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10 Abstract

11 The accuracy of bathymetry estimated by optical implementations of remotely sensed depth inversion 

12 algorithms is in part related to the presence of optical wave signal in the images, which depend nonlinearly 

13 on the water surface slope. The signal to noise ratio in video images of waves decreases under large 

14 azimuthal angles between the camera and wave propagation direction, which can result in poor 

15 bathymetry estimation. We quantified errors in depth estimation by analysing the sensitivity of the optical 

16 implementation of cBathy v1.1, a widely applied algorithm for depth inversion in coastal regions, to wave 

17 viewing angle using synthetic tests. We found relative root mean square errors between 0.02 and 0.08 

18 when the azimuthal angle between the camera look direction and wave approach was less than 75°. 

19 However, for higher azimuthal angles, the wave signal was dominated by short wavelengths in the optical 

20 images lead in larger depth errors (relative root mean square error = 0.2). We also investigated the 

21 sensitivity of the initial guess of the wave direction in the nonlinear solution used by the cBathy v1.1 

22 algorithm to estimate water depth. Observed water depth errors caused by wave viewing angle or initial 

23 guess of the wave direction are shown in part to be related to errors in the estimates of frequency and 

24 wavenumber. The synthetic methodology and the results of the sensitivity analysis can be generalized to 

25 test the accuracy of depth estimation in shore-based video monitoring systems, to design future fixed 

26 camera coastal video monitoring stations or to drive the choice of the better viewing angles using small 

27 Unmanned Aerial Systems (sUAS) using the Matlab Toolbox we developed.
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30 1. Introduction

31 Optical remote sensing techniques, especially video imagery, are widely employed to monitor the 

32 coastal evolution [1, 2]. Optical imagery offers the unique capability to collect high volumes of data at high 

33 temporal and spatial resolution with relatively low cost and over long periods. The underlying concept of 

34 video imaging in coastal regions is that any visually discernible physical phenomenon can be investigated [1, 

35 2]. Since many nearshore processes have optical signatures, video-monitoring techniques provide useful 

36 indirect measurements of the nearshore hydrodynamic and morphological processes. 

37 Waves are imaged as sunlight reflected from the sloped sea surface reaches the camera sensor and is 

38 recorded as image intensity. The radiance reaching the camera sensor from a point on the sea surface, ,  𝐼

39 depends on the sky conditions, the light reflected off the sea surface, as well as the light upwelled from 

40 below the sea surface [e.g. 3, 4, 5, 6]. The variation of the wave slope between wave crests and troughs 

41 produces the main time-dependent signal in optical imaging of surface gravity waves.  can be expressed as 𝐼

42 the sky radiance distribution, , modified by the Fresnel reflection coefficient, ,𝐿 𝑅

43 , (1)𝐼 = 𝐿 𝑅

44 where  depends on the brightness of the sky and of the angle of incidence of the light. The sky radiance 𝐿

45 distribution may be modelled in different ways for different sky conditions [7]. In this manuscript, we 

46 consider a uniform sky condition for simplicity, which is equivalent to considering only the Fresnel 

47 coefficient, , [5],𝑅

48 . (2)𝐼 = 𝑅 =
1
2[sin2 (𝜔 ‒ 𝜔')

sin2 (𝜔 + 𝜔')
+

𝑡𝑎𝑛2 (𝜔 ‒ 𝜔')
tan2 (𝜔 + 𝜔')]

49 The Fresnel reflection coefficient describes the reflectivity of the surface for an unpolarised illumination 

50 source where  is the angle of incidence of the sky radiance with respect to the sea surface normal. 𝜔

51 Therefore,  is equal to the angle of the camera viewing direction with respect to the sea surface normal, 𝜔

52 while  is the angle of refraction related to  by Snell’s law, . The sea surface can 𝜔' 𝜔 sin (𝜔) = 1.34 sin (𝜔')

53 be defined by the local wave slope, hence it is possible to calculate the vector normal to the wave sea 

54 surface,

55 , where  . (3)𝑟𝑛 =
𝑟𝑛'

‖𝑟𝑛'‖ 𝑟𝑛' = [∂𝜂
∂𝑥 ,   

∂𝜂
∂𝑦, 1]

56 The camera viewing direction,

57 (4)𝑟𝑐 = [ ‒ cos 𝜏cos 𝛼𝑐, ‒ cos 𝜏sin 𝛼𝑐,  sin 𝛼𝑐 ],

58 depends on both camera tilt from horizontal, , and azimuth, , where the latter is measured from the x-𝜏 𝛼𝑐

