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Abstract  25 

BACKGROUND: The optimization of the lure is essential for the implementation of trapping systems to 26 

control insect pests. In this work, the response of the red palm weevil (RPW), Rhynchophorus ferrugineus 27 

Olivier, to increasing emission rates of its aggregation pheromone (ferrugineol) and the efficacy of a 28 

convenient synthetic kairomone based on fermentation odors (ethyl acetate and ethanol) have been 29 

evaluated in different years and locations along the Mediterranean basin. 30 

RESULTS: In general, although capture data and emission had noticeable variability among locations, 31 

significantly less RPW were captured in pyramidal Picusan
®

 traps with the lowest ferrugineol emission 32 

rates tested (0.6-3.8 mg/day
-1

). Captures increase rapidly with ferrugineol emission up to 4-5 mg day
-1

; 33 

then, higher emission rates did not improve nor decrease captures, up to the highest emission rate tested 34 

of 50.9 mg day
-1

. Thus, there is no evidence of an optimum release rate corresponding with a maximum 35 

of RPW catches. Traps baited with the synthetic kairomone (1:3 ethyl acetate/ethanol) captured from 1.4 36 

to 2.2 times more total weevils than traps baited only with ferrugineol. Moreover, in most of the locations, 37 

the synthetic blend was at least as effective as the local co-attractants used (plant material + molasses). 38 

CONCLUSIONS: Ferrugineol emission rate can vary in a wide range without affecting significantly 39 

RPW response. Co-attractants based on fermenting compounds, ethyl acetate and ethanol, are able to 40 

improve the attractant level of ferrugineol and could be employed to replace non-standardized natural 41 

kairomones in RPW trapping systems after further optimization of their proportions and doses. 42 

 43 

Keywords Rhynchophorus ferrugineus, 4-methyl-5-nonanol, ethyl acetate, ethanol, mass trapping, 44 

monitoring 45 

 46 
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1 INTRODUCTION 48 

The use of trapping systems is an efficient technique to be included in any integrated pest management 49 

program (IPM) to control the red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, by means of 50 

preventive and curative measures. Early detection and monitoring are essential to plan further actions 51 

against infestations, whereas mass trapping helps reducing population levels. Management of RPW by 52 

this mean has been widely employed throughout the Middle East and the effectiveness of the pheromone-53 

based trapping for RPW was demonstrated.
1
 Later, results presented by Soroker et al.

2
 indicated that mass 54 

trapping could serve as a tool for controlling RPW in Israel and it is a key part of the IPM carried out in 55 

Saudi Arabia to protect palm crops.
3
 Semiochemical-based trapping systems for weevils had three main 56 

components: trap, aggregation pheromone and kairomone (co-attractant). Buried bucket traps are 57 

traditionally employed for these purposes but improvements (color, surface, retention system) and even 58 

new trap designs have been introduced in the last years.
1,4-5

 Regarding the attractant, Hallett et al.
6
 first 59 

reported identification and activity (both in electrophysiological and field tests) of the main compound of 60 

the RPW aggregation pheromone, 4-methyl-5-nonanol (ferrugineol). A second compound with 61 

electrophysiological activity, 4-methyl-5-nonanone (ferruginone), was also identified in the volatile 62 

extracts but field tests did not evidence pheromonal activity. The aggregation pheromone is emitted by 63 

the males of the species and attracts both sexes, with bias towards females, which is highly favorable for 64 

the mass trapping technique. The second component for weevil attraction is the kairomone; it has been 65 

demonstrated that natural palm baits have poor attractant power by themselves but strongly synergize the 66 

effect of the aggregation pheromone.
7
 The fermentation volatile compounds emitted by different host 67 

plant tissues have been studied through electrophysiological bioassays and have revealed that RPW 68 

antennae are responsive to many compounds, including the so called ‘palm esters’.
8-9

 RPW attraction to 69 

these compounds has been also tested in field trials: Guarino et al.
8
 observed that a blend of the esters 70 

ethyl acetate and ethyl propionate improved catches in traps baited with pheromone and molasses, better 71 

than the individual esters. More recently, Vacas et al.
9
 found that RPW catches increased two-fold with 72 

the 1:3 ethyl acetate/ethanol blend compared to aggregation pheromone alone, even achieving 76% 73 

efficacy if compared to the total weevil catches obtained with a kairomonal co-attractant composed by P. 74 

canariensis palm stem and sugar molasses. 75 

In general, sensitivity of pheromone-based monitoring and efficacy of mass trapping strategies is highly 76 

determined by pheromone emission rates. It has been widely described that pheromone release rate must 77 
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be controlled because insect response could decrease below and above an optimum value.
10-14

 Besides, 78 

pheromone cost is a key parameter for the implementation of this kind of control methods; thus, optimum 79 

pheromone emission rates should be known to avoid pheromone waste. The pheromone dose-dependent 80 

behavior of RPW has been early evaluated by Hallet et al.
6
 in field experiments, in which bucket traps 81 

releasing 3 mg day
-1

 of ferrugineol captured significantly more weevils than traps with emission rate of 82 

