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ABSTRACT 13 

Fiber Reinforced Cementitious Matrix (FRCM) systems have emerged in recent years as an 14 
effective tool for strengthening and retrofitting of the existing built heritage. 15 
The effectiveness of FRCM systems is strongly related to the bond developed at the interface 16 
between inorganic matrix and fabric reinforcement and between the inorganic matrix and the 17 
substrate. However, since the major weakness is often located at the matrix-to-fiber interface, the 18 
study of stress-transfer mechanisms between fibers and matrix, and a better understanding of the 19 
failure processes become of fundamental importance. 20 
In this paper, interface bond-slip relations are derived from pull out tests on multifilament carbon 21 
yarns embedded in a cementitious matrix. Two different types of yarns are investigated, dry and 22 
pre-impregnated with epoxy resin. A variational model able to reproduce the mechanisms of 23 
interface debonding and frictional slippage observed in experiments is developed, where the 24 
constitutive parameters are calibrated on the base of the experimental data available from pull 25 
out tests. The model is implemented in a finite elements code, and pull out and double shear 26 
bond tests on masonry substrates are simulated. Finally, numerical results are compared with 27 
experimental evidences. 28 
 29 
Keywords: 30 

FRCM, carbon yarn, bond-slip law, debonding, slippage, variational modeling. 31 
 32 
1. Introduction 33 

