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 2 

Abstract 27 

The chemical, physical and biological processes occurring in the rhizosphere can influence plant 28 

growth by modifying root associated microorganisms and nutrient cycles. Although rhizosphere has 29 

been widely investigated, little is known about the rhizosphere effect of pioneer plants in soils of 30 

periglacial environments. The knowledge of the processes controlling soil-plant relationships in 31 

these severe environments may help understanding the ecological evolution of newly deglaciated 32 

surfaces. We selected three plants [Helianthemum nummularium (L.) Mill. subsp. grandiflorum 33 

(Scop.), Dryas octopetala (L.), and Silene acaulis (L.) Jacq. subsp. cenisia (Vierh.) P. Fourn.] that 34 

sparsely occupy deglaciated areas of central Apennines (Italy), with the aim to assess changes 35 

between rhizosphere and bulk soil in terms of physical, chemical, and biological properties. The 36 

three plants considered showed to have different rhizosphere effect. Helianthemum induced a strong 37 

rhizosphere effect through a synergistic effect between root activity and a well adapted rhizosphere 38 

microbial community. Dryas did not foster a microbial community structure specifically designed 39 

for its rhizosphere, but consumes most of the energetic resources supplied by the plant to make 40 

nutrients available. Conversely to the other two species, Silene produced slight soil changes in the 41 

rhizosphere, where the microbial community had a structure, abundance and activity similar to 42 

those of the bulk soil. The ability to colonize harsh environments of Silene is probably linked to the 43 

shape and functions of its canopy rather than to a functional rhizosphere effect. 44 

This study showed that the rhizosphere effect differed by species also under high environmental 45 

pressure (periglacial conditions, poorly developed soil), and the activity of roots and associated 46 

microbial community is decisive in modifying the soil properties, so to create a suitable 47 

environment where plants are able to grow.  48 

 49 

Keywords: High-mountain soils; soil organic C; phospholipid fatty acids; Helianthemum 50 

nummularium subsp. grandiflorum; Dryas octopetala; Silene acaulis subsp. cenisia 51 

 52 
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1. Introduction  53 

In the rhizosphere, the soil in proximity to the root, processes like rhizodeposition, intense 54 

microbial activity, root nutrient uptake, redox reactions, and CO2 production induce modifications 55 

of soil components and properties (Hinsinger et al., 2003; Richter at al., 2007). The chemical, 56 

physical and biological differentiation of the rhizospheric soil with respect to the rest of the soil is 57 

called ―rhizosphere effect‖, which has been investigated in many ecosystems, including those with 58 

environmental constraints and nutrient-poor soils (e.g., Hinsinger et al., 2005; Teixeira et al., 2010). 59 

However, little is known about the rhizosphere effect of pioneer plants in young and poorly 60 

developed soils from periglacial environments (Wookey et al., 2009).  61 

Periglacial environments are those affected by severe frost action that dominates geomorphic 62 

processes, and amount to about 25% of the Earth’s land surface. The knowledge of the rhizosphere 63 

effect of pioneer plants in these environments is the basis in understanding how soil-plant 64 

relationships respond to environmental constraints. In general, arctic and alpine plants have a higher 65 

proportion of their biomass below-ground than trees and bushes from other ecosystems (Jackson et 66 

al., 1996; Körner, 2003), and this relatively high below-ground biomass increases the proportion of 67 

rhizosphere soil (Hinsinger et al., 2005; Finzi et al., 2015). Indeed, in poorly developed soils of cold 68 

areas, the presence of vascular plants strongly modifies the soil properties and the structure and 69 

function of the soil microbial community (Yergeau et al., 2007; Taixeira et al., 2010). In this areas, 70 

rhizospheric processes resulting from soil-plant-microbes interactions may improve the ability of 71 

plants to overcome abiotic disturbances such as freezing, high soil daily and seasonal temperature 72 

excursions, freeze–thaw and wet–dry cycles, excessive drainage, and strongly oligotrophic 73 

conditions (e.g., Tscherko et al., 2004, 2005; Edwards et al., 2006; Ciccazzo et al., 2014). The 74 

amount of energy supplied by the plants in form of exudates to rhizosphere heterotrophic microbial 75 

community is key for stimulating rhizospheric processes (Kuzyakov, 2002; Wookey et al., 2009; 76 

Jorquera et al., 2014; Ciccazzo et al., 2014). In fact, most arctic and alpine vascular plants allocate 77 

10-30% of net carbon fixation to establish mycorrhyzal associations (Read et al., 2004; Cripps and 78 
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Eddington, 2005), although allocation patterns of these energetic resources depend on plant species 79 

and soil nutrient availability (Högberg et al., 2003; Wardle et al., 2004; Wookey et al., 2009). 80 

Hence, different plants colonizing the same soil might differently shape a specific rhizosphere 81 

microbial community depending on the quantity and quality of their root exudates (Haichar et al., 82 

2008; Huang et al., 2014).  83 

Our research focuses on the rhizosphere effect of three plant species [Helianthemum nummularium 84 

(L.) Mill. subsp. grandiflorum (Scop.) Sch. and Th., Dryas octopetala (L.), and Silene acaulis (L.) 85 

Jacq. subsp. cenisia (Vierh.) P. Fourn.] that sparsely occupy soils of deglaciated areas actually 86 

submitted to periglacial conditions (central Apennines, Italy). These soils are characterized by 87 

environmental constraints such as harsh climatic and nutritional conditions. Specifically, we tested 88 

the following hypotheses:  89 

(i) the physical and chemical soil properties differ in rhizosphere versus bulk soil for the three plant 90 

species; 91 

(ii) the microbial community structure and abundance, and microbial respiration differ in 92 

rhizosphere versus bulk soil within and among the three plant species. 93 

To this aim, we investigated physical, chemical and microbiological properties of both rhizosphere 94 

and bulk soil, and the results were compared with those of the adjacent bare soil. 95 

 96 

2. Materials and methods 97 

2.1. Site description 98 

The study site is located in one of the highest mountains of central Apennines (Italy), the Majella 99 

massif (Figure 1) and, in particular, in the Cannella Valley, whose altitude ranges from 1900 to 100 

2750 m, and has a southeast orientation. The mean annual precipitation is about 2100 mm (mostly 101 

snow) and the mean annual air temperature is 2.3 °C. January is the coldest month, with an average 102 

temperature of -4.3 °C, whereas August is the warmest month, with an average temperature of 11.4 103 

°C (Corti et al., 2012). The area, that experienced a relatively recent glacier recession initiated about 104 
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12,700 and ended about 11,000 years before present (Giraudi, 2004), is mantled by thick morainic 105 

deposits (till) mostly made of limestone, from which the present soils developed. The area is 106 

covered by sparse vegetation mostly made of Helianthemum nummularium (L.) Mill. subsp. 107 

grandiflorum (Scop.) Sch. and Th., Dryas octopetala L., Silene acaulis (L.) Jacq. subsp. cenisia 108 

(Vierh.) P. Fourn., Carex kitaibeliana Degen ex Bech., Anthyllis vulneraria L. subsp. maura (Beck) 109 

Maire, Campanula scheuchzeri Vill., Minuartia verna (L.) Hiern subsp. verna, Trifolium pratense 110 