0.3 and 1 mg day
-1

. 83 

Available literature dealing with RPW lures is focused on studies in a particular location and no common 84 

protocols are then described for implementation anywhere. The present work reports results obtained with 85 

the aim of establishing trapping protocols valid for most of the areas where RPW is present or susceptible 86 

to be invaded. For this purpose, the field tests reported herein were conducted with standard protocols in 87 

five different countries along the Mediterranean basin, covering a large geographical area. The response 88 

of the RPW to increasing ferrugineol emission rates was evaluated in field trials by comparing the 89 

number of weevils captured in pyramidal Picusan
®
 traps baited with different types and numbers of 90 

ferrugineol dispensers. Similarly, to evaluate the potential of synthetic lures to replace the use of plant 91 

material to boost trap attractiveness, the efficacy of the synthetic co-attractant suggested in Vacas et al.,
9
 a 92 

blend of ethyl acetate and ethanol, has been assessed relative to ethyl acetate alone or local reference co-93 

attractants (palm pieces and/or molasses). 94 

 95 

2 MATERIALS AND METHODS 96 

2.1 Traps and dispensers 97 

The new design of pyramidal trap Picusan
®
 (Sansan Prodesing SL, Náquera, Valencia, Spain), described 98 

in Vacas et al.,
5
 was employed in all the field trials, the base of which was filled with 1.5-2 L water. 99 

Aggregation pheromone dispensers employed in our trials only used ferrugineol as aggregation 100 

pheromone due to the lack of evidences for pheromonal activity of ferruginone in the literature available
6
 101 

and our own experience. The standard commercial aggregation pheromone dispenser employed in all the 102 

trials as reference was Pherosan RF (Sansan Prodesing SL, Náquera, Valencia, Spain), which is a 103 

polyethylene (PE) vial (18 mm diam. x 35 mm h.) loaded with 1 g of ferrugineol (98% purity, sum of 104 

enantiomers). The response of RPW to different ferrugineol emission rates was studied by baiting traps 105 

with different types or numbers of pheromone dispensers. The lowest emission rate was provided in 2012 106 

by 5-ml Nalgene
TM

 low-density polyethylene vials (LD-PE) (20 mm diam. x 25 mm h.) (Fisher Scientific 107 
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SL, Madrid, Spain) loaded with 1 g of ferrugineol (98% purity). In the following trials, the Pherosan RF 108 

dispenser was modified by different experimental means to slow down its emission and provide the lower 109 

emission rates. In particular, in 2013 the dispenser was modified with an adhesive tape coating (mod-RF 110 

1), and in 2014, the dispenser was inserted inside a 12-ml Nalgene
TM

 LD-PE vial (23 mm diam. x 36 mm 111 

h.) (Fisher Scientific SL, Madrid, Spain) (mod-RF 2). Previous to field installation, it was ascertained that 112 

Pherosan RF emission rate was effectively reduced by the mentioned modifications by studying the 113 

release profile of laboratory aged dispensers. The highest emission rates tested in each trial were obtained 114 

by baiting traps with 2, 3 or 4 Pherosan RF dispensers as described below. 115 

Synthetic kairomone dispensers (K) were 100-mL LD-PE bottles (Kartell SPA, Noviglio, Italy), loaded 116 

with 30 mL of the 1:3 ethyl acetate/ethanol blend in all the trials except in trial K3, where loading was 117 

mistaken and the 1:2 ratio was accidentally tested. Active ingredients were emitted through a 100 gauge 118 

LD-PE sheet attached to the top of the bottle. Same type of dispensers was loaded with 30 mL of ethyl 119 

acetate (EtAc) to test this compound alone in the kairomone trials. 120 

 121 

2.2 Release profile studies 122 

In parallel to the field trials, release profiles of the pheromone and kairomone dispensers were studied in 123 

each location. The gravimetric method was employed to assess the amount of ingredients released in 124 

relation to the aging time. Three additional dispensers of each type were aged under the same field 125 

conditions inside the same type of trap in each location and were weighed weekly in the laboratory on a 126 

precision balance (0.0001 g). Dispensers were aged during the corresponding study periods, from the 127 

beginning to the end of each field trial, according to dates in Tables 2 and 3. This was not performed in 128 

the kairomone trial conducted in Egypt (trial K1) due to technical difficulties. The weight differences 129 

over a period were referred to as the amount of ferrugineol or kairomone released from the dispenser. To 130 

obtain the mean emission level for each dispenser, recorded weights (y) were fitted by polynomial 131 

regression with the independent variable x, number of ageing days, and its linear and quadratic effects 132 

were studied. When effect of the quadratic term was not significant (F test at P > 0.05), recorded weights 133 

fitted linear regression models, y = a + bx; thus, the slope of the linear model gave the mean release rate 134 

of the corresponding dispenser, which was assumed constant throughout the study period. 135 