In the last few years, the growing need to recover, reinforce and strengthen existing masonry or 34 
concrete buildings led to the development of innovative materials and new repair techniques with 35 
low environmental impact and high efficacy. Fiber Reinforced Cementitious Matrix (FRCM), 36 
also called Textile Reinforced Mortar (TRM), applied as external reinforcement and acting as an 37 
additional tensile-resistant element, proved to be very effective in increasing both mechanical 38 
strength and ductility of masonry and concrete structures.  39 
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FRCM are generally constituted by uni-directional or bi-directional fabrics, consisting of 1 
multifilament yarns made of carbon, glass, basalt or PBO fibers, disposed along two orthogonal 2 
directions. If compared to organic matrix systems (e.g. FRP, SRP) the use of a cementitious or 3 
lime-based matrix guarantees better compatibility with concrete or masonry substrates, higher 4 
breathability and vapor permeability, high temperature resistance, applicability on wet and 5 
irregular surfaces, more security for operators during installation [1-4].  6 
FRP and FRCM are similar in the way they are designed as external reinforcement for structures 7 
or elements that need to be strengthened. However, while the performances of FRP are strongly 8 
influenced by the effectiveness of the stress transfer mechanisms from the substrate to the 9 
composite, since the failure often occurs before the ultimate tensile strength of the composite is 10 
reached [5-6], FRCM performances are more affected by the stress transfer mechanisms at the 11 
interface between fabric reinforcement and inorganic matrix, since the failure is often expected 12 
at this interface. 13 
The FRCM mechanical behavior and failure mode are strongly dependent on the type of fabric 14 
reinforcement used. Fabrics are usually constituted by yarns made of dry filaments but often they 15 
are coated or pre-impregnated with organic compounds in order to improve the adherence with 16 
the inorganic matrix. In this context, the term coating is intended for a superficial impregnation 17 
of the yarn fibers, with the inner filaments of the bundle left dry, while pre-impregnation 18 
indicates a complete impregnation of the yarn with organic resins.  19 
In case of fabric reinforcement made of multifilament dry yarns, FRCM properties are 20 
influenced by the ability of the inorganic matrix to penetrate within the filaments. Since the 21 
matrix is able to engage only the external fibers of the yarns, the so called ‘telescopic’ behavior, 22 
due to slippage of the internal filaments of the yarn, is activated [7].  23 
In case of coated or pre-impregnated yarns, the penetration of the mortar within the filaments is 24 
prevented by the presence of the organic resin. As a consequence, the bond between yarn and 25 
matrix is no longer dependent on the ability of the mortar to penetrate within the filaments but 26 
rather from the bond at the interface between coating and matrix [8,9]. In this case it is possible 27 
to precisely identify a contact surface between yarn and matrix, while in case of dry yarns it is 28 
not easy to establish how many filaments are engaged in the stress transfer mechanisms. In fact, 29 
the ability of the mortar to penetrate between the filaments depends on many factors, such as 30 
mortar viscosity, size of the aggregates or fillers that constitute the mortar, space between 31 
filaments and also by the technique used to apply the FRCM to the substrate (trowel, plastering 32 
machine). Thus two different types of bond are distinguished in multifilament dry yarns: bond 33 
between filaments and matrix and bond between filaments. In case of pre-impregnated yarns the 34 
slippage between filaments is prevented by the resin and only the bond between yarn and 35 
cementitious matrix is considered. 36 
In this scenario, the definition of an appropriate bond-slip law (BSL) for a given FRCM system 37 
is fundamental to allow the development of analytical or numerical models able to simulate the 38 
FRCM mechanical behavior and failure modes. 39 
The bond between multifilament yarns and cementitious matrix has been studied by several 40 
authors by using different methodologies. Banholzer and coworkers proposed two different 41 
methods: the so called ‘direct method’, which requires the knowledge of an idealized BSL or the 42 
measurement of the longitudinal strain along the interface between yarn and matrix [10] and the 43 
‘indirect method’, that is able to predict a BSL based on experimental parameters obtained by 44 
means of pull out, single or double shear bond tests on FRCM systems [11].  45 
An indirect method to calibrate the cohesive material law of FRCM-concrete joints was proposed 46 
by Focacci and coworkers [12]. The method is based on single-lap shear bond tests on FRCM-47 
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concrete joints with different bonded lengths, using the peak load versus bonded length to 1 
calibrate the BSL. Other models based on the analysis of the shear stress at the interface yarn-2 
matrix in pull out [13,14] or single shear tests [15-19] have been proposed in the literature. 3 
However, all these studies have shown that measuring the fiber strain in FRCM composites is a 4 
difficult task, due to the presence of the matrix embedding the fabric yarns, while using idealized 5 
BSL is not always able to accurately describe the FRCM mechanical behavior.  6 
In this work a different approach has been proposed, by using simple pull out tests on single 7 
yarns to calibrate the BSL, for different FRCM systems.  8 
During pull out test on a single yarn embedded in a cement matrix, force and slip at the loaded 9 
end can be easily measured. As a result, the relationship between the shear stress and the slip 10 
along the interface (BSL) can be derived by considering the shear stress to be constant along the 11 
interface with no need to apply strain sensors on the yarn surface. This assumption is acceptable 12 
for short embedded lengths (equal to 20 mm), as confirmed by experimental and numerical 13 
results, while it is no longer reliable for higher lengths. 14 
Two types of carbon yarns, dry and fully pre-impregnated with an organic resin, have been used, 15 
these two representing the antipodes of what is currently on the market of FRCM systems. As a 16 
consequence, two different BSL have been obtained from pull out tests. 17 
A variational model has been developed and implemented in a finite element code to simulate 18 
the possible failure mechanisms of FRCM systems reinforced with these two types of carbon 19 
fabrics. 20 
Following a phase-field approach [20], the proposed model is based on an energy functional 21 
which depends on a damage parameter  ranging from 0 to 1 (=0 means sound material, and 22 
=1 means totally damaged material), which accounts for possible fracture of the constituents 23 
(cementitious matrix and carbon reinforcement), or debonding and slippage at the yarn-to-matrix 24 
interface. Different energies have been assigned to the system constituents and to the interface. 25 
Regarding matrix and yarn, the energy proposed in [21,22] has been considered. It incorporates a 26 
linear local damage term and a non-local damage contribution in order to describe the behavior 27 
of brittle materials. The energy assigned to the yarn-to-matrix interface is constituted by three 28 
terms: (1) an elastic contribution, which accounts for a distribution of elastic springs whose 29 
elastic stiffness degrades when damage increases, (2) a local damage term, accounting for 30 
debonding, and (3) a frictional energy, expended in the phase of slippage that follows the 31 
detachment. This third term is similar to that proposed in [23,24] to model plastic slip flow, and 32 
it only depends on one parameter, 0, which represents the frictional shear stress. The 33 
corresponding parameter in [23] represented the plastic yielding stress. 34 
It follows that the three energy terms are directly related to the three basic phases of the failure 35 
process at the yarn-to-matrix interface observed in experiments, i.e., the initial elastic shear, the 36 
debonding in a regime of stress-softening, and the slippage occurring at constant frictional shear 37 
stress. This strict correlation is a distinguishing feature of the proposed formulation, with respect 38 
to the model proposed in [25], where a unique damage energy was considered to describe the 39 
post-elastic evolution.  40 
Two different failure modes, brittle and ductile with a softening phase, have been observed for 41 
dry and pre-impregnated carbon yarns, respectively. To account for these differences, two 42 
expressions of the damage energy have been considered: a concave function of  to capture 43 
brittle damaging, and a linear function to describe the softening phase. 44 
Evolution of strain and damage, as the external load increases, is determined by solving a 45 
constrained incremental minimization problem, that has been implemented in a sequential  46 
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quadratic programming algorithm. Incremental minimization was used to determine local 1 
minima in many different evolution problems concerning fracture [26], plasticity [27,28] or 2 
crystal plasticity [29]. 3 
Experimental data have been used to calibrate the constitutive parameters that characterize the 4 
interface, such as the shear elastic stiffness k, the peak shear stress e and the frictional shear 5 
stress 0. They have been easily derived from the experimental force-displacement curves of pull 6 
out tests. Once the model has been calibrated, numerical simulations have been carried out. Both 7 
pull out and double shear bond tests have been reproduced by considering different bond lengths. 8 
Interface debonding and slippage have been investigated in the two cases of dry and pre-9 
impregnated yarns, and comparisons with experimental results have been carried out. 10 
 11 
The paper is organized as follows: 12 
Experimental results of pull out tests on specimens made of dry or pre-impregnated carbon yarns 13 
embedded in a cementitious matrix are presented in Section 2. The effect of varying the bond 14 
length is also discussed. 15 
In Section 3 a phase-field model has been developed in order to reproduce the FRCM 16 
mechanical behavior, taking into account the possible failure of the constituent materials, the 17 
slippage at the yarn to the matrix interface and the frictional stress in the post-elastic phase. The 18 
bond parameters have been calibrated, based on experimental results, and implemented within 19 
the model. 20 
Pull out tests and double shear bond test have been simulated in Section 4. The effect of varying 21 
the bond length of the carbon yarn or fabric within the inorganic matrix and the use of dry or pre-22 
impregnated carbon yarns was also considered. Finally, numerical results have been compared 23 
with experimental outcomes in terms of load-displacements curves.  24 
 25 

