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Abstract The nonlinear free vibrations of a two-layer
elastic composite beam are investigated. Different bound-
ary conditions, both symmetric and not symmetric with

respect to the beam midpoint, equal on both layers and
different on each layers, are considered. The analysis is
developed by means of the multiple time scale method,

and at each order of the asymptotic development, we
obtain different information. The first order terms pro-
vide the linear natural frequencies. The first, the sec-

ond and the third natural frequencies are computed ex-
plicitly. The next order terms, on the other hand, pro-
vide the nonlinearity coefficients measuring the nonlin-

ear amplitude dependence of the natural frequencies,
i.e. the curvature of the backbone curve. Both the lin-
ear frequencies and the nonlinear coefficients are found

to be dependent on two dimensionless parameters only
and, for boundary conditions different on each layer,
also of the ratio between the axial stiffnesses of each

layer.
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1 Introduction

This paper focus on the nonlinear dynamics of a two-
layer composite beams. While a lot of investigations
have been devoted to sandwich beams [1–6] where the

distance between the layers (i.e., the interlayer thick-
ness) is large, here we consider the case in which the
thickness is small. This situation is commonly encoun-

tered in applications: structural glass, cross-ply lami-
nated composite beams, steel-concrete beams, concrete
/ steel / wood beams reinforced with FRP sheet, etc.

is a non-exhaustive list of examples.

The applications which are lurking in the background
not only have a small thickness, but they also have an
interlayer which is made by a material which is less

stiff than the beams. In this situation, it may happen
that the interlayer undergoes large deformations, still
remaining in the nonlinear elastic regime, while the

beams behave linearly. To give an idea of the nonlinear
elastic behavior of the interface we note that Ivanov et
al. [7] obtain τ = 0.5173γ + 0.0772γ3 (the shear stress

τ is in [MPa]; γ is the shear strain) in static experi-
ments of PVB, which is the interlayer mostly used in
structural glass.

The dynamic behavior of two-layer beams, and of
other composite beams [8,9], has been largely studied

in the literature [10–17], where numerical [18,19], ana-
lytical/theoretical [20–22] as well as experimental [23,
24] studies can be found. To the best of authors’ knowl-

edge, the existing analyses focus on the geometric non-
linearities of the beams/plates, and not explicitly on the
nonlinearity of the interlayer [7] (but see [25,26] in the

dynamic case and [27] in the static case), which is in-
stead the main assumption of this work. Indeed, in our
model the unique nonlinearity is the nonlinear elastic

behavior of the interlayer.
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2 Stefano Lenci et al.

In this paper we extend to different boundary condi-

tions (b.c.) the work reported in [25] where a two-layer
composite free-free beam with nonlinear zero-thickness
interface is considered. The beams have an Euler-Bernoulli

kinematics and perfect adherence in the normal direc-
tion: only nonlinear elastic slipping is allowed at inter-
face. The reliability of these hypotheses has been dis-

cussed in [16,17] where the full problem with shear de-
formations, axial and rotational inertia, and interface
uplift is considered.

We pay attention to the effects of different b.c. on
the linear and nonlinear frequencies of the two-layer

beam.We consider both symmetric (e.g., free-free, fixed-
fixed and hinged-hinged) and non-symmetric (e.g., free-
fixed and hinged-fixed) b.c. We also consider the case

of layers having different b.c., one fixed-fixed and the
other free-free, which occurs for example in coating and
in beams reinforced with FRP strips.

The free vibrations are studied by means of the mul-
tiple time scale method, which permits us to address the

nonlinear problem analytically and provides an accu-
rate estimation of the nonlinear, amplitude dependent,
natural frequencies. The backbone curve is obtained,

and the nonlinearity coefficient is found to be a func-
tion of two dimensionless parameters only, apart from
the case in which the layers have different b.c. where it

also depends on the ratio between the axial stiffnesses
of the layers.