59 axis in the counter-clockwise direction. Therefore, the incident ray, , can be defined knowing the surface 𝑟𝑖

60 normal and the extrinsic camera parameters as,



61 . (5)𝑟𝑖 = 2𝑟𝑛(𝑟𝑛 ∙ 𝑟𝑐) ‒ 𝑟𝑐

62 Then, the incidence angle, , can be defined as[3],𝜔

63 . (6)𝜔 = cos ‒ 1 (𝑟𝑛 ∙ 𝑟𝑐)

64

65 The highest optical contrast occurs when the camera looks in the direction of wave propagation (𝜃 ‒ 𝛼𝑐

66 , where  is the incident wave direction), while the waves are less visible when the camera looks along = 0° 𝜃

67 the crest ( ), where surface gravity wave slope is less than the direction of propagation. Images 𝜃 ‒ 𝛼𝑐 = 90°

68 looking along the wave crest may be dominated by high frequency waves rather than the dominant 

69 component of the wave spectrum [3, 4].

70 The loss of wave signatures in the images may influence many algorithms that exploit imaging of waves. 

71 One of the most important morphological measurements that can be derived from optical determination of 

72 wave characteristics is the nearshore bathymetry. The importance of nearshore bathymetry stems from its 

73 influence on nearshore physical processes. For example, prediction skill of forecasting models increases 

74 with more accurate bathymetric boundary conditions [e.g. 8, 9, 10]. Quantifying bathymetric change is 

75 crucial to understand flood risk exposure [11] and erosion and accretion processes of the beach, as well as 

76 to support navigation and engineering projects. Monitoring the beach behavior under both seasonal and 

77 extreme events is also important to facilitate coastal management decisions [12]. Yet, traditional methods 

78 for surveying nearshore bathymetry are expensive and time-consuming, resulting in spatial and temporal 

79 resolution lower than necessary for observational and modelling needs. On the contrary, remote sensing 

80 techniques can indirectly estimate the water depth and fill spatial and temporal gaps in surveyed 

81 bathymetry [13].

82 Depth-inversion is one of the most frequently used video-based remote sensing methods to estimate 

83 nearshore bathymetry in the presence of surface gravity waves. The method is based on the inversion of 

84 the dispersion relationship and exploits the wave celerity observed by optical imagery in intermediate or 

85 shallow water depths. This approach is based on the linear [e.g. 14], nonlinear [e.g. 15], or extended 

86 Boussinesq dispersion equations [e.g. 16]. Wave celerity estimates needed for the inversion can be 

87 conducted in the time domain [e.g. 17] or the frequency domain [e.g. 14]. The temporal method computes 

88 a time-domain cross-correlation between neighboring positions to estimate the wave celerity [17], while 

89 the spectral method uses a cross-spectral correlation to estimate the wave celerity [18]. Both approaches 

90 result in depth estimates with similar accuracy using synthetic optical video data [19].

91 Optical applications of remotely sensed depth inversion methods require video images of waves. 

92 Therefore, accuracy of the bathymetric estimation depends partly on the ability to distinguish the wave 



93 signal, which is dependent on viewing angle. Typically, shore based video monitoring stations have a fixed 

94 azimuthal direction that is nominally in the direction of wave propagation. However, shore based 

95 monitoring stations mounted at atypical locations (e.g., cameras mounted on a jetty, headland, or satellite 

96 video and unmanned aircraft system (UAS) looking perpendicular to the direction of wave propagation) 

97 may result in optical image with a lower signal to noise ratio. 

98 The effects of azimuthal viewing angle on depth inversion algorithms are not documented in literature; 

99 therefore, this Short Communication aims to quantify the sensitivity of a widely used depth inversion 

100 algorithm, cBathy, to the wave-viewing angle. We chose to conduct the analysis using synthetic data to 

101 avoid the complexities of real imagery such as breaking waves, irregular bathymetry, currents, non-uniform 

102 lighting conditions and, sometimes, reflection or diffraction of waves and interaction with engineered 

103 structures, such as harbors and jetties that violate assumptions of cBathy. Synthetic tests simplify the 

104 problem and focus the analysis on the role of light reflection off the water surface and wave viewing angle 

105 on error in estimated water depth as well as estimated frequency and wavenumber. The method for 

106 creating synthetic imagery is presented in Section 2 along with a review of the cBathy algorithm. In Section 

107 3, we illustrate the application of synthetic tests to study the influence of wave viewing direction on water 

108 depth estimation and we discuss the results and the role of errors in frequency and wavenumber. General 

109 conclusions are provided in Section 4.  In the appendix A we discuss the sensitivity of cBathy v1.1 to the 

110 initial guess of the wave direction necessary for the nonlinear solver. Additionally, we provide a freely 

111 available toolbox for generating synthetic imagery, so that users can generalize results to their own coastal 

112 video monitoring stations. 

