm. Fig. 1 shows a schematic flowchart of the pro-
posed algorithm, named JADE4ANN.

4.1. Chromosome encoding

Encoding a real-world application in the form of a solution is considered
an essential process in evolutionary algorithms that aims to effectively display
the influencing factors related to an application. In this case, a chromosome
represents three types of ANN parameters: learning rate, bias, and weights.
The best final evolved chromosome is selected as the final model network
parameters. Based on the optimization goals, a chromosome has three parts
(Fig. 2): the first gene represents the learning rate, the next m bits comprise
the bias values, and the ending n genes include weights of the ANN. The
size of m is (L × h) + 1, where L and h are the numbers of the hidden
layers and neurons in each layer, respectively. The size of n is equal to
(I×h)+ ((L−1)×h)+h, where I is the number of input variables (i.e., the
size of the input layer). The initial population is initialized with a random
value between −1.0 and 1.0.

4.2. ADE operators

Once the population is initialized, JADE algorithm starts to improve the
population from generation to generation using three evolutionary opera-
tors: mutation, crossover, and selection. The DE/rand/1 mutation strategy
is used to mutate chromosomes based on the current parents in the popula-
tion. After the mutation, the non-consecutive binomial crossover is applied
to produce offspring from two parents (Fig. 3). There is a dedicated crossover
probability per individual instead of a fixed value for all chromosomes. In the
selection step, the best individual is selected from its parents and offspring
based on their fitness. At each generation step of JADE, the control parame-
ters are automatically optimized without prior parameter setting knowledge.
A normal distribution with mean µCr and the standard deviation σ = 0.1 is
used to generate the crossover probability of each chromosome independently.
The Cauchy distribution with location parameter µF and scale parameter 0.1
is employed to generate the mutation factor of each chromosome indepen-
dently. Parameter adaption for both µCr and µF is performed at the end of
each generation.
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j
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k
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C
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i
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j
g – C

k
g)

SCr = 0, SF = 0   

Figure 1: Flowchart of JADE for ANN (JADE4ANN)

4.3. Fitness function

To compute the quality of the individuals, the RMSE is used as a fitness
function. To calculate the RMSE, the predicted value and its real value are
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Figure 3: Non-consecutive binomial crossover

used as given in Eq. (5):

RMSE =

√∑N
i=1 (yi − ȳi)

N
(5)

where yi refers to the predicted, ȳi is the actual value and N is the size
of the dataset. The JADE technique tries to minimize the RMSE value.

4.4. Termination criteria

Evolutionary algorithms aim at providing a diverse and convergence pop-
ulation using an evolution process. A termination condition is set for an
evolutionary algorithm, which is often the maximum number of generations.
In the proposed approach, a convergence condition is defined in which the
evolution process finishes when the best fitness value of the population does
not change after the past 20 generations. Therefore, the evolution process
finishes when either the maximum number of iterations or the convergence
condition has been reached.
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5. Results and discussion

This section provides the results obtained from experiments carried out
with the JADE4ANN model in comparison with a regression predictor, the
ANN used in [7], two evolutionary ANN models based on the basic DE [28]
and Self-adaptive DE (SaDE) [29] and called these two evolutionary ANN
models as DE4ANN and SaDE4ANN, respectively. To set the influencing
parameters of the JADE algorithm (i.e., population size and β), a sensitivity
analysis in Subsection 5.2 has been carried out. Based on the results ob-
tained from the experiments in the sensitivity analysis, the best values for
the population size and β are 100 and 0.5, respectively. Also, the value of
the learning rate for the ANN algorithm is set to be equal to 0.1.

To define the optimal architecture of the ANN-based models, as recom-
mended in [7], both trial and error approaches have been used to determine
the number of hidden layers and neurons in each layer. Based on the find-
ings, the best topology consists of two hidden layers and 12 neurons in each
hidden layer.