2. Experiments 26 
2.1 Pull out test 27 

A commercially available cementitious mortar with a maximum aggregates size of 0.5 mm has 28 
been used as FRCM matrix. Mechanical properties were investigated by means of three-point 29 
bending tests on standard prisms (40x40x160 mm) and compressive tests on the two remaining 30 
broken parts. Tests were performed after 28 days of casting at 20 °C and 50% RH. Two different 31 
types of carbon yarn were used: the first one constituted by multifilament dry carbon fibers 32 
(DRY) and the second realized by applying a complete organic pre-impregnation (IMP). The 33 
pre-impregnation consisted on a fully saturation of the yarn with flexible epoxy resin and a thin 34 
layer of quartz sand (maximum sand size of 1 mm) applied to the surface. Tensile strength and 35 
elastic modulus of the carbon yarn were evaluated by means of tensile tests, according to ISO 36 
10618. Material properties of cementitious mortar and carbon yarn are collected in Table 1. 37 
A total of 25 pull out tests were carried out on specimens made of dry or coated carbon yarns 38 
embedded in a cylinder of cementitious mortar (diameter D=50 mm) with different embedded 39 
lengths (h=20÷50 mm). The pull out test setup is illustrated in Figure 1. Specimens have been 40 
labelled by indicating the type of carbon yarn, DRY or pre-impregnated (IMP), followed by the 41 
embedded length (h). The free length l is kept constant and equal to 80 mm. Pull out tests were 42 
performed using a tensile testing machine with a load bearing capacity of 50 kN. The specimen 43 
is fixed at the top by a metallic frame anchored to the testing machine and the yarn is gripped 44 
and pulled in displacement control at 0.5 mm/min. The displacement se, corresponding to the 45 
maximum force fmax, was calculated by subtracting the elastic deformation of the bare yarn to the 46 
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total displacement de, measured at the head of the testing machine: se=de-fmaxl/(AfEf), where Ef is 1 
the Young’s modulus of the carbon yarn, and Af is the yarn cross-section area. 2 
 3 

Table 1 - Material properties 4 

Material 
Compressive 

strength 
(MPa) 

Tensile 
strength e 

(MPa) 

Elastic 
modulus E 

(GPa) 

Unit 
weight 
(kg/m3) 

Poisson ratio ν 
 

Cementitious mortar (m) 45 6.2 34.5 1320 0.2 
Carbon fiber - 4900 240 - 0.3 
Carbon yarn (f) - 1850 150 - 0.3 

 5 
 6 

 7 

Figure 1 - Pull out test set up (a), geometrical scheme (b), dry and pre-impregnated carbon 8 
yarns (c). 9 

 10 
Experimental results of pull out tests are reported in Table 2. The average maximum load fmax 11 
was evaluated on 5 specimens for each type of geometry while se represents the corresponding 12 
displacement. Three experimental pull out curves for each type of specimen are reported in 13 
Figure 2, while the grey region represents the envelope of all experimental curves which have 14 
been used to derive the bond parameters: τe, τ0, k.  15 
The maximum shear stress τe at the interface is supposed to be constant along the embedded 16 
length. This value is estimated through the formula τe=fmax/(h∙p), where p is the perimeter of the 17 
yarn equal to 8.64 mm and h is the embedded length.  18 
The frictional shear stress τ0 has been evaluated as the stress corresponding to the pure frictional 19 
phase of the pull out curve. τ0 represents the shear stress at s=3 mm, since at this point it is sure 20 
that the yarn is completely debonded from the matrix and the pull out is governed only by 21 
frictional stresses at the interface. In case of dry yarns τ0 is assumed equal to zero. 22 
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The shear modulus is k=e/se. 1 
 2 

Table 2 - Experimental results of pull out tests  3 

Specimen 
 fmax  

(N) 
se 

(mm) 
τe 

(MPa) 
τ0 

(MPa) 
k 

(N/mm3) 

DRY_20 
Average 242 0.44 1.40 0 3.10 

CoV (%) 14.2 11.5 14.2 - 14.3 

DRY_50 
Average 479 0.72 1.11 0 1.54 

CoV (%) 6.0 15.1 6.0 - 13.2 

IMP_20 
Average 342 0.5 1.98 1.25 3.95 

CoV (%) 7.9 13.7 7.9 7.3 9.2 

IMP_30 
Average 501 0.77 1.93 1.28 2.51 

CoV (%) 6.8 17.3 6.8 4.7 14.7 

IMP_50 
Average 748 0.95 1.73 1.25 1.82 

CoV (%) 8.9 14.3 8.9 3.2 11.8 

 4 

 5 
 6 

   7 

Figure 2 - Experimental and numerical load-displacement curves of pull out tests.  8 

 9 
Load-displacement curves reported in Figure 2 show a substantial increase of the maximum load 10 
fmax passing from dry to pre-impregnated (IMP) carbon yarn. The pre-impregnation has a major 11 
influence on the quality of the adhesion between yarn and matrix and allows for a more uniform 12 
distribution of the stresses all over the yarn cross section. The pull out resistance increases about 13 
40% and 55% for an embedded length of 20 and 50 mm, respectively. 14 
It can be observed that the maximum load fmax increases by increasing the embedded length h 15 
while the shear stress τe calculated over the total length of the interface decreases. The reduction 16 
of the stress value τe by increasing the embedded length explains in part why the distribution of 17 
the shear stress along the interface cannot be considered constant for longer (>20 mm) embedded 18 
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lengths. The debonding at the interface yarn-to-matrix propagates slowly from the top of the 1 
specimen. In case of short embedded length this propagation is fast, and stress distribution along 2 
the interface, once the maximum load is reached, can be considered almost constant. This 3 
phenomenon has been confirmed by numerical simulations. 4 
In the case of dry yarns no frictional shear stress in the post-elastic phase was observed: the 5 
behavior is elastic-brittle with a sudden drop of the load after exceeding the maximum load. 6 
For pre-impregnated carbon yarns (IMP), when the maximum shear stress τe is reached, the 7 
softening phase takes place and the shear stress decreases. During this phase the yarn begins to 8 
detach from the matrix at the top of the specimen, up to reach the complete debonding through 9 
the interface. After that, the shear stress becomes constant, while the slippage of the yarn within 10 
the matrix is governed only by the frictional stress τ0. The value of τ0 is about 35% lower than the 11 
maximum shear stress τe. 12 
It can be observed that τ0 does not vary by changing the embedded length and so it can be 13 
considered as a material parameter which depends only on the bond quality of the interface 14 
between yarn and matrix. 15 