In the case of the aggregation pheromone, it was previously ascertained by gas chromatography (GC-FID) 136 

that dispenser weight losses corresponded effectively to ferrugineol emission and not to degradation 137 



6 

 

products. Similarly, for the ethyl acetate/ethanol dispensers, we checked the ratio in which the compounds 138 

were emitted. For this purpose, a GC/FID analysis of the remaining kairomone contained in the 139 

dispensers employed in some trials was performed and compared with the GC/FID analysis of the initial 140 

kairomone blends. All GC/FID analysis used a Clarus500 gas chromatograph from PerkinElmer 141 

(Wellesley, MA, USA) and injections were made onto a ZB-5MS column (30 m × 0.25 mm × 0.25 µm; 142 

Phenomenex Inc., Torrance, CA, USA). Carrier gas was helium at 1.2 ml/min and detector temperature 143 

was set at 250 ºC. 144 

 145 

2.3 Trials  146 

All of the trials were designed as randomized block assays and were carried out in the locations described 147 

in Table 1 and pointed out in Fig. 1. The revision of catches and rotation of traps were performed on a 148 

weekly basis. In all of the trials, the traps within each block were separated by at least 50 m and the 149 

distance between blocks was at least 200 m. 150 

2.3.1 Aggregation pheromone trials 151 

In each trial (Table 2), each block consisted in four traps with different baits to provide four different 152 

ferrugineol emission rates. In trial P1, traps were baited with: (1) one 5-ml Nalgene
TM

 LD-PE vial, (2) one 153 

Pherosan RF, (3) two Pherosan RF, and (4) three Pherosan RF dispensers. In trial P2, traps were baited 154 

with: (1) one mod-RF 1, (2) one Pherosan RF, (3) two Pherosan RF, and (4) four Pherosan RF dispensers. 155 

For the trials carried out during 2014 (trials P3-P6), traps were baited as described for trial P2, except for 156 

trap (1) which contained one mod-RF 2. 157 

2.3.2 Kairomone trials 158 

Four plots were arranged in each trial (Table 3) to test the synthetic kairomone blend ethyl 159 

acetate/ethanol, each of them consisting of 4 or 5 traps with the fifth corresponding to the use of the 160 

reference co-attractant employed in the local protocols (palm tissues and/or molasses). All traps were 161 

baited with one standard Pherosan RF dispenser, which were assumed to emit ferrugineol at release rates 162 

≥ 4 mg day
-1 

according to previous studies. In general, each block included a trap baited with: (1) only 163 

one Pherosan RF dispenser (ph); (2) ph + 1 dispenser with the synthetic kairomone (ph+1K); (3) ph + 2 164 

dispensers with the synthetic kairomone, to have a higher emission (ph+2K); (4) ph + 1 ethyl acetate 165 

dispenser (ph+EtAc); (5) ph + reference local co-attractant (the one which is commonly used in each 166 

location, as detailed in Table 3). Replacement of water and co-attractants was done every 5 weeks (after 167 
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one complete trap rotation) in all locations except in Egypt, where it was done every two weeks due to a 168 

higher evaporation rate. 169 

 170 

2.4 Statistical analysis 171 

The number of total weevils captured in each trap recorded during each trapping period was divided by 172 

the number of days between dates to calculate the weevils per trap and day (WTD) index. Although more 173 

females than males were caught in general (female/male ratios > 1), there was not remarkable difference 174 

in the responses by either sex and, thus, statistical analysis was performed with the total number of 175 

weevils captured. 176 

To deal with non-homogeneous variance and data overdispersion, we used generalized linear model 177 

(GLM) techniques assuming quasi-Poisson error variance
15

 to compare the mean number of WTD 178 

captured in each trap. Once each model was fitted, the validity of the assumptions made was evaluated 179 

with the plot(glm.model) function by checking residuals distribution and the existence of patterns and 180 

outliers. For each trial, we constructed different models with the number of WTD as the dependent 181 

variable and the emission rate (trap), sampling date, block and their interactions as the explanatory 182 

variables (interaction trap x date x block was not significant in all cases). The significance of the 183 

explanatory variables was assessed by backward elimination from the model and subsequent comparison 184 

of the two models using the F test statistic. When significant effects were found the glht function in the 185 

multcomp package
16

 was used to perform Tukey HSD tests for post-hoc pairwise comparisons. All these 186 

statistical analyses were conducted with R (R version 3.1.0).
17

 187 

To draw a general conclusion and study the existence of an optimum ferrugineol emission rate 188 

corresponding to a relative maximum of RPW captures, we followed the methodology employed in Vacas 189 

et al.
12

 Briefly, we applied a two-factor ANOVA (location and sampling date) using the log(x+1)-190 

transformed captures of the whole data set (trials P1-P6). The residuals of this model still account for the 191 

variability of captures caused by ferrugineol emission, as this factor was not included in the ANOVA. 192 

