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Abstract

The paper is concerned with the derivation of a general imperfect inter-
face law in a linear multiphysics framework for a composite, constituted
by two solids, separated by a thin adhesive layer. The analysis is per-
formed by means of the asymptotic expansions technique. After defining
a small parameter ε, which will tend to zero, associated with the thickness
and the constitutive coefficients of the intermediate layer, we characterize
three different limit models and their associated limit problems: the soft
interface model, in which the constitutive coefficients depend linearly on
ε; the hard interface model, in which the constitutive properties are inde-
pendent of ε; the rigid interface model, in which they depend on 1

ε
. The

asymptotic expansion method is reviewed by taking into account the ef-
fect of higher order terms and by defining a general multiphysics interface
law which comprises the above aforementioned models.
Keywords. Asymptotic analysis; interfaces; multiphysics materials.

1 Introduction
During the last decades, the interest in bonded structures, obtained by
assembling different parts made of possibly different materials to compose
a unique construction, is strongly increased. The advantages offered by
the modern bonding techniques are numerous; among the others, it can
be mentioned that they allow the assembly to enhance its mechanical
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properties, which are designed to be superior to those of the constituent
materials, and to acquire specific requirements of resistance and comfort.
On the other hand, in bonded structures as well as in composites, the bond
between the various parts may generally be imperfect and discontinuities
in physical fields can arise, which significantly change the mechanical and
physical properties of the material. Hence, a correct theoretical modelling
of imperfect bonding plays an important role in engineering design.

A classical theoretical treatment for bonded region is to assume the
existence of a thin interphase between two adjacent parts. With a di-
minishing thickness, the interphase is replaced by a surface, the so-called
imperfect interface, on which some of the physical fields undergo appro-
priately designed jump conditions, simulating the effect of the interphase
layer. Various interface models have been developed throughout the years
by means of classical variational tools and more refined mathematical tech-
niques, spanning from uncoupled phenomena, such as thermal conduction
and elasticity, to multifield and multiphysics theories, such as continua
with microstructure and piezoelectricity.

In the context of uncoupled phenomena, lowly-conducting (LC) (ther-
mal or electrical) interphases give rise to imperfect interfaces exhibiting
a discontinuity in the temperature field but preserving the continuity
of the normal component of the heat flux, the so-called Kapitza’s re-
sistance model, see, e.g., [4, 5, 29]. Conversely, at a highly-conducting
(HC) interface, a jump in the normal component of the heat flux is found,
proportional to the surface Laplacian of the interface potential, see e.g.
[38, 39]. A unifying approach of a general imperfect interface model, in-
volving the concurrent jump of both the temperature field and the normal
heat flux, recovering both the LC and HC models, has been proposed by
[26, 28]. In the setting of linear elasticity, many works have been devoted
in the formulation of interface models, first built on engineering-based
and phenomenological observations and then, rigorously justified with di-
verse mathematical tools. Three types of imperfect interface have been
proposed, namely, the spring-layer interface model (SL) (also known as
soft or weak interface), the coherent interface (CI) (also known as rigid
or strong or membrane-type interface) and the general imperfect inter-
face. According to the SL model, the traction vector is continuous across
the interface, while the displacement vector suffers a discontinuity lin-
early proportional to the traction vector. This model represents a clas-
sical theoretical description of an imperfect interface, firstly proposed by
Goland and Reissner [21] and widely used in engineering applications,
see, e.g., [3, 25, 27]. According to the CI model, the displacement vector
field is continuous across the interface, while the traction vector field suf-
fers a jump discontinuity and satisfies a two-dimensional Laplace-Young
equation. This particular model has been firstly developed for contin-
uum theories with surface effects (see, e.g., [24, 40]) and then employed
in nano-sized materials and structures (see, e.g., [51–53]). Finally, in the
general imperfect model, both the displacement and normal traction fields
are discontinuous across the interface [6–8, 27]. Within the framework of
linear multiphysics theories, several works have suggested a generaliza-
tion of the classical LC/SL and HC/CI interface models, including the
effects of other physical interactions, see, for instance, [13, 16, 42, 50].
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Moreover, a general multiphysics imperfect interface model, which can be
specialized to electric (or thermal) conduction, elasticity, piezoelectricity
and piezomagnetoelectricity, has been developed and numerically tested
by [22, 23, 49], adapting the interface models conceived in [6, 7].

The asymptotic analysis represents a powerful mathematical tech-
nique, usually employed in the derivation and justification of classical
thin structures and layered composites models [12, 18, 47, 48, 54]. This
method relies on the definition of a small parameter ε, being the thickness
of the interphase. Under the assumption that the interphase elastic coef-
ficients rescale like the power of its small thickness, i.e., εp, the analysis
allows to characterize different limit behaviors, by letting ε tend to zero:
for p = 1, a soft interface model can be recovered, which correspond to
a SL elastic model, see, for instance, [2, 19, 20, 30, 35]; for p = −1, the
membrane-type elastic or rigid interface model has been mathematically
justified by means of strong convergence arguments in [9–11, 36]. Within
the framework of a higher-order theory, assuming the interphase elastic
constants independent of the small thickness (p = 0), the asymptotic anal-
ysis yields to a general stiff imperfect interface condition, prescribing both
the jumps of the displacement and traction vector fields and recovering
as a particular case the perfect contact conditions at the zero-th order
[1, 14, 31, 32, 41, 43]. Using asymptotic analysis and strong convergence
methods, M. Serpilli generalized the soft and rigid interface conditions to
some particular multiphysics and multifield composites, having piezoelec-
tric and magneto-electro-thermo-elastic couplings [44, 45] or presenting
an internal microstructure (micropolar elasticity, [46]).

1.1 Main objectives and contributions of this work
The aim of this work is to provide a general imperfect interface law tak-
ing into account linear coupled multiphysics phenomena. The interface
conditions will be given in terms of the jumps of the multiphysics state
(kinematical variable) and of its conjugated counterpart (a generalized
traction vector), respectively.

Differently from the approach followed in [6] and extended to linear
multiphysics materials in [22, 23], in which Taylor’s expansions of the
relevant fields are considered, in the present paper the analysis is based
on the asymptotic expansions method. Three different rescaling of the
material parameters for the multiphysics thin interphase are considered
and three limit regimes are analyzed: the soft case, where the material
parameters rescale like the thickness; the hard case, where the material
parameters are independent of the thickness; the rigid case, where the ma-
terial parameters rescale like the inverse of the thickness. For each case,
we compute the governing equations in the adherents and the transmis-
sion conditions on the imperfect interface at order 0 and at higher orders
(order 1) of the asymptotic expansion. The results obtained at higher
orders allow to define non trivial transmission conditions, which better
approximate the linear coupled multifield behavior of the thin interphase.
Afterwards, using an approach already introduced in [41] and based on
matching conditions, we combine the results of the asymptotic analysis
to obtain an original compact general imperfect interface model, which
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comprises in itself the three aforementioned limit behaviors. The general
imperfect interface can be then particularized to any linear coupled or
uncoupled multiphysics material. Moreover, the variational formulation
for the general multiphysics interface problem is obtained: this is a key
step to the numerical implementation of the interface conditions and to
study the well-posedness of the limit problem. It is worth mentioning
the unifying character of the general imperfect interface conditions, which
leads to a straight-forward generalization of some previous works by the
authors, see, e.g., [33, 41, 44–46].

Lastly, we must highlight the main difference between our general im-
perfect interface model (cf. eqns. (20)-(21)) and the one proposed, for
instance, in [22, 23]: the present interface model depends just on the con-
stitutive parameters of the interphase layer, whose thickness goes to zero
in the asymptotic process; while concerning the model developed by S.T.
Gu and co-authors [22, 23], which employes Y. Benveniste’s methodology
[6], consisting in the extension of the surrounding bodies to the separation
surface, the interface conditions involve information not only on the thick-
ness of the eliminated interphase, its material properties, but also on the
material properties of the neighbouring media. These additional terms,
depending on the adherents, could lead in some particular situations to
contradictory results (cf. Sect. 6 in [33]).