L. subsp. semipurpureum (Strobl) Pign., with spots covered by Salix retusa L. and rare dwarf 111 

mountain pines (Pinus mugo Turra). Where the vegetation forms a rather continuous mat, the soils 112 

are loamy-skeletal, mixed, frigid Oxyaquic Haplocryolls (SSS, 2010), while in the bare areas the 113 

soils are loamy-skeletal, mixed, frigid Oxyaquic Cryorthents (SSS, 2010). In both cases, the soil is 114 

frozen for meters from December to February/March. 115 

The plant species chosen for this study differ for their aboveground and belowground traits. 116 

Helianthemum nummularium subsp. grandiflorum is an evergreen trailing plant with loose terminal 117 

clusters of bright yellow, saucer-shaped flowers that is rather common in dry and base-rich soils. 118 

Dryas octopetala forms dense mats with trailing branches bearing adventitious roots that inhabits 119 

particularly well-drained mineral soils (Blaschke, 1991), and that colonizes young soils developed 120 

on moraines, especially where nitrogen is scarce (Schwintzer and Tjepkema, 1990). Finally, Silene 121 

acaulis subsp. cenisia is a cushion-forming gynodioecious plant with a taproot system that 122 

generally grows on wind-exposed ridges, rocky slopes and open alpine grasslands, and can survive 123 

extreme temperature from -80 to 60°C (Larcher et al., 2010). 124 

 125 

2.2. Soil sampling and sample preparation 126 

During July 2011, at about 2455 m above sea level, within an area of about 1600 m
2
 (40 x 40 m) we 127 

selected three plots with a mean diameter ranging from 5 to 10 m; in each plot all the three plants 128 

were present at once. As a control, for each plot a bare soil was also located at least at 1.5 m from 129 

each plant. The three individual plants for each species were chosen among those showing the 130 
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maximum development. For Helianthemum we considered plants forming patches of 1.5-1.8 m of 131 

diameter, with an estimated age of at least 30-32 years (obtained by the annual ring counting of 132 

basal stems). For Dryas, we took into consideration plant mats with a diameter of about 1 m, with 133 

an estimated age of at least 18-22 years (obtained by the annual ring counting of basal stems). In the 134 

case of Silene, we selected fully healthy cushions with a diameter comprised between 35 and 40 cm. 135 

According to Benedict (1989) and McCarthy (1992), cushions of Silene acaulis have a growth rate 136 

ranging from 0.06 to 3 cm yr
-1

, even though the maximum rate of 2-3 cm yr
-1

 is reached in the 137 

intermediate part of their life, which can attain 350 years (Beschel, 1958). Because of this, we 138 

estimated the age of the selected cushions to be more than 50 years. 139 

Within each plot, a soil profile was opened under each plant and in the bare soil. The soil 140 

morphological descriptions (Schoeneberger et al., 1998) are reported in the Appendix. From the A 141 

horizon (A1 plus A2 in the case of the profiles under the plants) of each profile, a large amount of 142 

sample (at least 2 kg) was collected and stored at the field moist conditions in a portable 143 

refrigerator. Once in the laboratory, the rhizosphere was isolated according to the method of Corti et 144 

al. (2005) from each soil samples by picking up the roots together with the adhering soil. Coarse 145 

and medium roots (diameter size larger than 2 mm) were discarded. The soil particles loosely 146 

adhering to the roots were detached by gentle shaking and added to the bulk soil. The soil material 147 

strictly adhering to the roots, considered as rhizosphere, was recovered by shaking and gentle 148 

brushing of the roots. During this operation, the root fragments were removed by using tweezers 149 

under a magnifying lens. Aliquots of rhizosphere, bulk and bare soil at field moist conditions were 150 

sieved through a 4-mm mesh and stored (for a period not exceeding four weeks) at 2 °C for the 151 

biological analyses: microbial biomass C content, basal respiration, and microbial community 152 

structure. The remaining soil samples were air-dried and sieved through a 2-mm mesh. 153 

 154 

2.3. Physical and chemical analysis 155 
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The available water content (AWC) was calculated by difference between the amount of water 156 

retained by the soil at 33 kPa and at 1500 kPa, which was determined by pressure plate extractor 157 

(Soilmoisture Equipment Corp., Santa Barbara, CA). The soil pH was determined 158 

potentiometrically in water (solid:liquid ratio of 1:2.5) after one night of equilibration using a 159 

Thermo Scientific™ Orion™ 2-Star Benchtop pH-meter. Potentially plant-available P and organic 160 

P was determined by the Olsen method (Olsen et al., 1954) and the ignition method (Kuo, 1996), 161 

respectively. To determine the exchangeable Ca, Mg, K and Na, 2 g of each sample were placed 162 

into a centrifuge tube, submerged with 0.2 M BaCl2 solution (solid/liquid ratio of 1:10) and shaken 163 

for about 10 min (Corti et al., 1997). The mixture was left to rest for a while and then gently shaken 164 

for few seconds to re-suspend the sediments and then centrifuged. The extracted solution was 165 

filtered through Whatman 42 filter paper, and analysed by atomic absorption with a Shimadzu AA-166 

6300 (Tokyo, Japan) spectrophotometer. 167 

Iron was sequentially extracted from the samples with 1) 0.1 M Na-acetate at pH 5 to extract the Fe 168 

bound to carbonates (Loeppert and Suarez, 1996), 2) 0.1 M hydroxylamine hydrochloride in 0.01 M 169 

HNO3 to estimate the ―labile Fe‖, namely the Fe forming the easily reducible Fe-Mn oxy-170 

hydroxydes (Berna et al., 2000), 3) NH4-oxalate/oxalic acid at pH 3.0 in the dark to recover the Fe 171 

of the non-crystalline Fe oxy-hydroxydes plus that bound to organic matter (Blakemore et al., 172 

1981), and 4) 0.25 M hydroxylamine hydrochloride in 0.25 M HCl to obtain the Fe of the 173 

crystalline Fe oxy-hydroxydes (Berna et al., 2000). The Fe in the extracts was determined by a 174 

Shimadzu AA-6300 atomic absorption spectrophotometer. 175 

The total organic C content (TOC) and total N were determined by a dry combustion analyser (EA-176 

1110, Carlo Erba Instruments, Milan, Italy). Prior to analysis, the specimens were treated with 0.1 177 

M HCl to eliminate inorganic C. Water extractable organic C (WEOC) was obtained according to 178 

Agnelli et al. (2014) with the following procedure: 1 g of sample was placed into a plastic 179 

container, submerged with distilled water (solid:liquid ratio 1:10) and shaken overnight with an 180 

orbital shaker (140 rpm). The suspension was left to rest for a while, centrifuged at 1400 g for 10 181 
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minutes, and then filtered through a 0.45 m membrane filter. The obtained supernatant solution 182 

received a few drops of concentrated H3PO4 to eliminate carbonates and was analysed for organic C 183 

by a TOC-5000A analyser (Shimadzu Corp., Tokyo, Japan). On the same solution, the amount of 184 

water extractable N (WEN), that comprises part of the inorganic N forms (NH4
+
-N and NO3

-
-N) and 185 

the most soluble organic N forms, was determined by dry combustion analyser. 186 

The inorganic N was extracted by treating the samples with 2 M KCl solution (solid:liquid ratio 187 

1:10); the suspension was shaken for 1 h with an orbital shaker (140 rpm), and filtered through 188 