Thus, these residuals were saved and used in a subsequent multiple regression analysis to study the 193 

existence of a relative maximum by checking the significance of the quadratic effect of the ferrugineol 194 

emission in a polynomial model. These analyses were performed using the Statgraphics Centurion XVI 195 

16.2 package (StatPoint Technologies Inc., Warrenton, VA, USA). 196 

 197 
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3 RESULTS 198 

3.1 Aggregation pheromone trials 199 

Ferrugineol dispensers employed in the different trials provided the mean emission rates given in Table 4. 200 

As can be noticed, emission was variable among locations probably due to the local environmental 201 

conditions. For example, trial P3 which began earlier in the season was affected by lower mean 202 

temperatures, obtaining the lowest ferrugineol emission rates tested. 203 

Results of the trial conducted in Manises (Spain) in 2012 (trial P1), showed that ferrugineol emission 204 

significantly affected RPW captures (Table 5). Significantly less captures were obtained with the lowest 205 

emission rate tested (2.6 mg day
-1

) relative to the rest (P < 0.04, Tukey HSD test). Emission rates over 4.2 206 

mg day
-1

 did not significantly improve the attractiveness to RPW (Fig. 2- P1). Same result was obtained 207 

in Valencia (Spain) during summer 2013 (trial P2). When aggregation pheromone was released at rates 208 

from 5.5 up to 44.6 mg day
-1

 (Table 4), the emission rate did not have a significant effect on weevil 209 

captures (Table 5) (Fig. 2- P2). 210 

When the same type of experiment was conducted in different locations during spring-summer 2014 211 

(trials P3-P6), results showed that, in general, all the lowest pheromone release rates attracted 212 

significantly fewer weevils in the traps. In the trial conducted in Greece (trial P3), the emission rate had a 213 

significant effect on weevil captures (Table 5) and the lowest emission rate tested, 0.6 mg day
-1

, achieved 214 

significantly lower weevil captures (Fig. 2- P3). No significant differences were observed between 215 

emission rates ranging 2.7-10.8 mg day
-1

 in trial P3 (P > 0.20, Tukey HSD test). This result also agrees 216 

with the experiment conducted in Israel (Fig. 2- P5), where RPW response was not significantly affected 217 

by ferrugineol emission rates ranging 2.1-32.4 mg day
-1

 (Table 6). In contrast, in Italy (trial P4) and Spain 218 

(trial P6), the response threshold was somewhat different, as significantly lower total captures were 219 

obtained by emitting 2.6-3.8 mg day
-1

 of ferrugineol (P < 0.04, Tukey HSD test) (Fig. 2 –P4 and P6). 220 

Besides ferrugineol emission, RPW catches were in general strongly affected by the other factors studied, 221 

block and date (Table 5), which is explained by the natural dispersion and seasonality of RPW. 222 

Although data variability was remarkable, same trend was observed in all trials for RPW response to the 223 

different ferrugineol emission rates. When trying to draw a general conclusion gathering the whole 224 

available data (trials P1-P6), multiple regression analysis showed that there is no definite optimum 225 

ferrugineol emission rate. After removing data variability due to time (date) and location by means of the 226 

two-way ANOVA (date: F26,654 = 4.97, P < 0.001; location F4,654 = 41.83, P < 0.001), multiple regression 227 
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analysis performed with the residuals of the ANOVA as the dependent variable showed that the quadratic 228 

term of the emission did not have a significant effect (P = 0.28; model: R
2
 = 0.27) and, thus, there was no 229 

evidence of an optimum release rate corresponding with a maximum of RPW catches. However, the trend 230 

significantly fitted the logarithmic model depicted in Fig. 3 (P = 0.013; model R
2
 = 0.51), suggesting that 231 

captures increase rapidly up to release rates of about 4-5 mg day
-1

 and slowly over this threshold. 232 

 233 

3.2 Kairomone trials 234 

Kairomone dispensers provided the mean emission rates listed in Table 4, which varied among trials 235 

attending to local environmental conditions. GC-FID analysis also revealed that ethyl acetate/ethanol 236 

were emitted in a 2:1 ratio in trial K3, where K dispensers were loaded with 1:2 ethyl acetate/ethanol 237 

blend. By contrast, ratio was approximately 2:3 in the samples analyzed from the rest of locations where 238 

1:3 ethyl acetate/ethanol blend was employed to load the K dispensers. 239 

As mentioned above for ferrugineol trials, RPW captures were in general strongly affected by the factors 240 

block and time (date) and the addition of the synthetic kairomone ethyl acetate/ethanol blend (factor trap) 241 

to ferrugineol-baited traps also had significant effects on RPW captures (Table 6). In general, traps baited 242 

with ph + 1 dispenser with the 1:3 synthetic kairomone (ph+1K) performed significantly better than 243 

ferrugineol alone, improving trap efficacy (Fig. 3). Besides, in most cases, there was no need for a higher 244 

emission using 2 kairomone dispensers (ph+2K), as captures obtained were not significantly different 245 

from those obtained by using 1 kairomone dispenser (P > 0.28, Tukey HSD tests). On the other hand, the 246 

use of ethyl acetate alone did not significantly improve the attractant power of ferrugineol, except in trial 247 