The paper is organized as follows. In Sect. 2 the gov-
erning equations are obtained by means of the Hamilto-

nian principle. Contrarily to [25], here we consider the
three coupled equations and do not transform them in
an equivalent higher order single equation. In Sect. 3

the multiple time scale method is applied, by directly
selecting only the non-vanishing terms of the develop-
ment and the non-vanishing slow times. In Sect. 4 the

first order terms, which provided the linear natural fre-
quencies, are obtained, while in Sect. 5 the third order
terms, which provided the curvature of the backbone

curve, i.e. the amplitude dependent correction of the
linear frequencies, are obtained. Finally, the paper ends
with some conclusions (Sect. 6).

2 Governing equations

In the considered two-layer composite each layer be-
haves like a linear elastic planar Euler-Bernoulli beam.
The interface allows tangential slipping ST (Z, T ) but

guarantees perfect adherence in the transversal direc-
tion, so that the transversal displacement V (Z, T ) is
unique, while each beam has its own axial displacement,

W1(Z, T ) and W2(Z, T ), respectively. The mechanical

behavior of the interface is nonlinear, i.e. the tangen-

tial force per unit length FT is a nonlinear function of
ST . This is the unique source on nonlinearity. Finally,
the axial and rotational inertia of both beams are ne-

glected. This model has been previously investigated in
[25], and this work constitutes a natural and announced
continuation. According to the previous kinematic hy-

potheses, the strain, the kinetic and the potential ener-
gies are given by

Es =
1

2

∫ L

0

[EI(V ′′)2 +
2∑

i=1

EiAi(W
′
i )

2]dZ +

∫ L

0

G(St)dZ,

Ek =

∫ L

0

ρAV̇
2
dZ, Ep =

∫ L

0

(PV +
2∑

i=1

QiWi)dZ, (1)

where

EI = E1I1 + E2I2 (2)

and where EiIi and EiAi are the bending and the axial

stiffnesses of the two beams, P the transversal load per
unit length, Qi the axial loads per unit length, ρA the
mass per unit length of the composite. Prime means

derivative with respect to the space coordinate Z ∈
[0, L] and dot derivative with respect to time T . Simple
geometric considerations show that

ST = W1 −W2 +HV ′, (3)

where H is the distance between the centroids of the
two beams. The nonlinear elastic energy stored in the
interface per unit length is an even function of ST ,

G(ST , Z) =
K1(Z)

2
S2
T +

K3(Z)

4
S4
T + ..., (4)

so that the tangential force transmitted through the

interface is

FT =
∂G

∂ST
= K1(Z)ST +K3(Z)S3

T + ... (5)

The governing equations are obtained by the ex-
tended Hamiltonian principle,

δ

∫ T2

T1

(Ek + Ep − Es)dT = 0, (6)

which provides

(EIV ′′)′′ + ρAV̈ = HF ′
T + P,

(E1A1W
′
1)

′ = FT −Q1,

(E2A2W
′
2)

′ = −FT −Q2, (7)

and the associated b.c. at Z = 0 and Z = L

EIV ′′ = 0 or V ′ = 0,

(EIV ′′)′ = HFT or V = 0,

E1A1W
′
1 = 0 or W1 = 0,

E2A2W
′
2 = 0 or W2 = 0. (8)
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Nonlinear free dynamics of a two-layer composite beam with different boundary conditions 3

In the previous equations we have that

F ′
T =

d

dZ
FT [ST (Z, T ), Z] =

∂FT

∂ST
S′
T +

∂FT

∂Z
. (9)

We assume that the beam is uniform, so that EI,
ρA, E1A1, E2A2 and H are constant, while FT depends

on ST only, i.e. also the Ki are constants.
It is useful to work with dimensionless equations.

Thus, we define

Z = zL, T = tL2

√
ρA

EI
, FT =

EI

HL2
fT , V = Lv,

Wi =
EI

HEiAi
wi, P =

EI

L3
p, Qi =

EI

HL2
qi,

1

EA
=

1

E1A1
+

1

E2A2
,

Ki =

(
EA

L2

)i

ki, α = 1 +H2EA

EI
, (10)

so that eqs. (7) become

v′′′′ + v̈ = [fT (ST )]
′ + p,

w′′
1 = fT (ST )− q1,

w′′
2 = −fT (ST )− q2, (11)

and the associated b.c. at z = 0 and z = 1 are

v′′ = 0 or v′ = 0,

v′′′ = fT or v = 0,

w′
1 = 0 or w1 = 0,

w′
2 = 0 or w2 = 0. (12)

Now prime and dot mean derivatives with respect to

z ∈ [0, 1] and t, respectively.
For a two-layer beam made of identical rectangular

beams we have α = 4. For the steel-concrete beam con-

sidered in [10,24] we have α = 2.78. These examples
show that α is not necessarily close to 1.