Whatman 42 filter paper. The different forms of inorganic N (NH4
+
-N and NO3

-
-N) were measured 189 

on soil extracts by a FOSS Fiastar
TM

 5000 system (Hillerod, Denmark). The organic N content was 190 

obtained by the difference between the total N and inorganic N content. 191 

 192 

2.4. Microbial biomass C, basal respiration  193 

The amount of microbial biomass-C (Cmic) was determined by the fumigation-extraction method 194 

(Vance et al., 1987), after 62 days of conditioning at 25°C and at 50% of their total water holding 195 

capacity. During this incubation period, basal respiration was measured by alkali (1 M NaOH 196 

solution) absorption of the CO2 developed and titration of the residual OH
-
 with a standardised HCl 197 

solution. Basal respiration was expressed as the cumulative amount of CO2-C evolved during the 198 

experiment.  199 

 200 

2.5. Soil microbial community structure  201 

The abundance and structure of soil microbial community in the rhizosphere, bulk and bare soil 202 

were assessed by analysing the ester-linked phospholipid fatty-acids (PLFAs), which are specific 203 

membrane components of living cells and are not found in storage products or in dead cells. 204 

Specifically, the technique was used to measure the relative abundance of active fungi and bacteria 205 

(Bardgett et al., 1996), which are responsible for 90–95% of total heterotrophic metabolism in most 206 

soils (Petersen and Luxton, 1982). Lipids were extracted from soil samples, fractionated and 207 
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quantified using the procedure described by Bardgett et al. (1996). The analyses of phospholipid 208 

fatty acid methyl esters were run on an HP 5890 Series II gas-chromatograph, equipped with a 5970 209 

MSD detector and Supelco SP 2331 column (60 m, 0.25 mm I.D., 0.20 m D.F.). Separated fatty-210 

acid methyl-esters were identified by chromatographic retention time and mass spectral comparison 211 

using the BAME and FAME mix qualitative standard (Supelco Analytical, USA), which ranged 212 

from C11 to C20. Concentration of each PLFA was obtained by comparing the peak area of each 213 

identified fatty acid with that of methyl nonadecanoate (C19:0) added to the samples as an internal 214 

standard. Fatty-acid nomenclature was designed as described by Frostegård et al. (1993). Total 215 

extractable PLFAs were used as an indicator of living biomass, and single PLFAs were used as 216 

markers to quantify the relative abundance of specific cell types (Fritze et al., 2000; Fierer et al., 217 

2003). Gram-positive bacteria were identified by summing i15:0, a15:0, i16:0, i17:0 and a17:0 fatty 218 

acids, while the Gram-negative bacteria were accounted by summing the fatty acids 16:1, cy17:0, 219 

17:1ω9c and 18:1ω7 (Federle, 1986; Frostegård et al., 1993; Fierer et al., 2003; Massaccesi et al., 220 

2015). The total bacterial biomass was calculated by the sum of the PLFAs attributed to Gram-221 

positive and Gram-negative bacteria. The fatty acid 18:2ω6 was used as a marker for saprophytic 222 

fungi (Federle, 1986), while the fatty acid 16:1ω5 was used as an indicator for arbuscolar 223 

mycorrhizal fungi (AMF) abundance (De Deyn et al., 2011). Although this latter fatty acid is not 224 

strictly specific to AMF, it was used as an indicator for their abundance in soil (e.g., Olsson, 1999; 225 

Chung et al., 2007; De Deyn et al., 2011). The ratio between fungal and bacterial PLFAs was taken 226 

as an indicator of changes in the relative abundance of these two microbial groups in the samples 227 

(Bardgett et al., 1996). Actinomycetes were identified by the 10Me17:0 and 10Me18:0 fatty acids 228 

(Kroppenstedt, 1985; De Deyn et al., 2011), whereas the fatty acid 20:2 was used as biomarker for 229 

protozoa (Fierer et al., 2003).  230 

 231 

2.6. Statistical analysis 232 
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To test the extent of the effects of plant species and soil fractions (rhizosphere and bulk soil) on soil 233 

properties, we performed a redundancy analysis (RDA). The RDA model was tested for 234 

significance by using 999 random permutations. The adjusted R
2
, that measures the variance 235 

explained by the RDA model, was used to estimate the variance of the ordination axes. Moreover, 236 

to investigate the variations of rhizosphere and bulk soil properties under the three plant species, a 237 

principal component analysis (PCA) was performed. All the data were standardized prior RDA and 238 

PCA by subtracting the mean of each variable and dividing by the standard deviation.  239 

To test the differences in microbial community structure, as quantified by the relative abundance of 240 

all PLFA peaks, we performed a two-way permutational multivariate analysis of variance 241 

(PERMANOVA) on row dataset (Anderson, 2001), and non-metric multidimensional scaling 242 

(NMDS) was used to provide a graphical representation of results. For this analysis, we used the 243 

relative abundance of PLFA so that results reflected changes in community structure that were 244 

independent by changes in biomass. Changes in biomass were quantified through other metrics 245 

(e.g., total PLFA, total fungi).  246 

The effects of plant species and soil fraction (rhizosphere or bulk soil) on the abundance of the 247 

identified microbial groups and soil properties were analysed using analysis of variance (two-way 248 

ANOVA) (Table I of the Supplementary Data). The comparison of means was assessed by Fisher 249 

post-hoc test at P < 0.05. The statistical analyses were performed using R (R Core Team, 2014).  250 

 251 

3. Results 252 

3.1. RDA and PCA 253 

The RDA plots (Figure 2a,b) showed that the plant species effect (Permutation test, F=3.973, 254 

P=0.001***) explained about 27 % of the total variance, whereas the soil fraction effect 255 

(Permutation test, F=3.198, P=0.004**) explained about 18 % of the total variance. The PCA 256 

scatter plot (Figure 3) showed the variation of rhizosphere and bulk soil properties under the three 257 

plant species, and identified two axes that explained about 37 and 19 % of the variation, 258 
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respectively. The PCA indicated that differences between rhizosphere and bulk soil of the three 259 

species occurred, although to a different extent: Helianthemum was the species with the greatest 260 

differences between rhizosphere and bulk soil, followed by Dryas and, then, Silene. Further, PCA 261 

showed that bulk soil and rhizosphere of Silene and the bulk soil of Dryas were closer and more 262 

similar to the bare soil than the others. 263 

PCA-axis 1 appeared to be positively driven by microbial community, total N, TOC content and 264 

exchangeable Ca and Mg, whereas it was negatively driven by pH and NO3
-
-N (Figure Ia of the 265 

Supplementary Data). PCA-axis 2 was mainly associated with positive relationships to CO2-266 

C/WEOC ratio and qCO2, and with negative relationships to Cmic/TOC ratio, available P and Cmic 267 

contents (Figure Ib of the Supplementary Data). The PCA scores of the Helianthemum rhizosphere 268 

were placed on the right side of PCA-axis 1, indicating a strong positive relationship with the soil 269 

properties driving axis 1. Conversely, the bare soil and the bulk soil of Silene were the most 270 

negatively associated with axis 1. A relationship with the soil properties that positively drove axis 2 271 

was indicated for the rhizosphere of Dryas and the bulk soil of Helianthemum. 272 

 273 

3.2. Available water content (AWC), pH, and available and organic P  274 

The Helianthemum rhizosphere had an AWC higher than that of the bulk soil (Table 1), while 275 

rhizosphere and bulk soil of Dryas showed similar values. Conversely, Silene rhizosphere had an 276 

