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Invariant metrics for the quaternionic Hardy space

Nicola Arcozzi∗, Giulia Sarfatti†

Abstract

We find Riemannian metrics on the unit ball of the quaternions, which are naturally associated
with reproducing kernel Hilbert spaces. We study the metric arising from the Hardy space in detail.
We show that, in contrast to the one-complex variable case, no Riemannian metric is invariant under
all regular self-maps of the quaternionic ball.
KEY WORDS AND PHRASES: Hardy space on the quaternionic ball; functions of a quaternionic variable; invariant
Riemannian metric.
MATHEMATICS SUBJECT CLASSIFICATION: 30G35, 46E22, 58B20.

Notation. The symbol H denotes the set of the quaternions q = x0 + x1i + x2j + x3k = Re(q) + Im(q), with
Re(q) = x0 and Im(q) = x1i + x2j + x3k; where the xj’s are real numbers and the imaginary units i, j, k are
subject to the rules ij = k, jk = i, ki = j and i2 = j2 = k2 = −1. We identify the quaternions q whose
imaginary part vanishes, Im(q) = 0, with real numbers, Re(q) ∈ R; and, similarly, we let I = Ri + Rj + Rk
be the set of the imaginary quaternions. The norm |q| ≥ 0 of q is |q| =

√∑3
l=0 x

2
l = (qq)1/2, where q =

x0 − x1i − x2j − x3k is the conjugate of q. The open unit ball B in H contains the quaternions q such that
|q| < 1. The boundary of B in H is denoted by ∂B. By the symbol S we denote the unit sphere of the imaginary
quaternions: q ∈ I belongs to S if |q| = 1. For I in S, the slice LI = L−I in H contains all quaternions having
the form q = x + yI , with x, y in R. If f is a real differentiable function on a domain Ω ⊆ H, we denote its real
differential at a point w ∈ Ω by the symbol f∗[w].

1 Introduction

Let H be the skew-field of the quaternions. The quaternionic Hardy space H2(B) consists of the formal
power series of the quaternionic variable q,

f(q) =
∞∑
n=0

qnan,

such that the sequence of quaternions {an} satisfies

‖f‖H2(B) :=

( ∞∑
n=0

|an|2
)1/2

<∞. (1)

∗Partially supported by the PRIN project Real and Complex Manifolds of the Italian MIUR and by INDAM-GNAMPA
†Partially supported by INDAM-GNSAGA and by the PRIN project Real and Complex Manifolds of the Italian MIUR
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It is easily verified that the series converges to a function f : B = {q ∈ H : |q| < 1} → H. The
function f is slice regular [14] in the sense of Gentili and Struppa, who developed a version of complex
function theory which holds in the quaternionic setting. See the monograph [13] for a detailed account
of the theory. The norm (1) can be polarized to obtain an inner product with values in the quaternions,

〈∑
qnan,

∑
qnbn

〉
H2(B)

:=
∞∑
n=0

bnan.

The space H2(B) is a reproducing kernel Hilbert space, in the quaternionic sense: for w in B and f in
H2(B) we have

f(w) = 〈f, kw〉H2(B) , where kw(q) = k(w, q) =
∞∑
n=0

qnwn.

There is a rich interplay between reproducing kernel Hilbert spaces and distance functions. See [3] for
an overview and several examples from one-variable holomorphic function space theory. In [10] the
connection between metric theory and operator theory is analyzed at a very deep level, and the case of
the Hardy space is a model example of that. The seminal article [4] by Aronszajn is still an excellent
introduction to the theory of reproducing kernel Hilbert spaces.