The interface slip is given by

ST =
H

α− 1

[
E2A2w1 − E1A1w2

E1A1 + E2A2
+ (α− 1)

∂v

∂z

]
.

(13)

In the following we assume q1 = q2 = 0. Thus, from

(11)2,3 we have (w1 + w2)
′′ = 0, namely

w2(z, t) = −w1(z, t) + c1(t)z + c2(t), (14)

where c1(t) and c2(t) are unknown z-independent func-
tions. They are different from zero only for b.c. on w1

different from those on w2. From (14) it follows that

ST = H

(
w1

α− 1
+ v′

)
− EI

H

c1(t)z + c2(t)

E2A2
. (15)

Since we are interested in the nonlinear free oscilla-
tions, we further assume p = 0.

In [25] we manipulate the system (11) to obtain a
unique sixth order equation. Here we instead proceed
with the three coupled equations since they permit an

easier handling of b.c.

3 The multiple time scale method

We look for an approximate solution by means of the
multiple time scale method [28], so that we assume

v(z, t) = εv1(z, t0, t2) + ε3v3(z, t0, t2) + ...,

w1(z, t) = εw11(z, t0, t2) + ε3w13(z, t0, t2) + ...,

w2(z, t) = εw21(z, t0, t2) + ε3w23(z, t0, t2) + ..., (16)

where ti = εit, i is an integer number, are the slow times

and where the missing terms and missing time scales are
not considered due to symmetry considerations [25].

By substituting (16) in the equation of motion (11)

and in the b.c. (12), by noting that, for example,

∂2v1
∂t2

=
∂2v1
∂t20

+ 2ε2
∂2v1
∂t0∂t2

+ ..., (17)

and by equating to zero each power of ε, we obtain a
sequence of problems which are solved in the following.

4 The first order problem

The first order equations of motion are

∂4v1
∂z4

+
∂2v1
∂t20

− k1
∂sT1

∂z
= 0,

∂2w11

∂z2
− k1sT1 = 0,

∂2w21

∂z2
+ k1sT1 = 0,

sT1 =
E2A2w11 − E1A1w21

E1A1 + E2A2
+ (α− 1)

∂v1
∂z

, (18)

where sT1 is the first order dimensionless interface slid-
ing,

ST =
H

(α− 1)
(εsT1 + ...) (19)

(see eq. (13)). Since we are looking for nonlinear oscil-
lations, a solution of (18) is sought-after in the form

v1(z, t0, t2) = g(t0, t2)f1(z),

w11(z, t0, t2) = g(t0, t2)f2(z),

w21(z, t0, t2) = g(t0, t2)f3(z),

g(t0, t2) = Ac(t2) cos(ωt0) +As(t2) sin(ωt0), (20)

so that (18) becomes

f ′′′′
1 − ω2f1 − k1f

′
4 = 0,

f ′′
2 − k1f4 = 0,

f ′′
3 + k1f4 = 0,

f4 =
E2A2f2 − E1A1f3
E1A1 + E2A2

+ (α− 1)f ′
1. (21)

Note that

sT1 = g(t0, t2)f4(z). (22)
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4 Stefano Lenci et al.

The general solution of (21) is given by

f1(z) =

6∑
i=1

jie
liz,

f2(z) = E1A1(j7z + j8) + k1(α− 1)

6∑
i=1

li
l2i − k1

jie
liz,

f3(z) = E2A2(j7z + j8)− k1(α− 1)

6∑
i=1

li
l2i − k1

jie
liz,

(23)

where the li are the six roots of

l6 − k1αl
4 − ω2l2 + k1ω

2 = 0. (24)

Actually, (24) is a third order algebraic equation in
m =

√
l, so that the solution is known in closed form.