113 2. Methods

114 The procedure used to build synthetic data consists in four main steps. First, frequency-directional 

115 spectra are defined. Then, synthetic sea surface elevation time series are generated based on the 

116 previously defined input spectra. Afterwards, a time series of synthetic imagery from simulated reflected 

117 radiance are built for the simulated sea surface [7, 20]. Finally, the synthetic optical time series are used as 

118 input to a widely used depth inversion algorithm to estimate the bathymetry. The Matlab© functions we 

119 developed to model the synthetic optical time series, based on the work of Chickadel [21], are available 

120 (https://github.com/Coastal-Imaging-Research-Network/station-design-toolbox).

121 2.1 Synthetic imagery

122 We considered two types of input spectra to generate the synthetic imagery that included real spectra 

123 (Table 1) representative of protected seas (e.g., Adriatic Sea), characterized by bi-modal spectra [22], and 

124 analytic frequency-directional spectra (Table 2) to analyze different conditions (different camera height, tilt 

https://github.com/Coastal-Imaging-Research-Network/station-design-toolbox


125 or spreading parameter). The first type of spectra used to develop synthetic imagery comes from the 

126 EsCoSed field experiment, performed at the Adriatic Sea [23], and are representative of the Adriatic winter 

127 storm conditions. The observations were collected with a sentinel Acoustic Doppler Current Profile (ADCP) 

128 deployed in about 7.3 m water depth and 850 m offshore of the mouth of the Misa River, Senigallia, Italy 

129 (43° 43.588' N, 13° 13.941' E). The spectra were statistically estimated from ADCP velocity observations. We 

130 focused on a storm that occurred on 25 January 2014, and we selected spectra around the peak of the 

131 storm during which the wave height and energy were maximum (E01-E02-E03-E04). Then, we selected one 

132 spectrum related to the mean storm energy (E07). We manually modified the peak direction of each 

133 selected spectrum, shifting the wave angle but preserving the spectral shape and energy (Figure 1a). In our 

134 analyses, the wave propagation direction , is measured from the x-axis (considered the cross-shore , 𝜃

135 direction) in the counter-clockwise direction. The second type of spectra was generated from an analytic 

136 frequency-directional spectra, , which was expressed as𝑆(𝑓,𝜃)

137 , (7) 𝑆(𝑓,𝜃) = 𝐸(𝑓)𝐷(𝑓,𝜃)

138 where  is the one dimensional, frequency dependent wave spectrum and  is the directional 𝐸(𝑓) 𝐷(𝑓,𝜃)

139 distribution, which depends on both frequency, f, and direction, . The shape of the frequency spectrum (𝜃 𝐸

140 ) is defined in terms of the significant wave height, , and the mean zero-upcrossing period, , by (𝑓) 𝐻𝑠 𝑇𝑧

141 fitting the JONSWAP spectrum. For , the formulation of Carter [24] was used, where  is 𝐸(𝑓) 𝑇𝑝 = 1.286𝑇𝑧

142 the spectral peak period,

143 ,  (8)𝐸(𝑓) = 𝐺(𝑓)0.0749𝐻2
𝑠𝑇𝑧(𝑇𝑧𝑓) ‒ 5exp [ ‒ 0.4567/(𝑇𝑧𝑓)4]

144 , (9)𝐺(𝑓) = 3.3
exp [ ‒

(1.286𝑇𝑧𝑓 ‒ 1)2

2𝜎2 ]

145 (10)𝜎 = {0.07  𝑓𝑜𝑟  1.286𝑇𝑧𝑓 < 1
0.09  𝑓𝑜𝑟  1.286𝑇𝑧𝑓 > 1.