5.1. Experimental framework

This section explains how the experiments have been carried out using
both the ANN and the JADE4ANN predictive models. In the first step,
data are normalized using the MinMax normalization technique. All the
experiments were conducted using 80% of the dataset (i.e., 184 samples),
which were randomly selected, as the training set. The remaining parameters
of the dataset (i.e., 46 instances) were used as the testing set. Both the basic
ANN and the evolutionary ANN models were built using the training set.
Once the models have been generated, the testing set was used to evaluate
the performance of the models using different measures.

Different performance parameters, including RMSE (Eq. 5), Scatter in-
dex (SI) (Eq. 6), MAE (Eq. 7), and R2-value (Eq. 8) were used to evaluate
the accuracy of the proposed algorithm.

SI =

√
RMSE

yi
(6)

MAE =
1

N

N∑
i=1

|yi − ȳi| (7)
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R2 =

[∑N
i=1 (yi − ymean)

2
]
−
[∑N

i=1 (yi − ȳi)
2
]

[∑N
i=1 (yi − ymean)

2
] (8)

In the previous equations, N, y, and ȳ are the number of samples, actual
value, and predicted value, respectively.

5.2. Sensitivity analysis

In this section, two experiments were carried out to determine the optimal
values of the population size and β. The population size is one of the most
influencing parameters in evolutionary algorithms. In this experiment, four
population sizes of 50, 100, 150, and 200 are considered. Fig. 4 shows the
RMSE value of the JADE4ANN model when the number of chromosomes
varies. It has been demonstrated that the best values are obtained when the
population size are 100 and 150.

|N|=50 |N|=100 |N|=150 |N|=200
Population Size

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

RM
SE

t/ t_BEP t/ t_BEP t/ t_BEP

Figure 4: Performance of JADE4ANN model in predicting PaTs’ performance based on
different population sizes

Fig. 5 presents the impact of β that changes the PaTs’ performance
prediction when the value of β varies from 0.1 to 0.9. The best values are
obtained for β = 0.5.
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 ratio

0.03

0.04

0.05
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0.07

RM
SE

t/ t_BEP t/ t_BEP t/ t_BEP

Figure 5: Performance of JADE4ANN model in predicting PaTs performance based on
different β

5.3. Performance curves of the PaTs in turbine mode

This section aims at carrying out some experiments to predict the non-
dimensional parameters that correspond to the BEP operation of a PaT in
turbine mode. Fig. 11 shows the average error obtained on the testing
dataset in terms of the number of the epochs. This experiment has been
performed with 100 epochs. As it can be noticed, the JADE4ANN model led
to a lower error compared to the ANN and the regression models so that the
average error for the JADE4ANN was about 0.03 and 0.1 lower than that of
the ANN and the regression models, respectively.

Table 2 shows the performance of the predictive models in terms of differ-
ent measures, including RMSE, SI, MAE, and R2-value. According to Table
2, the JADE4ANN algorithm led to a higher agreement between actual and
estimated values, and the lowest error compared with other three predictors.
The higher performance of the JADE4ANN model compared to the basic
ANN has to be found in the capability of the evolutionary algorithms to
optimize both hyper-parameters (i.e., learning rate) and connection weights
(biases and weights) during the learning process according to a fitness func-
tion instead of by an expert’s experiences and gradient descent algorithms.
Thus, evolutionary algorithms are able to find the best parameters for dif-
ferent datasets and applications.
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Table 2: Performance of the predictive models for different targets