 16 
2.2 SEM analysis 17 
 18 
The interface between dry (Figures 3a,b) or pre-impregnated (Figures 3c,d) carbon yarn and the 19 
surrounding mortar was observed by SEM (at magnifications ranging from 20 to 100), on 20 
specimens after pull out test. It is clear to observe that the inorganic matrix doesn’t penetrate 21 
within the dry carbon filaments and it is able to engage only the external carbon filaments. The 22 
inner filaments are pulled out of the matrix while only few external filaments remain attached to 23 
the matrix. In pre-impregnated carbon yarns, the penetration of the mortar within the filaments is 24 
prevented by the resin (Figure 3c). However, the mortar is able to completely wrap the yarn, 25 
ensuring a better interface quality. After the specimen has been tested in pull out it can be 26 
observed a clear debonding at the yarn to mortar interface. A non-perfect impregnation of the 27 
inner filaments of the yarn can also be observed in Figure 3d. In some cases, the sand grains used 28 
to improve the adhesion within yarn and matrix remain attached to the surrounding mortar more 29 
than to the yarn surface, due to their considerable size, if compared to the yarn cross section. 30 
This might suggest to apply a sand or powder of smaller size to increase the adhesion at the 31 
interface. 32 
 33 

 34 
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 1 

Figure 3 - SEM analysis at the yarn to matrix interface after pull out test, at different 2 
magnifications: Dry yarn (3ab); Pre-impregnated yarn (3cd).  3 

 4 
 5 

3. Variational model 6 

A composite body constituted by the subdomains m and f, representing the matrix and the 7 
yarn, has been considered, with  which represents the matrix-to-yarn interface (see Figure 6 for 8 
two-dimensional geometrical schemes of pull out and double shear bond tests). The 9 
multifilament yarn is considered as an homogeneous body, so that the shear between filaments 10 
and the so-called telescopic behavior are neglected. A monotonically increasing displacement s 11 
is applied on a portion fs of the yarn domain, and it constitutes the evolution parameter of the 12 

problem. The problem unknowns are the displacement )(xsu  and the damage )(xs , which 13 

depend on the position x and on the imposed displacement s. Damage )(xs  is a scalar field 14 

ranging from 0 to 1: =0 means that the material is sound, and =1 that it is totally damaged. 15 
 16 

3.1 Energies 17 

As in [22], the internal energy of the system is assumed to be sum of three contributions 18 

,),(),(),(),(   
 dadxdx ssssfssmss

fm

 δuuuE    (1) 19 

which correspond to the energies of matrix, yarn and interface. In the third integral, sδ  is the 20 

displacement jump at the interface, that is, )()()( xxx m
s

f
ss uuδ - , with )(xm

su  and )(xf
su  the 21 

displacement on the yarn and matrix boundaries, respectively. Since volume loads and surface 22 
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loads at the boundary are assumed to be null, energy (1) represents the total energy of the 1 
system.  2 
 3 
(i) Matrix and yarn energy densities 4 
The matrix and yarn energy densities m  and f  have the shape 5 

,)(
16

)()1(),( 2
22

2









 ss

e
ssss

l

E
W  uu      (2) 6 

where the first term represents the elastic strain energy, with  7 















 22

)21()1(2
)( uuu trsym

E
W





, 8 

the elastic energy density of linearly elastic isotropic materials, depending on the Young’s 9 
modulus E and the Poisson’s ratio . The second term in (2) is the damage energy as proposed in 10 
[21,22]. It is composed of a local term linearly depending on , and a quadratic non-local 11 
function of the damage gradient  . The energy density (2) is proper of brittle materials, which 12 
exhibit an initial linearly elastic stage followed by brittle failure. The local stress-strain curve 13 
obtained with the energy (2) is drawn in Figure 4a, and the analytical justification of the brittle 14 
failure occurring when =e is given in the Appendix, where the equilibrium equations are 15 
deduced. The functional (2) depends on the peak stress e, attained at the end of the initial elastic 16 
phase, on the Young’s modulus E, and on the internal length l, which corresponds to the size of 17 
the damage localization zone at fracture. A profile of  in a line x normal to the crack surface is 18 
shown in Figure 4b, (see the Appendix for the analytical expression of =(x), and [30] for a 19 
thorough study). 20 
 21 

 22 

Figure 4 - (a) Stress-strain curve for brittle materials (cementitious matrix and carbon yarn); (b) 23 
damage profile on a transversal section of a crack surface. 24 

 25 
(ii) Matrix-to-yarn interface energy density 26 
The third term of (1) is the energy of the matrix-to-yarn interface , which has the expression 27 

||)(
2

1
)1(),( 2

0
2 tδδKδδ  ssssssss w  .     (3) 28 

The first term is the elastic energy density, where the elastic tensor K is supposed to be diagonal, 29 
i.e., IK k , with k the elastic coefficient and I the identity tensor. The degradation function 30 