AWC lower than that of the bulk soil, analogous to that of bare soil.  277 

The pH values of the rhizosphere of Helianthemum and Dryas were lower than those of the 278 

respective bulk and bare soil (Table 1), while Silene showed no difference among rhizosphere, bulk 279 

and bare soil. Only for Helianthemum, the available P content showed a significant difference 280 

between rhizosphere and bulk soil, with the lowest value in the latter (Table 1). Dryas and Silene 281 

exhibited a higher amount of organic P in the rhizosphere than in the bulk and bare soil, while under 282 

Helianthemum organic P was similar in both soil fractions.  283 

 284 
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3.3. Exchangeable cations and extractable forms of Fe 285 

For all the soils, Ca was the most abundant exchangeable cation (Table 2). The amount of 286 

exchangeable cations in the rhizosphere was higher than that in the bulk soil for Mg, K and Na 287 

under Dryas, and only for Ca under Silene. The quantity of exchangeable cations of the bulk soils 288 

was often similar to that of bare soil.  289 

Only in a few cases the rhizosphere differed from the bulk soil in terms of extractable Fe forms 290 

(Table 2). For all the plants, the most represented Fe form was that of the non-crystalline and 291 

organic matter bound Fe-oxy-hydroxydes. Significant differences between rhizosphere and bulk soil 292 

were found for the labile Fe under Helianthemum, non-crystalline and organic matter bound Fe-293 

oxy-hydroxydes for Silene, and crystalline Fe-oxy-hydroxydes for Dryas and Silene. 294 

 295 

3.4. Nitrogen, total and water soluble organic C, microbial biomass C and basal respiration. 296 

In all the samples, WEN represented a negligible portion of the total soil N, which was constituted 297 

by organic N for 99.1 % in the bare soil and for at least 99.6 % in the rhizosphere and bulk soil of 298 

the three plants (Table 3). In terms of organic N, the rhizosphere had a higher organic N content 299 

than the bulk soil for Helianthemum and Dryas. Under Silene, the total N of the rhizosphere was 300 

higher than that of the bulk soil. The bare soil and the bulk of the three plants showed similar 301 

contents of total and organic N. 302 

The TOC concentration was similar in the rhizosphere and bulk soil of the three plants, while the 303 

WEOC content was always more abundant in the rhizosphere than in the bulk, with the highest 304 

concentration in the Helianthemum rhizosphere (Table 4). The bulk soil of Helianthemum contained 305 

more TOC than the bare soil. 306 

The microbial biomass C (Cmic) had a greater concentration in the rhizosphere than in the bulk soil 307 

of the three plants (Table 4), with the highest value in the rhizosphere of Helianthemum (more than 308 

7 fold-higher than the respective bulk soil). Surprisingly, the Cmic content of the bare soil was 309 

similar to that of the rhizosphere and higher than the bulk soil of Dryas. The CO2 evolved during 310 
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the basal respiration experiment (ΣCO2-C) was higher in the rhizosphere than in the bulk soil for the 311 

three plants, with the highest values recorded in the rhizosphere of Dryas. The bare soil and the 312 

bulk soil of Silene showed the lowest amount of ΣCO2-C. The rhizosphere of Helianthemum 313 

showed the largest percentage of Cmic/TOC (Figure 4a) and the lowest percentage of organic C 314 

consumed during the incubation experiment with respect to WEOC (ΣCO2-C/WEOC) (Figure 4b). 315 

For Dryas, the percentage of Cmic/TOC was similar in both rhizosphere and bulk soil, but the 316 

rhizosphere showed the largest ΣCO2-C/WEOC percentage and qCO2 value. 317 

 318 

3.5. Microbial community abundance and structure 319 

Interactions between plant species and soil fractions (PERMANOVA, F2,20=3.35, R
2
=0.246, 320 

P=0.0158*) affected microbial community structure as expressed by the relative abundance of all 321 

identified PLFA peaks. NMDS plot indicated that the greater diversity between rhizosphere and 322 

bulk soil in the microbial community structure occurred for Helianthemum (Figure 5a), and that the 323 

synergistic effect of plant species and soil fractions appeared mostly due to bacteria. In fact, as 324 

shown in Figure 5b, axis 1 was mainly driven by the relative abundance of i15:0 and a15:0 fatty 325 

acids, which represent Gram-positive bacteria, and 10Me18:0, which represents actinomycetes. In 326 

contrast, axis 2 was driven by the relative abundance of 17:1ω9c fatty acid, which represents Gram-327 

negative bacteria.  328 

In all the samples, although the non-specific PLFA were 18-25% of the total, the most represented 329 

microbial group identified was that of bacteria, which ranged from 61% (bare soil) to 69% (bulk 330 

soil of Helianthemum) of the entire microbial community (Table 5). In order of abundance, bacteria 331 

were followed by actinomycetes, AMF, saprophytic fungi and protozoa. Among the bacteria, Gram-332 

negative were the most abundant. Both bulk soil and rhizosphere of the three plants had a greater 333 

amount of bacteria than the bare soil, whereas Helianthemum and Dryas had both fractions richer in 334 

fungi than bare soil. Bacteria (Gram-positive and Gram-negative), saprophytic fungi and AMF were 335 

the highest in the rhizosphere of Helianthemum, whereas no significant difference was detected 336 
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between rhizosphere and bulk soil of Dryas and Silene. The fungal to bacterial PLFAs ratio was 337 

always much < 1, and showed similar values for all the samples.  338 

 339 

4. Discussion 340 

4.1. Difference in the soil properties of rhizosphere versus bulk soil for the three plant species  341 

Our results indicated that the plant species effect was more significant than the soil fraction effect, 342 

suggesting that both above- and below-ground plant systems play the major role in driving the 343 

changes in soil properties, with significant influences on most measured variables. However, also 344 

the rhizosphere effect, which is closely related to the plant species, plays a decisive role in soil 345 

changes. Among the three species considered in this study, Helianthemum, showed the major 346 

differences between rhizosphere and bulk soil, followed by Dryas and then Silene. As a matter of 347 

fact, Helianthemum exerted a relevant ―rhizosphere effect‖ as most of the measured parameters 348 

differed between rhizosphere and bulk: pH, labile Fe, AWC, available P, total and organic N, NH4
+
-349 

N, WEOC, Cmic, CO2-C evolved during the basal respiration, total PLFA, total bacteria, Gram-350 

positive and Gram-negative bacteria, saprophytic fungi, AMF, and non-specific PLFA.  351 

Helianthemum and Dryas had lower pH values in the rhizosphere than in the bulk, so confirming 352 

the acidifying action that the roots exert on the soil in contact with them (e.g., Hinsinger et al., 353 

2003). The acidification of the rhizosphere can occur by different processes, other than the CO2 354 

produced by the root respiration (Richter et al., 2007): 1) excretion of H
+
 following the root 355 

absorption of cations in excess of anions (Haynes, 1990), and 2) release of organic acids to 356 

overcome nutrient deficiency (Rengel and Romheld, 2000; Hinsinger et al., 2003; Sandnes et al., 357 

2005). For example, in P deficient soils, roots of natural and cultivated plants exude large amounts 358 

of low-molecular weight carboxylates that mobilize P by competing for the same adsorption sites in 359 

the soil matrix (Gerke et al., 2000; Fernández Sanjurjo et al., 2003; Wouterlood et al., 2005). The 360 

higher concentration of available P in the rhizosphere than in the bulk soil of Helianthemum may be 361 

the result of the release of organic acids and specific enzymes such as phosphatases, which may 362 
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significantly increase P availability by promoting the hydrolysis of organic P in forms more 363 

accessible to the plant (Gerke et al., 2000, Wouterlood et al., 2005). 364 

In the case of Dryas, the rhizosphere effect was exhibited by the lower pH and the greater amount 365 

of organic P, exchangeable K, Mg and Na, crystalline Fe oxy-hydroxydes, total and organic N, 366 