In this article we are mainly interested in studying metrics on B which are associated with the function
space H2(B). We also provide evidence that the metric properties of the space reflect the behavior of
functions in H2(B). The first metric we consider measures the distance between projections of kernel
functions in the unit sphere of the Hilbert space H2(B):

δ(p, q) :=

√√√√√1−

∣∣∣∣∣∣
〈

kq
‖kq‖H2(B)

,
kp

‖kp‖H2(B)

〉
H2(B)

∣∣∣∣∣∣
2

. (2)

In the holomorphic case ofH2(∆) one obtains this way the pseudo-hyperbolic metric δ′(z, w) =
∣∣∣ z−w1−wz

∣∣∣.
A calculation, see Proposition 4.2 below, gives a formally similar result in the quaternionic case:

δ(z, w) = |(1− qw)−∗ ∗ (q − w)||q=z ,

for z, w in B. Here, the product f(q) ∗ g(q) and the multiplicative inverse f(q)−∗ are not pointwise
product and pointwise inverse: they are ∗-product and ∗-inverse, which are defined so that the usual
convolution rule for coefficients of power series’ products holds. See [13], and Section 2 where we
summarize some background material on slice regular functions.

The infinitesimal version of the pseudo-hyperbolic metric in the complex disc, is the hyperbolic
metric in the Riemann-Beltrami-Poincaré disc model: ds2 = |dz|2

(1−|z|2)2
. By infinitesimal version of a

distance δ0, we mean the length metric associated with δ0 (see e.g. [16]). The infinitesimal metric
associated with δ is a Riemannian metric g on B.

Theorem 1.1. (I) The length metric associated with (2) is the Riemannian metric g defined below.
For any w ∈ B, let us identify the tangent space TwB with H. For any vector d ∈ TwB, where

w = x + yIw lies in LIw , we decompose d = d1 + d2 with d1 in LIw and d2 in L⊥Iw , the orthogonal
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complement of LIw with respect to the Euclidean metric in H. The length of d with respect to g is:

|d|2g(w) =
1

(1− |w|2)2
|d1|2 +

1

|1− w2|2
|d2|2. (3)

(II) The isometry group of g is the one generated by the following classes of self-maps of B:

(a) regular Möbius transformations of the form

q 7→Mλ(q) = (1− qλ)−∗ ∗ (q − λ) =
q − λ
1− λq

,

with λ in (−1, 1);

(b) isometries of the sphere of the imaginary units,

q = x+ yI 7→ TA(q) = x+ yA(I),

where A : S→ S is an isometry of S;

(c) the reflection in the imaginary hyperplane,

q 7→ R(q) = −q.

In the metric (3), the first, “large” summand is the hyperbolic metric on a slice, while the second
“small” summand is peculiarly quaternionic: it measures the variation of a quaternionic Hardy function
in the direction orthogonal to the slices. Its small size reflects in quantitative, geometric terms the fact
that regular functions are affine in the S variable, see [13].

The special rôle of the real axis in the theory of slice regular functions is here reflected in the fact
that all isometries of the metric g fix R ∩ B. In particular, contrary to the case of the complex disc, the
action is not transitive. Other, more precise, properties of the metric will be stated and proved on route
to the proof of Theorem 1.1. We will study geodesics, geodesically complete submanifolds and other
geometric properties of the metric. For instance, we will prove that the radius of injectivity is infinite
at points of the real diameter of B, and finite elsewhere. The metric has neither positive, nor negative
sectional curvature.

The proof of Theorem 1.1 splits into two steps. First, we compute the Riemannian metric associated
with rather general reproducing kernel quaternionic Hilbert spaces H; that is the “infinitesimal” length
metric gH associated with the distance function

δH(w, z) =

√
1−

∣∣∣∣〈 kw
‖kw‖H

,
kz
‖kz‖H

〉
H

∣∣∣∣2.
We prove

Theorem 1.2. Let Ω be a symmetric slice domain and let H be a reproducing kernel Hilbert space
of regular functions on Ω. Suppose that k is slice preserving: for any w ∈ Ω the kernel function kw
preserves the slice LIw identified by w. Then the length of a tangent vector d = d1 + d2 ∈ LIw +L⊥Iw

∼=
TwΩ with respect to the Riemannian metric gH associated withH is given by

|d|2gH(w) =

(
‖kw‖2H

∥∥∥∂ckq(w)
∥∥∥2

H
−
∣∣∣∂ckw(w)

∣∣∣2)
‖kw‖4H

|d1|2 +

(
‖kw‖2H

∥∥∥∂skq(w)
∥∥∥2

H
−
∣∣∣∂skw(w)

∣∣∣2)
‖kw‖4H

|d2|2.
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Symmetric slice domains are domains in H endowed with a natural symmetry, see Section 2. Exam-
ples of Hilbert spaces satisying the assumptions of Theorem 1.2 are the Hardy space on B and on the
right half-space H+ = {q ∈ H | Re(q) > 0}, and the Bergman space on B. The formula in Theorem 1.2
should be compared with that in Theorem 1.17 in [10]. See also formula (0.3) in [17]. Part I of Theorem
1.1 is a special case of Theorem 1.2.