2)1( s  is equal to that assumed in (2).  31 

The second term is the damage energy density, which assumes the following two possible forms  32 
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s
e
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2
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2

)(           ,
2

1
)( 






  .      (4) 1 

They are quadratic and linear polynomials of  whose graphs are plotted in Figure 5a, and they 2 
depend on the maximum elastic shear stress e, and on the elastic coefficient k. In section 4.2, it 3 
is shown that the quadratic expression properly describes brittle debonding, as observed in 4 
experiments with dry yarns, while the linear expression is suitable for reproducing ductile 5 
debonding, as exhibited by impregnated yarns. Accordingly, indices B and D in (4) stand for 6 
brittle and ductile. 7 
Finally, the third term in (3) represents the frictional energy density, whose expression is similar 8 
to that proposed in [23,24] to model plastic slip flow. It depends on  and on the absolute value 9 
of the tangential slip tδ s , being t the unit vector tangent to the interface. The constitutive 10 

parameter to be assigned in the frictional energy density is the frictional shear stress 0. 11 
 12 
3.2 Debonding and frictional sliding at the interface 13 

In order to describe the damage evolution associated to the energy density (3), the equilibrium 14 
equations in have been determined, when the two faces in contact are subjected to the relative 15 
constant load f. In this case, the total energy of  is 16 

,),(),(     dada δfδδ L        (5) 17 

where the second integral is the potential energy of the external load, and index s is omitted. 18 
Equilibrium is obtained by requiring the first variation of the total energy (5) to be non-negative 19 
for any perturbation, that is, 20 

,,     ,0]),(),([),;,( 
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from which the equilibrium relations are 22 
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       (7) 23 

The first equation is the force-displacement balance equation which is sum of an elastic term and 24 
a frictional contribution. When =0, only the elastic response is active, and (7)1 reduces to f=K. 25 
When =1, springs are totally broken, and only the frictional force ttδf )sgn(0    survives. 26 

Inequality (7)2 represents the yield condition for damage, according to which damage evolves 27 
only when it is satisfied as equality, while elastic evolution is expected when it is satisfied as 28 
strict inequality. 29 
If the brittle and ductile damage energy densities (4) are substituted into (7)2, we obtain, 30 
respectively, 31 

.(Ductile)  0||2)1(

         ,(Brittle)  0||2)1()1(

0

2

0

2


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k

k

e

e

     (8) 32 

If a process in which f monotonically increases is considered, with f=0 at the initial instant, and 33 
the interface is unstressed and undamaged, that is, 0δ  and 0 , then the interface 34 
experiences an initial elastic phase whose solution is kfδ  and 0 . In this phase, the 35 
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inequalities (8) assume the simplified form 2
e ff , which is strictly satisfied, until the 1 

magnitude of f reaches the value e. Interface debonding initiates when 2
e ff , and it advances 2 

in the subsequent instants of the evolution. 3 
Since FRCM systems are usually subjected to shear stresses, we restrict the above problem to 4 
pure shear, by assigning the shear stress 0 tf  , and determining the displacement slip tδ  . 5 
Under this assumption, relations (7) simplify as follows 6 

.02)1(
)(

               ,)1( 0
22

0
2  


 k

d

dw
k     (9) 7 

By solving equations (9) with respect to  and  for varying  in (0,1), it is possible to represent 8 
the shear stress versus displacement slip relations. They are plotted in Figure 5b for three 9 
different values of 0, considering the two energies (4).  10 
After the initial linear elastic phase, the curves exhibit stress-softening, in correspondence of the 11 
interface debonding, and damage growth. Then the curves asymptotically tend to the frictional 12 
shear stress 0. Exception is made by the curve where wB is implemented and 0=0 (red dashed 13 
line). In this case, the stress drops down to zero when e is reached. A distinction between brittle 14 
and ductile models is that the softening branches (when present) are steeper for wB than for wD. 15 
The red curves in Figure 5b describe the local responses assigned to FRCM reinforced with dry 16 
(DRY) and pre-impregnated (IMP) yarns. The red curves will be recalled in the next Section 4.4, 17 
where the calibration issue is faced. 18 
 19 

 20 

Figure 5 - (a) Graphs of dimensionless damage energy densities wB and wD of formula (4). (b) 21 
Local shear stress-slip displacement curves in case of energy density wD (solid line) and wB 22 

(dashed line). 23 
 24 
3.3 Evolution problem 25 
In a process where s increases, the evolution of su  and s is determined by incremental energy 26 

minimization [26,27,29]. The loading parameter s is increased through finite steps of size s, 27 
and, within each step, u and  are supposed to be linear functions of the increment s  28 
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and the energy E  is developed up to the second order  30 
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The rates  dsddsd ss  ,u  are determined by minimizing the above functional, under the 2 

constrain 0dsd s . A finite element code has been developed which implements an alternate 3 

iterative minimization procedure, consisting in minimizing the energy functional with respect to 4 
the two unknown fields separately. 5 
 6 
3.4 Parameters calibration 7 
The constitutive parameters for matrix and yarn are assigned in Table 1. They are the Young’s 8 
modulus E, the Poisson’s ratio  and the tensile strength e, which are included in the energy 9 
density (2).  10 
For the constitutive parameters of the yarn-to-matrix interface, a distinction was made for the dry 11 
and pre-impregnated yarn, since the surface treatment strongly influences the bond mechanics. 12 
The brittle and ductile energy densities (4) are assigned to DRY and IMP yarns, respectively, and 13 
different constitutive parameters are considered, in order to account for the different behaviors 14 
observed in pull out tests, as described in Subsection 3.1. The values assigned to e, 0, and k are 15 
those deduced in Subsection 3.1 from pull out experiments on samples with h=20 mm. To 16 
analytically derive them, the hypothesis of homogenous shear stress along the yarn-to-matrix 17 
interface is assumed, motivated by the fact that the embedded length is very short. The 18 
constitutive parameters assigned to the interface are recall in the following:  19 

