

UNIVERSITÀ POLITECNICA DELLE MARCHE Repository ISTITUZIONALE

Meiofaunal biodiversity in submarine canyons of the Mediterranean Sea: A meta-analysis

This is the peer reviewd version of the followng article:

Original

Meiofaunal biodiversity in submarine canyons of the Mediterranean Sea: A meta-analysis / Bianchelli, Silvia; Danovaro, Roberto. - In: PROGRESS IN OCEANOGRAPHY. - ISSN 0079-6611. - 170:(2019), pp. 69-80. [10.1016/j.pocean.2018.10.018]

Availability: This version is available at: 11566/266617 since: 2022-06-01T11:35:17Z

Publisher:

Published DOI:10.1016/j.pocean.2018.10.018

Terms of use:

The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. The use of copyrighted works requires the consent of the rights' holder (author or publisher). Works made available under a Creative Commons license or a Publisher's custom-made license can be used according to the terms and conditions contained therein. See editor's website for further information and terms and conditions. This item was downloaded from IRIS Università Politecnica delle Marche (https://iris.univpm.it). When citing, please refer to the published version.

note finali coverpage

(Article begins on next page)

1	Meiofaunal biodiversity in submarine canyons of the Mediterranean Sea: a
2	meta-analysis
3	
4	Silvia Bianchelli ^{1,*} and Roberto Danovaro ^{1,2}
5	
6	
7	¹ Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via
8	Brecce Bianche, 60131 Ancona, Italy
9	² Stazione Zoologica Anton Dohrn di Napoli, Villa Comunale, 80121 Napoli, Italy
10	
11	
12	*Corresponding author:
13	Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche
14	Via Brecce Bianche, 60131 Ancona, Italy
15	e-mail: <u>silvia.bianchelli@univpm.it</u>
16	Telephone: +39 2204335; Fax: +39 0712204650
17	
18	Submitted for consideration to:
19	Progress in Oceanography, Special Issue "Mediterranean canyons"
20	
21	
22	Keywords: Mediterranean Sea, canyons, meiofauna, deep-sea biodiversity, biodiversity hotspots,
23	habitat heterogeneity

24 ABSTRACT

25 Deep-sea canyons include highly heterogeneous habitats characterised by a large variability in terms of geomorphological, oceanographic end ecological features. Despite the increasing efforts 26 27 conducted in the last decade to investigate deep-sea canyon ecology, patterns and drivers of their 28 biodiversity are still controversial. Here, we carried out a meta-analysis of meiofaunal abundance, 29 biomass, richness of higher taxa and taxonomic composition from 18 Mediterranean canyons, 30 located in the Western (Balearic, Catalan, Ligurian margins), Central (South Adriatic margin) and Eastern (Cretan margin) basins. We also compared Mediterranean canyons with 3 canyons located 31 32 in the European margins of the Northern Atlantic Ocean at similar latitudes. Our results revealed the 33 presence of weak differences in terms of meiofaunal abundance and biomass among canyons and 34 adjacent slopes. However, their biodiversity (expressed as expected richness of higher meiofaunal taxa) was typically similar or higher in canyons than in open slopes. High levels of dissimilarity 35 36 were also observed between canyons and slopes in terms of taxonomic composition. The variability 37 of meiofaunal assemblages in canyons appear linked to their geomorphological heterogeneity. The results of the meta-analysis also indicate that the most important drivers of the observed patterns 38 39 were water depth, regional setting (i.e., differences among Mediterranean Western, Central and 40 Eastern sub-basins) and geomorphological characteristics of the canyons. We conclude that deep-41 sea Mediterranean canyons contribute significantly to the deep-sea biodiversity at both regional and whole-basin scale. 42

43

45 **1. Introduction**

46 **1.1 Deep Mediterranean Sea canyons**

47 The deep sea is the most extensive and remote ecosystem on Earth. The perception of the deep-sea environment has dramatically changed in the last century; it was originally hypothesised as a 48 species-poor system, it is now recognised as one of the most important reservoirs of biodiversity on 49 Earth (Danovaro et al., 2014). An increasing amount of information has also demonstrated that his 50 51 vast domain contains an extraordinary number of habitats with high spatial complexity, which sustain high levels of biodiversity (Snelgrove and Smith, 2002; Vanreusel et al., 2010; Ramirez-52 53 Llodra et al., 2011; Danovaro et al., 2014; Zeppilli et al., 2016). Spatial heterogeneity in the deep 54 sea has been mostly investigated in terms of variations in sediment characteristics and gradients of key environmental variables (including bathymetry, temperature, salinity, organic matter flux, 55 oxygen concentration, hydrodynamism; Levin et al., 2001; Vanreusel et al., 2010; Danovaro et al., 56 57 2014; Zeppilli et al., 2016). In this regard, there is now a large consensus that habitat heterogeneity, along with the quantity and quality of food resources, represents a key factor influencing the 58 59 distribution of deep-sea biodiversity, both at large and small spatial scales (Zeppilli et al., 2016).

Even though they are common on most continental margins, submarine canyons were 60 61 largely ignored until the 1970s. The interest in submarine canyons and related seafloor structures 62 has been driven by economic reasons (i.e. exploration for fossil energy resources, exploitation of ancient deposits, laying cables and pipelines; Würtz, 2012a), particularly in the Mediterranean Sea, 63 where canyons support fisheries of high economic interest (Company et al., 2008; Fernandez-64 65 Arcaya et al., 2017). More recently, the availability of innovative technologies (e.g., ROVs, swath bathymetry, side-scan sonar, and definitive position-fixing systems; Canals et al., 2004; 2006; 66 Weaver et al., 2004; Würtz, 2012a) contributed largely to renewed scientific interest on the 67 exchanges between the continental shelf and the deep ocean, and on the biodiversity and 68 functioning of the benthic and pelagic compartments. 69

70 So far, in the Mediterranean Sea, more than 500 large submarine canyons have been 71 documented (Canals et al., 2004; Weaver et al., 2004; Harris and Whiteway, 2011; Würtz, 2012a). Recent worldwide studies indicate that the Mediterranean canyons are typically different from any 72 73 other marine region (Harris and Whiteway, 2011), since they are: i) more closely spaced (14.9 km vs 33.0 km on global worldwide average), ii) more dendritic (12.9 limbs vs 4.8 limbs per 100,000 74 km²), iii) shorter (mean length of 26.5 km vs 43.4 km), iv) steeper (mean slope of 6.5° vs 5.1°) and 75 76 v) smaller in depth range (mean depth: 1613 m vs 1992 m) than canyons occurring in all other 77 oceans.

78

79 **1.2 Biodiversity in Mediterranean deep canyons**

Information about the biology of submarine canyon fauna is still scarce and fragmented, but 80 81 morphologic and oceanographic features are generally assumed to influence faunal characteristics 82 (Ramirez-Llodra et al., 2009; Danovaro et al., 2010). Mediterranean canyons play an important role even in structuring the populations and life cycles of fauna and influence fishery resources 83 84 (Stefanescu et al., 1994; Sardà et al., 2009), thus providing important ecosystem goods and services (Fernandez-Arcaya et al., 2017). Moreover, unique benthic ecosystems are associated with 85 86 submarine canyons, particularly in the heads of shelf-incising canyons, characterised by steep 87 bedrock exposures upon which highly diversified communities may occur, as those dominated by cold-water corals (Orejas et al., 2009; Würtz, 2012a; Angeletti et al., 2014; D'Onghia et al., 2017; 88 89 Taviani et al., 2017). Due to their prominent topographic features, submarine canyons facilitate the 90 shelf-slope exchanges of water and organic-inorganic matter, so that canyons are considered "fast-91 track corridors" or "super highways" for transported material (Hickey et al., 1997; Monaco et al., 1999; Weaver et al., 2004; Canals et al., 2006; Puig et al., 2008). Canyon-driven upwellings 92 93 enhance the local primary productivity that increases the amount food resources available to euphausids, mesopelagic fishes, shrimps and squids, which in turn attracts a variety of top pelagic 94 and bentho-pelagic predators (as tunas, sword fishes, sharks, turtles, birds and cetaceans; Würtz, 95

2012a). Submarine canyons are important conduits of organic matter and promote pelago-benthic
coupling, which provides nourishment to the deep-sea sediments and feeds diversified benthic
macro- and megafauna assemblages and bento-nekton species of commercial interest (Garcia et al.,
2008; Würtz, 2012a). As a result, the pelagic food chain is extended and intensive pelagic and
demersal fisheries are commonly located at the heads of submarine canyons, down to 800 m depth
(Hooker et al., 1999; Aïssi et al., 2012; David and Di-Méglio, 2012; Pace et al., 2012).

102

103 **1.3 Aim of the study**

104 Despite the general idea that abundance, biomass and biodiversity of faunal assemblages inside 105 canyons are markedly higher from that on the adjacent open slopes and of the surrounding areas (the so-called "canyon effect"; Vetter and Dayton, 1998; Ramirez-Llodra et al., 2009), available 106 107 information has provided conflicting results so far, which leave us with the idea that each canyon is 108 a system apart, with specific biological and ecological drivers and features (Grémare et al., 2002; Soltwedel et al., 2005; Garcia et al. 2007; Bianchelli et al., 2010; Ingels et al., 2011a; 2011b; 2013; 109 110 Romano et al., 2013; Ramalho et al., 2014; Rumolo et al., 2015; Román et al., 2016; Thistle et al., 111 2017). In this paper, we conducted a meta-analysis of the existing data on meiofaunal assemblages, 112 in terms of abundance, biomass and higher-taxa diversity in the Mediterranean deep canyons and 113 adjacent open slopes at different spatial scales. We used meiofaunal assemblages as a model to 114 perform the meta-analysis, since: i) they dominate multicellular organisms in terms of abundance, 115 iii) their dominance increases also in terms of biomass with increasing water depth, ii) they account 116 for the major fraction of benthic abundance and biomass in all deep-sea ecosystems (Rex et al., 2006; Gambi et al., 2017). Moreover, meiofauna have been widely utilised to investigate large-scale 117 118 biodiversity patterns and drivers, thus allowing a robust comparison with available literature 119 (Gambi et al., 2014; 2017; Danovaro et al., 2014).

- 120
- 121

122 **2. Materials and methods**

123 **2.1 Study area and data collection**

124 The deep Mediterranean Sea is characterized by stable and homoeothermic conditions below 300-125 500 m, with bottom temperatures of 12.8-13.5 °C in the Western and 13.5-15.5 °C in the Eastern basin (Emig and Geistdoerfer, 2004); differences in primary production and thus in organic matter 126 inputs to the seafloor (15-80 times higher in the Western than in the Eastern Basin; Danovaro et. al, 127 128 1999; Giordani et al., 2002) and in the benthic trophic state, with an eastward decreasing gradient from mesotrophic/oligotrophic to ultra-oligotrophic conditions (Gambi et al., 2014; Giordani et al., 129 130 2002; Pusceddu et al., 2009; 2010). In this study, we analysed data available in the literature on 131 meiofaunal abundance, biomass, richness of taxa and taxonomic composition (Supplementary Table S1), in the Western, Central and Eastern Mediterranean sub-basins. The datasets span from 132 Balearic, Catalan and Ligurian margins in the Western Mediterranean Sea; South Adriatic margin in 133 134 the Central Mediterranean Sea and Cretan margin in the Eastern Mediterranean Sea. In addition, we 135 conducted a comparison with data available from the Portuguese margin in the North-Eastern 136 Atlantic Ocean. This region was selected as influenced by the deep Mediterranean waters outflow from the Gibraltar strait, thus allowing to explore the impact of the regional setting with respect to 137 138 the potential connectivity among assemblages Mediterranean Sea and Atlantic Ocean.