The classification of the isometries in part II of Theorem 1.1 is carried out in Section 4.
The Riemannian metric g has a rather small group of isometries, compared with the state of things

in the unit disc of the complex plane, or even in the unit ball in several complex variables, with the
Bergman-Kobayashi metric. The latter metrics have a transitive group of isometries and, more, the
space is isotropic; whereas all isometries of the former have to fix the real line. One might expect that
something better is possible. Unfortunately, there is no Riemannian metric on B which is invariant under
any regular Möbius function, unless the Möbius function is already an isometry for the metric defined in
Theorem 1.1. If a geometric invariant for slice regular functions on the quaternionic ball exists, it has to
be other than a Riemannian metric.

Theorem 1.3. Let a be a point of B \ R. There is no Riemannian metric m on B having as isometry the
regular Möbius transformation q 7→ (1− qa)−∗ ∗ (a− q).

The proof will be given in Subsection 4.3. We mention here that Bisi and Gentili proved in [5] that
the usual Poincaré metric on B is invariant under classical (non-regular) Möbius maps.

A first relationship between the space H2(B) and the metric g concerns the H2 norm itself. Let
rS3 be the sphere of radius 0 < r < 1 in B, with respect to the usual Euclidean metric; containing
quaternions q = retI , with I in S and t in [0, π]. The restriction of g to rS3 induces a volume form
dV olrS3 . Let f be in H2(B). Then,

‖f‖2H2(B) = lim
r→1

(1− r2)
1

V olrS3(rS3)

∫
rS3
|f |2dV olrS3 ,

a relation similar to the definition of the Hardy norm in the unit disc by means of the Poincaré metric.
In Section 5 we use the Caley map C : q 7→ (1 − q)−1(1 + q) to write down the metric g in

coordinates living in right half-space H+ := C(B) = {q ∈ H | Re(q) > 0}. This makes it easier to
prove a bilateral estimate for the distance function associated with g, Theorem 5.4. As an application,
we further investigate the “rigidity” of the metric g, by showing that the only inner functions which are
Lipschitz continuous with respect to g have to be slice preserving. A regular function f : B→ H is inner
if (i) it maps B into B; (ii) the limit as r → 1 of f along the radius r 7→ ru exists for a.e. u in ∂B and it
has unitary norm. A function defined from Ω ⊆ H to H is slice preserving if it maps LI ∩Ω to LI for all
I in S.

Theorem 1.4. Let f : B → B be an inner function. Then, f is Lipschitz with respect to the metric g if
and only if it is slice preserving. In this case, it is a contraction.

In particular, Lipschitz inner functions have to fix the real diameter of B.
We also consider in Subsection 5.1 four equivalent definitions of the Hardy space H2(H+) on H+.

First, functions f in H2(H+) might be characterized, pretty much as in the one-dimensional complex
case, as inverse Fourier transforms -in the quaternionic sense- of functions F : [0,∞) → H with finite
L2-norm

‖F‖L2 =

(∫ ∞
0
|F (ζ)|2dζ

)1/2

.
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In Proposition 5.1 we show that H2(H+) is the Hilbert space having reproducing kernel kw(q) = (q +
w)−∗. This second viewpoint has the advantage of relating H2(H+) and H2(B). We show in fact in
Proposition 5.2 that the reproducing kernel for H2(H+) is a rescaling of the reproducing kernel for
H2(B):

kH2(B)(C
−1(w), C−1(z)) =

1

2
(1 + z)kH2(H+)(w, z)(1 + w).