- DRY yarn: e=1.40 MPa,0=0 MPa, k=3.10 MPa;  20 
- IMP yarn: e=1.98 MPa, 0=1.25 MPa, k=3.95 MPa. 21 

The - curves obtained by assigning the above parameters are the red curves plotted in Figure 22 
5b. In the case of dry yarn, the behavior is brittle, and a drastic failure is expected when e is 23 
reached. In the case of IMP yarn, a pseudo-ductile response is obtained, characterized by a long 24 
softening tail asymptotically tending to 0.  25 
 26 

4. Numerical simulations 27 
In this section, numerical results of pull out and double shear bond tests are presented and 28 
compared with experimental evidences. For both pull out and double shear tests, simplified two-29 
dimensional geometries are considered, and the hypothesis of plane strain state is assumed.  30 
The simulations presented below reproduce debonding and slippage at the yarn-to-matrix 31 
interface as the unique mechanism leading to failure, which prevails over cracking of the 32 
constituents (cementitious matrix and carbon yarn). However, breakage of the constituents has 33 
been reproduced in simulations not reported in the paper, by considering different experimental 34 
setups (different geometries, loading and boundary conditions). 35 
 36 
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 1 
Figure 6 - Sample geometry and two-dimensional scheme of pull out (a,b) 2 

and double shear test (c,d,e). 3 
 4 
4.1 Pull out tests 5 
The sample geometry of pull out tests is drawn in Figure 6a. One-half sample is considered for 6 
symmetry reasons, and the longitudinal section drawn in gray tones is assumed as the two-7 
dimensional domain considered in numerical simulations. Its plane representation is given in 8 
Figure 6b. The top side of the matrix domain m is clamped, and an upward displacement s is 9 
applied to the upper side of the yarn f. The geometrical dimensions are l1=25 mm, l2=0.16 mm, 10 
and two bond lengths, i.e., h=20, 50 mm, are considered. Simulations are performed for each 11 
length, for dry and pre-impregnated carbon yarns. 12 
Force-displacement curves are plotted in Figure 2 (red line). Comparison with experimental 13 
results shows excellent agreement between numerical and experimental curves. Simulations 14 
accurately capture the peak forces and the different evolution phases observed in experiments. 15 
Evolution of damage and shear stress at the interface of 20 mm thick samples is analyzed in 16 
Figure 7, for DRY and IMP yarns, where profiles of  and  are plotted for different value of s, 17 
and different colours are used to distinguish the different phases of the evolution. Dots in the 18 
response curves of Figures 7a,d indicate points at which snapshots of  and are drawn. 19 
Firstly the brittle failure of the DRY sample is described (Figures 7a,b,c). Looking at the 20 
coloured response curve of Figures 7a, three phases can be distinguished: the elastic phase 21 
(black), the brittle debonding phase (red) and the final sliding stage (green). 22 
In the initial elastic phase, =0, and  grows homogeneously through the interface. When the 23 
limit value =e is reached at the top endpoint of the interface, the debonding process starts, and 24 
advances downward. When =1, any capability of carrying shear stresses is lost. This is due to 25 
the fact that the shear stress is null. The debonding front continuously advances up to 1/3 of the 26 
interface length, then it dramatically evolves over the entire interface, leading to the complete 27 
failure of the sample. 28 
A different evolution process is reproduced in the case of IMP yarn (Figures 7d,e,f). After the 29 
initial elastic phase (=0), which ends when  has reached the limit value e at the top of the 30 
interface, a process of progressive debonding takes place. First, a small amount of damage 31 
advances downward. In Figures 7e,f, profiles at s=0.51, 0.52 account for the evolution process of 32 
the debonding front. The cusps in the curves of , where the shear stress attains the maximum 33 
value =e, correspond to the positions assumed by the debonding front. For each profile, points 34 
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of the interface above the cusp are damaged, while those below are sound. Then  progressively 1 
grows homogeneously across the interface. Since shear stress decreases as damage increases, a 2 
regime of stress-softening is established. When the asymptotic value 0 is approached, the third 3 
phase of frictional slippage takes place. In this last stage, damage is practically homogeneous 4 
through the interface, assuming the value 9.0 . This result is in agreement with the analytical 5 
results of Subsect. 3.2, according to which the values =0 and =1 are asymptotically reached. 6 
The transition from debonding to slippage is gradual, with slippage that progressively prevails 7 
over debonding. 8 
Finally, brittle (DRY yarn) and ductile (IMP yarn) behaviors can be summarized as follows: a 9 
brittle interface experiences only two possible states, sound interface (=0) and completely 10 
debonded interface (=1); differently, a ductile interface exhibits a cohesive damage evolution 11 
where  progressively grows. 12 
Notice that the hypothesis of homogeneous shear stress through the sample, which has been 13 
assumed in Section 3.1 to determine e, 0 and k (Table 2), is confirmed by simulations, at least 14 
in the case of 20 mm in thickness samples. Indeed, as shown by the shear stress profiles of 15 
Figure 7,  is practically constant throughout the interface, with the exception of a very short 16 
phase of damage propagation from the top to the bottom of the interface. 17 
 18 