Model RMSE SI MAE R2-value

Train Test Train Test Train Test Train Test

Regression: ϕt/ϕtBEP 0.062 0.095 0.192 0.236 0.234 0.292 0.858 0.8

Regression: ψt/ψtBEP 0.036 0.038 0.19 0.28 0.177 0.183 0.879 0.882

Regression: ηt/ηtBEP 0.117 0.114 0.29 0.35 0.325 0.321 0.875 0.872

ANN of [7]: ϕt/ϕtBEP 0.049 0.057 0.27 0.285 0.205 0.222 0.896 0.889

ANN of [7]: ψt/ψtBEP 0.025 0.027 0.265 0.275 0.148 0.153 0.939 0.937

ANN of [7]: ηt/ηtBEP 0.074 0.078 0.36 0.284 0.253 0.216 0.945 0.938

JADE4ANN: ϕt/ϕtBEP 0.023 0.026 0.116 0.125 0.157 0.151 0.970 0.968

JADE4ANN: ψt/ψtBEP 0.016 0.015 0.16 0.18 0.120 0.115 0.975 0.979

JADE4ANN: ηt/ηtBEP 0.044 0.042 0.142 0.191 0.198 0.191 0.978 0.983

DE4ANN: ϕt/ϕtBEP 0.043 0.049 0.176 0.219 0.199 0.208 0.959 0.948

DE4ANN: ψt/ψtBEP 0.046 0.053 0.16 0.208 0.162 0.185 0.945 0.935

DE4ANN: ηt/ηtBEP 0.051 0.046 0.315 0.263 0.198 0.219 0.958 0.952

SaDE4ANN: ϕt/ϕtBEP 0.036 0.043 0.194 0.24 0.171 0.158 0.96 0.958

SaDE4ANN: ψt/ψtBEP 0.034 0.044 0.26 0.38 0.172 0.197 0.972 0.963

SaDE4ANN: ηt/ηtBEP 0.04 0.038 0.23 0.36 0.177 0.191 0.961 0.964
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Figure 6: Average error in terms of the number of epochs.

Table 3 shows the average performance of the predictive models presented
in Table 2. The JADE4ANN model led to the highest performance in all
the analysed cases with an R2-value of 0.977, followed by the SaDE4ANN,
DE4ANN, and ANN of [7] models with 0.961, 0.945, and 0.921, respectively.

Figs. 7, 8 and 9 show the values of the performance curves in turbine
mode in comparison to the values predicted by the predictors. According
to these graphs, the JADE4ANN model with the R2-value of 0.976 is, on
average, the most reliable predictor to forecast PaTs’ performance curves.
Form these figures, it is demonstrated that the JADE4ANN model provides
a relatively closer prediction as compared to the other AI models.
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Figure 7: The performance of the predictive models in predicting ϕt/ϕtBEP
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Figure 8: The performance of the predictive models in predicting ψt/ψtBEP
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Figure 9: The performance of the predictive models in predicting ηt/ηtBEP
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Table 3: Average performance of the predictive models

Model RMSE SI MAE R2-value

Train Test Train Test Train Test Train Test

Regression 0.0716 0.0823 0.336 0.288 0.245 0.265 0.87 0.85

ANN of [7] 0.049 0.054 0.298 0.281 0.202 0.197 0.926 0.921

JADE4ANN 0.027 0.027 0.139 0.23 0.158 0.152 0.974 0.977

DE4ANN 0.046 0.0493 0.217 0.23 0.186 0.204 0.954 0.945

SaDE4ANN 0.036 0.041 0.228 0.326 0.173 0.182 0.964 0.961

5.4. BEP prediction of PaTs in turbine mode

This section provides results obtained from intelligent systems (i.e., ANN
of [7] and JADE4ANN models) in which the data of PaTs in pump mode
feed the models for the performance prediction in turbine mode. Since man-
ufacturers do not supply data of PaTs in turbine mode, their performance
predictions can be useful to predict the behaviour of these machines in tur-
bine mode. Fig. 10 presents the findings related to the experiments for
the BEP prediction of PaTs in turbine mode. It can be noticed that the
JADE4ANN model can provide more accurate predictions than the ANN
one, so that the R2-value value for the JADE4ANN is 0.975 against 0.928 of
the ANN.

5.5. Comparison of the accuracy of PaTs prediction models

After the analysis performed so far, the accuracy of the presented models
(i.e., JADE4ANN, DE4ANN, and SaDE4ANN) has been compared with the
results obtained by the ANN model discussed in [7] and the optimization-
based method proposed in [14]. Table 4 lists the values of the non-dimensional
parameters related to the developed model here presented, the laboratory
tests performed by Rossi et al. [7], and those obtained with the ANN of [7]
and the optimization-based model of [14] along with the relative percentage
errors with respect to the laboratory tests. As it can be noticed in Fig.
11, the developed DE-based ANN models can obtain lower error values than
the ANN model of [7] and the optimization-based [14]; indeed, an average
error of 1.35 has been obtained by the JADE4ANN against 3.93 of the ANN
model [7]. The highest and the lowest errors were achieved in the evaluation
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Figure 10: The performance of the predictive models in predicting the BEP in turbine
mode

of the ϕ value (5.17%) and the ψ value (1.09%), respectively. Along the
same line, Figs. 12 and 13 show the performance curves of the tested PaT in
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Table 4: Average performance of the predictive models