WEOC, Cmic and CO2-C evolved during the basal respiration in the root-affected soil than in the 367 

bulk. The higher WEOC content in the rhizosphere than in the bulk soil was mainly attributed to 368 

exudation of labile C compounds such as carbohydrates, aminoacids, aliphatic or aromatic organic 369 

acids, phenols, and fatty acids (Colin-Belgrand et al., 2003; Farrar et al., 2003), but also to an 370 

enhanced organic matter cycling occurring in the rhizosphere (Dijkstra et al., 2013), This C input 371 

into the rhizosphere represents an investment made by the plant to modify soil conditions and 372 

establish an appropriate environment for its development (Boddy et al., 2008). 373 

The few differences between rhizosphere and bulk soil of Silene indicated that this species modifies 374 

the soil properties less than Helianthemum and Dryas. Interestingly, the estimated age of the Silene 375 

plants was greater than that of the other two species. Silene has apparently a lower rhizosphere 376 

effect than Helianthemum and Dryas, but is one of the best adapted plant to alpine environment, as 377 

it is able to colonize bare or recently deglaciated soils (e.g., Pysek and Liska, 1991; Chapin and 378 

Körner, 1995; Körner, 2003). This ability is mainly attributed to the domed shape of the canopy that 379 

mitigates temperature, stores moisture, and increases the quantity of nutrients underneath the 380 

cushion (Körner, 2003; Reid et al., 2010 and references herein). Indeed, in arctic and alpine 381 

environments, cushion plants as Silene are considered as nurse-plants that are able to facilitate the 382 

settlement of less tolerant plant species (Broker et al., 2009; Antonsson et al., 2009; Molenda et al., 383 

2012) and protect invertebrates from climate rigors (Molenda et al., 2012). As it may benefit of 384 

external resources because of the ecological function exerted by its canopy, Silene probably needs 385 

to invest lesser energy in the rhizosphere than Helianthemum and Dryas. 386 

 387 
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4.2. Microbial community structure and abundance, and microbial respiration in rhizosphere 388 

versus bulk soil within and among the three plant species  389 

Our findings suggested that structure and abundance of the root-associated microbial community, as 390 

measured by PLFAs, were mainly driven by the combined effect of plant species and soil fraction. 391 

The most marked differences in the microbial community structure between rhizosphere and bulk 392 

soil were observed under Helianthemum. The large colonization of the Helianthemum rhizosphere 393 

by saprophytic fungi and AMF could be due to the ability of this plant species to form mycorrhizal 394 

association with both ectomycorrhizal fungi and AMF (Cornelissen et al., 2001). Although by the 395 

analysis of PLFAs it was not possible to distinguish the ectomycorrhizal by the saprophytic fungi as 396 

they are identified by the same PLFA (Karliński et al., 2006), we recognized a diffuse 397 

ectomycorrhizal infection in the roots of Helianthemum by optical microscope observation (Figure 398 

6a). The presence of mycorrhizal fungi could be partly responsible of the more abundant bacterial 399 

community present in the rhizosphere. Indeed, as reported by Marschner et al. (2005), changes in 400 

amount and/or composition of root and fungal exudates due to AMF colonization determine 401 

diversity and abundance of the bacterial community in the rhizosphere. The same authors also 402 

suggested that the influence of AMF on the bacterial population harbouring the rhizosphere can 403 

occur directly through the supply of easily available organic substances due to the growth and 404 

degeneration of the hyphal network or, indirectly, through the rhizodeposition stimulated by root 405 

and shoot growth. Hence, direct or indirect effects induced by the larger presence of the 406 

mycorrhizal fungi, together with rhizodeposition processes and bacterial activity (Buée et al., 2009) 407 

could be responsible of the significantly higher WEOC concentration in the rhizosphere than in the 408 

bulk soil. We also suggest that the larger amount of labile and hydrophilic organic molecules, partly 409 

made of gums and mucilages (Dakora and Phillips, 2002), produced by roots and rhizospheric 410 

microorganisms, together with the fine roots and the mycorrhiza hyphal network, fostered the 411 

higher AWC in the rhizosphere through the formation of stable aggregates (Goss and Kay, 2005; 412 
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Fageria and Stone, 2006; Cocco et al., 2013). This would help Helianthemum to resist the summer 413 

drought that affects these well-drained soils. 414 

The higher Cmic in the rhizosphere than in the bulk soil of Helianthemum may suggest that this plant 415 

species stimulates soil microbes to benefit its own growth. The large extent of microbial biomass C, 416 

together with the high Cmic/TOC ratio and WEOC, indicated that the rhizosphere of Helianthemum 417 

was likely not limited by the availability of the energetic substrates and, in particular, of those 418 

easily degradable compounds comprising the WEOC. Further, the in parallel high amount of carbon 419 

consumed during the basal respiration experiment and the low ΣCO2-C/WEOC ratio suggest a good 420 

adaptation of the microbial community to the rhizosphere environment. The low qCO2 of the 421 

rhizosphere confirmed the high substrate-use efficiency of the microbial community (Anderson and 422 

Domsch, 1989), which means a prevalence of anabolic over catabolic processes (Chander and 423 

Brookes, 1991). 424 

Conversely to Helianthemum, Dryas showed no significant difference in the microbial community 425 

structure between rhizosphere and bulk, as resulted by PLFA analysis. Although it has been 426 

reported that some species belonging to the genus Dryas may occasionally form symbiotic 427 

relationships with actinobacteria of the genus Frankia (Eskelinen et al., 2009), no evidence of root 428 

symbiosis with N-fixing organisms was detected in the studied Dryas octopetala. Because of this, 429 

we suggest that the greater amount of total and organic N found in the rhizosphere than in bulk soil 430 

might be due to the presence of a mutualistic association with ectomycorrhizal fungi (Figure 6b), 431 

because they are important N supplier in cold and N-limited environments (Cornelissen et al., 2001; 432 

Hobbie and Hobbie, 2006). Dryas has been found to be associated in alpine and arctic environments 433 

with many different ectomycorrhizal fungi (e.g., Høiland, 1998; Cornelissen et al., 2001; 434 

Bjorbækmo et al., 2010), which represent in most cases a high proportion of the rhizospheric fungal 435 

community (Taylor, 2002; Bjorbækmo et al., 2010). The dominance of ectomycorrhizal fungi in the 436 

rhizosphere has been found to produce a positive feedback between plant growth rate, leaf and litter 437 

quality, and decomposition rate (e.g., Berendse, 1994; Cornelissen et al., 1999, 2001; Aerts and 438 



 18 

Chapin, 2000) as they hasten organic matter cycling. However, the relatively low Cmic 439 

concentration, and the highest CO2-C evolved during the basal respiration (which was three-fold 440 

higher than that of the bulk, and 64% more than that of the Helianthemum rhizosphere), CO2-441 

C/WEOC ratio, and qCO2 suggested a low efficiency of the microbial community harbouring the 442 