 19 
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Figure 7 - Pull out tests: profiles of damage  and shear stress  at the interface for different 1 
values of  (corresponding to the dots in the force-slip curves (a) and (d)). Profiles of  and  in 2 

the case of DRY yarns (b-c); profiles of  and  in the case of IMP yarns (e-d). [s]=mm. 3 
 4 
 5 
4.2 Double shear bond tests 6 
The experimental set-up of double shear bond test is shown in Figure 6c, where two FRCM 7 
strips are applied on the two sides of a clamped brick. The FRCM system is constituted by the 8 
same mortar used in pull out tests, reinforced with dry or pre-impregnated bi-directional carbon 9 
fabrics, with 3 longitudinal yarns embedded in the matrix. The carbon fabric is wrapped around a 10 
steel cylinder, and it is subjected to a tensile displacement. A sketch of a single yarn surrounded 11 
by cementitious mortar is drawn in Figure 6d. The tensile displacement s induces shear stresses 12 
at the yarn-to-matrix interface, flowing towards the brick substrate. As discussed in [25], the 13 
largest stresses are attained in the sample portion placed between the yarn internal side and the 14 
matrix clamped face. For this reason the longitudinal section placed in the middle of this zone is 15 
considered. It is highlighted with different gray shades in Figure 6d (light gray for the matrix and 16 
dark gray for the yarn), and drawn in Figure 6e. The hypothesis of plane strain state is assumed, 17 
justified by symmetry reasons. The lengths l1=5 mm and l2=0.22 mm are assigned. Only 2/3 of 18 
the total yarn thickness is considered, since it has been assumed that 2/3 of the total tensile force 19 
acting on the yarn flows to the matrix through the internal yarn surface, and 1/3 through the 20 
external surface. A similar assumption was made in [19]. 21 
Simulations are performed by considering DRY and IMP yarns with different bond lengths h. 22 
Force-displacement curves are plotted in Figure 8 (red line), where experimental curves for h=50 23 
and 100 mm are added for comparison (black line). Experimental tests with longer bonded 24 
lengths will be carried out in future studies. 25 
 26 

 27 

Figure 8 – Double shear bond tests. Experimental and numerical load-displacement curves for 28 
different values of the sample bond length. (a) DRY yarns; (b) IMP yarns. 29 

 30 
In the case of dry yarn (Figure 8a), curves show an initial linear elastic branch, an intermediate 31 
decreasing branch, corresponding to progressive debonding, and a final dropdown branch. 32 
Compared with experimental curves where h=50 and 100 mm (three curves for each case), 33 
numerical curves provide accurate peak force values, catching the brittle response resulting from 34 
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experiments. As the sample length increases, the peak force and the slope of the elastic branch 1 
increase till the limit value 250h  mm. For larger h, neither the maximum force nor the elastic 2 
stiffness grow, meaning that 250 mm can be considered the minimum bond length required to 3 
properly transfer stresses from the carbon yarn to the substrate. 4 
Curves of Figure 8b are obtained when IMP yarns are considered. In this case, after the initial 5 
elastic phase, the debonding stage is described by a stress-hardening curve followed by a shorter 6 
stress-softening branch. This latter branch is smooth when low values of h are considered, while 7 
it becomes discontinuous for high values of h, exhibiting a dropdown. Curves conclude with 8 
frictional plateaus. Comparison with experimental curves (h=50, 100 mm) shows an 9 
overestimation of the force in the phase of frictional sliding, especially for h=100 mm. This 10 
might be because of transversal yarns that constitute the fabric, which do not contribute to the 11 
shear transfer mechanisms at the fabric to mortar interface, remaining attached to the mortar 12 
during the slippage of the longitudinal yarns, and thus reducing the effective contact area 13 
between longitudinal yarns and matrix. Furthermore, the experimental setup may have induced 14 
some instabilities in the post-peak phase, due to the rapid drop of the load carried by the fabric. 15 
Since the peak force increases as h increases, when h>210 mm the tensile stress on a single yarn 16 
exceeds the value e=1850 MPa (see Table 1) and the yarn breaks on the top cross-section, 17 
where the displacement s is applied. The dashed curve of Figure 8b corresponds to the yarn 18 
breakage in a sample of length h=300 mm. Since we are interested in the study of debonding and 19 
sliding at the interface, the yarn tensile strength has been increased in order to perform 20 
simulations even for longer bond lengths.  21 
Profiles of  and  at the interface of DRY and IMP samples with bond length h=400 mm are 22 
drawn in Figure 9 for different values of s. The evolutions are qualitatively similar to those of 23 
pull out tests (Section 5.1). The main difference lies in the fact that  is no more homogeneous, 24 
because of the longer bond length. Looking at the shear stress profiles in the elastic phase, the 25 
value of  decreases going downward through the interface, and the bond length required to 26 
transmit the whole tensile force to the matrix is about 250 mm. It is the same bond length 27 
deduced from the curves of Figure 8. 28 
In the case of DRY yarn (Figures 9a,b,c), debonding starts at the top endpoint of the interface 29 
when the shear stress value =e is reached, and then it advances downward. The debonding 30 
front proceeds up to 2/3 of the interface length and then it suddenly jumps to the bottom 31 
endpoint, leading to the complete separation of the yarn from the matrix. 32 
In the case of IMP yarn (Figures 9d,e,f), the interface is progressively damaged, and the damage 33 
front moves down while  grows (see red profiles in Figure 9e). As damage increases, shear 34 
stress reduces. In the final phase, damage spreads through the interface, with=0.80-0.85, and  35 
tends 0. 36 
 37 