1.2 Outline of the manuscript
The structure of the present paper is as follows. In Section 2 we give
the preliminary notation and statement the balance equations, with the
rescaling and asymptotic expansions method assumptions. In Section 3,
Section 4 and Section 5, we characterize the three regimes at order 0 and
order 1, namely the soft, hard and rigid cases, respectively. In Section
6, we show that it is possible to group the three limit cases of soft, rigid
and hard interfaces in an unique, implicit, non-local, multifield imper-
fect interface law (cf. eqns. (20)-(21)), which recovers the three cases as
particular cases. In Section 7, a variational formulation for the general
multiphysics interface problem is obtained. In Section 8, we study the
specialization of the general multiphysics imperfect interface equations to
the cases of linear elastic, piezoelectric and thermoelastic material. In Sec-
tion 9, we present an example, referring to the stretching of a piezoelectric
composite. Finally, Section 10 contains some conclusive remarks.

2 Position of the problem
In the sequel, Greek indices range in the set {1, 2}, Latin indices range in
the set {1, 2, 3}, and the Einstein’s summation convention with respect to
the repeated indices is adopted. Let us consider a three-dimensional Eu-
clidian space identified by R3 and such that the three vectors ei form an
orthonormal basis. We also introduce the following notations for, respec-
tively, the scalar product: a · b := aibi, for all vectors a = (ai) and b =
(bi).
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Figure 1: Initial (a), rescaled (b) and limit (c) configurations of the composite.

Let us define a small parameter 0 < ε < 1. We consider the assembly
constituted of two solids Ωε± ⊂ R3, called the adherents, bonded together
by an intermediate thin layer Bε := S × (− ε

2
, ε

2
) of thickness ε, called

the adhesive, with cross-section S ⊂ R2. In the following Bε and S
will be called interphase and interface, respectively. Let Sε± be the plane
interfaces between the interphase and the adherents and let Ωε := Ωε+ ∪
Bε ∪Ωε− denote the composite system comprising the interphase and the
adherents (cf. Figure 1.a).

In the sequel, we denote by ‖ · ‖s,Ω the norm of the Sobolev space
Hs(Ω;Rd), for all d ≥ 1, | · |0,Ω and (·, ·)0,Ω stand for the norm and the
scalar product in L2(Ω;Rd), respectively. Obviously, the same holds in
Ωε±, B

ε, S.

2.1 Constitutive law
We suppose that the composite is constituted of a material which presents
a linear coupled multiphysics behaviour. We assume that the state at
the equilibrium of the multiphysics material is characterized by a col-
lection of order parameters, using the multifield theory jargon (see, e.g.,
[37]): N vector state variables, namely uε1, . . . ,u

ε
N , and M scalar state

variables, namely ϕε1, . . . , ϕ
ε
M . Let us put together all the unknowns

into a generalized vector field sε := (uε1, . . . ,u
ε
N , ϕ

ε
1, . . . , ϕ

ε
M ), the so-

called multiphysics state. With the multiphysics state sε, we associate
its conjugated physical quantity tε = tε(∇εsε), where (∇εsε)i := sε,i =
(uε1,i, . . . ,u

ε
N,i, ϕ

ε
1,i, . . . , ϕ

ε
M,i) denotes the gradient of sε. The vector field

tε := (σε1, . . . ,σ
ε
N ,D

ε
1, . . . ,D

ε
M ) represents a generalized stress field. We

consider the following homogeneous and linear constitutive law:

tε = Kε∇εsε,

where Kε is a generalized linear constitutive matrix. Component-wise,
one has {

σεJ = Cε
JK∇εuεK + Pε

JI∇εϕεI ,
Dε
L = Rε

LK∇εuεK + Hε
LI∇εϕεI ,
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with J,K = 1, . . . , N and I, L = 1, . . . ,M . The constitutive tensor Kε
satisfies the classical symmetry and positivity properties.

2.2 Governing equilibrium equation
We assume that the adherents are subject to a generalized system of body
forces Fε : Ωε± → R3N×M and surface forces Gε : Γεg → R3N×M , where
Γεg ⊂ (∂Ωε+ \ Sε+) ∪ (∂Ωε− \ Sε−). Body and surface forces are neglected
in adhesive layer. On Γεu := (∂Ωε+ \ Sε+) ∪ (∂Ωε− \ Sε−) \ Γεg homogeneous
boundary conditions are prescribed, so that sε = 0 on Γεu. We assume
that everywhere, near the interphase boundary Γlat := ∂S × (− ε

2
, ε

2
),

homogeneous Neumann boundary conditions are applied. The fields of
the external forces are endowed with sufficient regularity to ensure the
existence of equilibrium configuration. It is assumed that the adhesive
and the adherents are perfectly bonded in order to ensure the continuity
of the multiphysics state and generalized stress vector fields across Sε±.
The differential formulation of the governing equations has the following
structure: 

−div tε = Fε in Ωε,
tεnε = Gε on Γεg,
sε = 0 on Γεu,

(1)

where tεnε := (σε1n
ε, . . . ,σεNnε,Dε

1 ·nε, . . . ,Dε
M ·nε) represents the gen-

eralized traction vector on the boundary Γεg and nε the outer normal unit
vector to Γεg. Let us introduce the functional space

V (Ωε) := {sε ∈ H1(Ωε;R3N×M ); sε = 0 on Γεu}.

The variational formulation of problem (1) defined on the variable domain
Ωε reads as follows:{

Find sε ∈ V (Ωε) such that
Āε−(sε, rε) + Āε+(sε, rε) + Âε(sε, rε) = Lε(rε),

(2)

for all rε := (vε1, . . . ,v
ε
N , ψ

ε
1, . . . , ψ

ε
M ) ∈ V (Ωε), where the bilinear forms

Āε±(·, ·), and Âε(·, ·) and the linear form Lε(·) are defined by

Āε±(sε, rε) :=

∫
Ωε±

K̄ε∇εsε ·∇εrεdxε, Âε(sε, rε) :=

∫
Bε

K̂ε∇εsε ·∇εrεdxε,

Lε(rε) :=

∫
Ωε±

Fε · rεdxε +

∫
Γεg

Gε · rεdΓε.

By virtue of the regularity of the loads, the positivity of the constitutive
matrices and thanks to the Lax-Milgram’s lemma, problem (2) admits one
and only one solution.

2.3 Rescaling
In order to study the asymptotic behavior of the solution of problem
(2) when ε tends to zero, we rewrite the problem on a fixed domain Ω
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independent of ε. By using the approach of [12], we consider the bijection
πε : x ∈ Ω 7→ xε ∈ Ω

ε given by

πε :

{
π̄ε(x1, x2, x3) = (x1, x2, x3 ∓ 1

2
(1− ε)), for all x ∈ Ω±,

π̂ε(x1, x2, x3) = (x1, x2, εx3), for all x ∈ B,

where, after the change of variables, the adherents occupy Ω± := Ωε± ±
1
2
(1 − ε)e3 and the interphase B = {x ∈ R3 : (x1, x2) ∈ S, |x3| < 1

2
}.

The sets S± = {x ∈ R3 : (x1, x2) ∈ S, x3 = ± 1
2
} denote the interfaces

between B and Ω± and Ω = Ω+ ∪Ω− ∪B is the rescaled configuration of
the composite. Lastly, Γg and Γu indicate the images through πε of Γεg
and Γεu (cf. Figure 1.b). Consequently, ∂

∂xεα
= ∂

∂xα
and ∂

∂xε3
= ∂

∂x3
in Ω±,

and ∂
∂xεα

= ∂
∂xα

and ∂
∂xε3

= 1
ε

∂
∂x3

in B.
We assume that the constitutive coefficients of Ωε± are independent of

ε, so that K̄ε = K̄, while the constitutive coefficients of Bε present the
following dependences on ε, so that K̂ε = εpK̂, with p ∈ {−1, 0, 1}. Three
different limit behaviors will be characterized according to the choice of
the exponent p: in the case of p = −1, we derive a model for a rigid
interface; when p = 0, we derive a model for a hard interface; by choosing
p = 1, we deduce a model for a soft interface.

