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An overview of different asymptotic models for

anisotropic three-layer plates with soft adhesive

M. Serpilli, S. Lenci

Department of Civil and Building Engineering, and Architecture,

Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy

Abstract

We give an overview of the possible asymptotic models for a layered plate

with soft adhesive. More specifically, we study the mechanical behavior of

an anisotropic non homogeneous linearly elastic three-layer plate with soft

adhesive, including the inertia forces, by means of the asymptotic expansion

method. By defining a small parameter ε, associated with the size and the

stiffness of the intermediate layer, we derive various limit models and their

corresponding limit problems, by varying the thickness and rigidity ratios of

the adherents and the adhesive layers.

Keywords: Asymptotic expansions, layered plates, soft adhesive

1. Introduction

The modeling of complex structures obtained joining simpler elements

with highly contrasted geometric and/or material characteristics represents

a source of a variety of problems of practical importance in all fields of en-

gineering. The geometrical complexity of a multilayer structure requires an
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effort to deduce simplified mathematical models: these models must take

into account the presence of different sizes and stiffnesses among each con-

stituent of the structure. In the present work, we focus our attention to a

particular structural assembly consisting in two plates bonded together by a

soft adhesive middle layer.

This paper attempts to give a complete spectrum of the possible reduced

models for a generic three-layer plate with soft adhesive, comprising all the

possible choices of thickness and rigidity ratios between the intermediate layer

and the surrounding plate-like bodies. These models are derived by means

of the asymptotic expansion method. The asymptotic methods allow to

determine the so-called limit model without any a priori assumptions on the

displacements and/or stress field of the resulting limit models, by considering

only the geometrical and mechanical peculiarities of the structure, such as the

small thickness or the elastic moduli ratios of the different layers constituting

the multilayer assembly.

More specifically, we analyze the time-dependent mechanical behavior

of an anisotropic non homogeneous linearly elastic three-layer plates with

soft adhesive. By defining a small parameter ε, which will tend to zero, we

suppose that the thickness of the upper and lower plate-like bodies depends

linearly on ε, while the thickness of the middle layer has order of magnitude

εn, n ∈ N, n ≥ 1. Moreover, we assume that the elastic coefficients of the

top and bottom plates are independent of ε , while the elastic moduli of the

adhesive varies with εp, p ∈ N, p ≥ 1. Then, we derive a series of limit models

by taking into account all the possible choices of the magnitudes {n, p}.

The asymptotic analysis has been successfully employed not only to for-
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mally justify classical theories of beams, plates and shells (see, e.g., Ciarlet

(1997)), in the framework of linear and nonlinear elasticity, but also to deduce

rational simplified models of structural elements bonded together with a thin

elastic interphase, which represents the most peculiar bonded joint between

two media. The actual computation of the solution of this problem is quite

difficult, even if numerical methods are employed: this is mostly due to the

thinness of the adhesive, which requires a fine mesh and, hence, an increase

of the degrees of freedom of the system. Moreover, the adhesive has usually

a different rigidity with respect to the adherents and this causes numerical

instabilities in the stiffness matrix. The previous difficulties can be overcome

by introducing a reduced model of the adhesive which can be treated as an

interface, by assuming, for instance, that the upper and lower bodies are

linked by a continuous distributions of springs. This model has been initially

proposed in the milestone paper by Goland and Reissner (1944).

Within the theory of elasticity, the asymptotic analysis of a thin elastic in-

terphase between two elastic materials has been deeply investigated through

the years, by varying the rigidity ratios between the thin inclusion and the

surrounding materials and by considering different geometry features. It is

worth mentioning the pioneering work by Acerbi et al. (1988) on the varia-

tional behavior of the elastic energy of a thin inclusion using Γ-convergence.

Moreover, we refer to the contributions by Licht and Michaille (1997), Abdel-

moula et al. (1998), Geymonat et al. (1999), Klarbring (1991), Klarbring

and Movchan (1998) and Krasucki et al. (2004), for mathematical models

for linear and nonlinear bonded joints with a soft thin adhesive and, also,

to the papers Bessoud et al. (2009), Bessoud et al. (2011), Bessoud et al.
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(2008), Lebon and Rizzoni (2010), Lebon and Rizzoni (2011) and Lebon

and Zaittouni (2010), for the case of multimaterials with thin plate-like and

shell-like inclusions with high rigidity. In those papers, existence and unique-

ness of the solution of the limit problem and weak, strong and Γ-convergence

results have been fully described.

The mechanics behind the junction of two plates has been studied in

several works in a rigorous mathematical framework: for instance, G. Gey-

monat and F. Krasucki Geymonat and Krasucki (1997) and Zaittouni et

al. Zaittouni et al. (2002) analyzed two Kirchhoff-Love isotropic plates

joint together by a thinner isotropic adhesive, by varying the order of mag-

nitude of the elastic moduli of the intermediate layer; more recently, Serpilli

(2005) and Serpilli and Lenci (2008) analyze the mechanical behavior of

three different two-dimensional isotropic layered strips through the asymp-

totic methods: namely, the case of comparable thicknesses and weak adhesive

(analogous to the case n = 1 and p = 2, presented and commented in Sec-

tion 3.2), the case of comparable thicknesses and comparable rigidities, and,

finally, the case of a thinner and stiffer adhesive (these two cases are not

treated in the present paper). Besides, in Serpilli and Lenci (2012), the

authors study the linear dynamics of a two-dimensional three-layer strip, by

characterizing the limit natural high, low and mean frequencies. In these

papers the authors recover one-dimensional simplified models, starting from

two-dimensional layered strips. While, in the present work, starting from a

three-dimensional stack of plates, we derive two-dimensional limit models.

Another important contribution is the paper by Åslund (2005), in which the

author performs an asymptotic analysis starting from a three-dimensional

4



geometrical configuration: by defining a small parameter ε, the author con-

siders a three-layer plate-like body constituted by two top and bottom plates

of thickness ε, bonded by superposition with an adhesive layer of thickness

ε2. The three layers are made of Saint-Venant-Kirchhoff materials and the

Lamé’s constants of the adhesive have order of magnitude ε3 with respect

to those of the upper and lower bodies. A distinguishing feature of the re-

sulting limit model is that the shear forces dominate in the adhesive, whose

membrane displacements depend on the gap of the membrane displacements

at the interface between the upper and lower plates. The paper by Schmidt

(2008) is a remarkable work that deserves to be mentioned: indeed, the au-

thor analyzes the mechanical behavior of two bonded plates with a thin soft

isotropic adhesive via the asymptotic expansion methods and derives a two-

dimensional surface model for this particular joint. Different cases of rigidity

ratios between the adherents and the adhesive have been studied and, more-

over, higher-order corrector terms of the asymptotic expansion have been

characterize in order to improve and make an error estimate of the solu-

tion of the derived models. Finally, it is also noteworthy the paper by Licht

(2007), in which the author considers two linearly elastic plates linked by a

soft linearly elastic isotropic adhesive: the assembly is made by abutting or

by superposition. The reduced models are derived by means of a two small

parameters asymptotic analysis, with formal convergence results, and they

correspond to bonding two Kirchhoff-Love plates by a mechanical constraint

depending on the magnitude of the chosen parameters.