  38 
 39 
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 1 

Figure 9 - Double shear bond tests. Profiles of damage  and shear stress  at the interface for 2 
different values of  (corresponding to the dots in the force-slip curves (a) and (d)). (b-c) profiles 3 
of  and  in the case of DRY yarns; (e-d) profiles of  and  in the case of IMP yarns. [d]=mm. 4 
 5 
 6 

5. Conclusions 7 
 8 
In this paper, the mechanical behavior and failure modes of multi-filament dry or pre-9 
impregnated carbon yarns embedded in a cementitious matrix are investigated. The bond 10 
behavior at the yarn-to-matrix interface is analyzed by means of pull out tests, carried out on 11 
single carbon yarns embedded in a cement based mortar for different lengths. 12 
On the basis of the experimental results it was observed a great difference on the mechanical 13 
behavior of the samples subjected to pull out tests, depending on the type of carbon yarn used 14 
(dry or pre-impregnated with epoxy). The main difference has been observed in the post-elastic 15 
phase, when the debonding process starts and evolves. Dry yarns failed in a brittle way once 16 
reached the peak load, while pre-impregnated yarns showed a more ductile failure, due to high 17 
friction developed at the yarn to matrix interface. 18 
A variational model has been developed in order to provide a thorough understanding of the 19 
failure mechanisms for the two different systems. A phase field approach has been followed to 20 
formulate the model, where specific internal energies have been assigned to the different 21 
components of the system, with the aim of describing the failure modes observed in experiments. 22 
Energies accounting for brittle fracture have been assigned to the two FRCM constituents 23 
(cementitious matrix and carbon fibers yarn). Special attention was devoted to the definition of 24 
the interface energy, in order to reproduce debonding process and slippage at the yarn-to-matrix 25 
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interface. Three energetic terms have been assumed, each one contributing to describe a different 1 
phase of the evolution; the elastic shear stage, the debonding phase and the final frictional 2 
slippage process. Each contribution has a straightforward mechanical meaning, and it has been 3 
assigned as simple as possible, with few constitutive parameters, directly related to specific 4 
mechanical properties easily measurable from experiments. Thus, the proposed numerical model 5 
combined great predictive capability, being able to describe the different stages of the failure 6 
processes observed in experiments, and ease of calibration, since the constitutive parameters are 7 
related to the experimental data through simple analytical relations. 8 
Numerical simulations have reproduced the FRCM behavior in single or double shear bond tests. 9 
In the case of a fabric reinforcement constituted by dry yarns the model allowed to establish an 10 
effective bond length of about 200 mm. By further increasing the bond length the maximum load 11 
does not increase. FRCM systems reinforced with pre-impregnated carbon fabrics experienced a 12 
different behavior. The load increased by increasing the bond length, due to the elevated friction 13 
developed in the slippage phase. In this case the failure occurred in the fabric, outside the bonded 14 
area.  15 
This study highlighted the potentiality of a variational model to get insight on the mechanical 16 
behavior of FRCM systems, in particular at the interface between yarn and matrix, providing a 17 
useful numerical tool for the investigation of the effects of geometry and material properties on 18 
the mechanical performances of FRCM systems, and on their failure mechanisms. 19 
 20 
 21 
APPENDIX 22 
 23 
Brittle failure of matrix and yarn. In order to better understand the damage evolution 24 
associated to the energy density (2) (assigned to matrix and yarn), we consider the simple one-25 
dimensional problem of a bar of length L, subjected to a tensile strain s, and we deduce and 26 
discuss the equilibrium equations, referring to [22] for a detailed study including the evolution 27 
problem and the stability analysis.  28 
The longitudinal displacement u=u(x) and damage =(x), with ),0( Lx  , are the problem 29 
unknowns. The boundary conditions are u(0)=0, u(L)=sL, and 0)()0(  L , and the energy 30 
density is 31 
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where dxxdfxf )()('  . The density (a) is obtained by specializing (2) to the one-dimensional 33 

problem of a tensile bar. The tensile stress is ')1( 2 Eu  , defined as the derivative of the 34 

strain energy with respect to the deformation 'u . If we impose the first variation of the energy 35 
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),;,(   to be non-negative for any admissible perturbation u and 0 , we obtain 36 

the equilibrium relations 37 
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where the first equation is the stress balance equation, which states that  is constant trough the 39 
bar. The second relation is the damage yield condition, and it states that  can never be larger 40 
than the yield stress y. As described in [31], damage evolves when y  , while the bar 41 

elastically deforms when y  .  42 
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If the initial configuration of the bar is undamaged and undeformed, and s is monotonically 1 
increasing, then the bar experiences an initial elastic stretching, whose solution is sxxu )( , 2 

=0, and eEs   . When the stress attains the value e, inequality (b)2 is satisfied as an 3 

equality, and damage can form. As shown in [22], for sufficiently long bars, failure brutally 4 
appear in the bar when e  , and  jumps from 0 to 1 in a point x0, decreasing to zero in a 5 

neighborhood of x0 of size l, according to the profile drawn in Figure 1a. The analytical 6 
expressions of the profile of  is  7 
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which is determined by integrating (b)2, as described in [30]. 9 
 10 
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