Finally, we suppose that the unknowns, test functions and data verify
the following rescaling assumptions:

sε(xε) = sε(x) x ∈ Ω, rε(xε) = r(x) x ∈ Ω,
Fε(xε) = F(x) x ∈ Ω±, Gε(xε) = G(x) x ∈ Γg,

so that Lε(rε) = L(r). By virtue of the previous hypothesis, the rescaled
problem can be written in the following form:{

Find sε ∈ V (Ω), such that
Ā−(sε, r) + Ā+(sε, r) + εp−1â(sε, r) + εpb̂(sε, r) + εp+1ĉ(sε, r) = L(r),

(3)
for all r ∈ V (Ω) := {s ∈ H1(Ω;R3N×M ); s = 0 on Γu}, where the bilinear
forms Ā±(·, ·), â(·, ·), b̂(·, ·) and ĉ(·, ·) are defined by

Ā±(sε, r) :=

∫
Ω±

K̄∇sε ·∇rdx,

â(sε, r) :=

∫
B

K̂33s
ε
,3 · r,3dx,

b̂(sε, r) :=

∫
B

{
K̂3αs

ε
,3 · r,α + K̂α3s

ε
,α · r,3

}
dx,

ĉ(sε, r) :=

∫
B

K̂αβsε,β · r,αdx,

and K̂ij denote the sub-matrices of K̂, defined by

K̂ =

[
K̂αβ K̂α3

K̂3α K̂33

]
, (K̂ij)T = K̂ji.

We can now perform an asymptotic analysis of the rescaled problem (3).
Since the rescaled problem (3) has a polynomial structure with respect to
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the small parameter ε, we can look for the solution sε of the problem as
a series of powers of ε:

sε = s0 + εs1 + ε2s2 + . . . ,
s̄ε = s̄0 + εs̄1 + ε2s̄2 + . . . ,
ŝε = ŝ0 + εŝ1 + ε2ŝ2 + . . . .

(4)

where s̄ε = sε ◦ π̄ε and ŝε = sε ◦ π̂ε. By substituting (4) into the rescaled
problem (3), and by identifying the terms with identical power of ε, we
obtain, as customary, a set of variational problems to be solved in order
to characterize the limit multiphysics state s0, the first order corrector
term s1 and their associated limit problem, for p ∈ {−1, 0, 1}.

Lastly, matching conditions are introduced based on the continuity of
the generalized traction tεe3 and multiphyisic state sε at the interfaces
Sε± in the initial configuration and on the continuity of the traction and
state t̄εe3, s̄ε, t̂εe3, ŝε at the interfaces S± in the rescaled configuration
(see [33, 41]). Using the matching conditions, any transmission condition
obtained in terms of the rescaled fields tεe3 and sε can be reformulated on
the limit configuration, which is the geometric limit of the initial config-
uration as the thickness of the adhesive interface ε tends to zero. This is
possible because the matching conditions provide a link between the fields
evaluated at x3 = 0± and the rescaled fields evaluated at x3 = (±1/2)±.
In particular, following the approach by [33, 41], since the adhesive and
the adherents are perfectly bonded together, the continuity of the multi-
physic state is verified, so that sε(x̃ε,± ε

2
) = s̄ε(x̃,± 1

2
) = ŝε(x̃,± 1

2
). By

developing in Taylor’s series along x3 and taking into account the asymp-
totic expansions (4)1, we have:

sε
(
xε,± ε

2

)
= sε(xε, 0±)± ε

2
=sε,3(xε, 0±) + . . . =

= s0(xε, 0±) + εs1(xε, 0±)± ε
2
s0
,3(xε, 0±) + . . . .

(5)

By substituting (4)2,3 in (5), together with the continuity conditions, we
can compute the following jumps and mean values:

[[s0]] = [s̄0], [[s1]] = [s̄1]− 〈〈s0〉〉,3,
[[sε]] = [s̄ε]− ε〈〈sε,3〉〉+ o(ε),

〈〈s0〉〉 = 〈s̄0〉, 〈〈s1〉〉 = 〈s̄1〉 − 1
4
[[s0
,3]],

〈〈sε〉〉 = 〈s̄ε〉 − ε
4
[[sε,3]] + o(ε),

(6)

where

〈f〉(x̃) := 1
2
(f(x̃, (1/2)+) + f(x̃,−(1/2)−), x̃ := (xα) ∈ S,

[f ] (x̃) := f(x̃, (1/2)+)− f(x̃,−(1/2)−),

〈〈f〉〉(x̃) := 1
2
(f(x̃, 0+) + f(x̃, 0−)),

[[f ]](x̃) := f(x̃, 0+)− f(x̃, 0−),

denote, respectively, the mean value and the jump functions at the in-
terfaces. Following a similar analysis for the generalized traction vector,
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analogous results are obtained:

[[t0e3]] = [t̄0e3], [[t1e3]] = [t̄1e3]− 〈〈t0
,3e3〉〉,

[[tεe3]] = [t̄εe3]− ε〈〈tε,3e3〉〉+ o(ε),

〈〈t0e3〉〉 = 〈t̄0e3〉, 〈〈t1e3〉〉 = 〈t̄1e3〉 − 1
4
[[t0
,3e3]],

〈〈tεe3〉〉 = 〈t̄εe3〉 − ε
4
[[tε,3e3]] + o(ε).

(7)

3 The soft multiphysics interface model
In this section we derive the limit model for a soft multiphysics interface,
corresponding to an adhesive which is weaker with respect to the adher-
ents. By choosing p = 1 and injecting (4) in (3), we obtain the following
set of variational problems Pq:
P0 : Ā−(s0, r) + Ā+(s0, r) + â(s0, r) = L(r),

P1 : Ā−(s1, r) + Ā+(s1, r) + â(s1, r) + b̂(s0, r) = 0,

Pq : Ā−(sq, r) + Ā+(sq, r) + â(sq, r) + b̂(sq−1, r) + ĉ(sq−2, r) = 0, q ≥ 2.

Let us consider the variational problem P0. We perform the following
integration by parts:

−
∫

Ω±

div t̄0·rdx−
∫
B

K̂33ŝ
0
,33·rdx∓

∫
S±

(
t̄0e3 − K̂33ŝ

0
,3

) ∣∣∣x3=± 1
2
·rdΓ = L(r),

(8)
where t̄0 := K̄±∇s̄0. From equation (8), using standard arguments, the
following equilibrium equations are obtained

−div t̄0 = F in Ω±,

t̄0n = G on Γg,

K̂33ŝ
0
,33 = 0 in B,

∓
(
t̄0e3 − K̂33ŝ

0
,3

) ∣∣∣x3=± 1
2

= 0 on S±.

(9)

Equations (9)1,2 represent the equilibrium equations on the adherents with
the suitable boundary conditions, while from (9)3, we show that K̂33ŝ

0
,3

is independent of the x3-coordinate. Besides, by virtue of the continu-
ity conditions of the multiphysisic state on S±, we can characterize the
explicit expression of ŝ0 as an affine function of x3:

ŝ0(x̃, x3) = 〈s̄0〉(x̃) + x3[s̄0](x̃). (10)

From (9)4, we obtain that the generalized traction vector is continuous
through the interphase B and its mean value depends explicitily on [s̄0]:

[t̄0e3] = 0, 〈t̄0e3〉 = K̂33[s̄0].

Let us consider the variational problem P1. Using the divergence and
Gauss-Green’s theorem, we have:

−
∫

Ω±

div t̄1 · rdx−
∫
B

(
K̂33ŝ

1
,33 + (K̂3α + K̂α3)ŝ0

,3α

)
· rdx

∓
∫
S±

(
t̄1e3 − (K̂33ŝ

1
,3 + K̂α3ŝ

0
,α)
) ∣∣∣x3=± 1

2
· rdΓ +

∫
Γlat

K̂3αŝ
0
,3να · rdΓ = 0,

(11)
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with (να) the outer unit normal vector to the boundary Γlat. Equation
(11) yields to the following differential system

−div t̄1 = 0 in Ω±,

t̄1n = 0 on Γg,

K̂33ŝ
1
,33 + (K̂3α + K̂α3)ŝ0

,3α = 0 in B,

∓
(
t̄1e3 − (K̂33ŝ

1
,3 + K̂α3ŝ

0
,α)
) ∣∣∣x3=± 1

2
= 0 on S±.