In particular, we compared environmental, geomorphological, biological and ecological features of 21 canyons (Lacaze-Duthiers, Cap de Creus, Séte, La Fonera, Blanes, Besòs, Foix, Planier, Grand Rhône, Petit Rhône, Aude in the Catalan margin; Balearic and Minorca in the Balearic margin, Calvi and Var in the Ligurian margin, B and C canyon in the South Adriatic margin, Samaria canyon in the Cretan margin, plus Nazaré, Cascais and Setúbal in the Portuguese margin) and 17 adjacent open slopes, at different sampling depths (Figure 1).

Overall, 200 samples within canyons and 84 along the open slopes were considered. Details on the utilized datasets are reported in the Supplementary Table S1. We collected data on meiofaunal total abundance and total biomass reported as n. ind 10cm^{-2} (or m⁻²) and µg (or g) 10 cm^{-2} (or m^{-2}). All data were expressed as n. ind $10cm^{-2}$ and $\mu g \ 10 \ cm^{-2}$, for meiofaunal abundance and biomass, respectively. We addressed here that the data collected for the meta-analysis were published from 1990 to 2016, from different research groups, with different sampling devices, and possibly with different sample sizes/sampling effort. In this regard, these possible bias have to be taken into account.

153 Cumulatively, we compiled an inventory of 284 samples of meiofaunal abundance, 118 of 154 biomass and 192 datasets of richness of higher taxa and 263 of taxonomic composition, obtained 155 from the abovementioned scientific literature and few unpublished data.

The unpublished data were obtained from samples collected in the Catalan and Cretan 156 157 margin, in October 2009 and June 2006, respectively. In the Catalan margin, the samples were 158 collected in the Cap de Creus canyon (at ca. 950, 1860 m water depth), Sete canyon (at ca. 2350 m water depth) and along the southern open slope (at ca. 960 and 1850 m water depth). In the Cretan 159 160 margin, the samples were collected in the Samaria canyon (at ca. 1250, 2400, 3550, 3600 m water 161 depth), and along the western (at ca. 520, 1080, 1900 m water depth) and eastern open slopes (at ca. 210, 590, 1180, 2670 m water depth). Samples were collected at the same sampling stations 162 reported in Pusceddu et al. (2010). 163

164

165 **2.2 Data analyses**

166 **2.2.1 Meiofaunal abundance, biomass and biodiversity**

Differences between basins (NE Atlantic ocean and Mediterranean Sea), among continental margins (Catalan, Balearic, Ligurian, Adriatic and Cretan margins in the Mediterranean Sea), between canyons and adjacent open slopes within each margin, at different water depths in the meiofaunal abundance, biomass and taxonomic composition were analyzed in either the uni- and multivariate contexts, following different sampling designs. First, we used a 2-way sampling design comprising "Basin" (fixed, 2 levels: Atlantic and Mediterranean) and "Depth range" (fixed, 5 levels: 150-500 m, 500-1000 m, 1000-2000 m, 2000-3000 m, 3000-4000 m), separately for canyons and open

slopes. Then, we used a 2-way sampling design comprising Margin-habitat (fixed, 10 levels: 174 175 Catalan canyon, Catalan slope, Balearic canyon, Balearic slope, Ligurian canyon, Ligurian slope, Adriatic canyon, Adriatic slope, Cretan canyon and Cretan slope, nested in Margin) and "Depth 176 177 range" (fixed, 5 levels: 150-500 m, 500-1000 m, 1000-2000 m, 2000-3000 m, 3000-4000 m). When a significant effect of the factor Depth range was observed, we applied also a 2-way design 178 179 comprising "Transect" (fixed, 19 levels: Foix, Blanes, Fonera, Cap de Creus, Lacaze-Duthiers, Petit 180 Rhône, Planier, Adriatic B and C, Samaria canyons, Blanes, Cap de Creus, Lacaze-Duthiers, Petit Rhône, Calvi, Adriatic, Cretan Western and Eastern open slopes) and "Depth range" (fixed, 5 181 182 levels: 150-500 m, 500-1000 m, 1000-2000 m, 2000-3000 m, 3000-4000 m) in order to identify in 183 which specific canyon/slope the differences were observed.

All the analyses were carried out using the distance-based permutational analysis of variance 184 (PERMANOVA) and the tests were based on Euclidean distance for meiofaunal abundance and 185 186 biomass after standardization and square root transformation of data, and Bray Curtis similarity 187 matrixes for taxonomic composition, after standardization and fourth-root transformation. Data on 188 taxonomic composition were also tested after presence/absence transformation (Anderson, 2005; 189 McArdle and Anderson, 2001). Since PERMANOVA is sensitive to differences in multivariate 190 dispersion among groups, before the tests, a test of homogeneity of dispersion (PERMDISP) was 191 also performed to test the null hypothesis of equal dispersions among groups.

For both uni- and multivariate analyses, when significant effects of the considered factors were observed, pair wise tests were carried out, to ascertain at which water depth range, the significant differences were observed between basins, margins, canyons and slopes.

The meiofaunal diversity was assessed in terms of richness of higher taxa. The expected number of taxa (ET) was also calculated (by means of the ES function in PRIMER 6+; Clarke and Gorley, 2006), since it provides a standardization of the richness of taxa values according to the sample size. The ET was calculated at different spatial scales. First, the ET was calculated at the widest spatial scale in the different basins (N Atlantic and Mediterranean Sea) at similar

bathymetric ranges. Then the ET was calculated in the different habitats (canyons and open slopes) in all sub-basins at similar bathymetric ranges and then in each transect at similar bathymetric ranges. For each calculation, the meiofaunal assemblages were pooled together from all samples of each bathymetric range in basins, habitats and transects, using the minimum number of individuals retrieved in basins, habitats and transect for the ET calculation.

To visualize differences in the meiofaunal taxonomic composition, bi-plots after a Canonical Analysis of Principal Coordinates (CAP) were also prepared (Anderson and Willis, 2003). To assess the percentage dissimilarity (Gray, 2000) in the meiofaunal taxonomic composition, SIMPER tests were also carried out.

Uni- and multivariate PERMANOVAs, pair wise, CAP, SIMPER analyses and ET calculation were carried out using the routines included in the software PRIMER 6+ (Clarke and Gorley, 2006).

212

213 **2.2.2 Environmental and geomorphological effect on meiofaunal assemblages**

Log-linear relationships between meiofaunal abundance, biomass and richness of taxa and water depth and longitude were also investigated using linear regressions, in order to evaluate the direction and scale of variations. We used a partial regression analysis according to the approach reported by Gambi et al. (2017), in order to separate the effect of water depth and longitude.

To determine whether the meiofaunal assemblages are influenced by canyons 218 219 geomorphological characteristics, we carried out multivariate multiple regression analyses (DistLM 220 forward, McArdle and Anderson, 2001) and produced distance-based Redundancy Analysis (db-RDA) plots. Canyons geomorphological characteristics were obtained from data reported in Harris 221 222 and Whiteway (2011). For the purpose of this study we used data regarding: class (shelf-incising canyons having/not having heads with a clear bathymetric connection to a major river system, or 223 224 blind canyons), status (size of tributaries to the main canyon thalweg), top and low heights (depth at 225 which the canyon commences/ends), height difference (difference between top and low heights),

average length and slope, margin type (active or passive margin), parts of the canyon at 1500 m or 226 deeper water depth), dendricity (n. of canyon limbs), dendricity per 100,000 km², sinuosity, spacing 227 (calculated based on the number of canyons within a 370 km circular window) and canyon density 228 per km (Harris and Whiteway, 2011). More in detail, among the worldwide raw data on canyons 229 geomorphological characteristics (reported in the Supplementary material of Harris and Whiteway, 230 2011), those corresponding to the geographic coordinates of the meiofaunal data used for the meta-231 232 analysis, were extracted. Then, the coordinates of geomorphological features and meiofaunal data were reported in GIS. Only the geomorphological data coordinates fitting with the meiofaunal data 233 234 coordinates were used for the analyses.

DistLM forward, dbRDA analyses were carried out using the routines included in the software PRIMER 6+ (Clarke and Gorley, 2006).

237

238 **3. Results**

239 **3.1 Meiofaunal abundance and biomass: basin, habitat and bathymetric effects**

The output of PERMDISP is reported in Supplementary Table S2. The output of PERMANOVA and pair wise analyses, testing for the effect of Basin at different bathymetric ranges on meiofaunal abundance and biomass, in canyons and open slopes, are reported in Supplementary Table S3. Higher values of meiofaunal abundance in N Atlantic Ocean than in Mediterranean Sea were observed below 3000 m water depth for canyons, whereas higher values of biomass were observed below 500 m water depth for canyons and at all the bathymetric ranges for the open slope (Supplementary Table S3).

In the Mediterranean Sea, meiofaunal abundance in canyons was higher than in the open slopes at 150-500 m water depth in the Ligurian margin (more specifically in the Calvi canyon). In all the considered margins, a decreasing pattern of meiofaunal abundance with increasing water depth was observed for both canyons (except for Adriatic, and more specifically along Cap de Creus, Lacaze-Duthiers, Petit Rhône and Samaria canyons) and open slopes (more specifically
along slopes adjacent to Blanes, Cap de Creus and Calvi canyons) (Supplementary Table S4).

Higher values of meiofaunal biomass were observed in canyons than in open slopes only at 500-1000 m water depth in the Adriatic margin. In Catalan and Adriatic margins a decreasing pattern of meiofaunal biomass with increasing water depth was observed for both canyons (more specifically along Cap de Creus and C) and open slopes (along slopes adjacent to Lacaze-Duthiers and Adriatic canyons) (Supplementary Table S4).

258

3.2 Meiofaunal richness of taxa and taxonomic composition: basin, habitat and bathymetric effects

The richness of higher taxa, the number of total individuals and the number of individuals used for ET calculation are reported in the Supplementary Table S5. Similar values of expected richness of meiofaunal taxa in Mediterranean than in N Atlantic Ocean were observed for canyons and slopes at all the bathymetric ranges (Supplementary Table S5).

The output of PERMANOVA and pair wise analyses, testing for the effect of Basin at 265 different bathymetric ranges on meiofaunal taxonomic composition, in canyons and open slopes, is 266 reported in Supplementary Table S3. Significant differences in the taxonomic composition between 267 268 N Atlantic Ocean and Mediterranean Sea canyons were observed between 1000 and 3000 m or 269 below 2000 m water depth when data were presence/absence transformed, whereas no differences were observed for open slopes (Supplementary Table S3, Figure 2). The percentage dissimilarity in 270 the taxonomic composition (Table 1) between N Atlantic and Mediterranean ranged from 87 to 98% 271 272 in canyons and from 82 to 99% in open slopes. When data are presence/absence transformed, the percentage dissimilarity ranged from 41 to 64% in canyons and from 41 to 62% in open slopes. The 273 274 percentage dissimilarity increased with increasing bathymetric range in both canyons and open slopes (Table 1). 275

In the Mediterranean Sea, over a total of 16 available comparisons between canyons and adjacent open slopes at the same depth range, the expected richness of taxa was higher in the canyons than in the adjacent open slopes in 5 cases, was the same in 8 cases and in 3 cases was higher in the adjacent open slope than in the canyon (Supplementary Table S5). The cumulative expected richness of taxa reported within each margin was higher in canyons than in the open slopes at similar depth ranges except for Ligurian and Cretan margins, where the richness of taxa was higher in slopes (Supplementary Table S5).

In the Mediterranean Sea, differences between canyons and open slopes in the meiofaunal taxonomic composition were observed at 150-500 m (in Ligurian margin, Calvi canyon) and 1000-2000 m (in Catalan margin, Cap de Creus and Blanes canyons). Significant differences were also observed among bathymetric ranges along canyons and slopes in Catalan (along Blanes, Lacaze-Duthiers and Petit-Rhône canyons, and open slopes adjacent to Cap de Creus). When data were presence/absence transformed, significant differences were also observed Calvi slope. (Supplementary Table S4).

In the Mediterranean Sea, the overall percentage dissimilarity between canyons and adjacent slopes was 34-45% (at 500-1000 and 2000-3000 m water depth, respectively) and 25-46% when data were presence/absence transformed (2000-3000 and 150-500 m, respectively). The highest dissimilarity between canyons and adjacent slopes was observed in the Catalan margin (Table 1). In all margins, the dissimilarity was highest when the data were presence/absence transformed (except for Adriatic at 500-1000 m and Cretan at 2000-3000 m water depth).