146 The direction distribution,  depends only on the wave direction, 𝐷(𝜃), 𝜃,

147 (11){𝐷(𝜃) = 𝐷0cos2𝑠 [𝜃 ‒ 𝜃𝑃]          𝑖𝑓  |𝜃 ‒ 𝜃𝑃| <  𝜋/2
0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,

148 (12)𝐷0 =
1

π0.5

Γ(𝑠 + 1)
Γ(𝑠 + 1/2) ,

149 where  is the spectral peak direction,  is the Gamma Function,  is the normalization factor and  is the 𝜃𝑃 Γ 𝐷0 𝑠

150 spreading parameter [25, 26]. The parameters used for the analytical spectra are summarized in Table 2 

151 and an example of the resulting frequency-directional spectra is shown in Figure 1b. We define two general 

152 cases, characteristic of the Central Adriatic wave climatology, but the results may be generalized for other 



153 sites. The first case used  and , typical of storm waves in the Adriatic approaching the Hs = 3.0 m Tp = 7 s

154 Italian coast from ESE (A10-A11-A12-A13). The second case used  and , typical of storm Hs = 2.5 m Tp = 10 s

155 waves approaching from NNE (A20 A21-A22-A23). We generated wave spectra for a range of peak 

156 directions.

157 For each defined spectrum, synthetic sea surface time series have been generated within a simulated 

158 camera field-of-view following Percival [27] and Scarsi [26]. The sea surface elevation time series, , 𝜂(𝑥,𝑦,𝑡)

159 can be represented as

160 , (13)𝜂 = 𝑖fft(𝑊)

161 where  is the inverse Fourier transform and the Fourier series, , is defined as 𝑖fft(𝑊)  𝑊

162 , (14)𝑊 = 𝐴𝑤(cos (𝜑) + 𝑖sin (𝜑)) +  𝐴𝑛(cos (𝜑𝑛) + 𝑖sin (𝜑𝑛))

163 where  is the amplitude of the wave signal in the frequency domain and is related to the input spectral 𝐴𝑤

164 characteristics;  is the amplitude of the noise signal in the frequency domain and is proportional to the 𝐴𝑛

165 noise to signal ratio, and  and  are the phase of the harmonic variability of the waves and noise, 𝜑  𝜑𝑛

166 respectively. Since the spectrum is independent of the phase of the harmonic variability, the phases,  and𝜑  

167 , are arbitrary, hence we computed them with a random function,𝜑𝑛

168 (15)𝜑 = 𝜑𝑟 ‒ 𝑘 𝑥cos 𝜃 ‒ 𝑘 𝑦sin 𝜃, 

169 , (16)𝜑𝑛 = 𝜑𝑟,𝑛

170 with random values,  , , and , the wavenumber. The approach allows for an 0 ≤ 𝜑𝑟 < 2𝜋 0 ≤ 𝜑𝑟,𝑛 < 2𝜋 𝑘

171 infinite number of possible time series to be generated with the same input spectrum. We generated a 

172 time series for each wave direction, then, we summed for all wave directions. We considered only the real 

173 part for the first  elements of the transformed series. 𝑁𝑠

174 Considering the slope of the synthetic sea surface, we generated synthetic optical time series 

175 corresponding to the simulated wave time series using the radiance modulation model [7] described in (1) – 

176 (6). We simulated optical images of linear, non-breaking waves propagating over a flat bottom in 

177 intermediate water depth, where depth inversion algorithms were expected to work well.

178 2.2 Depth inversion

179 The optical time series generated in Section 2.1 were used as input to the well-known cBathy v1.1 

180 depth inversion algorithm [28]. We chose this algorithm because itis open source 

181 (https://github.com/Coastal-Imaging-Research-Network/cBathy-toolbox) and has become one of the most 

182 widely used depth inversion algorithms [e.g. 29, 30, 31, 32, 33, 6, 19, 34, 35, 36].

https://github.com/Coastal-Imaging-Research-Network/cBathy-toolbox


183 The cBathy algorithm is based on the inversion of the linear dispersion equation, that relates the water 

184 depth to the wave celerity, without a current present,

185 , (17)Ω2 = 𝑔𝑘 𝑡𝑎𝑛ℎ(𝑘ℎ)

186 where  is the radian wave frequency,  is the wavenumber,  is the water depth and  is the acceleration Ω 𝑘 ℎ 𝑔

187 due to gravity. The local water depth was estimated from a suite of observed wave frequency and 

188 wavenumber pairs. Therefore, accurate bathymetry estimation is dependent upon accurate estimation of 

189 both frequency and wavenumber. 