Model Laboratory tests of [7] ANN of [7] Optimization-Based [14] JADE4ANN DE4ANN SaDE4ANN

ϕtBEP 0.0182 0.0191 0.0192 0.0180 0.0188 0.0179

ψtBEP 0.1559 0.1587 0.1632 0.1541 0.1577 0.1515

ηtBEP 0.7538 0.7176 0.7445 0.7665 0.7743 0.7311
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Figure 11: Comparison between the errors obtained by the present model and others
available in the literature
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21



0.88

0.9

0.92

0.94

0.96

0.98

1

0.7 0.8 0.9 1 1.1 1.2 1.3

η∕
η t
𝑩
𝑬
𝑷

φ∕φt𝑩𝑬𝑷

Rossi et al. [7]

ANN of [7]

ADE4ANN

Optimization [14]
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[7] together with the predictions obtained with the ANN of [7], ADE4ANN,
and optimization-based model [14]. Fig. 12 shows that the models can pro-
vide predictions with a lower error at strong part-load operating conditions
of the PaT, while, increasing the flow rate, the prediction errors increases.
However, the proposed model could yield more accurate predictions than the
simple ANN model. Fig. 13 also demonstrates that the mechanical efficiency
remains relatively high when the flow rate is between 80% and 120% of the
BEP value, while the efficiency is reduced dramatically when operating with
high flow rate. It is also worth to notice that the trends obtained with the
methodology proposed in [14] present wavy trends, which are not realistic
for the operation of a fluid machine. On the other hand the optimization
model proposed in this work shows better prediction accuracy but also a
more reliable trend.

6. Conclusions

In this study, an ANN algorithm based on the JADE algorithm has been
developed to optimize all the design parameters of a basic ANN and minimize
the prediction error of the PaTs’ performance in turbine mode. The proposed
model was used to predict both the BEP and performance curves of PaTs
operating in turbine mode. Data of 32 different PaTs were collected from
the literature [7] and they represent 230 operating samples in both pump
and turbine modes with NS values ranging between 0.28 and 2.24. The new
JADE4ANN algorithm was compared to the basic ANN algorithm in terms of
various criteria on a pump mode dataset. The JADE4ANN algorithm reduces
the average errors by about 6%. The JADE4ANN achieves an approximate
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R2-value of 0.98 for both the BEP and performance curves predictions, while
a standard ANN model based on the same data obtains an R2-value of 0.92
as reported in [7]. In particular, the proposed model led to the best result in
terms of non-dimensional magnitudes, achieving an error of 2.91% compared
to the laboratory tests of a PaT performed by [7] and thus being 1.3% lower
than the value obtained by the ANN of [7]. The same results have been
obtained when comparing the performance curves predicted by both the ANN
of [7] and the proposed ANN based on JADE; to be precise, 3.06% for the
ANN against 2.26% for the JADE4ANN model has been obtained. The
success of the JADE4ANN on forecasting PaTs’ performance demonstrates
that it can be applied to address the behaviour of other turbomachines and
energy domains as well. As a next research development, the improvement of
the performance parameters through their optimization with the k -fold cross
validation will be considered, where an ensemble learning on different ANN
models can be built.
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Appendix A. Artificial Neural Networks (ANN)

The origin of the ANN backs to 1943 when the first computational model
based on neural networks was proposed. In this model, the sensory input
was represented by the neuronal activation. In this network, different layers
of features were extracted, in which their combinations in the previous layer
make the features in the next layer. A standard neural network includes many
connected processors called neurons. Input neurons receive values from the
environment, while other neurons receive activated values by weighted con-
nections from the previously active neurons. Different generations of neural
networks have been proposed so far. The perception was the first generation,
while the second generation was introduced by using more hidden layers in
the topology of the network and to back-propagate the error for learning.