296

3.3 Environmental drivers of meiofaunal assemblages in N Atlantic and Mediterranean deep canyons

Meiofaunal abundance, biomass and richness of taxa showed a significant negative log-linear relationship with the water depth in the Mediterranean Sea canyons and open slopes (Figure 3; Table 2). Conversely, no significant relationships were observed in the N Atlantic canyons and open slopes (Figure 3; Table 2). Meiofaunal abundance, biomass and richness of taxa showed a
 significant negative log-linear relationship with increasing longitude in the Mediterranean Sea
 canyons and open slopes (Figure 4; Table 2).

The results of the multivariate multiple regression analyses (DistLM forward) conducted on the variance of the meiofaunal abundance, biomass, expected richness of taxa and taxonomic composition in canyons are reported in Table 3. Canyons geomorphological characteristics significantly explained the variance of meiofaunal assemblages, cumulatively accounting for ca. 42% for the abundance, 50% for the biomass and 40% taxonomic composition (also after presence/absence transformation) and more than 56% for the richness of taxa.

dbRDA analyses indicate that the geomorphological characteristics explained, cumulatively for the first 2 axis, 39% of the variance in the meiofaunal taxonomic composition and 35% when the data are presence/absence transformed (Figure 5).

314

315 4. Discussion

4.1 Meiofaunal assemblages and biodiversity in deep Mediterranean canyons

Habitat heterogeneity has been suggested as one of the key factors influencing the structure 317 and biodiversity of deep-sea benthic communities, including meiofaunal assemblages (Gage and 318 319 Tyler, 1991; Etter and Grassle, 1992; Lambshead et al., 1995; Galéron et al., 2000; Soltwedel, 2000; 320 Levin et al., 2001; Baguley et al., 2006). The results of our meta-analysis indicate weak differences in meiofaunal abundance and biomass between canyons and slopes at all depth ranges in each 321 investigated Mediterranean continental margin. This reflects the results of previous studies 322 323 conducted on datasets limited to specific canyons/margins, which reports controversial patterns (Bianchelli et al., 2010; Romano et al., 2013). Moreover, our data report similar or even higher 324 325 values of expected richness of taxa in canyons than in the adjacent slopes in most cases and at all depth ranges, confirming that habitat diversification (the alternation of canyons and open slopes 326

along continental margins) allows diversified assemblages, increasing the overall diversity at
 regional and basin scale (Bianchelli et al., 2010; Zeppilli et al., 2016).

In this regard, we also observed similar expected richness of taxa in Mediterranean Sea and in the NE Atlantic margins at all bathymetric ranges, both in canyons and open slopes, confirming that the deep Mediterranean Sea is not biodiversity depleted (Bianchelli et al., 2010; Coll et al., 2010; Danovaro et al., 2010). The Mediterranean Sea, indeed, is recognized as hot spot of biodiversity, with a highly heterogeneous distribution of taxonomic groups in the different regions, comprising meiobenthic assemblages in deep-sea habitats (Coll et al., 2010).

The meta-analysis conducted on the meiofaunal taxonomic composition revealed high 335 336 dissimilarity levels in the meiofaunal assemblages between canyons and open slopes in the 337 Mediterranean Sea, with % dissimilarity even higher when data were presence/absence transformed. These results suggest that in Mediterranean canyons specific faunal assemblages may be 338 339 preferentially observed, and this is true not only for macro- and mega- (e.g., benthic megafauna, corals, crustaceans, fishes, mammals, Özturk et al., 2012; Vella and Vella, 2012; Watremez, 2012; 340 341 David and Di-Méglio, 2012; Madurell et al., 2012; Company et al., 2012; Baro et al., 2012), but also for meiofauna. This specificity in assemblages occurrence in the Mediterranean canyons is also 342 343 confirmed by the high levels of dissimilarity of meiofaunal taxonomic composition between NE 344 Atlantic and Mediterranean canyons. Such differences increase at increasing water depth. Overall, 345 these results suggest that sea floor heterogeneity allows diversified assemblages across different 346 habitats and margins, increasing the overall diversity at regional and basin scale.

The specific features of canyon fauna has been previously reported from several Mediterranean margins, in particular on canyons off the Alboran, Catalan, Malta, and Turkey coasts (Özturk et al., 2012; Vella and Vella, 2012; Watremez, 2012; David and Di-Méglio, 2012; Madurell et al., 2012; Company et al., 2012; Baro et al., 2012). In the Mediterranean sea, one of the most relevant aspects is the relationship between the number of species, the number of individuals of endemic species and the ecological features of submarine canyons (Palanques et al., 2005). Indeed,

no individual canyon is identical to another, and this is reflected by differences in fauna between 353 354 canyons even located along the same continental margin, also for meiofaunal assemblages (Hecker, 355 1990; Rogers et al., 2002). Regarding the habitat heterogeneity, the most complex Mediterranean region is the Catalan margin, one of the areas of the world oceans with the higher canyon density 356 357 per 100 km (Würtz, 2012b). In this region, it has been demonstrated an isolation effect related to peculiar hydrodynamic processes, canyon morphology and ecological differences, which has led to 358 359 high faunal diversification and even speciation processes, particularly for Foix, Lacaze-Duthiers, La Fonera (Palamòs) and Planier canyons (Gili et al., 1999; Palanques et al., 2005; Würtz, 2012b). 360

361

4.2 Patterns and environmental drivers of meiofaunal assemblages in deep Mediterranean canyons and slopes

The regression analyses revealed that meiofaunal abundance, biomass and richness of taxa display a 364 365 significant negative relationship with water depth in both Mediterranean canyons and slopes, whereas no significant relationships were observed in the NE Atlantic margin. We report here that 366 the decline of meiofaunal biomass with increasing water depth is more evident in open slopes than 367 in canyons, suggesting that the environmental constrains related to water depth (e.g., increasing 368 369 pressure, decrease of food supply with the increasing water depth) may have a different effect 370 depending on the deep-sea habitat considered. Moreover, the decline of meiofaunal biomass with increasing water depth is more evident than the decline of abundance only in open slopes, 371 372 suggesting that environmental (or even trophic or anthropogenic) constrains acting inside canyons 373 (as example, massive and pulsing food supply, deep currents and tides characteristics) can 374 determine a shift of the size of individuals, leading to a differential miniaturization at greatest 375 depths in canyons and in open slopes (Pusceddu et al., 2013; 2014; Gambi et al., 2017).

At basin scale, our results indicate that meiofaunal assemblages were characterised also by significant differences among the investigated deep Mediterranean regions. Indeed, at basin spatial scale, meiofaunal abundance, biomass and richness of taxa displayed clear decreasing patterns from

Western to Eastern deep Mediterranean sea. This gradient in meiofaunal variables has been 379 380 repeatedly observed in the deep Mediterranean basin (Danovaro et al., 2008; Gambi and Danovaro, 381 2006; Gambi et al., 2014) and reflects the differences in the trophic conditions already observed in 382 previous studies, also in the deep sea sediments (Danovaro et al., 1999; Gambi and Danovaro, 2006; Bianchelli et al., 2010; Pusceddu et al., 2010). Here, the decreasing patterns of meiofaunal 383 384 abundance, biomass and richness of taxa from Western to Eastern Mediterranean Sea has been 385 observed both for canyons and open slopes, suggesting that, at basin scale, one of the main drivers for deep-sea benthic assemblages variables is the trophic status of the region, whatever the 386 considered habitat (Bianchelli et al., 2010; Pusceddu et al., 2010). 387

388

4.3 Influence of canyons geomorphological characteristics on meiofaunal assemblages

The multivariate multiple regression analysis showed that in canyon systems, 390 their 391 geomorphological characteristics are responsible for the observed variability among such complex and peculiar habitats. During the last decade the intense exploration of the deep ocean, along with 392 393 the refinement of the available technologies has revealed the presence of a wide variety of different 394 geomorphological features of the submarine canyons, resulting in a wide variety of topographic 395 structures also at small spatial scales (i.e., within each canyon). In this regard, due to their high 396 spatial and temporal variability in their morphological, hydrographic and sedimentological characteristics, canyons have been recently recognized as extreme environments (Zeppilli et al., 397 2018), since they comprise complex, highly heterogeneous environments that encompasses a 398 399 patchwork of environmental and trophic conditions with different degrees of stability (Tyler et al. 2009; Amaro et al. 2016). 400

Faunas inhabiting such complex environments are thus influenced by multiple factors, which include hydrodynamic conditions and current regimes, topography and habitat heterogeneity, amount, origin and quality of sedimentary organic matter, sedimentation processes and turbidity events and anthropogenic impacts (Danovaro et al., 1999; Baguley et al., 2006; Ingels et al., 2009; 2011a; b; 2013; Pusceddu et al., 2014; Ramalho et al., 2014; Amaro et al., 2016; Román et al., 2016; Thistle et al., 2017). Among the investigated drivers, previous studies revealed the strong influence of trophic resources in shaping meiobenthic assemblages in deep-sea canyons (Soltwedel et al., 2005; Ingels et al., 2011a; b; 2013) and indicated that up to the 30% of the variability in assemblages traits was explained by environmental variables, including the amount and nutritional quality of sedimentary organic matter (Bianchelli et al., 2010; Román et al., 2016).

411 The results of the present study indicate that ca. 40% of the variability in the meiofaunal taxonomic composition was explained by the geomorphological characteristics of canyons. In 412 413 particular, beside the water depth, the characteristics more influencing the meiofaunal taxonomic 414 composition are class (shelf-incising with correlation - or not - to river systems or blind canyons), density (number of canyons in the same area) and status (thalweg or tributary systems) of the 415 canyons. Conversely, other characteristics (such as sinuosity, top and low height), even having a 416 417 significant effect, explained lower % of the taxonomic composition variability. Even more in details, different geomorphological characteristic are responsible for the presence/absence of the 418 419 taxa, whereas others are responsible for their composition. Overall, our data suggest that the 420 complex combination of geomorphological characteristics is responsible for high % of the 421 taxonomic composition variability but also suggest that most of the variance depends on variables 422 not considered in the present study (supposedly, sediment features and trophic resources; Soltwedel et al., 2005; Bianchelli et al., 2010; Ingels et al., 2011a; b; 2013; Román et al., 2016). 423

The role of the seafloor heterogeneity in shaping meiobenthic assemblages has also been observed for other deep seabed morphologies, which are inhabited by different meiofaunal assemblages in term of taxonomic composition and may influence faunal distribution more than other factors as trophic resources (Zeppilli et al., 2016).

Deep-sea canyons have been repeatedly proposed as biodiversity hotspots (Vetter and Dayton, 1998; Curdia et al., 2004; Ingels et al., 2009; Bianchelli et al., 2010; Amaro et al., 2016; Román et al., 2016). Data presented here indicate that this is particularly true for the Mediterranean 431 Sea, where canyons are typically different from any other marine region worldwide from a 432 geomorphological point of view (Harris and Whiteway, 2011). Our meta-analysis also demonstrates 433 that deep-sea Mediterranean canyons contribute significantly to enhance the deep-sea biodiversity 434 at both regional and whole-basin scale thus representing crucially important deep-sea habitats 435 deserving appropriate protection.

- 436
- 437
- 438

439 Acknowledgements

440 This study has been conducted in the framework of the National Flag Project RITMARE (Marine 441 Italian Research, www.ritmare.it) and supported by the EU H2020 MERCES (Marine Ecosystem 442 Restoration in Changing European Seas) project (Grant Agreement No. 689518) and DG ENV 443 project IDEM (Implementation of the MSFD to the Deep Mediterranean Sea; contract EU No 444 11.0661/2017/750680/SUB/EN V.C2).