(12)

Equations (12)1,2 represent the homogeneous equilibrium equations on the
adherents at order 1. From (12)3, we obtain that

K̂33ŝ
1
,3 + (K̂3α + K̂α3)ŝ0

,α = ψ(x̃),

where ψ(x̃) is an arbitrary function independent of x3. Hence, by using
expression (10) and after an integration between − 1

2
and 1

2
, we can deter-

mine that ψ(x̃) = K̂33[s̄1] + (K̂3α + K̂α3)〈s̄0〉,α. Moreover, from (12)4, we
obtain the expression of the transmission conditions in terms of the jump
and mean value of the traction vector at order 1:

[t̄1e3] = −K̂3α[s̄0],α, 〈t̄1e3〉 = K̂33[s̄1] + K̂α3〈s̄0〉,α.

Remark 1. After the integration by parts (11), an integral on the lat-
eral boundary Γlat of the intermediate layer arises. This stress term cor-
responds to a non equilibrated load f and likely represents a classical
boundary layer term, usually appearing at the higher orders of asymp-
totic analysis problem (see [34, 41]). The resultant of these boundary
stresses can be considered as a force applied at boundary of interface S,
and it can be evaluated as:∫

Γlat

K̂3αŝ
0
,3να · rdΓ =

∫
Γlat

f · rdΓ,

and, thus,

f = K̂3αŝ
0
,3να = K̂3α[s̄0]να = K̂3α(K̂33)−1〈t̄0e3〉να.

The presence of these forces is not directly taken into account by the in-
terface laws. Thus, as in [34], additional terms have to be introduced in
the expansions of the stress or the displacement field.

The transmission problems at order 0 and order 1 can be summarized
as follows:

• Order 0

Governing equations
−div t̄0 = F in Ω±,

t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = (K̂33)−1〈t̄0e3〉,
[t̄0e3] = 0.

(13)
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• Order 1

Governing equations
−div t̄1 = 0 in Ω±,

t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±{
[s̄1] = (K̂33)−1

(
〈t̄1e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −K̂3α[s̄0],α.

(14)

Remark 2. The transmission problems for a soft multiphysics interface at
order 0 and order 1 represent a formal generalization of the soft interface
models obtained by means of the asymptotic methods in linear elasticity
[33, 41] and in other multifield frameworks, such as piezoelectricity [44],
magneto-electro-thermo-elasticity [45] and micropolar elasticity [46]. The
soft interface model presents the same structure at both order 0 and 1 as,
for instance, in linear elastic asymptotic models. At order 0, the inter-
face shows a discontinuity of the multiphysics state and behaves from a
mechanical point of view as a series of linear springs, reacting to the gap
between the top and bottom multiphysics states, while the generalized
traction vector remains continuous. At order 1, we obtain a mixed inter-
face model in which both the multiphysics state and the traction vector
are discontinuous through the interface and they depend on the in-plane
derivatives of the jump and mean values of s̄0.

4 The hard multiphysics interface model
In this section we derive the limit model for a hard multiphysics interface,
which corresponds to an intermediate layer having the same rigidities of
the top and bottom bodies. Let p = 0, we substitute (4) in (3) and we
obtain the following set of variational problems Pq:
P−1 : â(s0, r) = 0,

P0 : Ā−(s0, r) + Ā+(s0, r) + â(s1, r) + b̂(s0, r) = L(r),

P1 : Ā−(s1, r) + Ā+(s1, r) + â(s2, r) + b̂(s1, r) + ĉ(s0, r) = 0,

Pq : Ā−(sq, r) + Ā+(sq, r) + â(sq+1, r) + b̂(sq, r) + ĉ(sq−1, r) = 0, q ≥ 2.

Let us consider the variational problem P−1. After an integration by
parts along x3, we get

K̂33ŝ
0
,33 = 0 in B,

K̂33ŝ
0
,3|x3=± 1

2
= 0 in S±.

Thus, ŝ0 = ŝ0(x̃) is independent of the through-the-thickness coordinate
and so, by the continuity on the upper and lower interfaces, one has
[ŝ0] = [s̄0] = 0 and ŝ0 = 〈ŝ0〉 = 〈s̄0〉.

Following the same steps of Section 3, let us apply the Gauss-Green’s
formulae to problem P0. We obtain again the equilibrium equations (9)1,2
and the following additional conditions are recovered:

K̂33ŝ
1
,33 + (K̂3α + K̂α3)ŝ0

,3α = 0 in B,
∓
(
t̄0e3 − (K̂33ŝ

1
,3 + K̂α3ŝ

0
,α)
) ∣∣∣x3=± 1

2
= 0 on S±.

(15)
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Since ŝ0 does not depend on x3, equation (15)1 reduces to ŝ1
,33 = 0, hence

ŝ1(x̃, x3) = 〈s̄1〉(x̃) + x3[s̄1](x̃), where the continuity conditions are taken
into account. Moreover, from (15)2, we obtain

[t̄0e3] = 0, 〈t̄0e3〉 = K̂33[s̄1] + K̂α3〈s̄0〉,α.

Let us consider the variational problem P1. By means of the Gauss-Green
fomulae, we get the same equilibrium equations (12)1,2 at order 1, with
the following additional conditions:

K̂33ŝ
2
,33 + (K̂3α + K̂α3)ŝ1

,3α + K̂αβ ŝ0
,αβ = 0 in B,

∓
(
t̄1e3 − (K̂33ŝ

2
,3 + K̂α3ŝ

1
,α)
) ∣∣∣x3=± 1

2
= 0 on S±.

(16)

By integrating (14)1 along x3 , we can obtain the following characteriza-
tion, where c is constant with respect to x3:

K̂33ŝ
2
,3 + K̂α3ŝ

1
,α = −x3K̂αβ〈s̄0〉,αβ − K̂3α(〈s̄1〉,α + x3[s̄1],α) + c.

Its mean value takes the following form:

〈K̂33ŝ
2
,3 + K̂α3ŝ

1
,α〉 = −K̂3α〈s̄1〉,α + c.

From Eq. (14)2, we can say that

〈t̄1e3〉 = 〈K̂33ŝ
2
,3 + K̂α3ŝ

1
,α〉 = −K̂3α〈s̄1〉,α + c.

After another integration of Eq. (14)1 along x3, we can finally characterize
ŝ2 and, by imposing the continuity conditions in x3 = ± 1

2
, we find an

explicit expression of the constant c, as follows

c = K̂33[s̄2] + (K̂3α + K̂α3)〈s̄1〉,α.

Hence, we can recover the following relations:

[t̄1e3] = −
(
K̂3α[s̄1],α + K̂αβ〈s̄0〉,αβ

)
, 〈t̄1e3〉 = K̂33[s̄2] + K̂α3〈s̄1〉,α.

The transmission condition related to [t̄1e3] can also be written as follows

[t̄1e3] = −K̂3α(K̂33)−1〈t̄0e3〉,α − L̂αβ〈s̄0〉,αβ ,

with L̂αβ := K̂αβ − K̂3α(K̂33)−1K̂β3.

Remark 3. The integration by parts of problem P0 leads to an integral
on the lateral boundary Γlat, which can be interpreted as a distribution of
stresses along the adhesive boundary. This stress term takes the following
form, for the hard case:∫

Γlat

(
K̂3αŝ

1
,3 + K̂αβ ŝ0

,β

)
να · rdΓ =

∫
Γlat

f · rdΓ,

and, thus,

f =
(
K̂3αŝ

1
,3 + K̂αβ ŝ0

,β

)
να =

(
K̂3α[s̄1] + K̂αβ〈s̄0〉,β

)
να =

=
(
K̂3α(K̂33)−1〈t̄0e3〉+ L̂αβ〈s̄0〉,β

)
να.