The layout of the paper is as follows. In Section 2, we define the state-

ment of the problem and we perform the asymptotic analysis by defining the
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dependences on ε of the geometrical and mechanical quantities. In Section

3, we derive the asymptotic models by fixing n = 1 and by varying the mag-

nitude p ≥ 1. In Section 4, we deduce the asymptotic models by fixing n ≥ 2

and by changing the magnitude p ≥ 1. In Section 5, we discuss the obtained

results in an extensive way and, finally, in Section 6, we give some concluding

remarks to the paper.

2. Statement of the problem

In the sequel, Greek indices range in the set {1, 2}, Latin indices range

in the set {1, 2, 3}, except m,n, p, and the Einstein’s summation convention

with respect to the repeated indices is adopted. Let ω ∈ R
2 be a smooth

domain in the plane spanned by vectors eα, let γ0 be a measurable subset of

the boundary γ of the set ω, such that length γ0 > 0, and let 0 < ε < 1 be a

dimensionless small real parameter which will tend to zero. For each ε, we

define

Ωm,ε := ω × Im,ε, Ω+,ε := ω × I+,ε, Ω−,ε := ω × I−,ε,

Im,ε := (−hm,ε, hm,ε), I+,ε := (hm,ε, hm,ε + 2h+,ε),

I−,ε := (−hm,ε − 2h−,ε,−hm,ε), Iε := (−hm,ε − 2h−,ε, hm,ε + 2h+,ε)

Γε
0 := γ0 × Iε, Γε

±
:= ω × {±(hm,ε + 2h±,ε)}, Sε

±
:= ω × {±hm,ε}.

Hence the boundary of the set Ωε := Ω+,ε ∪ Ωm,ε ∪ Ω−,ε is partitioned

into the lateral surface γ × Iε and the upper and lower faces Γε
+ and Γε

−
,

and the lateral surface is itself partitioned as γ ×Iε = (γ0 × Iε) ∪ (γ1 ×Iε),

where γ1 := γ − γ0. We note with Γε
1 := γ1 × Iε, Γ±,m,ε

1 := γ1 × I±,m,ε, with

self-explanatory notation, and Γ̂ε := Γε
±
∪ Γ±,ε

1 . The upper and lower plate-

like domains Ω+,ε and Ω−,ε are called the adherents, while the intermediate
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Figure 1: The reference configuration of the layered plate.

plate-like domain is called the adhesive.

We consider a three-layer plate occupying the reference configuration Ω
ε
×

[0, T ] at a positive time T > 0, see Figure 1. We study the physical problem

corresponding to the mechanical behavior of an anisotropic non homogeneous

linearly elastic three-layer plate of thickness 2hε := 2hm,ε+2h+,ε+2h−,ε and

middle surface ω, with mass densities ρ±,m,ε > 0. The sets Ωm,ε, Ω+,ε and

Ω−,ε are filled by three anisotropic non homogeneous linearly elastic materials

whose constitutive laws are defined as follows:

σε
ij(u

ε) = Cε
ijkℓe

ε
kℓ(u

ε),

where σε
ij represent the components of the Cauchy stress tensor, eεkℓ(u

ε) :=

1
2
(∂εℓu

ε
k + ∂εku

ε
ℓ) denote the components of the linearized strain tensor and

(Cε
ijkℓ) is the classical fourth order elasticity tensor. We assume that tensor

(Cε
ijkℓ) satisfies the classical symmetry and positivity properties. The plate

is submitted to body forces (f ε
i ) : Ω±,ε × (0, T ) → R

3, acting in Ω±,ε, and

surface forces (gεi ) : Γ̂
ε × (0, T ) → R

3, applied on Γ̂ε. We suppose that the

adhesive Ωm,ε is not loaded. The initial conditions are posed in Ωε. Let uε
0

and uε
1 be, respectively, the displacement and the velocity at time t = 0; we
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have 



uε(xε, 0) = uε(0) = uε
0 in Ωε,

u̇ε(xε, 0) = u̇ε(0) = uε
1 in Ωε,

where v̇ := ∂v
∂t

denotes the time derivative of function v. Let Σε ⊂ ∂Ωε, we

introduce the following space of admissible displacements

V (Ωε,Σε) := {vε = (vεi ); vε = 0 on Σε}.

The variational formulation of the problem defined over the variable domain

Ωε takes the following form:




Find uε(t) ∈ V (Ωε,Γε
0), t ∈ (0, T ), such that

A−,ε(uε(t),vε) + A+,ε(uε(t),vε) + Am,ε(uε(t),vε) = Lε(vε),
(1)

for all vε ∈ V (Ωε,Γε
0), with initial conditions (uε

0,u
ε
1), where the bilinear

forms A±,ε(·, ·), Am,ε(·, ·) and the linear form Lε(·) are, respectively, defined

by

A±,m,ε(uε(t),vε) :=

∫

Ω±,m,ε

{
C

±,m,ε
ijkℓ eεkℓ(u

ε(t))eεij(v
ε) + ρ±,m,εüεi (t)v

ε
i

}
dxε,

Lε(vε) :=

∫

Ω±,ε

f ε
i v

ε
i dx

ε +

∫

Γ̂ε

gεi v
ε
i dΓ

ε.

Remark 1. In order to guarantee the well-posedness of problem (1), suitable

regularity properties have to be assumed for the unknowns, the initial data

(uε
0,u

ε
1) and applied loads fi and gi, (see, e.g., Ciarlet (1997)).

2.1. The rescaled problem and asymptotic expansions

In order to study the asymptotic behavior of the solution uε when ε

tends to zero, we need to transform problem (1), posed on a variable domain

Ωε, onto a problem posed on a fixed domain Ω (independent of ε). We
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suppose that the thicknesses of each layer of the plate admit the following

dependences on ε: h±,ε := εh± and hm,ε := εnhm, n ∈ N, n ≥ 1, with h±

and hm independent of ε. The choice of n affects the order of magnitude

between the thickness of the adhesive layer and the thicknesses on the upper

and lower bodies. Accordingly, we let

Ωm := ω × Im, Ω+ := ω × I+, Ω− := ω × I−, Ω = Ω+ ∪ Ωm ∪ Ω−

Im := (−hm, hm), I+ := (hm, hm + 2h+),

I− := (−hm − 2h−,−hm), I := (−hm − 2h−, hm + 2h+)

Γ0 := γ0 × I, Γ± := ω × {±(hm + 2h±)}, Γ̂ := Γ± ∪ Γ±

1 , S± := ω × {±hm}.

Hence, we apply the usual change of variables (see, e.g., Ciarlet (1997) and

Serpilli and Lenci (2008)):

πε :





x ≡ (x̃, x3) ∈ Ω
+
7→ xε ≡ (x̃, εnhm + εx3) ∈ Ω

+,ε

tr , with x̃ = (xα),

x ≡ (x̃, x3) ∈ Ω
m
7→ xε ≡ (x̃, εnx3) ∈ Ω

m,ε
,

x ≡ (x̃, x3) ∈ Ω
−

7→ xε ≡ (x̃,−εnhm + εx3) ∈ Ω
−,ε

tr ,

where Ω±,ε
tr := {x ± hme3, x ∈ Ω±}. In order to simplify the notation, we

identify Ω±,ε
tr with Ω±,ε. By using the bijection πε, one has

∂εα = ∂α and ∂ε3 =
1
ε
∂3 in Ω±,

∂εα = ∂α and ∂ε3 =
1
εn
∂3 in Ωm.