Generally, an ANN consists of three main components: i) architecture,
ii) transfer function, and ii) optimizer. A topology of an ANN includes three
layers: (1) input layer, which is usually equal to the number of variables in
the dataset, (2) one or more hidden layers, and (3) an output layer that can
consist of one or multiple neurons depending on prediction or classification
tasks. The features measured per each training instance correspond to the
input layer. Then, the input passes through the hidden layer(s). The output
layer receives the weighted outputs from the last hidden layer to make predic-
tion/classification of given samples. The procedure to compute the output of
each neuron in the hidden and output layers is shown in Fig. A.14. Firstly,
the input is computed (Eq. A.1) by multiplying the corresponding weight
(i.e., wij) by the output of the unit from the previous layer (i.e., Oi). Then,
the summed value is added by the bias value (i.e., θj). Finally, an activation
function (e.g., sigmoid) is applied to use the output for the neuron.

Ii =
∑
i

wijOi + θj (A.1)

In the supervised learning process of the weights, the main focus is to
find an absolute optimal or close-enough optimal set of connection weights
for a fixed size network, in terms of the number of layers and neurons at each
layer, using back-propagation. In the field of neural networks, the dominant
method for training neural networks is back-propagation, which is an efficient
algorithm for calculating the loss function gradient. Each neural network
weight can be modified by the back-propagation to greedily reduce loss. A
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Figure A.14: Procedure to compute the weighted output for each neuron

back-propagation algorithm, represented in 1, is a generalization of the delta
rule for training neural networks that updates the weights of the network at
several successive iterations by minimizing the cost function of the error.

Algorithm 1 Back Propagation

Input: Data D = {(xk, yk)}nk=1 , learning rate η, cost function E
Output: optimal weights w
Randomly initialize all weights and threshold
while Stopping criteria is not met do

for all (x(i), y(i) ∈ D do
Compute wij = wij − η∂E/∂wij

end

end
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Appendix B. JADE: An Adaptive Differential Evolution

Evolutionary approaches have been inspired by natural evolution prin-
ciples. These approaches encode a problem in terms of individuals to be
evolved with the aim of improving the quality of solutions. Evolutionary
algorithms explore the search space using an iterative heuristic procedure
to obtain gradually better solutions. The JADE [19] is a new evolutionary
algorithm that is an improvement of Differential Evolution (DE) algorithm
[28]. The DE uses the three genetic operators mutation (Eq. B.1), crossover
(Eq. B.2), and selection (Eq. B.3) for evolution [30].

vGi = xGS1 + F.(xGS2 − xGS3) (B.1)

uGi,j =


xGi,j if randi,j[0, 1] ≤ CR

vGi,j otherwise

(B.2)

uG+1
i =


uGi if f(uGi ) < f(xGi )

xGi otherwise

(B.3)

In the DE, these three operators of mutation, crossover, and selection
are performed in a row. In each generation i, the mutation operator first
generates a mutation vector (vGi ) from three randomly selected individuals
xGS1, x

G
S2, and x

G
S3 from the population (Eq. B.1). The notation F ∈[0,1] is

a parameter that determines the exploration length (xS2 − xS3). Then, the
crossover operator generates the trial individual (uGi ) by crossing the target
individual (xGi ) with its mutant counterpart (vGi ) (Eq. B.2). The term j is a
random integer between 1 and the length of an individual. The CR variable
is the crossover probability in the range of [0,1]. Finally, the target individual
(xGi ) is replaced by (uGi ) if its fitness value is higher than u

G
i (in our problem).

Otherwise, the target individual is reserved for the next generation (Eq. B.3).
The first difference between the JADE and the DE is that the JADE

uses “DE/current-to-pbest/1” for mutation (Eq.B.4 ), unlike the DE, which
uses “DE/rand/1” (Eq. B.1). The second difference is that at each genera-
tion step of the JADE, the control parameters are automatically optimized
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without knowing the parameter settings beforehand.

vGi = xGi + F.(xGbest − xGi ) + F.(xGS1 − xGS2) (B.4)
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