445 **References**

- Accornero, A., Picon, P., de Bovée, F., Charrière, B., Buscail, R., 2003. Organic carbon budget at
 the sediment–water interface on the Gulf of Lions continental margin. Continental Shelf
 Research 23, 79-92. DOI : 10.1016/S0278-4343(02)00168-1
- Aïssi, M., Fiori, C., Alessi, J., 2012. Mediterranean submarine canyons as stepping stones for
 pelagic top predators: the case of sperm whale. In: Würtz, M. (ed.), Mediterranean submarine
 canyons: ecology and governance. Gland, Switzerland and Málaga, Spain: IUCN, pp. 99-103.
 ISBN: 978-2-8317-1469-1
- 453 Amaro, T., Huvenne, V.A.I., Allcock, A.L., Aslam, T., Davies, J.S., Danovaro, R., De Stigter, H.C., 454 Duineveld, G.C.A., Gambi, C., Gooday, A.J., Gunton, L.M., Hall, R., Howell, K.L., Ingels, J., 455 Kiriakoulakis, K., Kershaw, C.E., Lavaleye, M.S.S., Robert, K., Stewart, H., Van Rooijm, D., White, M., Wilson, A.M., 2016. The Whittard Canyon – A case study of submarine canyon 456 457 processes. Progress in Oceanography 146, 38-57. DOI: http://dx.doi.org/10.1016/j.pocean.2016.06.003 458
- Anderson, M.J., 2005. PERMANOVA: A FORTRAN Computer Program for Permutational
 Multivariate Analysis of Variance. Department of Statistics, University of Auckland, New
 Zealand.
- Anderson, M.J., Willis, T.J., 2003. Canonical analysis of principal coordinates: a useful method of
 constrained ordination for ecology. Ecology 84, 511-525. DOI: 10.1890/00129658(2003)084[0511:CAOPCA]2.0.CO;2
- Angeletti, L., Taviani, M., Canese, S., Foglini, F., Mastrototaro, F., Argnani, A., Trincardi, F.,
 Bakran-Petricioli, T., Ceregato, A., Chimienti, G., Mačić, V., Poliseno, A., 2014. New
 deep-water cnidarian sites in the southern Adriatic Sea. Mediterranean Marine Science 15 (2),
 263-273. DOI: http://dx.doi.org/10.12681/mms.558
- Baguley, J.G., Montagna, P.A., Hyde, L.J., Kalke, R.D., Rowe, G.T., 2006. Metazoan meiofauna
 abundance in relation to environmental variables in the northern Gulf of Mexico deep sea.
 Deep-Sea Research I 53, 1344-1362. DOI: https://doi.org/10.1016/j.dsr.2006.05.012
- Baro, J., Rueda, J.L., Díaz-del-Río, V., 2012. South iberian submarine canyons in the Alboran sea:
 geohabitats, associated communities and fisheries resources. Würtz, M. (ed.), Mediterranean
 submarine canyons: ecology and governance. Gland, Switzerland and Málaga, Spain: IUCN,
 pp. 145-156. ISBN: 978-2-8317-1469-1
- Bianchelli, S., Gambi, C., Pusceddu, A., Danovaro, R., 2008. Trophic conditions and meiofaunal
 assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chemistry and
 Ecology 24 (1), 101-109. DOI: 10.1080/02757540801963386

- Bianchelli, S., Gambi, C., Zeppilli, D., Danovaro, R., 2010. Metazoan meiofauna in deep-sea
 canyons and adjacent open slopes: a largescale comparison with focus on the rare taxa. DeepSea Research Part I 57, 420–433. DOI: https://doi.org/10.1016/j.dsr.2009.12.001
- Canals, M., Casamor, J.L., Lastras, G., Monaco, A., Acosta, J., Berné, S., Loubrieu, B., Weaver,
 P.P.E., Grehan, A., Dennielou, B., 2004. The role of canyons in strata formation.
 Oceanography 17 (4), 80-91. DOI: http://dx.doi.org/10.5670/oceanog.2004.06
- Canals, M., Puig, P., Durrieu de Madron, X., Heussner, S., Palanques, A., Fabres, J., 2006. Flushing
 submarine canyons. Nature 444, 354-357. DOI: 10.1038/nature05271
- 487 Clarke, K.R., Gorley, R.N., 2006. In PRIMER v6: User Manual/Tutorial (PRIMER-E). Plymouth,
 488 2006.
- Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., et al., 2010. The
 biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS ONE 5(8),
 e11842. DOI: https://doi.org/10.1371/journal.pone.0011842
- Company, J.B., Puig, P., Sardà, F., Palanques, A., Latasa, M., Scharek, R., 2008. Climate influence
 on deep sea populations. PLoS ONE 3(1): e1431. DOI:
 https://doi.org/10.1371/journal.pone.0001431
- Company, J.B., Ramirez-Llodra, E., Sardà, F., Aguzzi, J., Puig, P., Canals, M., Calafat, A.,
 Palanques, A., Solé, M., Sanchez-Vidal, A., Martín, J., Lastras, G., Tecchio, S., Koenig, S.,
 Fernandez-Arcaya, U., Mechó, A., Fernández, P., 2012. Submarine canyons in the Catalan
 Sea (NW Mediterranean): megafaunal biodiversity patterns and anthropogenic threats. In:
 Würtz, M. (ed.), Mediterranean submarine canyons: ecology and governance. Gland,
 Switzerland and Málaga, Spain: IUCN, pp. 133-144. ISBN: 978-2-8317-1469-1
- Curdia, J., Carvalho, S., Ravara, A., Gage, J.D., Rodrigues, A.M., Quintino, V., 2004. Deep
 microbenthic communities from Nazaré submarine canyon (NW Portugal). Scientia Marina
 68, 171-180. DOI: https://doi.org/10.3989/scimar.2004.68s1171
- Danovaro, R., Dinet, A., Duineveld, G., Tselepides, A, 1999. Benthic response to particulate fluxes
 in different trophic environments: a comparison between the Gulf of Lions–Catalan Sea
 (western-Mediterranean) and the Cretan Sea (eastern-Mediterranean). Progress in
 Oceanography 44, 287-312. DOI: https://doi.org/10.1016/S0079-6611(99)00030-0
- Danovaro, R., Gambi, C., Lampadariou, N., Tselepides, A., 2008. Deep-sea biodiversity in the
 Mediterranean Basin: testing for longitudinal, bathymetric and energetic gradients. Ecography
 31, 231-244. DOI: 10.1111/j.2007.0906-7590.05484.x

- 511 Danovaro, R., Company, J.B., Corinaldesi, C., D'Onghia, G., Galil, B., et al., 2010. Deep-sea
 512 biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable. PLoS
 513 ONE 5 (8), e11832. DOI:10.1371/journal.pone.0011832
- Danovaro, R., Snelgrove, P.V.R., Tyler, P., 2014. Challenging the paradigms of deep-sea ecology.
 Trends in Ecology and Evolution 29 (8), 465-475. DOI: http://dx.doi.org/10.1016/j.tree.2014.06.002
- 517 David, L., Di-Méglio, N., 2012. Role and importance of submarine canyons for cetaceans and
 518 seabirds in the north-western Mediterranean sea. In: Würtz, M. (ed.), Mediterranean
 519 submarine canyons: ecology and governance. Gland, Switzerland and Málaga, Spain: IUCN,
 520 pp. 113-119. ISBN: 978-2-8317-1469-1
- D'Onghia, G., Calculli, C., Capezzuto, F., Carlucci, R., Carluccio, A., Grehan, A., Indennidate, A.,
 Maiorano, P., Mastrototaro, F., Pollice, A., Russo, T., Savini, A., Sion, L., Tursi, A., 2017.
 Anthropogenic impact in the Santa Maria di Leuca cold-water coral province (Mediterranean
 Sea): observations and conservation straits. Deep-Sea Research Part II 145, 87-101. DOI:
 10.1016/j.dsr2.2016.02.012
- de Bovée, F., Guidi, L.D., Soyer, J., 1990. Quantitative distribution of deep-sea meiobenthos in the
 northwestern Mediterranean (Gulf of Lions). Continental Shelf Research 10 (9-11), 11231145. DOI: 10.1016/0278-4343(90)90077-Y
- Emig, C.C., Geistdoerfer, P., 2004. The Mediterranean deep-sea fauna: historical evolution,
 bathymetric variations and geographical changes, Carnets de Geologie/Notebooks on
 Geology, Maintenon, Article 2004/01 (CG2004_A01_CCE-PG).
- Etter, R.J., Grassle, J.F., 1992. Patterns of species diversity in the deep sea as a function of sediment
 particle size diversity. Nature 369, 576-578. DOI:10.1038/360576a0
- 534 Fernandez-Arcaya, U., Ramirez-Llodra, E., Aguzzi, J., Allcock, A.L., Davies, J.S., Dissanayake, A.,
- 535 Harris, P., Howell, K., Huvenne, V.A.I., Macmillan-Lawler, M., Martín, J., Menot, L.,
- 536 Nizinski, M., Puig, P., Rowden, A.A., Sanchez, F., Van den Beld, I.M.J., 2017. Ecological
- role of submarine canyons and need for canyon conservation: a review. Frontiers in Marine
 Science 4: 5. DOI: doi: 10.3389/fmars.2017.00005
- Gage, J.D., Tyler, P.A., 1991. Deep-sea biology: a natural history of organisms at the deep-sea
 floor. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1086/417611
- Galéron, J., Sibuet, M., Mahaut, M.L., Dinet, A., 2000. Variation in structure and biomass of the
 benthic communities at three contrasting sites in the tropical northeast Atlantic. Marine
 Ecology Progress Series 197, 121-137. DOI: 10.3354/meps197121

- Gambi, C., Danovaro, R., 2006. A multiple-scale analysis of metazoan meiofaunal distribution in
 the deep Mediterranean Sea. Deep-Sea Research I 53 (7), 1117-1134. DOI:
 https://doi.org/10.1016/j.dsr.2006.05.003
- Gambi, C., Pusceddu, A., Benedetti-Cecchi, L., Danovaro, R., 2014. Species richness, species
 turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for
 drivers at different spatial scales. Global Ecology and Biogeography 23, 24-39. DOI:
 10.1111/geb.12094
- Gambi, C., Corinaldesi, C., Dell'Anno, A., Pusceddu, A., D'Onghia, G., Covazzi-Harriague, A.,
 Danovaro, R., 2017. Functional response to food limitation can reduce the impact of global
 change in the deep-sea benthos. Global Ecology and Biogeography 26, 1008-1021. DOI:
 https://doi.org/10.1111/geb.12608
- Garcia, R., Koho, K.A., De Stigter, H.C., Epping, E., Koning, E., Thomsen, L., 2007. Distribution
 of meiobenthos in the Nazaré canyon and adjacent slope (western Iberian Margin) in relation
 to sedimentary composition. Marine Ecology Progress Series 340, 207-220. DOI:
 http://dx.doi.org/10.3354/meps340207
- Garcia, R., Van Oevelen, D., Soetaert, K., Thomsen, L., De Stigter, H.C., Epping, E., 2008.
 Deposition rates, mixing intensity and organic content in two contrasting submarine canyons.
 Progress in Oceanography 76, 192-215. DOI: https://doi.org/10.1016/j.pocean.2008.01.001
- Gili, J.M., Bouillon, J., Pagès, F., Palanques, A., Puig, P., 1999. Submarine canyons as habitats of
 prolific plankton populations: three new deep-sea Hydrodomedusae in the Western
 Mediterranean. Zoological Journal of the Linnean Society 125, 313-329. DOI:
 10.1111/j.1096-3642.1999.tb00595.x
- Giordani, P., Helder, W., Koning, E., Miserocchi, S., Danovaro, R., Malaguti, A., 2002. Gradients
 of benthic pelagic coupling and carbon budgets in the Adriatic and Northern Ionian Sea.
 Journal of Marine Systems 33, 365–338. DOI: https://doi.org/10.1016/S0924-7963(02)000672
- Gray, J.S., 2000. The measurement of marine species diversity, with an application to the benthic
 fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and
 Ecology 250, 23-49. DOI: https://doi.org/10.1016/S0022-0981(00)00178-7
- Grémare, A., Medernach, L., De Bovée, F., Amouroux, J.M., Vétion, G., Albert, P., 2002.
 Relationships between sedimentary organics and benthic meiofauna on the continental shelf
 and the upper slope of the Gulf of Lions (NW Mediterranean). Marine Ecology Progress
 Series 234, 85-94. DOI:10.3354/meps234085