190 Execution of the cBathy v1.1 algorithm consists of three steps. The first step carries out a 

191 frequency-dependent analysis and estimates the (usually four) most coherent pairs of wave frequencies 

192 and wavenumbers. Following Plant et al. [18], for each analysis point, the algorithm considers a subgrid in 

193 which the dominant frequencies are estimated by Fourier transform of the input optical signal and the 

194 cross-spectral matrix is computed between all pixel pairs in the subgrid. The cross-spectral matrix is filtered 

195 using spatial eigenvector analysis to identify the dominant spatial phase of the waves. The corresponding 

196 wavenumbers are derived by fitting the observed spatial phase structure to a forward model. Initial guesses 

197 at the value of wavenumber and wave direction (seed angle) are necessary for this nonlinear fit. The 

198 second step in the cBathy v1.1 algorithm combines the frequency-wavenumber pairs from Step 1 to give a 

199 single depth estimate. At each analysis point, the algorithm chooses the  pairs from within the subgrid 𝑓 ‒ 𝑘

200 to use in the depth estimate by weighting by distance from the analysis point and skill of the modelled 

201 wave phase. Then, the algorithm calculates the depth as the value that yields the best weighted nonlinear 

202 fit between the first step  pairs and the dispersion (17). The third step uses a Kalman filter to smooth 𝑓 ‒ 𝑘

203 and average the estimated depth results. The third step is neglected in this analysis.

204 2.3 Example imagery and depth inversion 

205 An example image and depth inversion is shown for a 1 km by 1 km region with 3 m resolution (Figure 

206 2). The camera height was 25 m and the water depth was constant and equal to 7 m. The camera was 

207 located at the origin of coordinate system and looks along the x-direction, but the tilt and azimuth changed 

208 over the synthetic image so that the angular difference between the wave and camera view directions 

209 varied. In the example imagery, we varied the direction of wave propagation that included, 0° or from the 

210 x-direction (Figure 2a and 2d), 90° or from the y-direction (Figure 2c and 2f) and 45° (Figure 2b and 

211 2e).Waves approaching from the x-direction have the convention,  = 0°.𝜃 ‒ 𝛼𝑐

212 The effects of the variation in camera tilt and camera azimuthal angles on the optical imaging of surface 

213 gravity waves were summarized in Section 1. The tilt variation effects manifest as variation of intensity 

214 magnitude so that when moving closer to the origin of the camera system, the tilt angle increased and the 

215 intensity magnitude decreased (Figure 2a, 2b, 2c). The azimuth variation effects have been observed by 



216 changing the wave direction, , that is equivalent to changes in azimuth direction, .Qualitatively, 𝜃 𝛼𝑐

217 synthetic imagery (Figure 2) demonstrates the effect of varying  on both image intensity and 𝜃 ‒ 𝛼𝑐

218 bathymetric estimation. By increasing the angular difference, the longer wavelength waves are less visible 

219 in the optical image, and wave crests propagating parallel to the viewing direction are dominated by high 

220 wavenumbers. Likewise, the estimated water depth is more variable in regions dominated by high 

221 wavenumbers which fall closer to the deep water limit. For example, in Figure 2a and 2d, the error was 

222 largest close to the y-axis, where the angular difference was maximum (90°), and the error decreases 

223 towards the x-axis, where the angular difference was minimum (0°). In Figure 2b and 2e, the bathymetric 

224 error was lower because the angular difference did not exceed 45°. In Figure 2c and 2f, the maximum error, 

225 corresponding to the maximum angle difference, was close to the x-axis.

226

227 3. Results and Discussion 

228 We used the synthetic procedure illustrated in Section 2 to perform a sensitivity analysis of wave 

229 viewing direction on water depth estimation. We considered an analysis domain of 200 m by 200 m with 3 

230 m resolution. The camera was located at the origin of coordinate system and looking along the x-direction. 

231 Within the domain, we assumed a fixed camera tilt and azimuth angle to focus on the effects of the 

232 variation of the azimuthal wave viewing direction. The azimuthal wave viewing angle,  was (𝜃 ‒ 𝛼𝑐)

233 progressively increased from 0° to 90°, by changing the peak wave direction, over the small analysis 

234 domain. The camera tilt was set to 14° or 18° and the camera height set to 25 m or 40m, respectively. In 

235 one case the tilt was set to 45°. The input bathymetry had a constant depth of 7 m or 10 m. For each 

236 combination of input parameters listed in Table 1-2, we computed ten random realizations of the sea 

237 surface, optical image, and estimated the water depth, following the methodology outlined in Section 2. 

238 Then, for each realization, the relative error in depth estimation was quantified by comparing the 

239 estimated bathymetry to the water depth used to create the synthetic sea surface:

240 , (18)𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟 =
∑𝑁

𝑛 = 1|(ℎ𝐸 ‒ ℎ𝑇)/ℎ𝑇|2

𝑁

241 where  is the estimated water depth and  is the true water depth, and  is the number of comparison ℎ𝐸 ℎ𝑇 𝑁

242 values (number of grid points). Finally, the mean relative error and the corresponding standard deviation 

243 were calculated over the ten realizations to reduce the noise due to the random phases (Figure 3-4). 