Here we use the symbols kH2(B) and kH2(H+) for the reproducing kernels on B and H+, respectively.
Hence, third, the functions in H2(H+) might be defined as the rescaled versions of functions in H2(B).
In Proposition 5.3 we finally show that, fourth, the norm of f in H2(H+) can be computed as the limit
of the integrals of |f |2 on “horocycles” in H2(H+), when these are endowed with the natural volume
form induced by the metric g. The space H2(H+) was defined in [2], using a fifth definition, which is
shown to give rise to the same reproducing kernel. Our contribution here is mainly relating H2(H+) and
the geometry of H+.

There are different extensions of the notion of Hardy space to the quaternionic setting, or to the more
general context of Clifford algebras. Let us spend a few words to motivate the one we have here adopted.
We might interpret the sequence {an} as a quaternion valued signal in positive, discrete time n ≥ 0, and
its `2 norm as a notion of energy, exactly as in the classical case of complex valued signals. The function
f(q) =

∑∞
n=0 q

nan is then the natural notion of generating function (the “q-transform”) for the signal.
The ∗-product arises in connection with convolution (or, to put it in the language of signal processing,
of linear and time invariant filtering); in general, slice regularity is the analytic constraint satisfied by
power series of a quaternionic variable. The geometry studied in this paper is related to the time shift
f(q) 7→ qf(q), the most natural operator arising from the viewpoint of signal theory. In a forthcoming
paper, we will return to the interpretation of H2(B) in terms of signals in more detail.

A different and very interesting extension of the Hardy theory has been developed by Marius Mitrea
and other researchers over the past twenty years, relying on a different notion of regular functions.
The literature on the topic is vast. We direct the interested reader to the monographs [7] and [18] for
an introduction to, respectively, function theory on Clifford algebras and the corresponding harmonic
analysis; and to [13], especially the introduction, and the recent article [20], for a comparison between
the “Clifford” and the slice viewpoints.

Constructive criticism from an anonimous referee encouraged us to improve Theorem 1.3, which is
now stronger than in the previous version of the article, and proved by a different argument.

2 Preliminaries

We recall the definition of slice regularity, together with some basic results that hold for this class of
functions. We refer to the book [13] for all details and proofs. Let H denote the four-dimensional (non-
commutative) real algebra of quaternions and let S denote the two-dimensional sphere of imaginary units
of H, S = {q ∈ H | q2 = −1}. One can “slice” the space H in copies of the complex plane that intersect
along the real axis,

H =
⋃
I∈S

(R + RI), R =
⋂
I∈S

(R + RI),

where LI := R + RI ∼= C, for any I ∈ S. Then, each element q ∈ H can be expressed as q = x+ yIq,
where x, y are real (if q ∈ R, then y = 0) and Iq is an imaginary unit. Let Ω ⊆ H be a subset of H.
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For any I ∈ S, we will denote by ΩI the intersection Ω ∩ LI . We can now recall the definition of slice
regular functions, in the sequel simply called regular functions.

Definition 2.1. Let Ω be a domain (open connected subset) in H. A function f : Ω → H is said to be
(slice) regular if for any I ∈ S the restriction fI of f to ΩI has continuous partial derivatives and it is
such that

∂IfI(x+ yI) =
1

2

(
∂

∂x
+ I

∂

∂y

)
fI(x+ yI) = 0

for all x+ yI ∈ ΩI .

A wide class of examples of regular functions is given by power series with quaternionic coefficients of
the form

∑∞
n=0 q

nan which converge in open balls centered at the origin.

Theorem 2.2. A function f is regular on B(0, R) = {q ∈ H | |q| < R} if and only if f has a power
series expansion f(q) =

∑∞
n=0 q

nan converging in B(0, R).

For regular functions, it is possible to define an appropriate notion of derivative:

Definition 2.3. Let f be a regular function on a domain Ω ⊆ H. The slice (or Cullen) derivative of f is
the regular function defined as

∂cf(x+ yI) =
1

2

(
∂

∂x
− I ∂

∂y

)
fI(x+ yI).

We will consider domains in certain restricted classes.

Definition 2.4. Let Ω ⊆ H be a domain.