The ji are the eight constants of integrations that, to-
gether with the first order (linear) circular frequency
ω, are determined by the b.c. and by the normalization

condition.
The adjoint equations of (21) are

F ′′′′
1 − ω2F1 + k1(α− 1)F ′

4 = 0,

F ′′
2 − k1

E2A2

E1A1 + E2A2
F4 = 0,

F ′′
3 + k1

E1A1

E1A1 + E2A2
F4 = 0,

F4 = F2 − F3 − F ′
1. (25)

The solution of the adjoint equations will be required in
the following in the solvability condition. By comparing
eqs. (21) and (25), and the associated b.c. (see the next

Sect. 4.1), it is possible to see that

F1(z) = f1(z),

F2(z) = − E2A2

E1A1 + E2A2

1

α− 1
f2(z),

F3(z) = − E1A1

E1A1 + E2A2

1

α− 1
f3(z),

F4(z) = − 1

α− 1
f4(z), (26)

so that the solution of the adjoint problem can be easily

obtained from that of the original problem.

4.1 Boundary conditions

At a free boundary (z = 0 and/or z = 1) we have

f ′′
1 = 0, f ′′′

1 − k1f4 = 0, f ′
2 = 0, f ′

3 = 0, (27)

while the b.c. of the adjont equations are

F ′′
1 = 0, F ′′′

1 + k1(α− 1)F4 = 0, F ′
2 = 0, F ′

3 = 0. (28)

At a fixed boundary we have

f1 = 0, f ′
1 = 0, f2 = 0, f3 = 0,

F1 = 0, F ′
1 = 0, F2 = 0, F3 = 0. (29)

At a hinged boundary we have

f1 = 0, f ′′
1 = 0, f ′

2 = 0, f ′
3 = 0,

F1 = 0, F ′′
1 = 0, F ′

2 = 0, F ′
3 = 0. (30)

Finally, if the layer 1 is fixed and the layer 2 is free
we have

f1 = 0, f ′
1 = 0, f2 = 0, f ′

3 = 0,

F1 = 0, F ′
1 = 0, F2 = 0, F ′

3 = 0. (31)

4.2 Linear natural frequency

The (linear) circular frequency ω is a function of the

parameters α and k1; when the two layers have different
b.c. on the same side (see eqs. (31)), it also depends on
the ratio E1A1/E2A2, since in this case c1(t) or c2(t)

are different from zero (see eq. (15)), i.e. j7 ̸= 0 or
j8 ̸= 0 (see eq. (23)).

Before to proceed we remark that we are interested
only in (mainly) flexural vibrations, so we do not con-

sider the linear frequencies associated to (mainly) lon-
gitudinal vibrations, which actually can be detected
by the considered formulas. Furthermore, we limit our

analysis to the first three frequencies because for high
order frequencies equations (7) are not expected to ac-
curately describe the real behaviour.

Symmetric b.c. As representative cases of symmet-
ric (with respect to z = 1/2) b.c. we consider the fixed-

fixed constraints. This choice is due to the lack of space,
although we have the results for others b.c.; in partic-
ular, we have found that the curves for the free-free

case (which are reported in [25] for the first natural fre-
quency) are very close to those of the fixed-fixed case.

The first three natural frequencies ω(α) for different
values of k1 are reported in Fig. 1.

Unsymmetric b.c. As representative cases of unsym-
metric b.c. we consider the fixed-free constraints. The

first three natural frequencies ω(α) for different values
of k1 are reported in Fig. 2.

B.c. different on each layer. As representative cases
of (symmetric, indeed) b.c. different on each layer we
consider the case in which the layer 1 is fixed-fixed and

the layer 2 is free-free. The first three natural frequen-
cies ω(α) for different values of k1 and for different
values of the ratio E1A1/E2A2 are reported in Fig. 3.