In the sequel, only if necessary, we will note, respectively, with v± and vm, the

restrictions of functions v to Ω± and Ωm. With the unknown displacement

field uε, we associate the scaled unknown displacement field u(ε) defined by:

uεα(x
ε, t) = ε2uα(ε)(x, t) and u

ε
3(x

ε, t) = εu3(ε)(x, t) for all xε = πεx ∈ Ω
ε
.
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We likewise associate with any test functions vε, the scaled test functions v,

defined by the scalings:

vεα(x
ε) = ε2vα(x) and v

ε
3(x

ε) = εv3(x) for all xε = πεx ∈ Ω
ε
.

Moreover, we suppose that the elastic coefficients of Ω± are independent of ε,

so that C±,ε
ijkℓ = C±

ijkℓ, while the elastic moduli of Ωm depends on ε as follows

C
m,ε
ijkℓ = εpCm

ijkℓ, p ∈ N, p ≥ 1.

Since p ≥ 1, from a mechanical point of view, we are considering the case of

a layered plate whose adhesive is softer with respect to the adherents. Let

us assume that the data verify the following scaling assumptions:

f ε
α(x

ε, t) = fα(x, t), f ε
3 (x

ε, t) = εf3(x, t), x ∈ Ω±, t ∈ (0, T ),

gεα(x
ε, t) = gα(x, t), gε3(x

ε, t) = εg3(x, t), x ∈ Γ±

1 , t ∈ (0, T ),

gεα(x
ε, t) = εgα(x, t), gε3(x

ε, t) = ε2g3(x, t), x ∈ Γ±, t ∈ (0, T ),

uε0,α(x
ε) = ε2u0,α(ε)(x), uε0,3(x

ε) = εu0,3(ε)(x), x ∈ Ω,

uε1,α(x
ε) = ε2u1,α(ε)(x), uε1,3(x

ε) = εu1,3(ε)(x), x ∈ Ω,

where functions fi and gi are independent of ε. In addition, we suppose that

the mass densities satisfy:

ρ±,ε = ε2ρ± and ρm,ε = εp+2ρm,

where ρ±,m > 0 are independent of ε. The above scaling of the mass densities

allows to derive dynamical flexural models for the layered plate, (see. e.g.,

Ciarlet (1997) and Serpilli and Lenci (2012)). Moreover, the exponent list

of the scaled mechanical quantities, namely unknowns and data, is such that

the scaled energy functional remains bounded in the limit process when ε

tends to zero, see Miara and Podio-Guidugli (2006).
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For brevity, we will drop the dependence on the variable t in the vari-

ational equations. According to the previous hypothesis, problem (1) can

be reformulated on a fixed domain Ω independent of ε. Thus we obtain the

following rescaled problem





Find u(ε) ∈ V (Ω,Γ0), t ∈ (0, T ), such that

A−(u(ε),v) + A+(u(ε),v) + Am
n,p(u(ε),v) = L(v),

(2)

for all v ∈ V (Ω,Γ0), with initial conditions (u0(ε),u1(ε)), where the bilinear

forms A±(·, ·), Am
n,p(·, ·) and the linear form L(·) are defined as follows

A±(u(ε),v) :=

∫

Ω±

{
C±

αβστeστ (u(ε))eαβ(v) + ρ±ü3(ε)v3 + ε2ρ±üα(ε)vα+

+2ε−1C±

αβσ3(eσ3(u(ε))eαβ(v) + eαβ(u(ε))eσ3(v))+

+ε−2
(
C±

αβ33(e33(u(ε))eαβ(v) + eαβ(u(ε))e33(v))+

+4C±

α3β3eβ3(u(ε))eα3(v)
)
+

+2ε−3C±

α333(e33(u(ε))eα3(v) + eα3(u(ε))e33(v))+

+ε−4C±

3333e33(u(ε))e33(v)
}
dx,
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Am
n,p(u(ε),v) := εp

∫

Ωm

{
εn−1

(
Cm

αβστeστ (u(ε))eαβ(v) + ρmü3(ε)v3
)
+

+εn+1ρmüα(ε)vα+

+εn−2Cm
αβσ3(∂σu3(ε)eαβ(v) + eαβ(u(ε))∂σv3)+

+εn−3Cm
α3β3∂βu3(ε)∂αv3+

+ε−1Cm
αβσ3(∂3uσ(ε)eαβ(v) + eαβ(u(ε))∂3vσ)+

+ε−2
(
Cm

αβ33(e33(u(ε))eαβ(v) + eαβ(u(ε))e33(v))+

+Cm
α3β3(∂3uβ(ε)∂αv3 + ∂βu3(ε)∂3vα)

)
+

+ε−3Cm
α333(e33(u(ε))∂αv3 + ∂αu3(ε)e33(v))+

+ε−(n+1)Cm
α3β3∂3uβ(ε)∂3vα+

+ε−(n+2)Cm
α333(e33(u(ε))∂3vα + ∂3uα(ε)e33(v))+

+ε−(n+3)Cm
3333e33(u(ε))e33(v)

}
dx,

L(v) :=

∫

Ω±

fividx+

∫

Γ̂

gividΓ.

The aim of the present work is to study the behavior of the problem when

ε tends to zero and to characterize the limit solution for each n, p ≥ 1. From

a practical point of view, this means that we are looking for a simplified

model of the original problem whose solution is easier to compute and still a

good approximation of the actual solution u(ε): mathematically, this means

evaluate the limε→0 u(ε).

Since in the rescaled problem (2) the parameter ε appears explicitly in

polynomial form, we will look for the solution of the problem as a series of

powers of ε:

u(ε) = u0 + εu1 + ε2u2 + . . . . (3)

By substituting (3) into the rescaled problem (2) and by identifying the

12



terms with identical power of ε, we obtain, as customary, a set of variational

problems to be solved in order to characterize the limit displacement field u0

and its associated limit problem, for each n, p ≥ 1. For the sake of brevity

and in order to account of the real objectives of the present paper, we decide

not to enter into the mathematical details and technicalities involving the

solution of each variational subproblem and concentrate our attention on the

resulting models and their comparison. In the sequel we will fix n, related

to the thickness of the adhesive, and we will vary the exponent p related

to stiffness of the adhesive. Each choice of the exponents {n, p} will be

associated with a different geometrical configuration of the three-layer plate,

combined with a decreasing stiffness (since p ≥ 1) of the adhesive layer with

respect to the rigidity of the adherents: this will give rise to a series of

different asymptotic models related to the specific choice of {n, p}.

3. Asymptotic models for n = 1

In this section we analyze the mechanical behavior of a three-layer plate,

whose intermediate adhesive layer has a thickness comparable with the thick-

nesses of the adherents, see Figure 2.

We let the exponent p ≥ 1 vary and we characterize the associated asymp-

totic models. In the case of n = 1, the rescaled bilinear form Am
1,p(·, ·) can be

rewritten in a very simple form, similar to A±(·, ·). This will be very helpful

13
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Figure 2: Layered plate with layers having comparable thicknesses.

for the consequent calculations. Indeed, one has

Am
1,p(u(ε),v) := εp

∫

Ωm

{
Cm

αβστeστ (u(ε))eαβ(v) + ρmü3(ε)v3 + ε2ρmüα(ε)vα+

+2ε−1Cm
αβσ3(eσ3(u(ε))eαβ(v) + eαβ(u(ε))eσ3(v))+

+ε−2
(
Cm

αβ33(e33(u(ε))eαβ(v) + eαβ(u(ε))e33(v))+

+4Cm
α3β3eβ3(u(ε))eα3(v)

)
+

+2ε−3Cm
α333(e33(u(ε))eα3(v) + eα3(u(ε))e33(v))+

+ε−4Cm
3333e33(u(ε))e33(v)} dx.