Dryas rhizosphere in the use of energetic substrates (Chander and Brookes, 1991). The intense 443 

organic matter cycling, although with high energy expending, should have further favoured the 444 

release and accumulation in the rhizosphere of available nutrient such as Mg and K, other than Ca; 445 

the uptake of these cations would have promoted the excretion of protons, so contributing to 446 

rhizosphere acidification. 447 

For Silene, no difference was detected between rhizosphere and bulk for the abundance of the 448 

different microbial groups evaluated by PLFA analysis and for the microbial community structure 449 

as indicated by NMDS analysis. However, the higher amount of Cmic and respired CO2-C, and the 450 

lower qCO2 value in the rhizosphere than in the bulk soil indicated that the rhizosphere of Silene 451 

hosted a relatively well adapted microbial community. As seen for Helianthemum and Dryas, Silene 452 

showed a relative abundance of ectomycorrhizal association (Figure 6c), although it has been 453 

reported as a weakly or non-mycorrhizable species (Väre et al., 1992; Derelle et al., 2012) that, 454 

especially in arctic and alpine environments, is often colonized by dark septate fungi that are 455 

characterized by the formation of intracellular microsclerotia (Väre et al., 1992; Treu et al., 1996). 456 

The ecological role of dark septate fungi is not clear but some authors reported that they aid alpine 457 

plants to uptake P and N (Haselwandter et al., 1987; Mullen et al., 1998). Although we did not 458 

investigate on the presence of dark septate fungi in the Silene roots, the higher contents of organic P 459 

and total N in the rhizosphere than in the bulk soil might be ascribed to the combined effect of ecto- 460 

and/or endomycorrhizal symbioses. Further, the symbiotic association with mycorrhizal fungi may 461 

represent for Silene, which is characterized by a taproot system, a way to increase considerably the 462 

soil volume explored by the roots (Li et al., 1991; Jakobsen et al., 1992; Smith and Read, 1997).  463 

 464 
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4.3. Conclusions 465 

In this work we evaluated the rhizosphere effect of three plant species that typically colonize poorly 466 

developed soils of deglaciated areas under periglacial conditions. The results showed that, even 467 

under a hostile climate, the changes in soil physical and chemical properties are mainly driven by 468 

the plant species effect, whereas the changes in the structure of root-associated microbial 469 

community are driven by the combined effect of plant species and soil fraction (rhizosphere or bulk 470 

soil). Indeed, the three plant species considered in this study modified the soil properties and the 471 

microbial community structure differently, so to create a soil environment suitable for their needs. 472 

In the case of Helianthemum, a synergistic effect occurred between the root activity (i.e., exudation 473 

processes, root turnover) and rhizosphere microbial community. Conversely, when the root activity 474 

does not foster a microbial community structure specifically designed for the rhizosphere, as in the 475 

case of Dryas, an intense consumption of the energetic resources supplied by the plant occurred to 476 

make the nutrients available. However, even though we cannot exclude any minimum effect due to 477 

spatial variability, since the Dryas plants were younger than the Helianthemum ones, it is possible 478 

that Dryas rhizosphere had still not produced so many differences as the older Helianthemum. 479 

Conversely to Helianthemum and Dryas, Silene induced a very slight rhizosphere effect 480 

notwithstanding its age greater than the other two species, and its ability to colonize harsh 481 

environments was likely linked mostly to the shape and functions of its canopy rather than to a 482 

functional rhizosphere effect. Figure 7 schematically resumes the intensity of the rhizosphere effect 483 

for the three plant species. 484 
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Figure captions 

Figure 1. Map of Italy with magnification of the Abruzzo region and indication of the study site. 

Figure 2. Redundancy analysis (RDA) ordination plots: a) plant species and b) soil fractions 

(rhizosphere and bulk soil) effects on soil properties. Cannella valley, Majella massif (Italy). 

Figure 3. Variation of rhizosphere and bulk soil properties under the three plant species tested as 

analysed by principal component analysis (PCA) using standardized data.  

Figure 4. a) Percentage of organic C present as microbial biomass (Cmic/TOC), b) percentage of 

water soluble organic C developed as CO2-C (ΣCO2-C/WEOC), and c) metabolic quotient (qCO2) 

for rhizosphere and bulk soil of Heliantemum nummularium subsp. grandiflorum, Dryas octopetala 

and Silene acaulis subsp. cenisia, and bare soil. Cannella valley, Majella massif (Italy). Error bars 

are the standard errors. For each graph, columns with different letters significantly differ for P < 

0.05. 

Figure 5. a) Non-metric multidimensional scaling (NMDS) plot shows synergistic effect of plant 

species and soil fraction (rhizosphere and bulk soil) on soil microbial community structure (stress = 

0.087). Cannella valley, Majella massif (Italy). Error bars indicate the standard errors of the 

centroids along each NMDS axis. b) NMDS scores for PLFAs. 

Figure 6. Optical microscope micrographs showing ectomycorrhizal morphotypes detected in the 

fine roots of a) Helianthemum nummularium subsp. grandiflorum, b) Dryas octopetala, and c) 

Silene acaulis subsp. cenisia. Cannella valley, Majella massif (Italy). 

Figure 7. Schematic representation of the rhizosphere effect induced by Heliantemum 

nummularium subsp. grandiflorum, Dryas octopetala and Silene acaulis subsp. cenisia. Cannella 

valley, Majella massif (Italy). The rhizosphere effect of each species is evaluated by contrasting the 

properties of the rhizosphere with those of the bulk. The absence of circles means no difference 

occurring between rhizosphere and bulk, while the dimension of the circle is indicative of the extent 

of the difference (not in scale). 
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Table 1. pH values, available water content (AWC), and available and organic P concentration of rhizosphere and bulk soil of Heliantemum 

nummularium subsp. grandiflorum, Dryas octopetala and Silene acaulis subsp. cenisia, and bare soil. Cannella valley, Majella massif (Italy). Numbers 

in parentheses are the standard errors (n=3). For each line, mean values with different letters significantly differ for P < 0.05. 

 Helianthemum  Dryas  Silene  Bare soil 

 Rhizosphere Bulk Rhizosphere Bulk Rhizosphere Bulk  

AWC 

(%) 
23.25(0.86)

a
 13.96(3.67)

bcd
 20.62(1.56)

ab
 19.20(0.48)

abc
 12.90(1.96)

cd
 19.83(3.68)

ab
 11.59(1.20)

d
 

pH 7.29(0.06)
d
 7.51(0.05)

bc
 7.47(0.09)

cd
 7.79(0.06)

a
 7.59(0.04)

abc
 7.66(0.10)

abc
 7.71(0.08)

ab
 

Available P 

(mg kg
-1

) 
51.27(14.14)

a
 17.00(1.65)

c
 29.85(5.88)

abc
 32.25(7.25)

abc
 48.50(2.80)

ab
 50.43(12.79)

a
 19.13(2.24)

c
 

Organic P 

(mg kg
-1

) 
1276.06(46.53)

ab
 1302.86(11.60)

a
 1307.67(124.43)

a
 1016.24(69.79)

bc
 1283.51(79.35)

ab
 882.14(157.87)

c
 809.72(57.56)

c
 

Table 1



 

 

Table 2. Content of exchangeable basic cations and Fe forms [carbonate-bound Fe (CB-Fe), Fe forming the easily reducible Fe-Mn oxy-hydroxides, 

namely the labile Fe (L-Fe), Fe of the non-crystalline Fe oxy-hydroxydes plus that bound to organic matter (NC-Fe), and Fe of the crystalline Fe 

oxy-hydroxydes (C-Fe)] of rhizosphere and bulk soil of Heliantemum nummularium subsp. grandiflorum, Dryas octopetala and Silene acaulis 

subsp. cenisia, and bare soil. Cannella valley, Majella massif (Italy). Numbers in parentheses are the standard errors (n=3). For each line, mean 

values with different letters significantly differ for P < 0.05. 