K5 (P = 0.014, Tukey HSD test). The 1:3 ethyl acetate/ethanol blend was at least as effective as the 248 

reference local co-attractant in trials K1, K4 and K5. In trial K3, neither the 1:2 ethyl acetate/ethanol 249 

blend nor ethyl acetate alone achieved improved trapping efficacy compared to the use of ferrugineol 250 

alone (Fig. 2- K3), while the local co-attractant molasses+EtAc provided significant increase in RPW 251 

catches relative to the rest of the co-attractants tested. 252 

 253 

4 DISCUSSION 254 

The dose-dependent response of RPW to its aggregation pheromone has been previously reported in the 255 

literature. In accordance with Hallett et al.,
1,6

 ferrugineol released at 3 mg day
-1

 captured 1.5 times more 256 

adults than at 1 mg day
-1

, but the authors did not test higher emission rates. Later, Rochat and Avand-257 
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Faghih
18

 observed that release rates over 5 mg day
-1

 gave no significant differences in RPW attraction. 258 

Results reported herein of the trials conducted in Spain (P1 and P2) showed that pheromone emission 259 

rates ranging from 4.2 to 12.6 mg day
-1

 did not significantly affect both female and male RPW responses. 260 

Even high emission rates up to 44.6 mg day
-1

 did not have any significant effect (negative or positive) on 261 

weevil captures. 262 

Our results were further supported by field trials conducted in different locations in the Mediterranean 263 

basin during spring-summer 2014 (trials P3-P6), thus covering varied environmental conditions. But it is 264 

precisely for this reason, wide range of microclimate and landscape conditions, that capture data and 265 

emission had noticeable variability among experimental sites. Indeed, the distribution of RPW 266 

populations is usually clumped and not homogenous,
19

 and it is affected over the year by the availability 267 

of hosts and the microclimate conditions of each particular location. Dembilio and Jacas
20

 found a strong 268 

relationship between mean annual temperature and the RPW development, which determines the 269 

seasonality and the number of generations to be expected in each geographical area. On the other hand, as 270 

can be noted in the tables reported, even using common protocols and dispensers, ferrugineol emission 271 

varied over a wide range, for instance, from 0.6 to 3.8 mg day
-1

 in the case of dispenser mod-RF 2. It is 272 

documented that emission rates of dispensers based on polyethylene membranes increased exponentially 273 

with temperature
21

 and local temperatures, even at the level of trap (e.g. different insolation), were 274 

affecting and causing this variability. In spite of this, analyzing each trial separately, we found that traps 275 

baited with the lowest emission rates (0.60-3.85 mg day
-1

) trapped in general significantly fewer weevils, 276 

and increasing emission rates did not improve efficacy (up to 50.92 mg day
-1

). In the global analysis with 277 

all the available data (trials P1-P6), the multiple regression analysis did not find a significant quadratic 278 

effect of ferrugineol emission on captures; as a consequence, we cannot report an optimum ferrugineol 279 

emission rate within the studied range corresponding with a maximum level of captures. Instead, the trend 280 

fitted a logarithmic model, in which captures increase rapidly with emission rate up to a threshold (4-5 281 

mg day
-1

) and then slow down reaching a plateau. Thus, trap catches are not reduced above an optimum 282 

emission rate, as described for the response to sex pheromones in other insect orders, such as 283 

Lepidoptera,
22

 Diptera
14

 or Hemiptera.
11

 Lack of optimum pheromone release rate has already been 284 

described for the related species Rhynchophorus palmarum L., the South American palm weevil. 285 

Oehlschlager et al.
4
 reported that aggregation pheromone emission could range between 0.3 – 200 mg 286 

day
-1

 without significantly affecting R. palmarum catches. Actually, antagonistic or saturation effects 287 



11 

 

have never been reported to be caused by an aggregation pheromone. For example, the nitidulid beetle 288 

Carpophilus hemipterus (L.) responded to its pheromone at all doses between 15 - 15000 µg without 289 

significant differences.
23

 Based on our results, although both the emission rate and the response of the 290 

weevils were affected by the environmental conditions of each location, we can generally conclude that 291 

ferrugineol emission rate can vary in a wide range without affecting significantly RPW catches. 292 

Accordingly, any commercial dispenser designed to emit ferrugineol at mean release rates near 4-5 mg 293 

day
-1

, will be suitable for RPW trapping systems. Higher release rates do not provide significantly higher 294 

captures but have an impact on the longevity of the dispensers and subsequently on the cost of system, as 295 

more frequent replacements will be required. 296 

As synergizing component of trapping systems, the next step to improve efficacy and optimize cost is to 297 

replace the use of natural kairomones. Our results showed that the 1:3 ethyl acetate/ethanol blend 298 

suggested in Vacas et al.
9
 is able to improve trap efficacy and perform significantly better than ferrugineol 299 

alone, capturing from 2.2 to 1.4 times more total weevils. However, when the ratio was modified to 1:2 300 