1. Ω is called a slice domain if it intersects the real axis and if, for any I ∈ S, ΩI is a domain in LI .

2. Ω is called a symmetric domain if for any point x + yI ∈ Ω, with x, y ∈ R and I ∈ S, the entire
two-sphere x+ yS is contained in Ω.

The ball B and the right half-space H+ = {q = x + Iy : I ∈ S, x > 0, y ∈ R} are symmetric slice
domains.

Slice regular functions defined on symmetric slice domains have a peculiar property.

Theorem 2.5 (Representation Formula). Let f be a regular function on a symmetric slice domain Ω and
let x+ yS ⊂ Ω. Then, for any I, J ∈ S,

f(x+ yJ) =
1

2
[f(x+ yI) + f(x− yI)] + J

I

2
[f(x− yI)− f(x+ yI)].

In particular, there exist b, c ∈ H such that f(x+ yJ) = b+ Jc for any J ∈ S.

When restricted to a sphere of the form x+ yS, a regular function is actually affine in the variable q.
This nice geometric property leads to the following definition

Definition 2.6. Let f be a regular function on a symmetric slice domain Ω. The spherical derivative of f
is defined as

∂sf(q) = (q − q)−1 (f(q)− f(q)) .

6



A basic result that establishes a relation between regular functions and holomorphic functions of one
complex variable is the following.

Lemma 2.7 (Splitting Lemma). Let f be a regular function on a slice domain Ω ⊆ H. Then for any
I ∈ S and for any J ∈ S, J ⊥ I there exist two holomorphic functions F,G : ΩI → LI such that

f(x+ yI) = F (x+ yI) +G(x+ yI)J

for any x+ yI ∈ ΩI .

In general, the pointwise product of functions does not preserve slice regularity. It is possible to
introduce a new multiplication operation, which, in the special case of power series, can be defined as
follows.

Definition 2.8. Let f(q) =
∑∞

n=0 q
nan, and g(q) =

∑∞
n=0 q

nbn be regular functions on B(0, R). Their
regular product (or ∗-product) is

f ∗ g(q) =
∑
n≥0

qn
n∑
k=0

akbn−k,

regular on B(0, R) as well.

The ∗-product is related to the standard pointwise product by the following formula.

Proposition 2.9. Let f, g be regular functions on a symmetric slice domain Ω. Then

f ∗ g(q) =

{
0 if f(q) = 0
f(q)g(f(q)−1qf(q)) if f(q) 6= 0

The reciprocal f−∗ of a regular function f with respect to the ∗-product can be defined.

Definition 2.10. Let f(q) =
∑∞

n=0 q
nan be a regular function on B(0, R), f 6≡ 0. Its regular reciprocal

is
f−∗(q) =

1

f ∗ f c(q)
f c(q),

where f c(q) =
∑∞

n=0 q
nan. The function f−∗ is regular on B(0, R) \ {q ∈ B(0, R) | f ∗ f c(q) = 0}

and f ∗ f−∗ = 1 there.

For example, in the case of the reproducing kernel for the quaternionic Hardy space H2(B), we have

Remark 2.11. The reproducing kernel for H2(B) is

kw(q) =
∞∑
n=0

qnwn = (1− qw)−∗.

Then we have a natural definition of regular quotients of regular functions, which satisfy

7



Proposition 2.12. Let f and g be regular functions on a symmetric slice domain Ω and denote by
Z = {q ∈ Ω | f ∗ f c(q) = 0}. If Tf : Ω \ Z → Ω\ is defined as

Tf (q) = f c(q)−1qf c(q),

then
f−∗ ∗ g(q) = f(Tf (q))−1g(Tf (q)) for every q ∈ Ω \ Zfs .

Important examples of regular quotients that will appear in the sequel are the regular Möbius trans-
formations, of the form

Ma(q) = (1− qa)−∗ ∗ (q − a),

where a ∈ B, which are regular self-maps of the quaternionic unit ball B. After multiplication on the
right by unit-norm quaternions, they are the only self-maps of B which are regular, with regular inverse.
They were introduced by Stoppato in [21]. See also [13].