 Helianthemum  Dryas  Silene  Bare soil 

 Rhizosphere Bulk Rhizosphere Bulk Rhizosphere Bulk  

Exchangeable Ca 

(cmol(+) kg
-1

) 
60.6(0.7)

a
 53.3(1.1)

a
 59.1(10.2)

a
 43.1(4.8)

ab
 55.5(9.0)

a
 33.1(5.6)

b
 27.2(5.8)

b
 

Exchangeable Mg 

(cmol(+) kg
-1

) 
1.2(0.1)

ab
 0.9(0.1)

abc
 1.3(0.5)

a
 0.6(0.1)

bc
 0.8(0.2)

abc
 0.4 (0.1)

c
 0.3(0.1)

c
 

Exchangeable K 

(cmol(+) kg
-1

) 
2.0 (0.0)

ab
 2.0(0.1)

ab
 2.3(0.3)

a
 1.7 (0.1)

b
 1.8(0.0)

b
 1.8(0.1)

b
 1.8(0.1)

b
 

Exchangeable Na 

(cmol(+) kg
-1

) 
1.1(0.1)

bc
 1.4(0.1)

a
 1.2 (0.1)

ab
 1.0(0.0)

c
 1.2(0.04)

ab
 1.3 (0.0)

a
 1.2(0.1)

ab
 

CB-Fe 

(mg kg
-1

) 
3.8(0.4)

abc
 5.4(0.4)

a
 4.6(0.7)

ab
 3.7(0.8)

abc
 3.8(0.4)

abc
 1.8 (0.3)

c
 3.2(1.1)

bc
 

L-Fe 

(mg kg
-1

) 
11.3(2.9)

b
 21.9(4.8)

a
 10.9 (1.5)

b
 10.1(1.1)

b
 6.9(1.4)

b
 6.1(0.4)

b
 11.7(1.2)

b
 

NC-Fe 

(mg kg
-1

) 
6814.3(81.6)

a
 7303.6(358.8)

a
 3779.0(1163.1)

b
 3032.0(632.7)

b
 3245.4(376.2)

a
 2003.4(151.3)

b
 2787.4(829.0)

b
 

C-Fe 

(mg kg
-1

) 
1338.9(153.2)

a
 1454.4(112.7)

a
 1197.4(165.0)

ab
 433.9(135.4)

cd
 796.8 (206.4)

bc
 189.7 (62.0)

d
 404.1(141.7)

cd
 

Table 2



 

 

Table 3. Content of total N, water extractable N (WEN), ammonium (NH4
+
-N), nitrate (NO3

-
-N), and organic N of rhizosphere and bulk 

soil of Heliantemum nummularium subsp. grandiflorum, Dryas octopetala and Silene acaulis subsp. cenisia, and bare soil. Cannella 

valley, Majella massif (Italy). Numbers in parentheses are the standard errors (n=3). For each line, mean values with different letters 

significantly differ for P < 0.05. 

 Helianthemum  Dryas  Silene  Bare soil 

 Rhizosphere Bulk Rhizosphere Bulk Rhizosphere Bulk  

Total N 

(g kg
-1

) 13.71(0.29)
a
 10.10(0.96)

bc
 14.16(1.73)

a
 9.23(1.02)

bc
 13.00 (1.58)

ab
 7.66(1.11)

c
 5.60(0.51)

c
 

WEN 

(g kg
-1

) 0.20(0.05)
a
 0.20(0.05)

a
 0.13(0.02)

ab
 0.13(0.02)

ab
 0.12(0.03)

ab
 0.12(0.03)

ab
 0.07(0.00)

b
 

NH4
+
-N 

(g kg
-1

) 0.04(0.00)
a
 0.03(0.00)

bcd
 0.02(0.00)

d
 0.02(0.00)

cd
 0.03(0.00)

ab
 0.02(0.00)

d
 0.03(0.00)

abc
 

NO3
-
-N 

(g kg
-1

) 0.01(0.00)
c
 0.01(0.00)

c
 0.01(0.00)

bc
 0.01(0.00)

b
 0.02(0.00)

ab
 0.01(0.00)

b
 0.02(0.00)

a
 

Organic N  

(g kg
-1

) 13.66(0.28)
a
 10.06(0.96)

bc
 14.13(1.74)

a
 9.20(1.02)

bc
 12.95(1.58)

abc
 7.63(1.11)

bc
 5.55(0.51)

c
 

Table 3



 

 

Table 4. Content of total organic C (TOC), water extractable organic C (WEOC) and microbial biomass C (Cmic), and amount of CO2 evolved 

during basal respiration experiments (ΣCO2-C)
 
for rhizosphere and bulk soil of Heliantemum nummularium subsp. grandiflorum, Dryas 

octopetala and Silene acaulis subsp. cenisia, and bare soil. Cannella valley, Majella massif (Italy). Numbers in parentheses are the standard errors 

(n=3). For each line, mean values with different letters significantly differ for P < 0.05. 

 Helianthemum  Dryas  Silene  Bare soil 

 Rhizosphere Bulk Rhizosphere Bulk Rhizosphere Bulk  

TOC  

(g kg
-1

) 
155.14(4.41)

a
 133.92(12.85)

ab
 118.89(2.07)

abc
 93.78(8.04)

abc
 137.41(17.01)

ab
 66.69(9.25)

bc
 50.09(4.82)

c
 

WEOC  

(g kg
-1

) 
1.14(0.25)

a
 0.24(0.03)

bc
 0.31(0.02)

b
 0.14(0.00)

c
 0.34(0.03)

b
 0.17(0.00)

c
 0.17(0.01)

c
 

Cmic  

(mg kg
-1

) 
1274.66(7.81)

a
 173.08(20.83)

d
 122.27(17.71)

e
 96.70(1.95)

f
 396.84 (1.97)

b
 210.61(9.34)

c
 126.16(17.95)

e
 

ΣCO2-C
 
 

(g kg
-1

) 
4106.06(58.67)

b
 2838.46(95.09)

c
 6740.27(156.29)

a
 1693.74(64.68)

d
 1764.38(136.8)

d
 1186.24(149.67)

e
 1278.95(212.12)

e
 

Table 4



 

Table 5. Content of total PLFAs and of specific PLFAs used to quantify the relative abundance of the individual cell types comprising the soil microbial 

community in the rhizosphere and bulk soil of Heliantemum nummularium subsp. grandiflorum, Dryas octopetala and Silene acaulis subsp. cenisia, and 

bare soil. Cannella valley, Majella massif (Italy). Numbers in parentheses are the standard errors (n=3). For each line, mean values with different letters 

significantly differ for P < 0.05. 