(ethyl acetate/ethanol) (trial K3), captures were not significantly improved. Although mean release rates 301 

of the blend were similar (Table 4), GC/FID analysis of the remaining content in the dispensers revealed 302 

that ethyl acetate/ethanol were emitted in a 2:1 ratio in trial K3 samples, whereas ratio was approximately 303 

2:3 in the rest of the samples analyzed from trials K2, K4 and K5 (same as reported in Vacas et al.
9
). This 304 

is suggesting the importance of ethanol in the synthetic kairomone blend that should be released even in a 305 

higher proportion than ethyl acetate. However, the synthetic blend achieved higher mean captures than 306 

ethyl acetate alone but not significantly in all cases, which indicates that blend proportions and dose still 307 

need adjustments. 308 

The use of molasses as part of the local co-attractants is mainly providing the ethanol needed for the 309 

kairomonal effect, whereas palm pieces provide fermenting odors, being ethyl acetate and ethanol the 310 

main compounds.
8,9

 Thus, the present work supports the potential of a simple and convenient synthetic 311 

co-attractant to improve the efficacy of ferrugineol-baited traps and this is demonstrated on a broader 312 

geographical scale than earlier reported.
9
 However, results indicate that the blend still needs optimization. 313 

Proportion of compounds in the blend and the dose are crucial to improve trapping performance. More 314 

exhaustive studies measuring the ethyl acetate/ethanol quantities and proportions released from the most 315 

successful local co-attractants are needed to develop controlled-release dispenser for synthetic 316 
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kairomones. This would allow reducing the hand-labor required to service the traps in order to maintain 317 

attractant activity and standardize the attractant for monitoring purposes.  318 
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Tables 388 

Table 1. Description of the experimental areas 389 

Country Location Coordinates 
Elev. 

(m)
a
 

Surrounding area Host palms available Trial
b
 

Egypt 
Ismaïlia 

(Ismaïlia) 

30°42'00'' N; 

31°48'0'' E 
10 

date palms and mango 

orchards 
P. dactylifera K1 

Greece Lavrio (Attiki) 
37°43'20" N; 

24°3'5" E 
3 

urban/rural: great number of 

palms in houseyards, 

median strips and gardens 

mainly P. canariensis; 

few P. dactylifera, W. 

filifera and C. humilis 

P3, 

K2 

Israel 
Almagor 

(Jordan Valley) 

32°54''46' N;  

35°35'54" E 
3 

avocado orchards, olive 

orchards and open areas. 
- P5 

Israel 
Rehovot (Center 

District) 

31°54'24'' N; 

34°48'17'' E 
60 

many scatered palms in 

gardens with a variety of 

ornamental plants 

mainly P. canariensis 

and P. dactylifera; few 

W. filifera and S. 

romanzoffiana  

K3 

Italy 
Grottammare 

(Ascoli Piceno) 

42°59′20″ N; 

13°52′05″ E 
4 

urban area - scattered palms 

and nursery near one of the 

plots 

P. canariensis K4 

Italy Palermo (Sicily) 
38°06'25" N; 

13°21'07" E 
43 urban area/ park P. canariensis 

P4, 

K5 

Spain 
Manises 

(Valencia) 

39°30'17" N; 

0°30'33" O 
52 

industrial/urban area - palm 

nursery 

mainly P. canariensis 

and P. dactylifera; also 

C. humilis and W. 

filifera 

P1, 

P6 

Spain 
Valencia 

(Valencia) 

39°29'2" N; 

0°20'27" O 
6 

urban area, gardens and 

herbaceous crops 

mainly P. canariensis 

and P. dactylifera; 

some W. filifera 

P2 

a
 Elevation (meters above sea level). 390 

b
 Code of the trials carried out at each location (See Tables 2 and 3). 391 

  392 
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Table 2. Details of the trials carried out to test different ferrugineol emission rates 393 

Trial
a
 

T mean 

(ºC) 

T max 

(ºC) 

T min 

(ºC) 

RH mean 

(%) 
Start End Blocks

b
 

P1 22 33.3 9.2 70.7 07-09-12 16-10-12 3 

P2 25 36.4 13.9 70.5 26-07-13 20-09-13 4 

P3 19.3 29.7 9.3 68 04-04-14 02-06-14 4 

P4 22 37.6 12.3 55 07-05-14 02-07-14 4 

P5 27.4 40.3 9.6 57.8 14-05-14 09-07-14 4 

P6 25.1 36.6 14.9 67 13-06-14 08-08-14 4 

a 
Code of the trials according to Table 1. 394 

b 
Number of blocks arranged. 395 

  396 
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Table 3. Details of the trials carried out to compare ferrugineol co-attractants, including K: a mixture of 397 

ethyl acetate and ethanol. 398 

Trial
a
 

T mean 

(ºC) 