(17)

12



The presence of these forces is not directly taken into account by the in-
terface laws. Thus, as in [34], additional terms have to be introduced in
the expansions of the stress or the displacement field.

The hard interface transmission problems at order 0 and order 1 can
be summarized as follows:

• Order 0

Governing equations
−div t̄0 = F in Ω±,

t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = 0,

[t̄0e3] = 0.

(18)

• Order 1

Governing equations
−div t̄1 = 0 in Ω±,

t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±[s̄1] = (K̂33)−1
(
〈t̄0e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −
(
K̂3α[s̄1],α + K̂αβ〈s̄0〉,αβ

)
.

(19)

Remark 4. The hard multiphysics interface problems above present the
same structures of the analogous linear elastic hard interface models [31–
33, 41]. Concerning the order 0, the transmission conditions provide a
continuity of the multiphysics state and of its conjugated counterpart,
which is typical for adhesives having the same rigidity properties of the
adherents. In this case, we do not perceive the presence of the thin layer
and the upper and lower bodies a perfectly bonded together. While at
order 1, we encounter a mixed interface model with a jump of the state
and traction vector depending on the values of the multiphysics state and
traction vector at order 0. These order 0 terms are known since they
have been determined in the previous problem and they appear in the
formulation as source terms.

5 The rigid multiphysics interface model
In this section we derive the limit model for a rigid multiphysics interface.
Let p = −1, we substitute (4) in (3) and we obtain the following set of
variational problems Pq:
P−2 : â(s0, r) = 0,

P−1 : â(s1, r) + b̂(s0, r) = 0,

P0 : Ā−(s0, r) + Ā+(s0, r) + â(s2, r) + b̂(s1, r) + ĉ(s0, r) = L(r),

P1 : Ā−(s1, r) + Ā+(s1, r) + â(s3, r) + b̂(s2, r) + ĉ(s1, r) = 0,

Pq : Ā−(sq, r) + Ā+(sq, r) + â(sq+1, r) + b̂(sq, r) + ĉ(sq−1, r) = 0, q ≥ 2.

The asymptotic procedure for the rigid case is analogous to the one
adopted in Section 4. All the computations and technical details are
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described in Appendix A. In what follows, we will present only the char-
acterization of the limit transmission problems at order 0 and order 1 with
the associated interface conditions:

• Order 0

Governing equations
−div t̄0 = F in Ω±,

t̄0n = G on Γg,

s̄0 = 0 on Γu,

Transmission conditions on S±{
[s̄0] = 0,

[t̄0e3] = −L̂αβ〈s̄0〉,αβ .

• Order 1

Governing equations
−div t̄1 = 0 in Ω±,

t̄1n = 0 on Γg,

s̄1 = 0 on Γu,

Transmission conditions on S±{
[s̄1] = −(K̂33)−1K̂α3〈s̄0〉,α
[t̄1e3] = −K̂3α(K̂33)−1〈t̄0e3〉,α − L̂αβ〈s̄1〉,αβ .

Remark 5. The rigid multiphysics interface problems show the same
features of the rigid interface asymptotic models obtained in different
frameworks in [9–11, 44–46]. Concerning the order 0 model, we obtain a
continuity of the multiphysics state at the interface level, while the trac-
tion vector is discontinuous and depends on the divergence of a generalized
membrane stress vector (N0

α), defined as follows

N0
α := L̂αβ〈s̄0〉,β , [t̄0e3] = −N0

α,α.

The order 1 presents a discontinuity on both the multiphysics state and
traction vector. Analogously to the order 0 model, we obtain a generalized
equilibrium membrane problem defined on the plane of the interface.

6 Implicit form of the interface transmis-
sion conditions
In [41], it has been shown that it is possible to obtain a condensed form of
transmission conditions summarizing both the orders 0 and 1 of the soft
and hard cases in only one couple of equations in terms of the jump of the
displacement field and tractions at the interface. Equivalently, we show
that it is possible to define an implicit general multiphysics interface law
starting from the rigid case, comprising the order 0 and the order 1 of the
soft and hard multiphysics interface models.

To this end, we denote by s̃ε := s̄0 + εs̄1 + ε2s̄2 and t̃ε := t̄0 + εt̄1, two
suitable approximations for s̄ε and t̄ε.

Let us consider the rigid multiphysics interface conditions, as starting
point. After rescaling back the constitutive coefficients K̂ = εK̂ε in Bε,
we can write [s̃ε] and [t̃εe3], following the results of Section 5. Indeed,
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one has

[s̃ε] := [s̄0] + ε[s̄1] + ε2[s̄2] =

= −ε(K̂ε33)−1K̂εα3〈s̄0〉,α + ε2
(

1
ε
(K̂ε33)−1(〈t̄0e3〉 − εK̂εα3〈s̄1〉,α)

)
=

= −ε(K̂ε33)−1
(
K̂εα3〈s̃ε〉,α − 〈t̃εe3〉

)
+ o(ε2),[

t̃εe3

]
:= [t̄0e3] + ε[t̄1e3] =

= −εL̂εαβ〈s̄0〉,αβ − ε
(
K̂ε3α(K̂ε33)−1〈t̄0e3〉,α + εL̂εαβ〈s̄1〉,αβ

)
=

= −εK̂ε3α(K̂ε33)−1〈t̃εe3〉,α − εL̂εαβ〈s̃ε〉,αβ + o(ε2).
(20)

An alternative expression of the above transmission conditions can be
given in terms of 〈t̃εe3〉 and

[
t̃εe3

]
, which will be useful to write the

variational formulation of the interface multiphysics problem:

〈t̃εe3〉 = 1
ε
K̂ε33[s̃ε] + K̂εα3〈s̃ε〉,α + o(ε2),[

t̃εe3

]
= −K̂ε3α[s̃ε],α − εK̂εαβ〈s̃ε〉,αβ + o(ε2).

(21)

It is now shown that this interface law is general enough to describe
the interface laws at order 0 and order 1 prescribing the multiphysics state
jump and traction jump in the cases of the soft and hard interfaces, after
a suitable rescaling of the matrices K̂ε and up to neglecting higher order
terms in ε.

Indeed, to simulate the case of a soft interface, let us choose matrices
K̂ε = εK̂ in (20):

[s̃ε] := [s̄0] + ε[s̄1] + o(ε2) =

= −(K̂33)−1
(
εK̂α3(〈s̄0〉,α + ε〈s̄1+〉,α)− 〈t̄0e3〉 − ε〈t̄1e3〉

)
+ o(ε2),[

t̃εe3

]
:= [t̄0e3] + ε[t̄1e3] =

= −εK̂3α(K̂33)−1(〈t̄0e3〉,α + ε〈t̄1e3〉,α)− ε2L̂αβ(〈s̄0〉,αβ + ε〈s̄1〉,αβ) + o(ε2),

By identifying the terms with identical power of ε on the right-hand and
left-hand sides of the above relations, we can derive the soft interface
conditions at order 0 and 1, as customary,

Order 0 :

{
[s̄0] = (K̂33)−1〈t̄0e3〉
[t̄0e3] = 0

Order 1 :

{
[s̄1] = (K̂33)−1

(
〈t̄1e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −K̂3α(K̂33)−1〈t̄0e3〉,α.

The same procedure can be applied in order to identify the transmis-
sion conditions of the hard interface, by choosing K̂ε = K̂ in (20):

[s̃ε] := [s̄0] + ε[s̄1] + o(ε2) =

= −ε(K̂33)−1
(
K̂α3(〈s̄0〉,α + ε〈s̄1+〉,α)− 〈t̄0e3〉 − ε〈t̄1e3〉

)
+ o(ε2),[

t̃εe3

]
:= [t̄0e3] + ε[t̄1e3] =

= −εK̂3α(K̂33)−1(〈t̄0e3〉,α + ε〈t̄1e3〉,α)− εL̂αβ(〈s̄0〉,αβ + ε〈s̄1〉,αβ) + o(ε2),

and, hence, by considering the terms with same power of ε, we get:

Order 0 :

{
[s̄0] = 0

[t̄0e3] = 0
Order 1 :

{
[s̄1] = (K̂33)−1

(
〈t̄0e3〉 − K̂α3〈s̄0〉,α

)
,

[t̄1e3] = −K̂3α(K̂33)−1〈t̄0e3〉,α − L̂αβ〈s̄0〉,αβ .
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The above interface conditions, derived from the rigid case, are formally
equivalent to (13)-(14) and (18)-(19): this proves that the general implicit
multiphysics transmission conditions can also describe the soft and hard
cases at order 0 and order 1 with a good approximation.