3.1. Case p = 1

By choosing p = 1 in (2) and by identifying the terms with identical power

of ε, we can characterize the solutions of the arising variational subproblems

and, hence, the leading term of the asymptotic expansion u0.

Let us define the following geometrical quantities, corresponding, respec-

tively, to the thicknesses and to the first and the second order moments of

inertia associated with Ω±:

J±

11 :=

∫

I±

dx3, J±

12 = J±

21 :=

∫

I±

x3dx3, J±

22 :=

∫

I±

x23dx3.
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Also, let

VKL(Ω,Γ0) := {v = (vi); ei3(v) = 0, v = 0 on Γ0},

denote the space of the Kirchhoff-Love displacements, and

VM(ω, γ0) := {vH = (vα); vα(x̃, x3) = vα(x̃), vH = 0 on γ0},

VF (ω, γ0) := {v3; v3(x̃, x3) = v3(x̃), v3 = ∂νv3 = 0 on γ0},

denote the space of membrane and flexural displacements, respectively, de-

fined on the middle plane of the layered plate ω. We recall that ν = (να)

is the outer unit normal vector to γ and τ = (−ν2, ν1) represents the unit

tangent vector to γ.

By virtue of the asymptotic methods, we deduce that the limit displace-

ment field u0 satisfies the Kirchhoff-Love kinematical assumptions, so that





u±,m,0
α (x̃, x3) = ηα(x̃)− x3∂αη3(x̃), ηH = (ηα),

u
±,m,0
3 (x̃, x3) = η3(x̃),

and, thus, it belongs to the space VKL(Ω,Γ0). The limit displacement field

u0 ∈ VKL(Ω,Γ0) is the solution of the following coupled limit problem:





Find u0 ∈ VKL(Ω,Γ0), t ∈ (0, T ), such that∫

Ω+

{
C̃+

αβστeστ (u
0)eαβ(v) + ρ+ü03v3

}
dx+

+

∫

Ω−

{
C̃−

αβστeστ (u
0)eαβ(v) + ρ−ü03v3

}
dx = L(v),

(4)

for all v ∈ VKL(Ω,Γ0), where

C̃±

αβστ := C±

αβστ − C±

αβi3d
±

ijC
±

στj3, with (d±ij) := (C±

i3j3)
−1.
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The reduced elasticity tensors (C̃±

αβστ ) are symmetric and positive definite,

see Caillerie (1984). The initial conditions are given by





u03(0) = u03,0 = η3,0,

u̇03(0) = u03,1 = η3,1.

As we can notice from Eq. (4) , the intermediate layer does not influence,

from a mechanical point of view, the asymptotic behavior of the layered plate.

Let us suppose that the elastic materials are homogeneous, then the limit

problem (4) can be rewritten in terms of the in-plane displacements ηH ∈

VM(ω, γ0) and transversal displacement η3 ∈ VF (ω, γ0), after an integration

along the x3-coordinate. We obtain, as customary, the following coupled

problem defined over the middle plane of the plate ω:





Find (ηH , η3) ∈ VM(ω, γ0)× VF (ω, γ0), t ∈ (0, T ), such that∫

ω

{(
A11

αβστeστ (ηH)−A12
αβστ∂στη3

)
eαβ(ζH) + ρ̃η̈3ζ3+

+
(
−A12

αβστ eστ (ηH) + A22
αβστ∂στη3

)
∂αβζ3

}
dx̃ = L̃(ζ),

(5)

for all (ζH , ζ3) ∈ VM(ω, γ0)× VF (ω, γ0), where

A
νµ
αβστ := J+

νµC̃
+
αβστ + J−

νµC̃
−

αβστ = A
µν
αβστ and ρ̃ := ρ+J+

11 + ρ−J−

11,

and

L̃(ζ) :=

∫

ω

(piζi − sα∂αζ3)dx̃+

∫

γ1

(qiζi − rα∂αζ3)dγ.
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Moreover, the two-dimensional applied loads are

pi :=

∫

I+

fidx3 +

∫

I−

fidx3 + g+i + g−i ,

sα :=

∫

I+

x3fαdx3 +

∫

I−

x3fαdx3 + (hm + 2h+)g+α − (hm + 2h−)g−α ,

qi :=

∫

I+

gidx3 +

∫

I−

gidx3,

rα :=

∫

I+

x3gαdx3 +

∫

I−

x3gαdx3,

where g±i := gi|Γ±
= gi(x̃,±(hm + 2h±)) denote the restrictions of gi to Γ±.

We are now in position to rewrite the limit problem (5) in its differential

form by using the Green’s fomulae on ω. By posing

nαβ(ηH , η3) := A11
αβστeστ (ηH)−A12

αβστ∂στη3,

mαβ(ηH , η3) := −A12
αβστ eστ (ηH) + A22

αβστ∂στη3,

which represent, respectively, the membrane stress tensor and the moment
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tensor of the plate, we obtain




Field equations:

−∂βnαβ = pα in ω × (0, T ),

∂αβmαβ + ρ̃η̈3 = p̃3 in ω × (0, T ),

Initial conditions:

η3(0) = η3,0, η̇3(0) = η3,1 in ω × (0, T ),

Boundary conditions:

nαβνβ = qα on γ1 × (0, T ),

mαβνανβ = −rανα on γ1 × (0, T ),

∂αmαβνβ + ∂τ (mαβνατβ) = −q̃3 on γ1 × (0, T ),

ηi = ∂νη3 = 0 on γ0 × (0, T ),

(6)

where p̃3 := p3 + ∂αsα and q̃3 := q3 − sανα + ∂τ (rατα).

Remark 2. It is interesting to notice that the simplified model reduces the

three-layer plate into an equivalent single-layer plate, with a more complex

constitutive behavior. Moreover, thanks to the particular scaling of the mass

densities, we obtain a time-dependent flexural problem for the unknown η3,

while the dependence of the membrane displacement ηH upon the temporal

variable t is only through the time-dependent functions fα and gα. Being a

non-standard time-dependent problem, the membrane problem can be con-

sidered a quasi-static problem.

By the analysis of the limit problem, we can notice that it is strongly cou-

pled and the reduced elastic coefficients are a combination of the membrane

and flexural stiffnesses of the upper and lower plates. This coupling is due
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to the geometry of the layered plate and to the material reference frame.