- Guidi-Guilvard, L.D., Dallot, S., 2014. Metazoan meiobenthos temporal fluctuations in the deep 577 NW Mediterranean Sea (DYFAMED-BENTHOS 1993-1995). Contribution of spatial 578 579 variability disturbance. Deep-Sea Research Ι 92, 127-140. DOI: and http://dx.doi.org/10.1016/j.dsr.2014.07.003 580
- Harris, P.T., Whiteway, T., 2011. Global distribution of large submarine canyons: geomorphic
 differences between active and passive continental margin. Marine Geology 285(1–4), 69-86.
 DOI: https://doi.org/10.1016/j.margeo.2011.05.008
- Hecker, B., 1990. Variation in megafaunal assemblages on the continental margin south of New
 England. Deep-Sea Research 37, 37-57. DOI: https://doi.org/10.1016/0198-0149(90)90028-T
- Hickey, B.M., 1997. The response of a steep-sided, narrow canyon to time-variable wind forcing.
 Journal of Physical Oceanography 27, 697-726. DOI: https://doi.org/10.1175/15200485(1997)027<0697:TROASS>2.0.CO;2
- Hooker, S.K., Whitehead, H., Gowans, S., 1999. Marine protected area design and the spatial and
 temporal distribution of cetaceans in a submarine canyon. Conservation Biology 13, 592-602.
 DOI: 10.1046/j.1523-1739.1999.98099.x
- Ingels, J., Kiriakoulakis, K., Wolff, G.A., Vanreusel, A., 2009. Nematode diversity and its relation
 to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western
 Iberian Margin. Deep-Sea Research I 56, 1521-1539. DOI: 10.1016/j.dsr.2009.04.010
- Ingels, J., Billett, D.S.M., Kiriakoulakis, K., Wolff, G.A., Vanreusel, A., 2011a. Structural and
 functional diversity of Nematoda in relation with environmental variables in the Setúbal and
 Cascais canyons, Western Iberian Margin. Deep Sea Research II 58, 2354–2368. DOI:
 https://doi.org/10.1016/j.dsr2.2011.04.002
- Ingels, J., Tchesunov, A.V., Vanreusel, A., 2011b. Meiofauna in the Gollum Channels and the
 Whittard Canyon, Celtic Margin—how local environmental conditions shape nematode
 structure and function. PLoS One 6:e20094.
- 602 DOI: https://doi.org/10.1371/journal.pone.0020094
- Ingels, J., Vanreusel, A., Romano, C., Coenjaerts, J., Flexas, M.M, Zúñiga, D., Martin, D., 2013.
- Spatial and temporal infaunal dynamics of the Blanes submarine canyon-slope system (NW
 Mediterranean); changes in nematode standing stocks, feeding types and gender-life stage
 ratios. Progress in Oceanography 118, 159–174.
- 607 DOI: https://doi.org/10.1016/j.pocean.2013.07.021
- Lambshead, P.J.D., Ferrero, T.J., Wolff, G.A., 1995. Comparison of the vertical distribution of nematodes from two contrasting abyssal sites in the Northeast Atlantic subject to different

- seasonal inputs of phytodetritus. Internationale Revue der Gesamten Hydrobiologie 80, 327331. DOI: 10.1002/iroh.19950800219
- Levin, L.A., Etter, R.J., Rex, M.A., Gooday, A.J., Smith, C.R., Pineda, J., Stuart, C.T., Hessler,
- R.R., Pawson, D., 2001. Environmental influences on regional deep-sea species diversity.
 Annual Review of Ecology and Systematics 32, 51-93. DOI: https://doi.org/10.1146/annurev.ecolsys.32.081501.114002
- 616 Madurell, T., Orejas, C., Requena, S., Gori, A., Purroy, A., Lo Iacono, C., Sabatés, A., Dominguez-
- 617 Carrió, C., Gili, J.M., 2012. The benthic communities of the Cap de Creus canyon. In: Würtz,
- M. (ed.), Mediterranean submarine canyons: ecology and governance. Gland, Switzerland and
 Málaga, Spain: IUCN, pp. 123-132. ISBN: 978-2-8317-1469-1
- McArdle, B.H., Anderson, M.J., 2001. Fitting multivariate models to community data: a comment
 on distance-based redundancy analysis. Ecology 82, 290-297. DOI: 10.1890/00129658(2001)082[0290:FMMTCD]2.0.CO;2
- Monaco, A., Durrieu de Madron, X., Radakovitch, O., Heussner, S., Carbonne, J., 1999. Origin and
 variability of downward biogeochemical fluxes on the Rhone continental margin (NW
 Mediterranean). Deep-Sea Research 46(9), 1483-1511. DOI: https://doi.org/10.1016/S09670637(99)00014-X
- Orejas, C., Gori, A., Lo Iacono, C., Puig, P., Gili, J.M., Dale, M.R.T., 2009. Cold-water corals in 627 the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and 628 Ecology Progress Seriese 397, 37-51. 629 anthropogenic impact. Marine DOI: https://doi.org/10.3354/meps08314 630
- Öztürk, B., Topçu, E., Topaloglu, B., 2012. The submarine canyons of the Rhodes basin and the
 Mediterranean coast of Turkey. In: Würtz, M. (ed.), Mediterranean submarine canyons:
 ecology and governance. Gland, Switzerland and Málaga, Spain: IUCN, pp. 65-71. ISBN:
 978-2-8317-1469-1
- Pace, D.S., Miragliuolo, A., Mussi, B., 2012. The case study of the marine canyon of Cuma
 (Tyrrhenian sea, Italy): implication for cetacean conservation off Ischia island. In: Würtz, M.
 (ed.), Mediterranean submarine canyons: ecology and governance. Gland, Switzerland and
 Málaga, Spain: IUCN, pp. 89-97. ISBN: 978-2-8317-1469-1
- Palanques, A., García-Ladona, E., Gomis, D., Martin, J., Marcos, M., Pascual, A., Puig, P., Gili, J.M., Emelianov, M., Monserrat, S., Guillén, J., Tintoré, J., Segura, M., Jordi, A., Ruiz, S.,
 Basterretsea, G., Font, J., Blasco, D., Pagès, F., 2005. General patterns of circulation,
 sediment fluxes and ecology of the Palamòs (La Fonera) submarine canyon, northwestern
 Mediterranean. Progress in Oceanography 66, 89-119.

- Puig, P., Palanques, A., Orange, D.L., Lastras, G., Canals, M., 2008. Dense shelf water cascades
 and sedimentary furrow formation in the Cap de Creus Canyon, north-western Mediterranean
- 646
 Sea.
 Continental
 Shelf
 Research
 28,
 2017-2030.
 DOI:

 647
 https://doi.org/10.1016/j.csr.2008.05.002
- Pusceddu, A., Gambi, C., Zeppilli, D., Bianchelli, S., Danovaro, R., 2009. Organic matter 648 649 composition, metazoan meiofauna, and nematode biodiversity in sediments of the deep Sea. Sea Research Π 56, 755-762. DOI: 650 Mediterranean Deep https://doi.org/10.1016/j.dsr2.2008.10.012 651
- Pusceddu, A., Bianchelli, S., Canals, M., Sanchez-Vidal A., Durrieu De Madron, X., Heussner, S.,
 Lykousis, V., de Stigter, H., Trincardi, F., Danovaro, R., 2010. Organic matter in sediments of
 canyons and open slopes of the Portuguese, Catalan, Southern Adriatic and Cretan Sea
 margins. Deep-Sea Research I 57, 441-457. DOI:10.1016/j.dsr.2009.11.008
- 656 Pusceddu, A., Mea, M., Canals, M., Heussner, S., Durrieu De Madron, X., Sanchez-Vidal, A., Bianchelli, S., Corinaldesi, C., Dell'Anno, A., Thomsen, L., Danovaro, R., 2013. Major 657 658 consequences of an intense dense shelf water cascading event on deep-sea benthic trophic 10, 659 conditions and meiofaunal biodiversity. Biogeosciences 2659-2670. DOI: 660 https://doi.org/10.5194/bg-10-2659-2013
- Pusceddu, A., Bianchelli, S., Martín, J., Puig, P., Palanques, A., Masqué, P., 2014. Chronic and
 intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning.
 Proceedings of the National Academy of Sciences 111 (24), 8861-8866. DOI:
 https://doi.org/10.1073/pnas.1405454111
- Ramalho, S.P., Adão, H., Kiriakoulakis, K., Wolff, G.A., Vanreusel, A., Ingels, J., 2014. Temporal
 and spatial variation in the Nazaré Canyon (Western Iberian margin): inter-annual and canyon
 heterogeneity effects on meiofauna biomass and diversity. Deep-Sea Research I 83, 102-114.
 DOI: https://doi.org/10.1016/j.dsr.2013.09.010
- Ramirez-Llodra, E., Company, J.B., Sardà, F., Rotllant, G., 2009. Megabenthic diversity patterns
 and community structure of the Blanes submarine canyon and adjacent slope in the
 Northwestern Mediterranean: A human overprint? Marine Ecology 31, 1-16.
 DOI:10.1111/j.1439-0485.2009.00336.x
- Ramirez-Llodra, E., Tyler, P.A., Baker, M.C., Bergstad, O.A., Clark, M.R., et al., 2011. Man and
 the last great wilderness: human impact on the deep sea. PLoS ONE 6(7): e22588.
 DOI:10.1371/journal.pone.0022588

- Rex, M.A., Etter, R.J., Morris, J.S., Crouse, J., McClain, C.R., Johnson, N.A., Stuart, C.T., Deming,
 J.W., Thies, R., Avery, R., 2016. Global bathymetric patterns of standing stock and body size
 in the deep-sea benthos. Marine Ecology Progress Series 317, 1-8. DOI: 10.3354/meps317001
- 679 Riaux-Gobin, C., Dinet, A., Dugué, G., Vétion, G., Maria, E., Grémare, A., 2004. Phytodetritus at the sediment-water interface, NW Mediterranean Basin: spatial repartition, living cells 680 681 meiofaunal relationships. Scientia Marina 68 (1). 7-21. signatures, DOI: https://doi.org/10.3989/scimar.2004.68n17 682
- Rogers, A., Billett, D.S.M., Berger, W., Flach, E., Freiwald, A., Gage, J., Hebbeln, D., Heip, C.,
 Pfannkuche, O., Ramirez-Llodra, E., Medlin, L., Sibuet, M., Soetaert, K., Tendal, O.,
 Vanreusel, A., Wlodarska-Kowalczuk, M., 2003. Life at the edge: Achieving prediction from
 environmental variability and biological variety. In: Wefer, G., Billett, D.S.M., Hebbeln, D.,
 Jørgensen, B.B., Schlüter, M., van Weering, T.C.E. (eds.), Ocean Margin Systems. Springer
 Verlag, Berlin, 387-404.
- Román, S., Vanreusel, A., Romano, C., Ingels, J., Puig, P., Company, J.B., Martin, D., 2016. High
 spatiotemporal variability in meiofaunal assemblages in Blanes Canyon (NW Mediterranean)
 subject to anthropogenic and natural disturbances. Deep Sea Research I 117, 70-83. DOI:
 https://doi.org/10.1016/j.dsr.2016.10.004
- Romano, C., Coenjaerts, J., Flexas, M.M., Zúñiga, D., Vanreusel, A., Company, J.B., Martin, D.,
 2013. Spatial and temporal variability of meiobenthic density in the Blanes submarine canyon
 (NW Mediterranean). Progress in Oceanography 118, 144-158. DOI: https://doi.org/10.1016/j.pocean.2013.07.026
- Rumolo, P., Cartes, J.E., Fanelli, E., Papiol, V., Sprovieri, M., Mirto, S., Gherardi, S., Bonanno, A.,
 2015. Seasonal variations in the source of sea bottom organic matter off Catalonia coasts
 (western Mediterranean): links with hydrography and biological response. Journal of
 Oceanography 71, 325-343. DOI: 10.1007/s10872-015-0291-7
- Sardà, F., Company, J.B., Bahamon, N., Rotllant, G., Flexas, M.M., et al., 2009. Relationship
 between environment and the occurrence of the deep-water rose shrimp *Aristeus antennatus*(Risso, 1816) in the Blanes submarine canyon (NW Mediterranean). Progress in
 Oceanography 82, 227-238. DOI: https://doi.org/10.1016/j.pocean.2009.07.001
- Snelgrove, P.V.R., Smith, C.R., 2002. A riot of species in an environmental calm: the paradox of
 the species-rich deep-sea floor. Oceanography and Marine Biology: an Annual Review 40,
 211-242.