7 The variational formulation of the gen-
eral multiphysics interface problem
In order to write the variational formulation of the general multiphysics
interface problem, we will employ the expression of the general transmis-
sion conditions presented in (21). These relations can be transformed into
interface equations defined on S, by making use of the matching relations
(6)-(7), up to higher order terms:

〈〈tεe3〉〉 = 1
ε
K̂ε33[[sε]] + K̂εα3〈〈sε〉〉,α+

+ε
(

1
ε
K̂ε33[[sε,3]] + K̂εα3〈〈sε,3〉〉,α

)
− ε

4
[[tε,3e3]],

[[tεe3]] = −K̂ε3α[[sε]],α − εK̂εαβ〈〈sε〉〉,αβ+

+ε
(
−K̂ε3α[[sε,3]],α − εK̂εαβ〈〈sε,3〉〉,αβ

)
− ε〈〈tε,3e3〉〉.

In what follows, for the sake of simplicity, we will neglect the higher order
terms of the interface conditions and omit the indices ε on the geometrical
and mechanical quantities. Thus,

〈〈te3〉〉 = 1
ε
K̂33[[s]] + K̂α3〈〈s〉〉,α,

[[te3]] = −K̂3α[[s]],α − εK̂αβ〈〈s〉〉,αβ .
(22)

Let us write the variational form of the equilibrium equations on each
sub-domain Ω+ and Ω−. The sum of the two equations leads to∫

Ω±

K̄∇s ·∇rdx−
∫
S

t(x̃, 0+)n(x̃, 0+) · rdΓ−
∫
S

t(x̃, 0−)n(x̃, 0−) · rdΓ =

=

∫
Ω±

F · rdx+

∫
Γg

G · rdΓ,

which can be written∫
Ω±

K̄∇s ·∇rdx+

∫
S

[[te3 · r]]dx̃ = L(r),

letting e3 = n(x̃, 0−) = −n(x̃, 0+) and dΓ = dx̃. Then, using the property
[[ab]] = 〈〈a〉〉[[b]] + [[a]]〈〈b〉〉 and relations (22), we obtain∫

Ω±

K̄∇s ·∇rdx+

∫
S

(
1

ε
K̂33[[s]] + K̂α3〈〈s〉〉,α

)
· [[r]]dx̃−

−
∫
S

(
K̂3α[[s]],α + εK̂αβ〈〈s〉〉,αβ

)
· 〈〈r〉〉dx̃ = L(r).

After an integration by parts, the variational formulation states as follows{
Find s ∈W (Ω̃), such that
Ā−(s, r) + Ā+(s, r) +A(s, r) = L(r),

(23)
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for all r ∈W (Ω̃), whereW (Ω̃) := {s ∈ H1(Ω̃;R3N×M ), s|S ∈ H1(S;R3N×M ), s =
0 on Γu}, with Ω̃ := Ω+ ∪ S ∪ Ω− and

A(s, r) :=

∫
S

(
1

ε
K̂33[[s]] · [[r]] + K̂α3〈〈s〉〉,α · [[r]] + K̂3α[[s]] · 〈〈r〉〉,α+

+ εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,β
)
dx̃,

L(r) :=

∫
∂Ω±

F · rdx+

∫
Γg

G · rdΓ +

∫
∂S

f · 〈〈r〉〉dγ,

where f :=
(
K̂3α[[s]] + εK̂αβ〈〈s〉〉,β

)
να denotes the load on the lateral

boundary of the interface, which can be evaluated with an analogous
procedure of Section 6, using (17) and (6)-(7). By virtue of the posi-
tivity of the constitutive tensors, a Poincaré-type inequality, the continu-
ity of the linear form and by considering that |s(x̃, 0+) ± s(x̃, 0−)|20,S =
|s(x̃, 0+)|20,S + |s(x̃, 0−)|20,S ± 2(s(x̃, 0+), s(x̃, 0−))0,S , there exist two posi-
tive constants c1 and c2 such that

c1
{
‖s‖21,Ω+

+ ‖s‖21,Ω− + |s(x̃, 0+)|20,S + |s(x̃, 0−)|20,S
}

=

= c1
{
‖s‖21,Ω+

+ ‖s‖21,Ω− + |s(x̃, 0+)− s(x̃, 0−)|20,S + |s(x̃, 0+) + s(x̃, 0−)|20,S
}

=

= c1
{
‖s‖21,Ω+

+ ‖s‖21,Ω− + |[[s]]|20,S + |〈〈s〉〉|20,S
}
≤ Ā−(s, s) + Ā+(s, s) +A(s, s) =

= L(s) ≤ c2
{
‖s‖21,Ω+

+ ‖s‖21,Ω− + |s(x̃, 0+)|20,S + |s(x̃, 0−)|20,S
}1/2

.

Thus, thanks to the Lax-Milgram lemma, we can infer that the interface
variational problem (23) admits one and only one solution.

Remark 6. It is interesting to notice that the bilinear formA(·, ·), related
to the interface energy, takes into account simultaneously two different
behaviours with some coupling terms: the first one, depending on the
jump of the multiphysics state Aspring(s, r) :=

∫
S

1
ε
K̂33[[s]] · [[r]]dx̃, is

classically associated with a soft interface, corresponding to spring-type
conditions; the second one, depending on the mean value of the state
Amembrane(s, r) :=

∫
S
εK̂αβ〈〈s〉〉,α · 〈〈r〉〉,βdx̃, corresponds to a membrane

interface energy and it appears usually in hard and rigid interface problems
[44–46].

8 Applications to multiphysics materials

8.1 The elastic case
A linear elastic material represents the simplest choice of multiphysics
material in which the only order parameter is given by the displacement
field u, i.e., s = u. The corresponding constitutive law is classically
defined by:

σ = Ce(u),

where σ = (σij) and e(u) := Sym∇u represent, respectively, the Cauchy
stress tensor and the linearized strain tensor, while C = (Cijk`) is the
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elasticity tensor. The transmission conditions (22) on S can be written as
follows: {

〈〈σe3〉〉 = 1
ε
Ĉ33[[u]] + Ĉα3〈〈u〉〉,α,

[[σe3]] = −Ĉ3α[[u]],α − εĈαβ〈〈u〉〉,αβ ,
where Ĉj` = (Ĉj`ki) = (Ĉijk`).

If we consider a linear elastic isotropic material, with Lamé constants
λ̂ and µ̂, the constitutive matrices Ĉj` reduces to

Ĉ33 :=

 µ̂ 0 0
0 µ̂ 0

0 0 2µ̂+ λ̂

 , Ĉ13 :=

 0 0 µ̂
0 0 0

λ̂ 0 0

 , Ĉ23 :=

 0 0 0
0 0 µ̂

0 λ̂ 0

 ,
Ĉ11 :=

 2µ̂+ λ̂ 0 0
0 µ̂ 0
0 0 µ̂

 , Ĉ22 :=

 µ̂ 0 0

0 2µ̂+ λ̂ 0
0 0 µ̂

 , Ĉ12 :=

 0 µ̂ 0

λ̂ 0 0
0 0 0

 ,
and, hence, the transmission conditions become

〈〈τ 〉〉 = 1
ε
µ̂[[uH ]] + µ̂∇s〈〈u3〉〉, with uH = (uα),

〈〈σ33〉〉 = 1
ε
(2µ̂+ λ̂)[[u3]] + λ̂ divs〈〈uH〉〉,

[[τ ]] = −λ̂∇s[[u3]]− ε
(
µ̂∆s〈〈uH〉〉+ (µ̂+ λ̂)∇sdivs〈〈uH〉〉

)
,

[[σ33]] = −µ̂divs[[uH ]]− εµ̂∆s〈〈u3〉〉,

where τ := (σα3) denotes the shear stress vector, and ∇s, divs and ∆s

represent the two-dimensional gradient, divergence and Laplacian opera-
tors, respectively.