Problem (5) can be decoupled into a membrane problem and a flexural

problem, respectively, by considering, for instance, a symmetric layered plate

from both a geometrical and mechanical point of view, i.e., h+ = h− := h,

ρ+ = ρ− := ρ and C̃+
αβστ = C̃−

αβστ := C̃αβστ . In this case, we have that

J−

12 = −J+
12 and, thus, coefficient A12

αβστ vanishes. Consequently, the limit

problem reduces, respectively, to the following membrane problem





Find ηH ∈ VM(ω, γ0), t ∈ (0, t), such that

4h

∫

ω

C̃αβστeστ (ηH)eαβ(ζH)dx̃ =

∫

ω

pαζαdx̃+

∫

γ1

qαζαdγ,

for all ζH ∈ VM(ω, γ0), and flexural problem





Find η3 ∈ VF (ω, γ0), t ∈ (0, t), such that∫

ω

{
52

3
h3C̃αβστ∂στη3∂αβζ3 + 4ρhη̈3ζ3

}
dx̃ =

=

∫

ω

(p3ζ3 − sα∂αζ3)dx̃+

∫

γ1

(q3ζ3 − rα∂αζ3)dγ,

for all ζ3 ∈ VF (ω, γ0).

3.2. Cases p = 2 & p = 3

By choosing p = 2 or p = 3 in (2) and by identifying the terms with iden-

tical power of ε, we can characterize the solutions of the arising variational

subproblems and, hence, the leading term of the asymptotic expansion u0.

Concerning with p = 2, we obtain a generalization to the case of anisotropic

plates of a previous result obtained in Serpilli and Lenci (2008), for layered

elastic two-dimensional strips.
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The obtained limit displacement field u0 verifies the following kinematical

assumptions 



u±,0
α (x̃, x3) = η±α (x̃)− x3∂αη3(x̃),

u
±,0
3 (x̃, x3) = u

m,0
3 (x̃, x3) = η3(x̃),

where η±α denote the two independent membrane displacements of Ω±. In the

sequel, for the case p = 2, thanks to the particular form of the limit problem,

we will explicitly characterize the expression of the in-plane displacements

um,0
α in terms of η±α . We notice that u±,0 ∈ VKL(Ω

±,Γ0) have the form of

a Kirchhoff-Love displacement field. The limit problem takes the following

form: 



Find u0 ∈ V1(Ω,Γ0), t ∈ (0, T ), such that
∫

Ω+

{
C̃+

αβστeστ (u
0,+)eαβ(v) + ρ+ü

0,+
3 v3

}
dx+

+

∫

Ω−

{
C̃−

αβστeστ (u
0,−)eαβ(v) + ρ−ü

0,−
3 v3

}
dx+

+χ2(p)

∫

Ωm

4C̃m
α3β3eβ3(u

0,m)eα3(v)dx = L(v),

for all v ∈ V1(Ω,Γ0), where C̃
m
α3β3 := Cm

α3β3 −
Cm

α333C
m
β333

Cm
3333

, and the space of

admissible displacements is defined by

V1(Ω,Γ0) := {v = (vi); v± ∈ VKL(Ω
±,Γ0), ∂3v

m
3 = 0,

v = 0 on Γ0, v± = vm on S±} .

The function χq : p ∈ N 7→ [0, 1], depending on the choice of the exponent p,

is an indicator function such that

χq(p) :=





1 if p = q,

0 otherwise,

where q = 2 in this case. This function helps to distinguish between the two

cases of study and their associated limit models.
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Let us consider the case p = 2, with χ2(2) = 1. The limit problem can be

simplified if one considers the structure of the bilinear form defined on Ωm,

which involves the derivatives along x3. Indeed, by choosing test functions

vi with compact support in Ωm, with v3 = 0 in Ωm, one has

∫

Ωm

2C̃m
α3β3eβ3(u

0,m)∂3vαdx = 0.

The previous variational problem implies the existence of a constant function

zα = zα(x̃), such that 2C̃m
α3β3eβ3(u

0,m) = zα, and, thus,

∂3u
0,m
α = d̃mαβzβ − ∂αu

0,m
3 ,

with (d̃mαβ) := (C̃m
α3β3)

−1. By integrating expression above along x3 between

−hm and hm and by imposing the continuity of the displacements on S±, we

get that zα = 1
2hm C̃

m
α3β3[[ηβ]], and u

0,m
α becomes an affine function of x3:

u0,mα (x̃, x3) = 〈ηα〉(x̃) +
x3

2hm
([[ηα]]− 2hm∂αη3) (x̃), (7)

where 〈f〉 := 1
2
(f |S+ + f |S−) and [[f ]] := f |S+ − f |S− represent, respectively,

the mean value and the jump function between the values of f at the in-

terfaces S±. In this case the middle layer behaves as an elastic interface of

stiffness Km
αβ :=

C̃m
α3β3

2hm , whose displacement is an appropriate linear combina-

tion of the membrane displacements of the adherents.

Considering the case of homogeneous materials, by virtue of relation (7),

the limit problem can be reformulated in a reduced form defined on the

middle plane ω, where the membrane displacements η±

H = (η±α ) and the
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transversal displacements η3 are the primary unknowns. So, we get




Find (η+
H ,η

−

H , η3) ∈ VM(ω, γ0)× VM(ω, γ0)× VF (ω, γ0), t ∈ (0, T ), such that∫

ω

{(
−J+

12C̃
+
αβστeστ (η

+
H)− J−

12C̃
−

αβστeστ (η
−

H) + A22
αβστ∂στη3

)
∂αβζ3 + ρ̃η̈3ζ3+

+
(
J+
11C̃

+
αβστeστ (η

+
H)− J+

12C̃
+
αβστ∂στη3

)
eαβ(ζ

+
H) + χ2(p)K

m
αβ[[ηβ]][[ζα]]+

+
(
J−

11C̃
−

αβστeστ (η
−

H)− J−

12C̃
−

αβστ∂στη3

)
eαβ(ζ

−

H)
}
dx̃ = L̃(ζ),

(8)

for all (ζ+
H , ζ

−

H , ζ3) ∈ VM(ω, γ0)× VM(ω, γ0)× VF (ω, γ0). Let

n±

αβ(η
±

H , η3) := J±

11C̃
±

αβστeστ (η
±

H)− J±

12C̃
±

αβστ∂στη3,

m̂αβ(η
+
H ,η

−

H , η3) := −J+
12C̃

+
αβστeστ (η

+
H)− J−

12C̃
−

αβστeστ (η
−

H) + A22
αβστ∂στη3,

be the membrane stress tensors and the moment tensor of the equivalent

plate, respectively. The limit variational problem (8) is equivalent to the

following differential problem (coupled membrane-flexural problem):




Field equations:

−∂βn
+
αβ + χ2(p)K

m
αβ[[ηβ]] = p+α in ω × (0, T ),

−∂βn
−

αβ − χ2(p)K
m
αβ [[ηβ]] = p−α in ω × (0, T ),

∂αβm̂αβ + ρ̃η̈3 = p̃3 in ω × (0, T ),

Initial conditions:

η3(0) = η3,0, η̇3(0) = η3,1 in ω × (0, T ),

Boundary conditions:

n±

αβνβ = q±α on γ1 × (0, T ),

m̂αβνανβ = −rανα on γ1 × (0, T ),

∂αm̂αβνβ + ∂τ (m̂αβνατβ) = −q̃3 on γ1 × (0, T ),

η±α = η3 = ∂νη3 = 0 on γ0 × (0, T ).
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Remark 3. Let us consider the case of p = 2. The previous system shows

that the interlayer behaves as an elastic interphase of stiffness Km
αβ which re-

acts to the difference of the membrane displacements at the interface between

the top and bottom layers. The membrane and flexural behaviors of the plate

are strongly coupled due to the heterogeneity of the layered plate and the

different layer thicknesses. However, by taking into account the static case of

a symmetric three-layer plate (h+ = h−, J+
11 = J−

11 := J11, J
+
12 = −J−

12 := J12,

J+
22 = J−

22 := J22 and C̃+
αβστ = C̃−

αβστ = C̃αβστ ), by defining a new variable

ψα := η+α − η−α = [[ηα]], we can rewrite the differential system in a decoupled

form, as follows (see, also, Serpilli and Lenci (2008)):





J11J22−J2
12

J12
C̃αβστ∂αβσψτ + 2Km

αβ∂βψα = p̃3 +
J22
J12
∂α(p

+
α − p−α ),

C̃αβστ∂βστη3 =
1

J12

{
J11C̃αβστ∂βσψτ + 2Km

αβψβ − (p+α − p−α )
}
,

C̃αβστ∂βση
+
τ = 1

J11

{
Km

αβψβ + J11C̃αβστ∂βσψτ + p−α

}
,

C̃αβστ∂βση
−

τ = 1
J11

{
−Km

αβψβ − J11C̃αβστ∂βσψτ + p+α

}
.