Note that the second frequency does not depend on
E1A1/E2A2, while for the first and the third frequen-
cies the differences due to E1A1/E2A2 are visible only

for k1 = 10 and k1 = 100.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Nonlinear free dynamics of a two-layer composite beam with different boundary conditions 5

(a) k1 = 0.1 (b) k1 = 1

(c) k1 = 10 (d) k1 = 100

Fig. 1 The first three natural frequencies ω for fixed-fixed b.c.

Comparing Figs. 1-3 we see the stiffening effect of

both the parameters α and k1, since ω is an increasing
functions of α and k1, starting from ωlim = ω(α = 1) =
ω(k1 = 0) (see Sect. 4.3) and approaching infinity for

both α → ∞ and k1 → ∞.

It is worth to note that moving far from α = 1 and

k1 = 0 the values of the frequencies strongly increase, so
that the asymptotic approximations reported in Sect.
4.3 are inadequate for almost all values of the parame-

ters and the full analysis is actually required.

The family of curves for different b.c. share the same
qualitative behavior, so we can conclude that the ef-

fect of the b.c. is mainly quantitative. In fact, for fixed

values of α and k1 we have very different natural fre-

quencies for different b.c., much more different of what
happens for the single beam. In other words, the b.c.
affect the two-layer beam much more that what they

do for a single beam.

4.3 Limit cases

In this section we study the asymptotic behaviour of ω
for limit values of the main parameters α and k1.

a) k1 → 0. For k1 = 0 eqs. (21) decouple, so that the

solution ωlim (i) does not depend on α and (ii) it is that
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6 Stefano Lenci et al.

(a) k1 = 0.1 (b) k1 = 1

(c) k1 = 10 (d) k1 = 100

Fig. 2 The first three natural frequencies ω for fixed-free b.c.

of a single equivalent beam of bending stiffness EI, and

can be computed easily. It is the solution of the limit
equations reported in Tab. 1.

By performing a straightforward analysis it is pos-

sible to show that for small values of k1 we have the
following asymptotic behaviour

ω = ωlim + k1(α− 1)ω1 + o(k1). (32)

The values of ωlim and of ω1 are reported in Tab. 2
for the first natural frequencies. Note that the fixed-

fixed and the fixed-fixed/free-free cases have the same
asymptotic development. Furthermore, in the latter case
there is no dependency on the ratio E1A1/E2A2, which

will appear at higher k1-orders (see Fig. 3).

Table 1 The limit equations for determining ωlim.

b.c. limit equation

free-free cos(
√
ωlim) cosh(

√
ωlim) = 1

fixed-fixed cos(
√
ωlim) cosh(

√
ωlim) = 1

fixed-free cos(
√
ωlim) cosh(

√
ωlim) = −1

fixed-hinged tan(
√
ωlim) = tanh(

√
ωlim)

hinged-hinged sin(
√
ωlim) = 0

fixed-fixed/free-free cos(
√
ωlim) cosh(

√
ωlim) = 1

b) α → 1. Another pathological situation occurs for
α = 1. Now f4 no longer depends on f1 (see eq. (21)),

so that again the equations decouple and the flexural
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Nonlinear free dynamics of a two-layer composite beam with different boundary conditions 7

(a) k1 = 0.1 (b) k1 = 1

(c) k1 = 10 (d) k1 = 100

Fig. 3 The first three natural frequencies ω for fixed-fixed/free-free b.c. For each value of n = 1 and of n = 3 we have three
curves: the upper is for E1A1 = 0.01E2A2, the medium for E1A1 = E2A2 and the lower for E1A1 = 100E2A2

natural frequencies become independent of k1 and equal
to the ωlim previously reported.

c) k1 → ∞ and α → ∞. In these limit cases we note
the occurrence of the boundary layer phenomenon, where
the deformation tends to localize near the boundaries.

Mathematically, this is due to the singular nature of the
perturbation; in fact, it is easy to see that when k1 → ∞
and α → ∞, respectively, equation (24) reduces the or-

der from 6 to 4 and from 6 to 2. Alternatively, this can
be seen by noting that one root l of (24) behaves like
l ≃ k1α, i.e. it goes to infinity, for both k1 → ∞ and

α → ∞.

An example is illustrated in Fig. 4, where we see
how the dimensionless interface sliding f4 (see eq. (22))
accumulates on 1 near z = 0 for increasing values of α.