8.2 The piezoelectric case
A piezoelectric material represents one of the most peculiar multiphysics
material, combining the linear elastic behavior with the electric counter-
part. The piezoeletric state reduces to a pair s = (u, ϕ), constituted by the
displacement field u = (ui) and the electric potential ϕ. The constitutive
law takes the following form:{

σ = Ce(u) + PE,
D = −(P)T e(u) + HE,

(24)

where D = (Di) represent the electric displacement field, E := −∇ϕ
represent the electric field, while C = (Cijk`), P = (Pijk) and H =
(Hij) denote, respectively, the elasticity tensor, the piezoelectric coupling
tensor and the dielectric tensor. The governing equations of the interface
problems become two elasticity and electrostatic equilibrium problems on
Ω+ and Ω−. By considering the generalized body loads F := (f , %e) and
surface loads G := (g, d), where f and g represent the mechanical volume
and surface loads, while %e and d denote the volume and surface charge
densities, one has the following field equations:

−div σ̄ = f in Ω±,

div D̄ = %e in Ω±,
σ̄n = g on Γg,
D̄ · n = d on Γg,
u = 0, ϕ = 0 on Γu.

(25)
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The generalized traction vector takes the form te3 = (σe3,D ·e3). Hence,
the transmission conditions (22) on S can be adapted as follows:

〈〈σe3〉〉 = 1
ε

(
Ĉ33[[u]] + p̂33[[ϕ]]

)
+ Ĉα3〈〈u〉〉,α + p̂α3〈〈ϕ〉〉,α

〈〈D · e3〉〉 = 1
ε

(
−p̂33 · [[u]] + Ĥ33[[ϕ]]

)
− p̂3α · 〈〈u〉〉,α + Ĥα3〈〈ϕ〉〉,α

[[σe3]] = −Ĉ3α[[u]],α − p̂3α[[ϕ]],α − εĈαβ〈〈u〉〉,αβ − εp̂αβ〈〈ϕ〉〉,αβ
[[D · e3]] = p̂3α · [[u]],α − Ĥα3[[ϕ]],α + εp̂αβ · 〈〈u〉〉,αβ − εĤαβ〈〈ϕ〉〉,αβ ,

where Ĉj` = (Ĉj`ki) = (Ĉijk`) and p̂ki = (p̂kij ) = (P̂kij). As we already
proved in Section 6, the above interface conditions contains the soft, hard
and rigid interface conditions and are equivalent to those obtained in
[44], for weak lowly-conducting and strong highly-conducting piezoelectric
interfaces.

Considering, for instance, a transversally isotropic material with poling
axis e3, such as PZT-4, the constitutive matrices take the following form:

Ĉ33 :=

 c55 0 0
0 c55 0
0 0 c33

 , Ĉ13 :=

 0 0 c55

0 0 0
c13 0 0

 , Ĉ23 :=

 0 0 0
0 0 c55

0 c13 0

 ,
p̂33 :=

 0
0
e33

 , p̂13 :=

 e15

0
0

 , p̂23 :=

 0
e15

0

 , p̂31 :=

 e31

0
0

 ,
p̂32 :=

 0
e31

0

 , Ĉ11 :=

 c11 0 0
0 c11−c12

2
0

0 0 c55

 , Ĉ22 :=

 c11−c12
2

0 0
0 c11 0
0 0 c55

 ,
Ĉ12 :=

 0 c11−c12
2

0
c12 0 0
0 0 0

 , p̂11 :=

 0
0
e15

 , p̂12 := 0, Ĥα3 = 0, Ĥ11 = Ĥ22,

and, hence, the transmission conditions become

〈〈τ 〉〉 = 1
ε
c55[[uH ]] + c55∇s〈〈u3〉〉+ e15∇s〈〈ϕ〉〉,

〈〈σ33〉〉 = 1
ε

(c33[[u3]] + e33[[ϕ]]) + c13 divs〈〈uH〉〉,

〈〈D3〉〉 = 1
ε

(
−e33[[u3]] + Ĥ33[[ϕ]]

)
− e31divs〈〈uH〉〉,

[[τ ]] = − (c13∇s[[u3]]− e31∇s[[ϕ]])− ε
2

((c11 − c12)∆s〈〈uH〉〉+ (c11 + c12)∇sdivs〈〈uH〉〉) ,
[[σ33]] = −c55divs[[uH ]]− ε (c55∆s〈〈u3〉〉+ e15∆s〈〈ϕ〉〉) ,

[[D3]] = −e15divs[[uH ]]− ε
(
e15∆s〈〈u3〉〉+ Ĥ11∆s〈〈ϕ〉〉

)
.

(26)

8.3 The thermoelastic case
The interface problem can be easily adapted in the case of linear elasticity
with thermal effect. The thermoelastic state is defined by the pair s =
(u, θ), constituted by the displacement field u = (ui) and the variation
of temperature θ. The corresponding constitutive law takes the following
form: {

σ = Ce(u)−Xθ,
q = −K∇θ,
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where q = (qi) denotes the thermal flow, X = (Xij) and K = (Kij) rep-
resent, respectively, the thermal expansion tensor and the thermal con-
ductivity tensor. By noting with F := (f , w) and G := (g, h), the thermo-
mechanical volume and surface loads, we obtain the following governing
equations: 

−div σ̄ = f in Ω±,

div q̄ = w in Ω±,

σ̄n = g on Γg,

q̄ · n = h on Γg,

u = 0, θ = 0 on Γu.

The generalized traction vector takes the form te3 = (σe3,q · e3).
Hence, the transmission conditions (22) on S can be adapted as follows:

〈〈σe3〉〉 = 1
ε
Ĉ33[[u]] + Ĉα3〈〈u〉〉,α − X̂3〈〈θ〉〉

〈〈q · e3〉〉 = 1
ε
K̂33[[θ]]

[[σe3]] = −Ĉ3α[[u]],α − εĈαβ〈〈u〉〉,αβ + εX̂α〈〈θ〉〉,α
[[q · e3]] = −εK̂αβ〈〈θ〉〉,αβ ,

where X̂k = (X̂k
i ) := (X̂ik). The same interface problem can be also asso-

ciated to other multiphysics and multifield theories such as poroelasticiy
(in this case θ stands for the pore pressure) or elasticity with voids and
microstretch elasticity (in this case θ represent the microstretch state).

By choosing an isotropic thermoelastic material, one has X̂ij = α̂δij
and K̂ij = k̂δij , with δij the Kronecker’s tensor. Thus, the transmission
conditions takes the following form:

〈〈τ 〉〉 = 1
ε
µ̂[[uH ]] + µ̂∇s〈〈u3〉〉,

〈〈σ33〉〉 = 1
ε
(2µ̂+ λ̂)[[u3]] + λ̂ divs〈〈uH〉〉 − α̂〈〈θ〉〉,

〈〈q3〉〉 = 1
ε
k̂[[θ]],

[[τ ]] = −λ̂∇s[[u3]]− ε
(
µ̂∆s〈〈uH〉〉+ (µ̂+ λ̂)∇sdivs〈〈uH〉〉+ α̂∇s〈〈θ〉〉

)
,

[[σ33]] = −µ̂divs[[uH ]]− εµ̂∆s〈〈u3〉〉,
[[q3]] = −εk̂∆s〈〈θ〉〉.