Remark 4. If we consider the choice p = 3, the indicator function χ2(3) = 0

and, thus, the mechanical constraint involving the membrane displacements

of the adherents, appearing in (8), namely Km
αβ [[ηβ]][[ζα]], vanishes. In the

present case, no information about u0,mα can be deduced from the variational

formulation of the limit problem. From a mechanical point of view, this

means that the adhesive middle layer does not affect the membrane behav-

ior of the top and bottom plates, whose in-plane deformations are totally

independent and separate from one another.
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3.3. Case p ≥ 4

If we choose p ≥ 4 in (2), we can easily characterize the limit displacement

field u0 and its associated limit problem.

In this case we obtain that the limit displacement field u0 satisfies





u±,0
α (x̃, x3) = η±α (x̃)− x3∂αη

±

3 (x̃),

u
±,0
3 (x̃, x3) = η±3 (x̃),

where η±i denote the independent membrane and transversal displacements

of Ω±. Thus, u±,0 ∈ VKL(Ω
±,Γ0) is a Kirchhoff-Love displacement. The

limit problem reads as follows





Find u0 ∈ V2(Ω,Γ0), t ∈ (0, T ), such that
∫

Ω+

{
C̃+

αβστeστ (u
0,+)eαβ(v) + ρ+ü

0,+
3 v3

}
dx+

+

∫

Ω−

{
C̃−

αβστeστ (u
0,−)eαβ(v) + ρ−ü

0,−
3 v3

}
dx+

+χ4(p)

∫

Ωm

Cm
3333e33(u

0,m)e33(v)dx = L(v),

for all v ∈ V2(Ω,Γ0), where

V2(Ω,Γ0) :=
{
v = (vi); v± ∈ VKL(Ω

±,Γ0), v = 0 on Γ0, v
±

3 = vm3 on S±
}
.

Considering p = 4, with χ4(4) = 1, and the homogeneous case, by virtue of

the structure of the bilinear form defined on Ωm, involving the x3-derivatives,

we can characterize the transversal displacement um,0
3 . By choosing test

functions v3 with compact support in Ωm, we obtain that

∫

Ωm

Cm
3333e33(u

0,m)e33(v)dx = 0,
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which implies the existence of a constant function c = c(x̃) such that Cm
3333∂3u

m,0
3 =

c. Now, by integrating this expression between −hm and hm, and by imposing

the continuity of the displacements on S±, we obtain, as customary,

u
0,m
3 (x̃, x3) = 〈η3〉(x̃) +

x3

2hm
[[η3]](x̃). (9)

In this case the adhesive behaves as an elastic interphase of stiffness Km
33 :=

Cm
3333

2hm , reacting to the gap of the transversal displacements of the adherents.

No information arises on um,0
α , meaning that the membrane behaviors of the

upper and lower plate can be considered completely independent. The limit

problem can be simplified by using (9), as follows





Find (η+
H ,η

−

H , η
+
3 , η

−

3 ) ∈ VM(ω, γ0)× VM(ω, γ0)× VF (ω, γ0)× VF (ω, γ0) s. t.∫

ω

{(
J+
11C̃

+
αβστeστ (η

+
H)− J+

12C̃
+
αβστ∂στη

+
3

)
eαβ(ζ

+
H) + ρ+J+

11η̈
+
3 ζ

+
3 +

+
(
−J+

12C̃
+
αβστeστ (η

+
H) + J+

22C̃
+
αβστ∂στη

+
3

)
∂αβζ

+
3 + χ4(p)K

m
33[[η3]][[ζ3]]+

+
(
J−

11C̃
−

αβστeστ (η
−

H)− J−

12C̃
−

αβστ∂στη
−

3

)
eαβ(ζ

−

H) + ρ−J−

11η̈
−

3 ζ
−

3 +

+
(
−J−

12C̃
.
αβστeστ (η

−

H) + J−

22C̃
−

αβστ∂στη
−

3

)
∂αβζ

−

3

}
dx̃ = L̃(ζ),

(10)

for all (ζ+
H , ζ

−

H , ζ
+
3 , ζ

−

3 ) ∈ VM(ω, γ0)× VM(ω, γ0)× VF (ω, γ0)× VF (ω, γ0), t ∈

(0, T ).

The variational problem (10) corresponds to the following coupled differ-

ential problem. By defining

n±

αβ(η
±

H , η
±

3 ) := J±

11C̃
±

αβστeστ (η
±

H)− J±

12C̃
±

αβστ∂στη
±

3 ,

m±

αβ(η
±

H , η
±

3 ) := −J±

12C̃
.
αβστeστ (η

±

H) + J±

22C̃
±

αβστ∂στη
±

3 ,
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we have





Field equations:

−∂βn
+
αβ = p+α in ω × (0, T ),

−∂βn
−

αβ = p−α in ω × (0, T ),

∂αβm
+
αβ + χ4(p)K

m
33[[η3]] + ρ+J+

11η̈
+
3 = p̃+3 in ω × (0, T ),

∂αβm
−

αβ − χ4(p)K
m
33[[η3]] + ρ−J−

11η̈
−

3 = p̃−3 in ω × (0, T ),

Initial conditions:

η±3 (0) = η±3,0, η̇
±

3 (0) = η±3,1 in ω × (0, T ),

Boundary conditions:

n±

αβνβ = q±α on γ1 × (0, T ),

m±

αβνανβ = −r±α να on γ1 × (0, T ),

∂αm
±

αβνβ + ∂τ (m
±

αβνατβ) = −q̃±3 on γ1 × (0, T ),

η±i = ∂νη
±

3 = 0 on γ0 × (0, T ).

Remark 5. For all other exponents p > 4, the middle layer mechanically

disappears and the adherents behaves as two independent Kirchhoff-Love

plates. The mechanical interpretation is straightforward: the adhesive be-

comes too weak to bear loads and, hence, it cannot be perceived in the final

simplified model.

4. Asymptotic models for n ≥ 2

In this section we analyze the mechanical behavior of a three-layer plate,

in which the adhesive layer is considered to be thinner and softer with respect

to the adherents, see Figure 3.
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Figure 3: Layered plate with thin adhesive layer.

The asymptotic procedure allows to derive a set of limit models with

different mechanical behaviors, depending on the choice of the exponents

{n, p}, with n ≥ 2 and p ≥ 1.