- Soetaert, K., Heip, C., Vincx, M., 1991. The meiobenthos along a Mediterranean deep-sea transect
 off Calvi (Corsica) and in an adjacent canyon. Marine Ecology 12, 227-242. DOI:
 10.1111/j.1439-0485.1991.tb00255.x
- Soltwedel, T., 2000. Metazoan meiobenthos along continental margins: a review. Progress in
 Oceanography 46, 59-84. DOI: https://doi.org/10.1016/S0079-6611(00)00030-6
- Soltwedel, T., Hasemann, C., Quéric, N.V., von Juterzenka, K., 2005. Gradients in activity and
 biomass of the small benthic biota along a channel system in the deep Western Greenland
 Sea. Deep Sea Research I 52, 815-835. DOI: https://doi.org/10.1016/j.dsr.2004.11.011
- Soyer, J., Bodiou, J.Y., de Bovée, F., Guidi, L., 1978. Evolution quantitative du meiobenthos sur le
 plateau continental et la marge de la cote catalane francaise. Coll. Intern. Oceanol., Perpignan,
 C.I.E.S.M. (1987).
- 719 Stefanescu, C., Nin-Morales, B., Massuti, E., 1994. Fish assemblages on the slope in the Catalan 720 Sea (western Mediterranean): influence of a submarine canyon. Journal of the Marine 721 Biological Association of the United Kingdom 74 (3), 499-512. DOI: 722 https://doi.org/10.1017/S0025315400047627
- Taviani, M., Angeletti, L., Canese, S., Cannas, R., Cardone, F., Cau, A., Cau, A.B., Follesa, M.C.,
 Marchese, F., Montagna, P., Tessarolo, C. 2017. The "Sardinian cold-water coral province" in
 the context of the Mediterranean coral ecosystems. Deep-Sea Research Part II 145, 61-78.
 DOI: 10.1016/j.dsr2.2015.12.008
- Thistle, D., Sedlacek, L., Carman, K.R., Barry, J.P., 2017. Influence of habitat heterogeneity on the
 community structure of deep-sea harpacticoid communities from a canyon and an escarpment
 site on the continental rise off California. Deep Sea Research I 123, 56-61. DOI:
 https://doi.org/10.1016/j.dsr.2017.03.005
- Tyler, P., Amaro, T., Arzola, R., Cunha, M.R., de Stigter, H., Gooday, A.J., Huvenne, V., Ingels, J.,
 Kiriakoulakis, K., Lastras, G., Masson, D., Oliveira, A., Pattenden, A., Vanreusel, A., van
 Weering, T., Vitorino, J., Witte, U., Wolff, G., 2009. Europe's grand canyon: Nazaré
 submarine canyon. Oceanography 22, 46–57. DOI: https://doi.org/10.5670/oceanog.2009.05
- Vanreusel, A., Fonseca, G., Danovaro, R., et al., 2010. The contribution of deep-sea macrohabitat
 heterogeneity to global nematode diversity. Marine Ecology 31, 6-20. DOI:10.1111/j.14390485.2009.00352.x
- Vella, A., Vella, J., 2012. Central-southern Mediterranean submarine canyons and steep slopes: role
 played in the distribution of cetaceans, bluefin tunas, and elasmobranchs. In: Würtz, M. (ed.),
 Mediterranean submarine canyons: ecology and governance. Gland, Switzerland and Málaga,
 Spain: IUCN, 73-88. ISBN: 978-2-8317-1469-1

- Vetter, E.W., Dayton, P.K., 1998. Macrofaunal communities within and adjacent to a detritus-rich
 submarine canyon system. Deep Sea Research II 45, 25-54. DOI:
 https://doi.org/10.1016/S0967-0645(97)00048-9
- Watremez, P., 2012. Canyon heads in the French Mediterranean Overview of results from the
 MEDSEACAN and CORSEACAN campaigns (2008-2010). In: Würtz, M. (ed.),
 Mediterranean submarine canyons: ecology and governance. Gland, Switzerland and Málaga,
 Spain: IUCN, 105-112. ISBN: 978-2-8317-1469-1
- Weaver, P.P.E., Billett, D.S.M., Boetius, A., Danovaro, R., Freiwald, A., Sibuet, M., 2004. Hotspot
 ecosystem research on Europe's deep-ocean Margins. Oceanography 17(4), 132-143. DOI:
 http://dx.doi.org/10.5670/oceanog.2004.10
- Würtz, M. (ed.), 2012a. Mediterranean Submarine Canyons: Ecology and Governance. Gland,
 Switzerland and Málaga, Spain: IUCN. 216 pages. ISBN: 978-2-8317-1469-1
- Würtz, M., 2012b. Submarine canyons and their role in the Mediterranean ecosystem. In: Würtz, M.
- (ed.), Mediterranean submarine canyons: ecology and governance. Gland, Switzerland and
 Málaga, Spain: IUCN, pp. 11-26. ISBN: 978-2-8317-1469-1
- Zeppilli, D., Pusceddu, A., Trincardi, F., Danovaro, R, 2016. Seafloor heterogeneity influences the
 biodiversity–ecosystem functioning relationships in the deep sea. Scientific Reports 6, 26352.
 DOI: 10.1038/srep26352.
- Zeppilli, D., Leduc, D., Fontanier, C., Fontaneto, D., Fuchs, S., Gooday, A.J., Goineau, A., Ingels,
 J., Ivanenko, V.N., Kristensen, R.M., Cardoso Neves, R., Sanchez, N., Sandulli, R., Sarrazin,
 J., Sørensen, M.V., Tasiemski, A., Vanreusel, A., Autret, M., Bourdonnay, L., Claireaux, M.,
 Coquillé, V., De Wever, L., Rachel, D., Marchant, J., Toomey, L., Fernandes, D., 2018.
 Characteristics of meiofauna in extreme marine ecosystems: a review. Marine Biodiversity,
 48, 35–71. DOI: https://doi.org/10.1007/s12526-017-0815-z

767 **Caption of figures**

- Figure 1. Location of the sampling sites in the deep Mediterranean Sea and Portuguese margin (NE
 Atlantic Ocean) canyons and open slopes.
- Figure 2. CAP analysis output reporting the taxonomic composition of meiofaunal assemblages at
 different bathymetric ranges in NE Atlantic ocean vs Mediterranean canyons (A) and opens
 slopes (B), and in canyons vs open slopes in the Mediterranean Sea (C).
- Figure 3. Regression analyses of meiofaunal abundance (A), biomass (B) and richness of higher
 taxa (C) against depth in Mediterranean and NE Atlantic canyons and open slopes. Only
 significant regressions are indicated.
- Figure 4. Regression analyses of meiofaunal abundance (A), biomass (B) and richness of higher
 taxa (C) against longitude in Mediterranean canyons and open slopes. Significant regressions
 are indicated.
- Figure 5. dbRDA ordination after DistLM forward analysis, describing the relationship between the
 canyons geomorphological characteristics and meiofaunal taxonomic composition (A), also
 after presence/absence transformation (B).

Table 1. Dissimilarity % in the meiofaunal taxonomic composition, also after presence/absence
 transformation, among basins and between canyons and open slopes in investigated Mediterranean
 continental margin.

		Bathymetric range	% diacimilarity	% dissimilarity
		(11)	dissimilarity	(presence/absence)
N Atlantic vs Mediterranean	canyon	150-500	88.9	40.8
		500-1000	86.6	38.7
		1000-2000	91.8	43.6
		2000-3000	89.2	42.7
		3000-4000	97.8	64.4
	open slope	150-500	82.1	41.11
		500-1000	86.9	48.38
		1000-2000	89.9	43.86
		2000-3000	99.6	62.39
Mediterranean canyon vs slope	Catalan	150-500	34.5	44.81
		500-1000	33.1	41.99
		1000-2000	32.8	40.19
	Ligurian	150-500	28.4	31.54
	Adriatic	150-500	25.5	26.54
		500-1000	26.7	18.62
	Cretan	1000-2000	28.9	36.51
		2000-3000	15.8	0
Mediterranean canyon vs slope		150-500	38.2	46.02
(avg % dissimilarity)		500-1000	34.2	42.56
		1000-2000	34.8	41.81
		2000-3000	45.8	25.08

Table 2. Regression analyses of meiofaunal abundance, biomass and richness of higher taxa against

790 depth and longitude. P < 0.001 = ***, P < 0.01 = **, P < 0.05 = *, ns = not significant.

	Regression	Equation	n	R ²	P-value
Against	Log10 abundance (ind. cm ⁻²)				
depth	Mediterranean canyons	y = -2.0E-04x + 3.1	175	0.0938	***
	Mediterranean open slopes	y = -1.0E-04x + 3.0	70	0.0718	*
	Atlantic canyons	y = 1.0E-05x + 2.8	25	0.0018	ns
	Atlantic open slopes	y = 3.0E-05x + 2.6	14	0.0201	ns
	Log10 biomass (µgC 10cm ⁻²)				
	Mediterranean canyons	y = -2.0E-04x + 2.0	60	0.0955	*
	Mediterranean open slopes	y = 4.0E-04x + 2.3	37	0.358	***
	Atlantic canyons	y = -7.0E-06x + 2.4	10	0.0032	ns
	Atlantic open slopes	y = -2.0E-05x + 2.6	11	0.0143	ns
	Log10 Richness of taxa (n. taxa)				
	Mediterranean canyons	y = -1.0E-04x + 1.1	117	0.1304	***
	Mediterranean open slopes	y = -1.0E-04x + 1.2	50	0.1416	**
	Atlantic canyons	y = 1.4E-03x + 1.0	14	0.0002	ns
	Atlantic open slopes	y = -5.0E - 06x + 1.0	11	0.0093	ns
Against	Log10 abundance (ind. cm ⁻²)				
longitude	Mediterranean canyons	y = -2.2E-02x + 3.0	175	0.0567	***
	Mediterranean open slopes	y = -3.9E-02x + 3.2	70	0.4342	**
	Log10 biomass (µgC 10cm ⁻²)				
	Mediterranean canyons	y = -2.6E-02x + 1.8	60	0.1515	**
	Mediterranean open slopes	y = -3.9E-02x + 2.0	37	0.4738	***
	Log10 Richness of taxa (n. taxa)				
	Mediterranean canyons	y = -7.6E-03x + 0.9	117	0.0326	*
	Mediterranean open slopes	y = -1.6E-02x + 1.1	50	0.3733	***

Table 3. Output of DISTLM forward analyses, testing for geomorphological characteristics of the N Atlantic and Mediterranean Sea canyons. P < 0.001 = ***, P < 0.01 = **, P < 0.05 = *, ns = notsignificant.