T max 

(ºC) 

T min 

(ºC) 

RH mean 

(%) 
Start End Blocks

b
 

Local co-

attractant
c
 

K1 28.7 42.9 16.4 55 08-05-14 10-07-14 4 
P. dact. + 

molasses 

K2 27.4 35.1 20.8 58 26-06-14 22-08-14 4 - 

K3 27.2 40.2 10.8 64 19-08-14 04-11-14 4 
molasses + 

EtAc 

K4 16.3 26.2 6.6 81 17-09-14 26-11-14 4 
P. can. + 

molasses 

K5 25.1 35 14 56 04-08-14 13-10-14 4 
P. can. + 

molasses 
a 
Code of the trials according to Table 1. 399 

b 
Number of blocks arranged. 400 

c 
Local co-attractant included in the comparison: (P. dact.) Phoenix dactylifera stem pieces, (P. can.) 401 

Phoenix canariensis petioles and/or molasses. Water and co-attractants were renewed every 5 weeks, 402 

except in Trial K1 (2 weeks). 403 

  404 
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Table 4. Release profiles of the dispensers employed and corresponding mean emission rates of the traps 405 

included in each trial 406 

Trial
a
 Dispenser model

b
 

no. 

units 
R

2 c
 

Mean 

emission 

(mg day
-1

) 

P1 LD-PE vial 1 0.99 2.6 

  Pherosan RF 1 0.99 4.2 

  Pherosan RF 2 - 8.4 

  Pherosan RF 3 - 12.6 

P2 mod-RF 1 1 0.99 5.5 

  Pherosan RF 1 0.98 11.2 

  Pherosan RF 2 - 22.3 

  Pherosan RF 4 - 44.6 

P3 mod-RF 2 1 0.95 0.6 

  Pherosan RF 1 0.99 2.7 

  Pherosan RF 2 - 5.4 

  Pherosan RF 4 - 10.8 

P4 mod-RF 2 1 0.90 3.8 

  Pherosan RF 1 0.89 12.7 

  Pherosan RF 2 - 25.4 

  Pherosan RF 4 - 50.9 

P5 mod-RF 2 1 0.95 2.1 

  Pherosan RF 1 0.98 8.1 

  Pherosan RF 2 - 16.2 

  Pherosan RF 4 - 32.4 

P6 mod-RF 2 1 0.98 2.6 

  Pherosan RF 1 0.99 12.6 

  Pherosan RF 2 - 25.2 

  Pherosan RF 4 - 50.4 

K2 Kd LD-PE bottle 1 0.99 165.2 

  K LD-PE bottle 2 - 330.4 

  EtAc LD-PE bottle 1 0.99 623.7 

K3
e
 K LD-PE bottle 1 0.95 133 

  K LD-PE bottle 2 - 266 

  EtAc LD-PE bottle 1 0.99 517 

K4 K LD-PE bottle 1 0.99 110 

  K LD-PE bottle 2 - 220 

  EtAc LD-PE bottle 1 0.99 316.2 

K5 K LD-PE bottle 1 0.99 155 

  K LD-PE bottle 2 - 310 

  EtAc LD-PE bottle 1 0.99 341 
a
 Code of the trials according to Table 1. 407 

b
 Dispenser model: (LD-PE vial) 5-ml vial loaded with ferrugineol; (Pherosan RF) standard commercial 408 

ferrugineol dispenser; (mod-RF 1) Pherosan RF modified with an adhesive tape coating; (mod-RF 2) 409 

Pherosan RF inserted inside a 12-ml LD-PE vial; (K) 100-ml LD-PE bottle loaded with ethyl 410 

acetate/ethanol blend; (EtAc) 100-ml LD-PE bottle loaded with ethyl acetate. 411 
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c
 Correlation coefficient of the linear model fitted to weight losses of the unit dispenser with the number 412 

of aging days – indicates that the corresponding emission by the number of units is an estimate based on 413 

the value for an elementary dispenser. 414 
d
 K is the synthetic co-attractant composed by a 1:3 (ethyl acetate/ethanol) blend. 415 

e
 K dispensers were accidentally loaded with 1:2 (ethyl acetate/ethanol) blend in trial K3.  416 

 417 

  418 
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Table 5. Results of the trials carried out to compare ferrugineol emission rates: Weevil captures and 419 

contribution of the explanatory variables evaluated by analyses of variance using generalized linear 420 

models. 421 

Triala 
Total 

RPWb 

Ratio 

F/Mc 
Trap Date Block 

trap x 

date 

trap x 

block 
date x block 

P1 611 1.4 
F3,42 = 7.23;  

P < 0.001 

F4,42 = 14.96; 

P < 0.001 

F2,42 = 21.92; 

P < 0.001 
P = 0.26 P = 0.82 

F8,42 = 2.68; 