4.1. Case 1 ≤ p < n+ 1

Let us consider the case of 1 ≤ p < n + 1 in the rescaled problem (2).

First of all, we denote with

J̄±

11 = J±

11, J̄±

12 = J̄±

21 :=

∫

I±

(x3 ∓ hm)dx3, J̄±

22 :=

∫

I±

(x3 ∓ hm)2dx3,

the modified first and the second order moments of inertia associated with

Ω±. Note that J̄±

12 = J±

12 ∓ hmJ±

11 and J̄±

22 = J±

22 + (hm)2J±

11 ∓ 2hmJ±

12.

The limit model kinematics verifies the following relations:





u±,0
α (x̃, x3) = ηα(x̃)− (x3 ∓ hm)∂αη3(x̃),

um,0
α (x̃, x3) = ηα(x̃),

u
±,0
3 (x̃, x3) = u

m,0
3 (x̃, x3) = η3(x̃).

Clearly, u±,0 ∈ VKL(Ω
±,Γ0) verify the Kirchhoff-Love kinematical assump-

tions, while um,0 is independent of the through-the-thickness coordinate x3.
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The variational formulation of the limit problem takes the following form:





Find u0 ∈ V3(Ω,Γ0), t ∈ (0, T ), such that
∫

Ω+

{
C̃+

αβστeστ (u
0)eαβ(v) + ρ+ü03v3

}
dx+

+

∫

Ω−

{
C̃−

αβστeστ (u
0)eαβ(v) + ρ−ü03v3

}
dx = L(v),

(11)

for all v ∈ V3(Ω,Γ0), where

V3(Ω,Γ0) := {v = (vi); v± ∈ VKL(Ω
±,Γ0) ,

∂3v
m = 0, v = 0 on Γ0, v

± = vm on S±} .

Considering homogeneous materials, the limit problem (11) can be rewrit-

ten in terms of the in-plane displacements ηH ∈ VM(ω, γ0) and transversal

displacement η3 ∈ VF (ω, γ0), after an integration along the x3-coordinate.

We obtain, as customary, the following coupled problem defined over the

middle plane of the plate ω:





Find (ηH , η3) ∈ VM(ω, γ0)× VF (ω, γ0), t ∈ (0, T ), such that∫

ω

{(
Ā11

αβστeστ (ηH)− Ā12
αβστ∂στη3

)
eαβ(ζH) + ρ̃η̈3ζ3+

+
(
−Ā12

αβστ eστ (ηH) + Ā22
αβστ∂στη3

)
∂αβζ3

}
dx̃ = L̄(ζ),

for all (ζH , ζ3) ∈ VM(ω, γ0)× VF (ω, γ0), where

Ā
νµ
αβστ := J̄+

νµC̃
+
αβστ + J̄−

νµC̃
−

αβστ = Ā
µν
αβστ ,

and

L̄(ζ) :=

∫

ω

(p̄iζi − s̄α∂αζ3)dx̃+

∫

γ1

(q̄iζi − r̄α∂αζ3)dγ.
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Moreover, the modified two-dimensional applied loads are

p̄i = pi, q̄i = qi,

s̄α :=

∫

I+

(x3 − hm)fαdx3 +

∫

I−

(x3 + hm)fαdx3 + 2h+g+α − 2h−g−α ,

r̄α :=

∫

I+

(x3 − hm)gαdx3 +

∫

I−

(x3 + hm)gαdx3.

We omit the differential form of the limit problem, since it admits a sim-

ilar formulation as the one obtained in Sect. 3.1, (see Eq. (6)).

Remark 6. It is important to remark that the form of the limit problem

(11) is analogous to the one obtained in Sect. 3.1, for the case n = p = 1,

(see Eq. (4)). However, the involved kinematics are quite different: in the

present case, the displacements of the adhesive depends just on the in-plane

coordinates xα, i.e., ∂3v
m = 0, while, for what concerns with case of Sect.

3.1, vm is a Kirchhoff-Love displacement, meaning that ei3(v
m) = 0.

4.2. Cases p = n + 1 & p = n+ 2

By choosing p = n + 1 or p = n + 2 in (2) and by identifying the terms

with identical power of ε, we can characterize the solutions of the arising

variational subproblems and, hence, the leading term of the asymptotic ex-

pansion u0. If n = 2 and p = 3, we derive an analogous model of the one

obtained in Åslund (2005), for bonded nonlinearly elastic plates.

The limit displacement field u0 verifies the following kinematical assump-

tions 



u±,0
α (x̃, x3) = η±α (x̃)− x3∂αη3(x̃),

u
±,0
3 (x̃, x3) = u

m,0
3 (x̃, x3) = η3(x̃),
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where η±α denote the two independent membrane displacements of Ω±. In the

sequel, thanks to the particular form of the limit problem, we will explicitly

characterize the expression of the in-plane displacements um,0
α in terms of η±α ,

for the case p = n + 1. Note that u±,0 ∈ VKL(Ω
±,Γ0). The limit problem

takes the following form:





Find u0 ∈ V4(Ω,Γ0), t ∈ (0, T ), such that
∫

Ω+

{
C̃+

αβστeστ (u
0,+)eαβ(v) + ρ+ü

0,+
3 v3

}
dx+

+

∫

Ω−

{
C̃−

αβστeστ (u
0,−)eαβ(v) + ρ−ü

0,−
3 v3

}
dx+

+χn+1(p)

∫

Ωm

C̃m
α3β3∂3u

0,m
β ∂3vαdx = L(v),

for all v ∈ V4(Ω,Γ0), where

V4(Ω,Γ0) := {v = (vi); v± ∈ VKL(Ω
±,Γ0), ∂3v

m
3 = 0,

v = 0 on Γ0, v
± = vm on S±} .

By means of the same procedure adopted in Sect. 3.2, taking into account

homogeneous materials, thanks to the structure of the bilinear form defined

on Ωm, we can characterize the membrane displacement u0,mα as an affine

function of x3, depending on η±α , for the case p = n+ 1. Thus, one has

u0,mα (x̃, x3) = 〈ηα〉(x̃) +
x3

2hm
([[ηα]]− 2hm∂αη3) (x̃).

Hence, the limit problem can be reformulated in an alternative form, in which
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η+
H ,η

−

H , η3 represent the primary unknowns:




Find (η+
H ,η

−

H , η3) ∈ VM(ω, γ0)× VM(ω, γ0)× VF (ω, γ0), t ∈ (0, T ), such that∫

ω

{(
−J+

12C̃
+
αβστeστ (η

+
H)− J−

12C̃
−

αβστeστ (η
−

H) + A22
αβστ∂στη3

)
∂αβζ3+

+
(
J+
11C̃

+
αβστeστ (η

+
H)− J+

12C̃
+
αβστ∂στη3

)
eαβ(ζ

+
H)+

+
(
J−

11C̃
−

αβστeστ (η
−

H)− J−

12C̃
−

αβστ∂στη3

)
eαβ(ζ

−

H)+

+χn+1(p)K
m
αβ ([[ηβ]]− 2hm∂βη3)([[ζα]]− 2hm∂αζ3) + ρ̃η̈3ζ3

}
dx̃ = L̃(ζ),

(12)

for all (ζ+
H , ζ

−

H , ζ3) ∈ VM(ω, γ0) × VM(ω, γ0) × VF (ω, γ0). The limit varia-

tional problem (12) is equivalent to the following differential problem (cou-

pled membrane-flexural problem):