 Helianthemum  Dryas  Silene  Bare soil 

 Rhizosphere Bulk Rhizosphere Bulk Rhizosphere Bulk  

Total PLFAs 

(nmol C g
-1

) 
494.95(42.55)

a
 244.28(66.70)

b
 272.47(46.38)

b
 303.90(28.87)

b
 237.65(55.03)

bc
 229.91(47.60)

bc
 88.00(4.11)

c
 

Bacterial PLFAs  

(nmol C g
-1

) 
325.40(41.94)

a
 169.12(48.39)

b
 185.07(35.76)

b
 201.92(22.07)

b
 161.32(37.78)

b
 156.37(33.61)

b
 53.74(2.36)

c
 

Gram+ Bacteria PLFAs 

(nmol C g
-1

) 
144.11(15.21)

a
 62.60(22.79)

bc
 69.71(17.20)

bc
 84.38(9.60)

b
 62.85(17.42)

bc
 60.00(16.50)

bc
 20.45(2.13)

c
 

Gram– Bacteria PLFAs 

(nmoli-C g
-1

) 
181.29(26.99)

a
 106.52(25.86)

b
 115.36(18.61)

b
 117.54(12.67)

b
 98.47(20.79)

b
 96.37(17.12)

b
 33.29(0.58)

c
 

Fungal  PLFA 

(nmol C g
-1

) 
15.44(1.34)

a
 8.99(2.09)

b
 8.57(1.50)

bc
 7.961(1.26)

bc
 5.15(0.93)

cd
 4.37(0.45)

d
 2.08(0.24)

d
 

Fungal/Bacterial PLFAs 

ratio 
0.05(0.00)

ab
 0.05(0.00)

a
 0.05(0.00)

abc
 0.04(0.00)

bcd
 0.03(0.00)

cd
 0.03(0.00)

d
 0.04(0.00)

bcd
 

AMF PLFAs 

(nmol C g
-1

) 
17.15(2.09)

a
 7.82(2.56)

bc
 9.14(2.25)

bc
 13.22(2.57)

ab
 8.65(2.12)

bc
 8.22(2.41)

bc
 2.89(0.33)

c
 

Protozoa  PLFAs 

(nmol C g
-1

) 
0.95(0.18)

a
 1.16(0.24)

a
 0.88(0.48)

a
 0.45(0.06)

a
 0.83(0.23)

a
 1.19(0.33)

a
 1.17(0.05)

a
 

Actinomycetes  PLFAs  

(nmol C g
-1

) 
18.19(1.44)

a
 13.23(2.80)

ab
 16.53(3.45)

a
 12.33(0.80)

ab
 17.07(3.02)

a
 14.89(3.26)

a
 6.48(0.28)

b
 

Not specific  PLFAs  

(nmol C g
-1

) 
121.00(16.50)

a
 44.63(24.44)

bc
 50.09(5.92)

bc
 70.19(3.79)

b
 44.63(12.00)

bc
 44.87(8.10)

bc
 21.65(1.72)

c
 

Table 5



 

Appendix. Morphological description of the soils under Heliantemum nummularium subsp. grandiflorum, Dryas octopetala and Silene acaulis 

subsp. cenisia, and of the bare area. Cannella valley, Majella massif (Italy). For symbols see legend. 

Landform: moderately steep (10-12°) – Exposure: E-SE – Altitude: 2440-2443 m – Mean annual air temperature: 2.3°C – Mean annual precipitation: 2100 

mm – Parent material: thick morainic deposits (till) made of coralline and nummulitic limestone, arenaceous limestone, flintstone. 

 Depth Colour
a Structure

b Roots
c Boundary

d Other observations 

 cm      

Soil under Heliantemum nummularium subsp. grandiflorum mat: Oxyaquic Haplocryoll, loamy-skeletal, mixed, frigid (SSS, 2010) 

Oi 2-0 - - 0 aw Skeleton (by volume): 10%, mainly pebbles; few mesofauna 

A1 0-6 7.5YR 2.5/1 2m cr 3mi,vf,f,m,co cs Skeleton (by volume): 15%, mainly pebbles 

A2 6-19 10YR 2/1 2m sbk 3mi,vf,f,m,co cs Skeleton (by volume): 15%; mainly pebbles 

C&A 19-29 5YR 2.5/2 2f sbk 3mi,vf,f,m,co cs Skeleton (by volume): 75%; silt caps 

Bw 29-34 7.5YR 4/4 1f-m abk 2mi,vf,f; 3m,co cw Skeleton (by volume): 70%; silt caps 

BC 34-67 7.5YR 4/6 1f-m abk 2mi,vf,f,m,co cw Skeleton (by volume): 80%; open work; silt caps 

C 67-79+ 2.5YR 5/6 fragmental 1mi,vf,f; v1m,co - Skeleton (by volume): 80%; open work 

Soil under Dryas octopetala mat: Oxyaquic Haplocryoll, loamy-skeletal, mixed, frigid (SSS, 2010) 

Oi 2-0 - - 0 aw Skeleton (by volume): 15%, mainly pebbles; few mesofauna 

A1 0-5 5YR 2.5/1 2m cr 3mi,vf,f,m,co cw Skeleton(by volume): 25%, mainly pebbles 

A2 5-15 7.5YR 2.5/1 1m sbk 3mi,vf,f,m,co cs Skeleton (by volume): 20%, mainly pebbles 

C&A 15-27 7.5YR 3/3 1m sbk 3mi,vf,f,m,co cs Skeleton (by volume): 80% 

BC 27-66 7.5YR 4/6 1m abk 2mi,vf,f,m,co cw Skeleton (by volume): 80%; open work; silt caps 

C 66-80+ 2.5YR 5/6 fragmental 2mi,vf; 1f,m,co - Skeleton (by volume): 85%; open work; silt caps 

Soil at the edge of Silene acaulis subsp. cenisia cushion: Oxyaquic Haplocryoll, loamy-skeletal, mixed, frigid (SSS, 2010) 

A1 0-7 10YR 2.2 2m sbk 2mi,vf,f; 1m,co cw Skeleton (by volume): 40%, mainly pebbles 

A2 7-12 7.5YR 2.5/3 1f-m sbk-abk 2mi,vf; 1f,m,co cw Skeleton (by volume): 60%, mainly pebbles 

C&A 12-21 5YR 3/3 1m sbk 1mi,vf,f,m,co cs Skeleton (by volume): 70%; open work 

BC 21-63 5YR 5/6 1f abk v1mi,vf,f; 1m,co cw Skeleton (by volume): 85%; open work 

C 63-80+ 2.5YR 5/6 fragmental v1m,co - Skeleton (by volume): 80%; open work 

Soil of the bare area: Oxyaquic Cryorthent, loamy-skeletal, mixed, frigid (SSS, 2010) 

C 0-10 5YR 5/4 fragmental 0 aw Skeleton (by volume): 50%, half are pebbles 

A 10-14 5YR 3/4 1f-m sbk 1mi,vf,f cw Skeleton (by volume): 70%; mainly pebbles 

C&A 14-20 5YR 4/4 1f-m abk v1mi,vf,f cw Skeleton (by volume): 80%; open work; silt caps 

C 20-77+ 2.5YR 4/6 fragmental 0 - Skeleton (by volume): 80%; open work; silt caps 
a
 moist and crushed, according to the Munsell Soil Color Charts. 

b
 1 = weak, 2 = moderate, 3 = strong; f = fine, m = medium, c = coarse; cr = crumb, abk = angular blocky, sbk = subangular blocky. 

c
 0 = absent, v1 = very few, 1 = few, 2 = plentiful, 3 = abundant; mi = micro, vf = very fine, f = fine, m = medium, co = coarse. 

d
 a = abrupt, c = clear; w = wavy, s = smooth.
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