244 Consistent with our understanding of the effects of azimuthal viewing angle on optical imaging of waves [4, 

245 5], the variation of  influenced estimates of water depth. (𝜃 ‒ 𝛼𝑐)



246 For analytical spectra, the relative errors for angular differences of less than 75° were almost constant 

247 and low (relative error order 0.02 – 0.08) over the horizontal viewing angle variation (Figure 3a, 3b). Within 

248 this range of viewing angles, the magnitude of error in bathymetry estimation was consistent with the error 

249 reported in observational studies when algorithm assumptions are not violated [14, 6, 34]. For larger 

250 angular differences, the waves are looked mainly along the crest and the optical images are dominated by 

251 high frequency waves rather than the dominant component of the wave spectrum heading to a noisy signal 

252 for the depth inversion algorithm (see Section 1). The presence of short wavelengths in the optical images 

253 lead to errors in depth estimation that rapidly increase until a relative error order 0.2 (Figure 3).

254 Again, using analytical spectra, we considered several other influences on estimated water depth 

255 including camera height, camera tilt angle, water depth and directional spreading of the analytical spectra. 

256 By considering a specific area of the field of view, changing the camera height is equivalent to changing the 

257 tilt angle and vice versa. The camera heights and the relative tilt angles considered here did not affect the 

258 general reconstruction of the bathymetry (see differences between case A20 and case A21 in Figure 3a). 

259 Considering a fixed camera height and a variable tilt angle is equivalent to modifying the distance from the 

260 camera location of the observed area in x direction. We analyzed several values of tilt for a fixed camera 

261 height (not shown) but we reported only the case in which the camera looks straight down (A23) because it 

262 could be relevant for sUAS. In all cases we did not find any relevant errors on bathymetry estimation in 

263 relation to the tilt variation. In fact, in the optical model that we used, the tilt variation affects only the 

264 intensity magnitude (Figure 2), which is then normalized by the depth inversion algorithm. The range of 

265 waters depths, and normalized water depths ( ) considered here had a minimal effect on the relative 𝑘ℎ

266 depth error, in particular for  less than 75° (compare cases A20 and case A22 Figure 3a).The water (𝜃 ‒ 𝛼𝑐)

267 depths were in fact chosen deep enough to avoid breaking and nonlinear effects but not too deep to make 

268 the dispersion relationship insensitive to depth. Instead, the directional spreading somewhat affected the 

269 depth inversions, particularly as  increased (Figure 3b). When directional spreading was small, the (𝜃 ‒ 𝛼𝑐)

270 depth estimate from the inversion was insensitive to  (see case A13 in Figure 3b).(𝜃 ‒ 𝛼𝑐)

271 Error analysis with experimental spectra produced similar results to the analytical spectra (rapidly 

272 increasing error for  greater than 75°), with a few notable differences (Figure 4). Our experimental (𝜃 ‒ 𝛼𝑐)

273 input spectra were less directionally spread than the analytical spectra. In most cases the error magnitude 

274 of the experimental cases was similar to the error magnitude of the analytical cases with low directional 

275 spreading (A12-A13). The cases E01, E02, E03, E04 error increases as a function of  in a way similar (𝜃 ‒ 𝛼𝑐)

276 to the analytical cases while a different behavior has been observed for case E07 (Figure 4, green line). This 

277 last case is characterized by shorter peak wave period, and in turn by larger value of , than the other 𝑘ℎ

278 cases (see Table 1). We found that the anomalous shape is related to sampling problems inside the cBathy 

279 v1.1 due to the shorter waves of case E07. To avoid this problem, we used the cBathy v1.2 that improves 

280 the nonlinear fit for short waves (see Figure 4). 



281 Since the depth inversion estimation depends upon accurate estimates of frequency and wave number 

282 pairs, we compared the  pairs, estimated from cBathy v1.1, with the linear dispersion relationship 𝑓 ‒ 𝑘

283 relative to the spectrum at the specific depth (Figure 5). The cBathy v1.1 derived frequencies and 

284 wavenumbers come from the four most coherent frequency-wavenumber pairs obtained in Step 1 of the 

285 algorithm that exceded a minimum skill threshold. Errors in frequency and wavenumber pair estimations 

286 increase with increasing the wave viewing angle  and erroneous frequency and wavenumber pairs (𝜃 ‒ 𝛼𝑐)

287 begin to dominate for angles exceeding 75°.