P = 0.018 

P2 350 2.4 
F3,114 = 0.19; 

P = 0.91 

F7,114 = 1.86; 

P = 0.08 

F3,114 = 12.13; 

P < 0.001 
P = 0.64 P = 0.66 P = 0.96 

P3 1600 2.7 
F3,109 = 15.69; 

P < 0.001 

F7,109 = 5.55; 

P < 0.001 

F3,109 = 9.96; 

P < 0.001 
P = 0.12 P = 0.71 P = 0.29 

P4 354 1.8 
F3,114 = 9.52; 

P < 0.001 

F7,114 = 7.56; 

P < 0.001 

F3,114 = 9.75; 

P < 0.001 
P = 0.65 P = 0.73 P = 0.84 

P5 292 1.6 
F3,85 = 0.75;  

P = 0.53 

F7,85 = 2.23;  

P = 0.035 

F3,85 = 4.91;  

P = 0.003 
P = 0.28 P = 0.11 

F21,85 = 1.71; 

P = 0.045 

P6 285 1.9 
F3,112 = 6.78; 

P < 0.001 

F7,112 = 2.52; 

P = 0.02 

F3,112 = 15.45; 

P < 0.001 
P = 0.83 P = 0.14 P = 0.52 

a
 Code of the trials according to Table 1. 422 

b
 Total number of weevils captured in each trial (females + males). 423 

c
 Mean ratio females/males (F/M) of weevils captured in each trial. 424 

  425 
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Table 6. Results of the trials carried out to compare various ferrugineol co-attractants including a mixture 426 

of ethyl acetate/ethanol: Weevil captures and contribution of the explanatory variables evaluated by 427 

analyses of variance using generalized linear models. 428 

Triala 
total 

RPWb 

ratio 

F/Mc 
trap date block 

trap x 

date 

trap x 

block 
date x block 

K1 810 2.1 
F4,183 = 15.2; 

P < 0.001 

F9,183 = 3.93; 

P < 0.001 

F3,183 = 2.46; 

P = 0.06 
P = 0.84 P = 0.27 P = 0.93 

K2 1795 2.3 
F3,114 = 3.04; 

P = 0.03 

F7,114 = 1.06; 

P = 0.39 

F3,114 = 2.60; 

P = 0.05 
P = 0.62 P = 0.48 P = 0.98 

K3 2100 1.4 
F4,178 = 8.72; 

P < 0.001 

F9,178 = 10.7; 

P < 0.001 

F3,178 = 18.7; 

P < 0.001 
P = 0.15 P = 0.27 P = 0.44 

K4 3059 1.8 
F4,156 = 8.10; 

P < 0.001 

F9,156 = 44.8; 

P < 0.001 

F3,156 = 19.1; 

P = 0.001 
P = 0.06 P = 0.07 

F27,156 = 2.04; 

P = 0.004 

K5 830 1.6 
F4,183 = 10.62; 

P < 0.001 

F9,183 = 3.94; 

P < 0.001 

F3,183 = 15.1; 

P < 0.001 
P = 0.37 P = 0.46 P = 0.31 

a
 Code of the trials according to Table 1. 429 

b
 Total number of weevils captured in each trial (females + males). 430 

c
 Mean ratio females/males (F/M) of weevils captured in each trial. 431 

 432 

  433 
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Figure captions 434 

 435 

Fig. 1 Locations where the field trials have been conducted along the Mediterranean basin. Description of 436 

experimental areas and code of trials according to Table 1. 437 

 438 

Fig. 2 Mean (± SE) number of weevils captured per trap and per day in pyramidal Picusan
®

 traps 439 

deployed in the trials P1-P6 (see Tables 2 and 5) aimed at evaluating the dose of ferrugineol emitted. For 440 

each trial, bars labelled with the same letter are not significantly different (Tukey HSD tests, P > 0.05). 441 

 442 

Fig. 3 Mean (±SE) residuals from the ANOVA performed with factors date and location using the whole 443 

data set of aggregation pheromone trials (P1-P6). Multiple regression analysis performed to correlate the 444 

dependent variable residuals with the factor emission fitted the logarithmic model depicted (discontinuous 445 

line; P = 0.013, R
2
 = 0.51). 446 

 447 

Fig. 4 Mean (± SE) number of weevils captured per trap and per day in pyramidal Picusan
®

 traps 448 

deployed in the kairomone trials: K1-K5 (see Tables 3 and 6) aimed at comparing various ferrugineol 449 

(ph) co-attractants. All traps contained ph. The trials included no co-attractant (none), only ethyl acetate 450 

(EtAc), a local co-attractant (local C; Table 3; absent in K2), and K: a 1:3 mixture of ethyl acetate/ethanol 451 

using 1 or 2 dispensers (1K and 2K, respectively). For K3, the K dispensers were accidentally loaded with 452 

a 1:2 ratio. For each trial, bars labelled with the same letter are not significantly different (Tukey HSD 453 

tests, P > 0.05). 454 

 455 