Field equations:

−∂βn
+
αβ + χn+1(p)K

m
αβ([[ηβ]]− 2hm∂βη3) = p̄+α in ω × (0, T ),

−∂βn
−

αβ − χn+1(p)K
m
αβ([[ηβ]]− 2hm∂βη3) = p̄−α in ω × (0, T ),

∂αβm̂αβ + 2χn+1(p)h
mKm

αβ∂α([[ηβ]]− 2hm∂βη3) + ρ̃η̈3 = ˜̄p3 in ω × (0, T ),

Initial conditions:

η3(0) = η3,0, η̇3(0) = η3,1 in ω × (0, T ),

Boundary conditions:

n±

αβνβ = q̄±α on γ1 × (0, T ),

m̂αβνανβ = −r̄ανα on γ1 × (0, T ),

∂αm̂αβνβ + ∂τ (m̂αβνατβ)+

+2χn+1(p)h
mKm

αβ([[ηβ]]− 2hm∂βη3)να = −˜̄q3 on γ1 × (0, T ),

η±α = η3 = ∂νη3 = 0 on γ0 × (0, T ).

where ˜̄p3 := p̄3 + ∂αs̄α and ˜̄q3 := q̄3 − s̄ανα + ∂τ (r̄ατα).
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4.3. Case p ≥ n+ 3

Considering the case of p ≥ n+3, we deduce the same expressions of the

limit displacement field and its associated limit problem, obtained in Sect.

3.3 for n = 1 and p ≥ 4. The kinematics of the layered plate is characterized

by two independent membrane displacements η±α and by two independent

transversal displacements η±3 for the top and bottom plates. Concerning

with the case p = n+3, the transversal displacements are linked together by

a linear constraint in Ωm, while, for the case p > n+3, the adherents are two

independent Kirchhoff-Love plates, deforming separately from one another.

5. Discussion on the results

This section is aimed at summarizing the previously obtained results and

comparing the different asymptotic models for a three-layer plate with soft

adhesive, comprising all the possible choice of thickness and rigidity ratios

between the adhesive and the adherents.

The obtained limit mechanical behaviors depend strongly on the relative

ratios between the thickness and the stiffness properties of the plate con-

stituents. A common feature, clearly visible in all models for each choice

of thickness ratio, is represented by the behavior of the layered plate after

a consecutive reduction of the middle layer rigidity. By fixing n ≥ 1, the

gradual decrease of the adhesive stiffness (p ≥ 1) entails the mechanical sep-

aration of the adherents which occurs in successive steps: at the beginning,

we have perfect adhesion among the different layers and the plate behaves as

a monolithic single-layer plate; then, the membrane separation starts (involv-

ing the membrane displacements η±α ): once the in-plane separation has taken
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place, we achieve a transversal separation of the upper and lower plates (in-

volving the transversal displacements η±3 ), finally behaving as two separate

independent Kirchhoff-Love plates.

In the sequel we give a brief recap of the obtained results, distinguish-

ing the main mechanical behaviors for a particular choice of thickness ratio,

namely n ≥ 1. As already mentioned above, we can identify three different

scenarios:

i) Perfect adhesion: 1 ≤ p < n + 1. Concerning with this particular choice

of rigidity ratio, we obtain that the layered plate behaves as an equivalent

single-layer plate, whose interlayer does not influence the global mechanical

behavior of the plate assembly. The main distinction between the case n =

1 & p = 1 (Section 3.1) and n ≥ 2 & 1 ≤ p < n+1 (Section 4.1) relies in the

different limit kinematics, while the structure of the limit problem remains

slightly the same (see Eqs. (4)-(11)). More specifically, for what concerns

with the first case, the plate behaves as a homogenized Kirchhoff-Love single-

layer plate, as shown in Figure 4; according to the second case, we still have

perfect adhesion but the membrane and transversal displacements of the

intermediate layer are both independent of the x3-coordinate, see Figure 5:

this is mainly due to the thinness of the adhesive with respect to the adherents

thickness.

ii) In-plane separation: p = n+1 & p = n+2. According to this choice of the

exponents p, the limit kinematics is characterized by two different membrane

displacements for the top and bottom plates, noted with η±α , still sharing the
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Figure 4: Limit kinematics for n = 1 & p = 1.

Figure 5: Limit kinematics for n ≥ 2 & 1 ≤ p < n+ 1.

same transversal displacement. When p = n + 1, the intermediate layer

behaves as an elastic interphase (linear in-plane springs) reacting to the gap

between the values of the in-plane displacements at the interface (see Figure

6). While, when p = n + 2, the adhesive layer does not affect anymore

the overall membrane behavior. Indeed, we encounter a discontinuity of the

membrane displacements at the interfaces with the upper and lower layers

(see Figure 7) and, thus, the in-plane separation is achieved.

iii) Transversal separation: p ≥ n + 3. Once the membrane separation oc-

curred, meaning that the membrane displacements for the top and bottom

plates are completely independent from one another, then the transversal

separation takes place. In this case, we obtain two different transversal dis-

placements η±3 for the adherents, influencing the slopes of the normal fibers to
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Figure 6: Limit kinematics for n ≥ 1 & p = n+ 1.

Figure 7: Limit kinematics for n ≥ 1 & p = n+ 2.

the middle plane of the upper and lower layers, respectively. No distinctions

have been highlighted between the case n = 1 and n ≥ 2. For p = n+ 3, the

upper and lower plates are still connected together by an internal constraint

on the independent transversal displacements (linear transversal through-

the-thickness springs), as shown in Figure 8. While, for p > n + 3, the

adherents deform separately as two autonomous Kirchhoff-Love plates, as in

Figure 9.

Figure 8: Limit kinematics for n ≥ 1 & p = n+ 3.
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Figure 9: Limit kinematics for n ≥ 1 & p > n+ 3.

In Figure 10, we present a summarizing behavior chart in which the three

phases, described above, are well distinguished with their related limit kine-

matics for the case n = 1 and n = 2.

6. Concluding remarks

In the present paper we attempt to give a complete overview of the asymp-

totic models for a three-layer plate with soft adhesive. The analysis has been

conducted by considering general hypothesis of anisotropy and non homo-

geneity of the involved materials and, also, by taking into account the inertia

forces. By means of the asymptotic expansion method, we derive a series of

limit models by changing the thickness/rigidity ratios of the adherents and

the adhesive.

We remark that, by decreasing the stiffness of adhesive, we encounter

three main phenomena: the perfect adhesion, in which the layered plate

behaves as an equivalent single-layer plate, whose middle layer does not in-

fluence the global mechanical behavior of the structure; the in-plane sepa-

ration, according to which the adherents admit two different membrane dis-

placement; finally, the transversal separation, occurring after the membrane
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Figure 10: Behavior chart: increasing n entails decreasing the interlayer thickness, while

increasing p corresponds to decreasing the interlayer stiffness.

separation, in which the adhesive disappears from a mechanical point of view

and the upper and lower plates behaves as two independent Kirchhoff-Love

plates.

As future developments, in order to have an overall look on the asymptotic

models for layered thin plates, we want to extend our analysis to the case of a
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three-layer plate whose intermediate layer is stronger or with similar rigidity

with respect to the adherents.
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