288

289 4. Conclusions

290 We utilized synthetic tests to analyze the effects of wave direction on water depth estimation using the 

291 optical implementation of the linear depth inversion algorithm, cBathy v1.1. We found that the error in the 

292 water depth estimates where wave viewing angle is less than 75o were consistent with previous field 

293 observations (relative root mean square error = 0.02 – 0.08). Given that the synthetic tests were designed 

294 to adhere to algorithm assumptions, the result suggests the limit of accuracy that can be expected from the 

295 algorithm. When the wave viewing angle exceeded 75o, the wave slope associated with the dominant 

296 frequencies became obscured, leading to errors in both frequency and wavenumber estimation which in 

297 turn result to errors in depth. Errors were larger for directionally spread waves. Our results and the 

298 proposed procedure to build synthetic optical images can be applied to develop sampling schemes for fixed 

299 camera coastal video monitoring stations or for small Unmanned Aerial Systems (sUAS) with viewing waves 

300 different from the typically offshore-pointing azimuth direction.
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308 Appendix A

309 cBathy v1.1 requires an initial guess at the direction of wave propagation to seed the nonlinear fit used 

310 to obtain directions and wavenumbers in Step 2 of the algorithm. Therefore, the choice of the seed angle 

311 also impacts the final estimate of water depth. Usually, the cBathy v1.1 seed angle is set assuming that the 

312 waves come from the cross-shore direction (0°). However, in operational application the incoming wave 

313 may not be shore-normal directed and the direction of wave propagation may vary with space and time. As 

314 a result, the seed angle is a potential source of error in the estimated water depth using cBathy v1.1. Note 

315 that the new version of cBathy algorithm (cBathy v1.2) removes the need to specify the incoming wave 

316 angle by estimating the seed angle from the spatial phase structure and an initial guess at water depth. 

317 However, the cBathy v1.1 is still widely used and the seed angle problem is not yet addressed in the 

318 literature.

319 To quantify the sensitivity of the cBathy v1.1 to the seed angle, we present results with different initial 

320 guesses of the wave direction. This analysis has been performed using the 1 km by 1 km grid (Figure 2) and 

321 considering three directions of wave propagation (0°, 45°, 90°). cBathy was initialized using a range of seed 

322 angles (from 0° to 90°) and the parameters listed in Table 3. The relative error was computed with (18) 

323 (Figure A.1). Differences between seed angle and wave direction greater than 45° resulted in undulatory 

324 features in the estimated water depth (not shown) and relative errors order 0.1-0.4 (Figure A.1). Relative 

325 error was minimized when the seed angle was closest to the wave direction. In the analyses performed in 

326 Section 2-3, we cared to set the initial guess at the direction equal to the wave propagation direction to 

327 avoid that the error due to a mistake of the setting seed angle can be added to the error due to a large 

328 wave viewing angle.

329 Finally, we investigated the role of the seed angle in  estimated from Step 1 of the cBathy v1.1 𝑓 ‒ 𝑘

330 algorithm. For this analysis, we compered the linear dispersion relationship with the estimated frequency-

331 wavenumber pairs that exceded a minimum skill threshold in a way similar to the analysis performed in 

332 Section 3. Figure A.2 shows an example of this comparison for case E01 and wave direction equal to 0°. For 

333 cases with no error in seed angle (Figure A.2a), errors in frequency and wavenumber pair estimations were 

334 minimal while the errors increased when the seed angle was not correctly setting (Figure A.2b-c). In the last 

335 cases the underestimation of the depth was related to an overestimation of the wavenumber.  

336
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417
418 Table 1  - Summary of analysed sea states and parameters, from EsCoSed experiment source. For each case the table displays the 

419 index, the peak period, the significant wave height, the wave energy, the camera height, the camera tilt angle (fixed in the wave 

420 viewing analysis), the water depth and the kh computation.

case Tp (s) Hs (m) Smax (m2s) hc (m) tilt (°) h (m) kh

E01 8.79 2.95 10.85 25 14 7 0.6427
E02 8.79 3.09 8.74 25 14 7 0.6427
E03 9.44 2.99 5.31 25 14 7 0.5933
E04 9.44 2.92 14.21 25 14 7 0.5933
E07 5.94 1.54 1.51 25 14 7 1.0304

421

422
423 Table 2 - Summary of analysed sea states and parameters, from analytical source. For each case the table displays the index, the 