Note that the normalization condition (40) is satisfied.

5 The third order problem

The solution of the third order equations is sought-after
in the form

v3(z, t0, t2) = v3c(z) cos(ωt0) + v3s(z) sin(ωt0)

+ v3c3(z) cos(3ωt0) + v3s3(z) sin(3ωt0),
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Table 2 The first values of ωlim and ω1.

b.c. n ωlim ω1

free-free 1 22.3733 1.1058
2 61.6728 0.8831
3 120.9034 0.7728

fixed-fixed 1 22.3733 0.2749
2 61.6728 0.3733
3 120.9034 0.4090

fixed-free 1 3.5160 0.6609
2 22.0345 0.7356
3 61.6972 0.6264
4 120.9019 0.5910

fixed-hinged 1 15.4182 0.3733
2 49.9649 0.4293
3 104.2477 0.4510

hinged-hinged 1 π2 0.5
2 4π2 0.5
3 9π2 0.5

fixed-fixed/free-free 1 22.3733 0.2749
2 61.6728 0.3733
3 120.9034 0.4090

Fig. 4 The boundary layer phenomenon for fixed-free b.c.
k1 = 100 and α = 100; 50; 20; 10; 2 (from the left to the right)

w13(z, t0, t2) = w13c(z) cos(ωt0) + w13s(z) sin(ωt0)

+ w13c3(z) cos(3ωt0) + w13s3(z) sin(3ωt0),

w23(z, t0, t2) = w23c(z) cos(ωt0) + w23s(z) sin(ωt0)

+ w23c3(z) cos(3ωt0) + w23s3(z) sin(3ωt0).

(33)

This is suggested by the cubic nonlinearities, by the ex-
pression [cos(t)]3 = [3 cos(t)+cos(3t)]/4 and by similar

expressions.

The equations for v3c, w13c and w23c are

v′′′′3c − ω2v3c − k1s
′
T3c = −2ωf1

∂As

∂t2

+k3Ac(A
2
c +A2

s)
3EI2

4H2L6
(f3

4 )
′,

w′′
13c − k1sT3c = k3Ac(A

2
c +A2

s)
3EI2

4H2L6
(f3

4 ),

w′′
23c + k1sT3c = −k3Ac(A

2
c +A2

s)
3EI2

4H2L6
(f3

4 ),

sT3c =
E2A2w13c − E1A1w23c

E1A1 + E2A2
+ (α− 1)v′3c. (34)

We see that this is the non-homogenous version of the
problem (21), so that the solution exists if and only if
the solvability condition is satisfied. For every b.c. this

latter is given by

−2ω
∂As

∂t2

∫ 1

0

f1F1dz

+k3Ac(A
2
c +A2

s)
3EI2

4H2L6

∫ 1

0

f3
4F4dz = 0. (35)

The equations for v3s, w13s and w23s are instead

v′′′′3s − ω2v3s − k1s
′
T3s = 2ωf1

∂As

∂t2

+k3As(A
2
c +A2

s)
3EI2

4H2L6
(f3

4 )
′,

w′′
13s − k1sT3s = k3As(A

2
c +A2

s)
3EI2

4H2L6
(f3

4 ),

w′′
23s + k1sT3c = −k3As(A

2
c +A2

s)
3EI2

4H2L6
(f3

4 ),

sT3s =
E2A2w13s − E1A1w23s

E1A1 + E2A2
+ (α− 1)v′3s, (36)

and the solvability condition is, for every b.c.,

2ω
∂Ac

∂t2

∫ 1

0

f1F1dz

+k3As(A
2
c +A2

s)
3EI2

4H2L6

∫ 1

0

f3
4F4dz = 0. (37)

Rearranging the two solvability conditions, we get

∂As

∂t2
+ k3

3EI2

4H2L6
ηAc(A

2
c +A2

s) = 0,

∂Ac

∂t2
− k3

3EI2

4H2L6
ηAs(A

2
c +A2

s) = 0, (38)

which permits us to determine Ac(t2) and As(t2). In

(38) the major role is played by the positive nonlinearity
parameter

η = − 3

8ω

∫ 1

0
f3
4F4dz∫ 1

0
f1F1dz

=
3

8ω(α− 1)