3 Metrics associated with quaternionic reproducing kernel Hilbert spaces

Let Ω ⊆ H be a symmetric slice domain and let H be a reproducing kernel Hilbert space of regular
functions on Ω. For the definition and all basic results concerning quaternionic Hilbert spaces see, e.g.,
[15] and references therein. For the properties we are interested in, the same results hold in quaternion
valued Hilbert spaces and complex valued Hilbert spaces, and the proofs are very similar. It is possible
to define a metric δH on Ω in terms of the distance between projections of kernel functions in the unit
sphere of the Hilbert space H. Namely, if k(w, q) = kw(q) denotes the reproducing kernel of H, then
δH : Ω× Ω→ R+ can be defined as

δH(w, z) =

√
1−

∣∣∣∣〈 kw
‖kw‖H

,
kz
‖kz‖H

〉
H

∣∣∣∣2. (4)

Proposition 3.1. Let Ω be a symmetric slice domain and let H be a reproducing kernel Hilbert space
of regular functions on Ω. Let w ∈ Ω ∩ LIw and let d ∈ H be such that w + d ∈ Ω. Consider the
decomposition d = d1 + d2, where d1 ∈ LIw and d2 ∈ L⊥Iw . Then

δ2
H(w,w+d) =

‖kw‖2H
∥∥∥d1∂ckq(w) + d2∂skq(w)

∥∥∥2

H
−
∣∣∣〈kw, d1∂ckq(w) + d2∂skq(w)

〉
H

∣∣∣2
‖kw‖4H

+O(|d|2).

Proof. Recalling the definition (4) of δH, we get

δ2
H(w,w + d) =

‖kw‖2H‖kw+d‖2H − |〈kw, kw+d〉H|
2

‖kw‖2H‖kw+d‖2H
. (5)

We want to have a better description of the numerator of (5). Using the properties of the kernel functions
and the fact that regular functions are real analytic functions of 4 real variables, we can write

kw+d(q)− kw(q) = kq(w + d)− kq(w) = (kq)∗[w](d) +O(|d|2)

8



where (kq)∗[w](d) denotes the real differential of kq at the point w, applied to the vector d. We identify
here the tangent space TwΩ with H. Thanks to the decomposition properties of the real differential of
regular functions in terms of slice and spherical derivatives, see Remark 8.15 in [13], we have

kw+d(q)− kw(q) = d1∂ckq(w) + d2∂skq(w) +O(|d|2),

hence,

‖kw+d‖2H = ‖kw‖2H+
∥∥∥d1∂ckq(w) + d2∂skq(w)

∥∥∥2

H
+ 2 Re

〈
kw, d1∂ckq(w) + d2∂skq(w)

〉
H

+O(|d|2)

and

|〈kw, kw+d〉H|
2 =

∣∣∣‖kw‖2H +
〈
kw, d1∂ckq(w) + d2∂skq(w)

〉
H

∣∣∣2 +O(|d|2)

= ‖kw‖4H +
∣∣∣〈kw, d1∂ckq(w) + d2∂skq(w)

〉
H

∣∣∣2
+ 2‖kw‖2HRe

〈
kw, d1∂ckq(w) + d2∂skq(w)

〉
H

+O(|d|2).

Therefore

δ2
H(w,w+d) =

‖kw‖2H
∥∥∥d1∂ckq(w) + d2∂skq(w)

∥∥∥2

H
−
∣∣∣〈kw, d1∂ckq(w) + d2∂skq(w)

〉
H

∣∣∣2
‖kw‖4H

+O(|d|2).

Proposition 3.1 mirrors the complex case situation, see Theorem 1.17 in [10], or formula (0.3) in
[17].