9 A closed-form solution for the stretch-
ing of a piezoelectric composite
Consider a three-dimensional composite body made of two piezoelectric
parallelepipeds, Ω− and Ω+, called the adherents, having identical lateral
dimensions but different heights, h− and h+ respectively. The two ad-
herents are joined by a thin piezoelectric adhesive of thickness ε, whose
behavior is described by the transmission conditions (26). The total height
of the composite is defined byH := h++h−+ε. The whole body is subject
to a tensile load q acting on the upper and lower boundary, denoted Γ+

and Γ− respectively (cf. Figure 2). The union of the lateral boundaries
of Ω− and Ω+ is denoted Γl, and Γg = Γ± ∪ Γl. Moreover, Γu = ∅.
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Figure 2: Geometry of the piezoelectric three-layered composite body.

The governing equations are given by the equilibrium equations (25)
with f = 0, %e = 0, g± := ±q e3 on Γ± and d = 0, together with
the constitutive laws (24), specialized for the orthotropic symmetry with
poling axis e3, and the transmission conditions (26).

The following choice:
u = q

∑3
i=1 C̄ixiei + u±

3 e3 in Ω±,

ϕ = −qC̄4x3 + ϕ± in Ω±,
σ̄ = q(e3 ⊗ e3) in Ω+ ∪ Ω−,
D̄ = 0 in Ω+ ∪ Ω−,

(27)

with the costants C̄i, i = 1, 2, 3, 4 given in Appendix B, satisfies the equi-
librium equations (25) and the constitutive laws (24).

Note that the choice (27) corresponds to homogeneous piezoelectric
states (u, ϕ) of the adherents superimposed to jump discontinuities [[u]] =
(u+

3 −u
−
3 )e3 and [[ϕ]] = (ϕ+−ϕ−) concentrated at the adhesive interface

S.
By imposing the transmission conditions (26), the first, fourth, fifth

and sixth conditions are identically satisfied, while the second and third
conditions give the following values for the jumps [[u3]] and [[φ]]: [[u3]] = qε Ĥ33+(C̄1+C̄2)(ê31ê33−ĉ13Ĥ33)

ê233+ĉ33Ĥ33
,

[[ϕ]] = qε ê33+(C̄1+C̄2)(ê33ĉ13−ê13ĉ33)

ê233+ĉ33Ĥ33
.

(28)

The closed-form solution given by (27) and (28) allows to compute the
macroscopic elastic modulus of the composite E, defined as

E :=
q

u3(x1,x2,h++ε/2)−u3(x1,x2,−h−−ε/2)

H

=
1

C̄3 + ε
H
Ĥ33+(C̄1+C̄2)(ê31ê33−ĉ13Ĥ33)

(ê233+ĉ33Ĥ33)

.
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The difference of electric potential ∆φ, induced between the upper and
lower surfaces of the composite, can be calculated as

∆φ := ϕ(x1, x2, h+ + ε/2)− ϕ(x1, x2,−h− − ε/2)

= −qC̄4(h+ + h−) + qε
ê33 + (C̄1 + C̄2)(ê33ĉ13 − ê13ĉ33)

ê2
33 + ĉ33Ĥ33

.

10 Summary and conclusion
General imperfect contact conditions have been proposed, simulating the
behavior of a thin interphase undergoing linear coupled multiphysics phe-
nomena. These conditions link the generalized stress vector field and its
jump to the multiphysic state vector field and its jump at the interface,
which is the geometric limit of the interphase as its thickness parameter
ε goes to zero.

The approach used to obtain the transmission conditions is based on
the asymptotic expansions method and on energy minimization. Zero and
higher order interface models have been derived for soft, hard and rigid
interphases, meaning that the multiphysics parameters of the interphase
material rescale as εp with the interphase thickness ε, and p = 1, 0,−1,
respectively. For the three regimes, the asymptotic expansions of the
multiphysic state and generalized stress vector fields are introduced and
the effect of higher ordererms is taken into account.

Using matching conditions, the transmission conditions for the three
regimes at the various orders have been condensed into a single, im-
plicit, non-local formulation, which recovers as particolar cases the cases
of spring-layer and perfect interfaces and are expected to provide a better
approximation of the behavior of the thin interphase. Indeed, consider-
ing the order 1 corrector terms of the asymptotic expansions, summed up
with the leading terms at order 0, we can extend the application of the
general myltiphysics interface law to moderately thick adhesive layers.

A variational formulation of the general multiphysics interface problem
has been presented. The weak formulation represents a key step towards
simulating numerically imperfect interface effects inside composite mate-
rials, exhibiting linear coupled phenomena, and it serves as a basis for
the study of the well-posedness of the mathematical problem. The appli-
cability of the proposed transmission conditions has been illustrated via
a series of examples, the case of linear elasticity, the thermoelastic and
the piezoeletric cases, for which we propose a closed-form solution. Other
cases could be recovered, being the structure of the transmission condi-
tions completely general and applicable to any situation involving linear
coupled multiphysics phenomena.

Appendix A
In the sequel, we briefly present the characterization of the order 0 and
order 1 interface conditions for the rigid case.
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Considering problem P−2, we can infer that ŝ0 = ŝ0(x̃) is independent
of the through-the-thickness coordinate and so, by the continuity on the
upper and lower interfaces, one has [ŝ0] = [s̄0] = 0 and ŝ0 = 〈ŝ0〉 = 〈s̄0〉.

Let us take into account problem P−1. Since ŝ0 does not depend on
x3, we obtain that ŝ1(x̃, x3) = 〈s̄1〉(x̃) + x3[s̄1](x̃), where the continuity
conditions are taken into account. Moreover, one has

[s̄1] = −(K̂33)−1K̂α3〈s̄0〉,α. (29)

Let us consider problem P0 and perform an integration by parts along
x3 and the in-plane coordinates xα. Thus, we obtain

K̂33ŝ
2
,33 + (K̂3α + K̂α3)ŝ1

,3α + K̂αβ ŝ0
,αβ = 0 in B,

∓
(
t̄0e3 − (K̂33ŝ

2
,3 + K̂α3ŝ

1
,α)
) ∣∣∣x3=± 1

2
= 0 on S±.

(30)

Integrating (10)1 in the interval x3 = ± 1
2
, one can evaluate the following

jump:
[K̂33ŝ

2
,3 + K̂α3ŝ

1
,α] = −L̂αβ〈s̄0〉,αβ .

From (10)2 and the above relation, we can compute

[t̄0e3] = [K̂33ŝ
2
,3 + K̂α3ŝ

1
,α] = −L̂αβ〈s̄0〉,αβ .

Hence, together with [s̄0] = 0, the rigid interface conditions at order 0 are
retrieved. Moreover, by characterizing the explicit expression of ŝ2, we
can infer that

K̂33[s̄2] = 〈t̄0e3〉 − K̂α3〈ŝ1〉,α,
which will be useful in the sequel. Finally, from problem P1, by operating
an integration by parts, we get

[K̂33ŝ
3
,3 + K̂α3ŝ

2
,α] = −(K̂αβ〈s̄1〉,αβ + K̂3α[s̄2],α) =

= −(L̂αβ〈s̄1〉,αβ + K̂3α(K̂33)−1〈t̄0e3〉,α).

Since
[t̄1e3] = [K̂33ŝ

3
,3 + K̂α3ŝ

2
,α],

combined with (29), we can recover the order 1 rigid interface conditions.

Appendix B
The constitutive constants C̄i, i = 1, 2, 3, 4, of the example in Section 9
take the following form:

C̄1 = 1
∆

(
c13c22H33 + c13e

2
32 + c22e31e33 − c12e32e33

)
,

C̄2 = − 1
∆

(c12c13H33 + c13e31e32 + c12e31e33 − c11e32e33) ,

C̄3 = 1
∆

(
c212H33 − c22e

2
31 + 2c12e31e32 − c11(c22H33 + e2

32)
)
,

C̄4 = 1
∆

(
−c13c22e31 + c12c13e32 − c212e33 + c11c22e33

)
,

with

∆ = c213(c22H33 + e2
32)− c33(c11c22H33 + c22e

2
31 + c11e

2
32)

+c11c23e32e33 − c11c22e
2
33 + c12e31(2c33e32 − c23e33)

−c13(c12c23H33 + c23e31e32 − 2c22e31e33 + 2c12e32e33)

+c212(c33H33 + e2
33).
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