424 peak period, the significant wave height, the spreading parameter, the camera height, the camera tilt angle (fixed in the wave 

425 viewing analysis), the water depth and the kh computation.

case Tp (s) Hs (m) s hc (m) tilt (°) h (m) kh

A10 7.00 3.00 5 25 14 7 0.8384
A11 7.00 3.00 2 25 14 7 0.8384
A12 7.00 3.00 10 25 14 7 0.8384
A13 7.00 3.00 20 25 14 7 0.8384
A20 10.00 2.50 5 25 14 7 0.5567
A21 10.00 2.50 5 40 18 7 0.5567
A22 10.00 2.50 5 25 14 10 0.6798
A23 10.00 2.50 5 25 45 7 0.5567

426

427

428 Table 3 - Summary of cBathy parameters. The x-axis is the cross-shore direction, and the y-axis is the alongshore direction.

cBathy parameter name value desription
params.dxm 9 m Analysis domain spacing in x
params.dym 13 m Analysis domain spacing in y

params.xyMinMax [0 1000 0 1000] for Grids
[50 250 50 250] for Patches

Spatial extent of the analysis grid

params.MINDEPTH 0.25 m Min limit set for the nonlinear depth 
search in phase 2.

params.QTOL 0.5 Min skill

params.minLam 10 Min normalized eigenvalue to 
proceed

params.Lx 2*params.dxm Smoothing length scales in x
params.Ly 2*params.dym Smoothing length scales in y

params.kappa0 3 Multiplier that increase Lx seaward
params.maxNPix 80 Max number of pixels per subgrid

params.fB [1/15 : 1/100 : 1/4] List of frequencies for analysis
params.nKeep 4 Number of frequencies to keep

params.offshoreRadCCWFromx Variable Seed angle
429
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431 Figure 1 – a) Example of peak shifting for case E01 with peak directions of 0° (red), 45° (blue), and 90° (green). b) Example of 

432 frequency directional spectrum (A20) designed using equations (7) to (12). (For interpretation of the references to color in this 

433 figure, the reader is referred to the Web version of this article.)
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436 Figure 2 –Synthetic optical images (upper panels) and estimated bathymetry (lower panels), for case E01, for wave angles equal to 

437 0° (a,d), 45° (b,e), and 90° (c,f). The angles are positive in the counter-clockwise direction from the x-axis. The red arrows indicate 

438 the wave direction. The seed angle was set coherent to wave propagation. (For interpretation of the references to color in this 

439 figure, the reader is referred to the Web version of this article.)

440
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445 Figure 3 - Mean (*) and standard deviation (bars) of bathymetric error as function of difference between wave angle and camera 

446 viewing direction. a) analytical spectra A20, A21, A22 and A23; b) analytical spectra A10, A11, A12 and A13 with different 

447 directional spreading. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 

448 this article.)
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454 Figure 4 - Mean (*) and standard deviation (bars) of bathymetric error as function of difference between wave angle and camera 

455 viewing direction for observed spectra E01, E02, E03, E04 and E07. (For interpretation of the references to color in this figure legend, 

456 the reader is referred to the Web version of this article.)
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459 Figure 5 –Frequency and wavenumber pairs estimated from cBathy for case E01 and relative to waves coming from 0° (a), 44° (b) 

460 and 92° (c). The curve shows the linear dispersion relationship for the specified water depth (7m). The markers indicate the f-k pairs 

461 estimated from cBathy in each point of the analysis grid and relative to the first (•), the second (), the third (*) and the fourth (+) 

462 coherent frequency. The color gradient of the markers is proportional to the skill but only points that exceed the threshold are 

463 plotted. Only one of the ten realizations is plotted for illustration. (For interpretation of the references to color in this figure legend, 

464 the reader is referred to the Web version of this article.)
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467 Figure A.1– Seed angle sensitivity for analytical (a-b-c) and experimental (d-e-f) cases with wave angles of 0° (a,d), 45° (b,e), and 90° 

468 (c,f). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

469

470



471

472 Figure A.2 – Frequency and wavenumber pairs estimated from cBathy for case E01 and relative to waves coming from 0° and seed 

473 equal to 0° (a), 45° (b) and 90° (c). The curve shows the linear dispersion relationship for the specified water depth (7m). The 

474 markers indicate the f-k pairs estimated from cBathy in each point of the analysis grid and relative to the first (•), the second (), 

475 the third (*) and the fourth (+) coherent frequency. The color gradient of the markers is proportional to the skill but only points that 

476 exceed the threshold are plotted. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 

477 version of this article.)