∫ 1

0
f4
4 dz∫ 1

0
f2
1 dz

(39)

which is the same parameter used in [25] (see eq. (57)
of [25], where a different but equivalent expression is

reported).
Note that η depends on the amplitude of the fi, so

that their normalization is important. We assume

max{f4(z)} = 1. (40)
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Other normalizations are possible and, as the consid-

ered one, make sense from an engineering point of view,
for example max{f1(z)} = 1; note however that all nor-
malizations are theoretically equivalent, since there is a

one-to-one map between them. We choose (40) because
it is the same used in [25], so that we can directly com-
pare the present results with those reported in [25]; its

mechanical motivation is illustrated in next eq. (44).
The coefficient η depends on α, k1 and, for some

b.c., also on the ratio E1A1/E2A2; for different b.c. it

is reported in Figs. 5, 6 and 7, where we see that it is
an increasing function of α but, contrarily to ω, it is
a decreasing function of k1, rapidly approaching 0 for

k1 → ∞. We also have η = 0 for α = 1, a fact that is
counter-intuitive if one looks at eq. (39), but that can
be proved by noting that f4 rapidly converge to 0 for

α → 1.
A stationary solution of (38) is given by

Ac = Γ cos(Ωt2),

As = Γ sin(Ωt2), (41)

where

Ω = −k3
EI2

H2L6
ηΓ 2. (42)

It follows that

g(t0, t2) = Ac cos(ωt0) +As sin(ωt0) =

Γ [cos(Ωt2) cos(ωt0) + sin(Ωt2) sin(ωt0)] =

Γ cos(ωt0 −Ωt2) =

Γ cos

[(
ω + k3

EI2

H2L6
ηε2Γ 2

)
t

]
. (43)

From (13), using (18), (22) and the normalization
condition (40), we conclude that

A = max{ST } =
H

α− 1
εΓ + ... (44)

is the amplitude of the real interface sliding. This is
worthy, since it is just in the interface sliding that we
have the nonlinearities, so that the chosen amplitude

is that directly connected to the nonlinear behavior of
the system. If we chose a normalization different from
(40), we lose this property.

From the previous developments we conclude that
the nonlinear, amplitude depend, frequency is given by

ωnl = ω + k3
EI2(α− 1)2

H4L6
ηA2. (45)

The physical natural frequency is then

fnl =
1

2πL2

√
EI

ρA

(
ω +

K3

EA
ηA2

)
. (46)

The major role in determining the backbone curve

(45), and its dimensional version (46), is played by the

parameter η, which is reported in Figs. 5-7. The fact

that it is always positive means, as expected, that an
hardening (k3 > 0) / softening (k3 < 0) behaviour of
the interface corresponds an hardening / softening be-

haviour of the whole structure.

6 Conclusions

The nonlinear dynamics of a two-layer beam made of
two linear elastic Euler-Bernoulli beams and by a non-
linear elastic interface have been investigated by means

of the multiple time scale method. The effects of differ-
ent b.c., symmetric and not symmetric, equal on each
layer or different for the two layers, have been studied.

The natural linear frequencies are computed first,
and it is shown that they depend on two dimensionless

parameters only if the b.c. are the same on each layer.
Otherwise, they also depend on the ratio E1A1/E2A2 of
the beams axial stiffenesses. It is shown that the linear

natural frequencies have a weak qualitative dependence
and a strong quantitative dependence on the different
b.c., much more strong of what happens for a single

beam.

The amplitude dependent corrections of the linear
natural frequencies, which is the main effect of the prob-
lem nonlinearity, have been successively computed. It is

found that the hardening/softening behavior of the in-
terface is maintained in the whole structure. Again, the
effects of the different boundary condition have been

highlighted to be mainly of quantitative nature, so that
in applications one must pay a lot of attention to their
determination.

The multiple time scale method is found to be a use-
ful mathematical tool for analytical, although approxi-

mate, computation of the effects on the nonlinearity in
the free vibrations of complex composite beams.
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