A)	Variable	F	Р	% Prop explained variance	B)	Variable	F	P	% Prop explained variance
Abundance	class	20.6	***	12.7	Richness of	class	25.8	***	18.2
,	depth	17.8	***	9.2	taxa	height dif	20.6	***	12.4
	sinuosity	10.4	**	6.0		depth	10.3	**	5.8
	height dif	9.3	***	4.5		top height	8.0	*	4.0
	length	9.1	***	4.0		canyon density	9.4	*	3.8
	slope	5.1	**	2.4		sinuosity	7.6	**	3.6
	status	4.4	*	1.9		length	6.6	**	3.5
	top height	3.9	*	1.8		status	6.1	*	2.7
	margin type	2.4	ns	1.0		slope	4.8	*	2.1
	parts at 1500m	1.8	ns	0.7		margin type	0.7	ns	0.3
	density	1.1	ns	0.5	Taxonomic	class	20.4	***	13.3
	dendricity per 100k km ⁻²	0.9	ns	0.4	(presence/ab	density	18.1	***	10.5
Biomass	class	18.0	***	11.4	sence)	sinuosity	5.5	***	3.1
	status	8.8	***	5.9		margin type	5.5	**	2.7
	density	8.3	***	5.6		canyon density	5.0	**	2.4
	canyon density	5.9	***	4.1		depth	4.4	**	2.4
	margin type	5.2	***	3.6		top height	4.2	**	2.2
	parts at 1500m	4.3	**	3.0		slope	3.4	*	1.8
	height dif	3.8	**	2.6		dendricity per 100k km-2	3.3	*	1.7
	slope	3.8	**	2.6		status	2.3	ns	1.1
	top height	3.8	**	2.6		length	2.3	ns	1.1
	100k km-2	3.2	**	2.2		height dif	2.0	ns	0.9
	dendricity	3.2	**	2.2	Taxonomic	depth	32.8	***	17.0
	sinuosity	3.1	*	2.2	composition	status	11.8	***	8.1
	low height	3.0	**	2.1		margin type	10.8	***	6.9
	length	1.9	ns	1.3		low height	5.9	**	2.9
	depth	1.8	ns	1.3		class	5.1	**	2.5
						height dif	5.1	**	2.4
						slope	2.0	ns	1.0
						parts at 1500m	1.8	ns	0.8
						density	1.6	ns	0.8
						dendricity	1.6	ns	0.7
						canyon density	1.1	ns	0.5
						dendricity per 100k km-2	0.3	ns	0.1

Figure 1.

827 Supplementary Table S1. Datasets utilized in the present study. Indicated are also the number of samples (n) analyzed within canyons and open

- 828 slopes in each dataset.

Reference	Total meiofaunal abundance		Total meiofaunal biomass		N . 1	N. taxa		composition	Sampling device	Investigated margins
	n samples canyon	n samples slope	n samples canyon	n samples slope	n samples canyon	n samples slope	n samples canyon	n samples slope		
Accornero et al. (2003)	4	7	4	7	-	-	4	7	multiple-corer	Catalan
Bianchelli et al. (2010)	25	19	25	19	25	19	25	19	multiple-corer and box corer	Portuguese, Catalan, S Adriatic
Danovaro et al. (1999)	8	4	-	-	-	-	-	-	multiple-corer	Catalan, Balearic
de Bovée et al. (1990)	27	-	-	-	27	-	27	-		Catalan
Garcia et al. (2007)	5	3	-	-	-	-	5	3	multiple-corer	Portuguese
Grémare et al. (2002)	4	3	-	-	4	3	4	3	multiple-corer	Catalan
Guidi-Guilvard and Dallot (2014)	25	-	-	-	-	-	25	-	multiple-corer and maxicorer	Ligurian
Ingels et al. (2011a)	4	-	-	-	4	-	4	-	megacorer	Portuguese
Pusceddu et al. (2013)	13	6	13	6	13	6	13	6	multiple-corer and box corer	Catalan
Pusceddu et al. (2014)	13	-	13	-	13	-	13	-	multiple-corer	Catalan
Ramalho et al. (2014)	6	-	-	-	-	-	6	-	multiple-corer and megacorer	Portuguese
Riuax-Gobin et al. (2004)	8	7	8	7	-	-	8	7	multiple-corer	Catalan
Román et al. (2016)	22	10	-	-	22	10	22	10	multiple-corer	Catalan
Romano et al. (2013)	12	4	-	-	12	4	12	4	multiple-corer	Catalan
Rumolo et al. (2015)	4	2	-	-	-	-	4	2	multiple-corer	Catalan
Soetaert et al. (1991)	4	10	-	-	4	10	4	10	box corer	Ligurian
Soyer et al. (1987)	9	-	-	-	-	-	-	-	box corer	Catalan
This paper	7	9	7	9	7	9	7	9	box corer	Catalan, Cretan
N. samples tot	200	84	70	48	131	61	183	80		

Supplementary Table S2. Results of PERMDISP conducted on meiofaunal abundance, biomass and taxonomic composition, testing for the 833 multivariate dispersion among groups (basins or habitats). When the PERMDISP output reports a significant P level, only the par wise useful for 834 testing the hypothesis were reported.

			PERMDISP output	Р	pair wise	Р
Meiofaunal abundance	Atlantic vs Mediterranean	Canyons	F: 0.19259 df1: 1 df2: 198	0.658		
		Open slopes	F: 0.37599 df1: 1 df2: 82	0.559		
	Mediterranean	Canyon vs Open slope	F: 4.0642 df1: 9 df2: 235	0.001	Adriatic canyon vs Adriatic slope	0.603
					Catalan canyon vs Catalan slope	0.065
					Ligurian canyon vs Ligurian slope	0.309
					Cretan canyon vs Cretan slope	0.144
Meiofaunal biomass	Atlantic vs Mediterranean	Canyons	F: 1.0152 df1: 1 df2: 68	0.385		
		Open slopes	F: 2.6755 df1: 1 df2: 46	0.129		
	Mediterranean	Canyon vs Open slope	F: 2.0784 df1: 3 df2: 93	0.203		
Taxonomic composition	Atlantic vs Mediterranean	Canyons	F: 0.26375 df1: 1 df2: 181	0.645		
(presence/absence)		Open slopes	F: 2.4057 df1: 1 df2: 78	0.18		
	Mediterranean	Canyon vs Open slope	F: 9.8702 df1: 9 df2: 214	0.001	Adriatic canyon vs Adriatic slope	0.602
					Catalan canyon vs Catalan slope	0.134
					Ligurian canyon vs Ligurian slope	0.566
					Cretan canyon vs Cretan slope	0.023
Taxonomic composition	Atlantic vs Mediterranean	Canyons	F: 0.95016 df1: 1 df2: 181	0.406		
		Open slopes	F: 6.0921 df1: 1 df2: 78	0.055		
	Mediterranean	Canyon vs Open slope	F: 8.9218 df1: 9 df2: 214	0.001	Adriatic canyon vs Adriatic slope	0.646
	(fourth-root transformation)				Catalan canyon vs Catalan slope	0.228
					Ligurian canyon vs Ligurian slope	0.608
					Cretan canyon vs Cretan slope	0.002

Supplementary Table S3. Results of PERMANOVA and pair wise comparisons, testing for differences between basins at different bathymetric ranges in canyons and adjacent opens slopes in A) meiofaunal abundance, B) biomass, C) taxonomic composition and D) composition after presence/absence transformation. * = P < 0.05; ** = P < 0.01; *** = P < 0.001; ns = not significant; na = not available, Atl = N Atlantic, Med =

843 Mediterranean Sea.

N Atlantic vs Mediterranean Sea Source df MS F P 150-500m 500-1000m 1000-2000m 2000-3000m 3000-4000m A) Abundance Canyon Basin Basin 1 0.1 1.5 ns ns ns ns ns ns All > Med Abundance Canyon Basin X Bathymetric range 5 0.2 2.7 * ns ns ns ns ns All > Med Abundance Basin X Bathymetric range 5 0.1 1.0 ns n											Bathymetric r		
A) Abundance Canyon Basin 1 0.1 1.5 ns na ns ns ns All>Med Basin X Bathymetric range Basin X	N A	tlantic vs Mediterran	ean Sea	Source	df	MS	F	Р	150-500m	500-1000m	1000-2000m	2000-3000m	3000-4000m
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A)	Abundance	Canyon	Basin	1	0.1	1.5	ns	na	ns	ns	ns	Atl > Med
Basin X Bathymetric 3 0.2 2.7 * Open slope Basin 190 0.1 ns				Bathymetric range	5	0.2	3.6	**					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Basin X Bathymetric	3	0.2	2.7	*					
Open slope Basin 1 0.1 0.8 ns				Residuals	190	0.1							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Open slope	Basin	1	0.1	0.8	ns	ns	ns	ns	ns	na
Basin X Bathymetric Residuals 74 0.3 2.1 ns B) Biomass Canyon Basin X Bathymetric range Basin X Bathymetric range Basin X Bathymetric range Basin X Bathymetric range Bathymetric range Basin X Bathymetric range 5 1.0 4.3 *** ns Atl > Med				Bathymetric range	5	0.1	1.0	ns					
Residualis 74 0.1 B) Biomass Canyon Basin 1 8.6 38.8 *** ns Atl > Med Atl > Med <td></td> <td></td> <td></td> <td>Basin X Bathymetric</td> <td>3</td> <td>0.3</td> <td>2.1</td> <td>ns</td> <td></td> <td></td> <td></td> <td></td> <td></td>				Basin X Bathymetric	3	0.3	2.1	ns					
Biomass Canyon Basin 1 8.6 38.8 *** ns Atl > Med Atl > Med <td></td> <td></td> <td></td> <td>Residuals</td> <td>74</td> <td>0.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				Residuals	74	0.1							
Bathymetric range Basin X Bathymetric Residuals 5 1.0 4.3 *** 0.3 Open slope Basin 1 13.9 92.4 **** Atl > Med Atl >	B)	Biomass	Canyon	Basin	1	8.6	38.8	***	ns	Atl > Med	Atl > Med	Atl > Med	Atl > Med
Basin X Bathymetric Residuals 4 0.1 0.3 ns Open slope Basin Bathymetric range Basin X Bathymetric composition 5 1.0 6.9 **** Residuals Atl > Med Atl > Me			-	Bathymetric range	5	1.0	4.3	**					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Basin X Bathymetric	4	0.1	0.3	ns					
Open slope Basin 1 13.9 92.4 *** Atl > Med <				Residuals	59	0.2							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Open slope	Basin	1	13.9	92.4	***	Atl > Med	Atl > Med	Atl > Med	Atl > Med	na
Basin X Bathymetric Residuals 3 38 0.4 2.9 * C) Taxonomic composition Canyon Basin 1 11991.0 3.6 **** ns ns Atl ≠ Med Atl ≠ Med ns C) Taxonomic composition Canyon Basin 1 11991.0 3.6 **** ns ns Atl ≠ Med Atl ≠ Med ns C) Taxonomic composition Canyon Basin 1 11991.0 3.6 **** ns ns Atl ≠ Med Atl ≠ Med ns Basin X Bathymetric range Basin X Bathymetric range 5 5316.5 1.6 ** ns ns<				Bathymetric range	5	1.0	6.9	***					
$ \begin{array}{ c c c c c c c } \hline Residuals & 38 & 0.2 \\ \hline C) Taxonomic \\ composition \\ \hline Persence/absence \\ \hline Presence/absence \\ \hline Presence/abse$				Basin X Bathymetric	3	0.4	2.9	*					
C) Taxonomic composition Canyon Basin 1 11991.0 3.6 *** ns ns Atl ≠ Med Atl ≠ Med Atl ≠ Med ns Composition Bathymetric range 5 5316.5 1.6 ** ns ns Atl ≠ Med Atl ≠ Med ns Residuals 172 3316.4 ** ns <				Residuals	38	0.2							
composition Bathymetric range Basin X Bathymetric Residuals 5 5316.5 1.6 ** Additional Section 172 3316.4 1.3 * Open slope Basin 1 7498.8 2.1 ** ns	C)	Taxonomic	Canyon	Basin	1	11991.0	3.6	***	ns	ns	Atl ≠ Med	Atl ≠ Med	ns
Basin X Bathymetric Residuals 4 4327.6 1.3 * Open slope Basin 172 3316.4 Open slope Basin 1 7498.8 2.1 ** ns ns ns ns Bathymetric range 5 3604.8 1.0 ns ns ns ns ns ns Basin X Bathymetric range 5 3604.8 1.0 ns		composition		Bathymetric range	5	5316.5	1.6	**					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Basin X Bathymetric	4	4327.6	1.3	*					
Open slope Basin 1 7498.8 2.1 ** ns				Residuals	172	3316.4							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Open slope	Basin	1	7498.8	2.1	**	ns	ns	ns	ns	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Bathymetric range	5	3604.8	1.0	ns					
Residuals703625.4D)Taxonomic composition presence/absenceCanyonBasin16183.26.9***nsnsnsAtl ≠ MedAtl ≠ MedBasin X Bathymetric range51041.31.2nsnsnsNsAtl ≠ MedAtl ≠ MedResiduals142899.113435.03.1*nsnsnsnsnsnsOpen slopeBasin X Bathymetric range5805.70.7nsnsnsnsnsnsBasin X Bathymetric range5805.70.7nsnsnsnsnsnsBasin X Bathymetric range5805.70.7nsnsnsnsnsBasin X Bathymetric range701102.61102.6nsnsnsnsns				Basin X Bathymetric	3	3583.3	1.0	ns					
D)Taxonomic composition presence/absenceCanyonBasin16183.26.9***nsnsnsnsAtl ≠ MedAtl ≠ MedAtl ≠ MedBasin X Bathymetric range51041.31.2ns				Residuals	70	3625.4							
composition presence/absenceBathymetric range51041.31.2nsBasin X Bathymetric4994.21.1nsResiduals142899.1Open slopeBasin13435.03.1*nsBathymetric range5805.70.7nsBasin X Bathymetric31014.30.9nsResiduals701102.61102.6	D)	Taxonomic	Canyon	Basin	1	6183.2	6.9	***	ns	ns	ns	Atl ≠ Med	Atl ≠ Med
presence/absence Basin X Bathymetric 4 994.2 1.1 ns Residuals 142 899.1 Open slope Basin 1 3435.0 3.1 * ns ns ns ns ns ns Bathymetric range 5 805.7 0.7 ns Basin X Bathymetric 3 1014.3 0.9 ns Residuals 70 1102.6		composition		Bathymetric range	5	1041.3	1.2	ns					
Residuals142899.1Open slopeBasin13435.03.1*nsnsnsnsnsBathymetric range5805.70.7nsnsnsnsnsnsBasin X Bathymetric31014.30.9nsnsnsnsnsnsResiduals701102.6<		presence/absence		Basin X Bathymetric	4	994.2	1.1	ns					
Open slopeBasin13435.03.1*ns<				Residuals	142	899.1							
Bathymetric range 5 805.7 0.7 ns Basin X Bathymetric 3 1014.3 0.9 ns Residuals 70 1102.6			Open slope	Basin	1	3435.0	3.1	*	ns	ns	ns	ns	ns
Basin X Bathymetric 3 1014.3 0.9 ns Residuals 70 1102.6				Bathymetric range	5	805.7	0.7	ns					
Residuals 70 1102.6				Basin X Bathymetric	3	1014.3	0.9	ns					
				Residuals	70	1102.6							

Supplementary Table S4. Output of PERMANOVA and pair wise comparisons, testing for differences between canyons and open slopes at different bathymetric ranges (indicated as Depth) and among bathymetric ranges along canyons/slopes, in the investigated Mediterranean Sea margins in A) meiofaunal abundance, B) biomass, C) taxonomic composition and D) composition after presence/absence transformation. * = P < 0.05; ** = P < 0.01; *** = P < 0.001; ns = not significant; na = not available; Cat = Catalan, Lig = Ligurian, Adr = Adriatic, Cret = Cretan margins; C =canyon, S = open slopes.

								canyon v	s slope			along bathymet	tric ranges	
		Source	df	MS	F	Ρ	150-500m	500- 1000m	1000- 2000m	2000- 3000m	Catalan	Ligurian	Adriatic	Cretan
A)	Abundance	Habitat	9	0.27	6.97	***	Lig C>S (Calvi)	ns	ns	ns	along C (-) (LacDuth,Cap Creus P-Rhône) [.]	along S (-) (Calvi)	ns	along C (-)
		Depth	4	0.18	4.73	**					along S (-)			
		Habitat x Depth	11	0.02	0.63	ns					(Blanes,CapCreu			
		Residuals	220	0.04							s slope)			
B)	Biomass	Habitat	7	0.42	2.54	*	ns	Adr C>S	ns	ns	along C (-)	na	along C (-)	ns
		Depth	4	0.76	4.54	***					(CapCreus); along S (-)		(C), S (-)	
		Habitat x Depth	8	0.13	0.75	ns					(LacDuth slope)			
		Residuals	77	0.17										
C)	Taxonomic composition	Habitat	9	2292.00	4.73	***	Lig C≠S (Calvi)	ns	Cat C≠S	ns	along C (Blanes,LacDuth,	ns	ns	ns
		Depth	4	1354.00	2.79	***			(capCr		P-Rhône), along			
		Habitat x Depth	11	774.25	1.60	*			eus,ыа nes		S (CapCreus)			
_		Residuals	199	484.53										
D)	Taxonomic composition	Habitat	9	2600.30	3.41	***	Lig C≠S (Calvi)	ns	ns	ns	along C (Blanes,LacDuth)	along S (Calvi)	ns	ns
	(presence/absence)	Depth	4	1561.20	2.05	*					(CapCreus)			
		Habitat x Depth	11	1265.00	1.66	**					(
		Residuals	199	763.20										

850 **Supplementary Table S5.** Richness and Expected richness of taxa (ET) of meiofaunal taxa at different depth ranges in N Atlantic and Mediterranean 851 canyons and open slopes (A), Atlantic and Mediterranean margins canyons and open slopes (B) and in each canyon (C) and slope (D). Reported are 852 also the total number of individuals retrieved and the number of individuals used for the ET calculation.

A)	Depth range (m)	N	Richness	ET
Atlantic canyon	150-500	2231	9	4.4
ET (111)	500-1000	492	9	4.4
	1000-2000	901	14	3.9
	2000-3000	1565	10	3.9
	3000-4000	4400	23	4.4
	4000-5000	2380	21	4.4
Mediterranean	150-500	16134	30	4.8
ET (111)	500-1000	29593	28	4.5
	1000-2000	17835	24	4.3
	2000-3000	11962	15	3.3
	3000-4000	111	4	2.0
Atlantic slope	150-500	818	7	5.2
ET (549)	500-1000	549	11	7.0
	1000-2000	980	11	7.3
	2000-3000	1415	12	6.8
	3000-4000	1449	13	6.2
	4000-5000	654	9	5.7
Mediterranean slope	150-500	9759	24	8.0
ET (549)	500-1000	19133	28	7.2
	1000-2000	9995	23	7.5
	2000-3000	23970	15	4.7

B)		Depth range (m)	Ν	Richness	ET
N Atlantic margin	canyon	150-500	492	9	8.0
ET (492)		500-1000	2231	9	6.0
		1000-2000	901	14	6.8
		2000-3000	1565	10	6.6
		3000-4000	4400	23	8.1
		4000-5000	2380	21	9.0
	slope	150-500	818	7	5.0
		500-1000	549	11	6.7
		1000-2000	980	11	7.0
		2000-3000	1415	12	6.5
		3000-4000	1449	13	6.0
		4000-5000	654	9	5.4
Catalan margin	canyon	150-500	8623	24	13.2
ET (2198)		500-1000	28148	26	11.4
		1000-2000	16323	24	11.7
		2000-3000	2198	14	11.0
	slope	150-500	7003	15	10.7
		500-1000	13981	21	9.4
		1000-2000	9467	18	11.5
Balearic margin	canyon	1000-2000	1416	3	3.0
ET (1160)	slope	500-1000	1160	3	3.0
Ligurian margin	canyon	150-500	6607	18	7.4
ET (368)		2000-3000	9704	4	3.9
	slope	150-500	1966	18	8.8
		500-1000	3111	18	8.2
		1000-2000	368	12	6.0
Adriatic margin	canyon	150-500	905	11	4.5
ET (146)		500-1000	1445	11	5.4
	slope	150-500	551	8	4.8
		500-1000	146	6	4.0
Cretan margin	canyon	1000-2000	96	3	1.0
ET (23)		2000-3000	59	2	1.8
		3000-4000	111	4	1.8
	slope	150-500	238	7	1.5
		500-1000	186	7	1.9
		1000-2000	160	5	2.0
		2000-3000	23	2	2.0

C) CANYONS		Depth range	Ν	Richness	ET	D) OPEN SLOPE	Open slope	Depth range (m)	Ν	Richness	ET
N Atlantic margin	Cascais	150-500	492	9	6	N Atlantic margin	Cascais slope	1000-2000	769	11	5
ET (212)		1000-2000	901	14	5	ET (212)		2000-3000	1415	12	5
		2000-3000	1565	10	5			3000-4000	378	10	5
		3000-4000	1448	17	7			4000-5000	368	8	5
		4000-5000	831	13	6		Nazaré slope	150-500	818	7	4
	Nazaré	500-1000	2231	9	5			500-1000	549	11	5
		3000-4000	2362	19	5			1000-2000	212	7	5
		4000-5000	968	14	5			2000-3000	1072	10	4
	Setúbal	3000-4000	590	12	7			3000-4000	286	6	4
		4000-5000	581	15	7	Catalan margin	Foix slope	1000-2000	2121	3	3
Catalan margin	Besos	500-1000	331	5	4	ET (80)	Besos slope	500-1000	83	5	5
ET (80)	Blanes	150-500	2091	19	5		Blanes slope	500-1000	4777	15	3
		500-1000	7719	21	4		-	1000-2000	3277	15	4
		1000-2000	3042	17	5		Cap de Creus slope	150-500	2415	11	3
	Fonera	150-500	2544	8	3			500-1000	3939	15	3
		500-1000	5209	11	3			1000-2000	2113	10	3
		1000-2000	397	5	3		Lacaze-Duthiers slope	150-500	3366	13	4
	Cap De Creus	500-1000	5608	13	3			500-1000	2533	3	3
	·	1000-2000	2649	14	3			1000-2000	457	6	3
		2000-3000	830	7	2		Petit Rhône slope	150-500	1222	6	3
	Lacaze-	150-500	1392	14	4			500-1000	709	5	3
	Duthiers	500-1000	8525	15	4		Planier slope	500-1000	3440	3	3
		1000-2000	3239	11	3	Balearic margin	Balearic slope	500-1000	1160	3	3
		2000-3000	254	5	4	ET(1160)	·				
	Sete	2000-3000	1034	10	3	Ligurian margin	Calvi slope	150-500	1966	18	9
	Petit Rhône	150-500	1406	7	3	ET (368)	-	500-1000	3111	18	8
		500-1000	757	6	3			1000-2000	368	12	6
		1000-2000	1642	7	3	Adriatic margin	Adriatic slope	150-500	551	8	5
		2000-3000	80	5	5	ET(146)		500-1000	146	6	4
	Planier	150-500	1190	3	3	Cretan margin	Samaria slope	150-500	238	7	2
		1000-2000	5355	3	3	ET(23)		500-1000	186	7	2
Balearic margin	Balearic	1000-2000	1416	3	3			1000-2000	160	5	2
ET(1160)								2000-3000	23	2	1
Ligurian margin	Calvi	150-500	6607	18	7						
ET (368)	Var	2000-3000	9704	4	4						
Adriatic margin	В	150-500	608	10	5						
ET(146)		500-1000	600	8	5						
	С	150-500	298	8	4						
		500-100 ⁰	845	11	5						
Cretan margin	Samaria	1000-2000	96	3	2						
ET(23)		2000-3000	59	2	2						
		3000-4000	111	4	2						