In fact the functions ∂ckq(w) and ∂skq(w) are regular with respect to the variable q, and they repro-
duce respectively the slice and the spherical derivative of any regular function f : Ω → H. In fact, for
any w ∈ ΩIw , if h ∈ LIw , we can write

∂cf(w) = lim
h→0, h∈LIw

h−1(f(w + h)− f(w)) = lim
h→0, h∈LIw

h−1 (〈f, kw+h〉H − 〈f, kw〉H)

= lim
h→0, h∈LIw

h−1
〈
f, kq(w + h)− kq(w)

〉
H

= lim
h→0, h∈LIw

h−1
〈
f, h∂ckq(w)

〉
H

=
〈
f, ∂ckq(w)

〉
H

and

∂sf(w) = (w − w)−1(f(w)− f(w)) = (w − w)−1 (〈f, kw〉H − 〈f, kw〉H)

= (w − w)−1 〈f, kw − kw〉H = (w − w)−1
〈
f, (w − w)∂skq(w)

〉
H

=
〈
f, ∂skq(w)

〉
H
.

Proposition 3.1 allows us to define a Riemannian metric gH on the symmetric slice domain Ω. For
each point w ∈ Ω, let us identify the tangent space TwΩ with H = LIw + L⊥Iw . Then the length of a
tangent vector d = d1 + d2 ∈ LIw + L⊥Iw is

|d|2gH(w) =
‖kw‖2H

∥∥∥d1∂ckq(w) + d2∂skq(w)
∥∥∥2

H
−
∣∣∣〈kw, d1∂ckq(w) + d2∂skq(w)

〉
H

∣∣∣2
‖kw‖4H

. (6)

Theorem 1.2 now follows from specializing Proposition 3.1 to the case of a slice preserving kernel, where
formula (6) simplifies.
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Proof of Theorem 1.2. We begin by working out the numerator in equation (6). We have:∥∥∥d1∂ckq(w) + d2∂skq(w)
∥∥∥2

H
=
〈
d1∂ckq(w) + d2∂skq(w), d1∂ckq(w) + d2∂skq(w)

〉
H

=
∥∥∥∂ckq(w)

∥∥∥2

H
|d1|2 +

∥∥∥∂skq(w)
∥∥∥2

H
|d2|2 + 2 Re

〈
d1∂ckq(w), d2∂skq(w)

〉
H

and ∣∣∣〈kw, d1∂ckq(w) + d2∂skq(w)
〉
H

∣∣∣2 =
∣∣∣d1∂ckw(w) + d2∂skw(w)

∣∣∣2
=
∣∣∣∂ckw(w)

∣∣∣2 |d1|2 +
∣∣∣∂skw(w)

∣∣∣2 |d2|2 + 2 Re
(
d1∂ckw(w)d2∂skw(w)

)
.

Hence we are left to prove that both

Re
〈
d1∂ckq(w), d2∂skq(w)

〉
H

= Re
(
d2

〈
∂ckq(w), ∂skq(w)

〉
H
d1

)
and

Re
(
d1∂ckw(w)d2∂skw(w)

)
= Re

(
d2∂skw(w)∂ckw(w) d1

)
equal zero. Now notice that if kw maps ΩIw to LIw , the same holds true for both ∂ckw and ∂skw. The
fact that d1 ∈ LIw and d2 ∈ L⊥Iw leads us to conclude.

The hypothesis about kernel functions required in Theorem 1.2 is satisfied by the quaternionic analogues
of Hardy and Bergman spaces; see [1, 9].

4 Invariant metrics associated with the Hardy space H2(B)

In this section, we turn our attention to the special example of the Hardy space H2(B). We will study
the corresponding Riemannian metric g := gH2(B). Recalling that for any w the kernel function kw(q) =∑∞

n=0 q
nwn preserves the slice LIw , we can directly apply Theorem 1.2 to find the expression of g, thus

proving the first part of Theorem 1.1.

Proposition 4.1. For any w ∈ B, let us identify the tangent space TwB with H. For any vector d ∈ TwB,
if w lies in LIw and we decompose d = d1 + d2 with d1 in LIw and d2 in L⊥Iw , then the length of d with
respect to g is given by

|d|2g(w) =
1

(1− |w|2)2
|d1|2 +

1

|1− w2|2
|d2|2. (7)

Proof. The following equalities can, by their nature, be reduced to simple calculations in the complex
plane:

‖kw‖2H2(B) =
1

1− |w|2
,
∣∣∣∂ckw(w)

∣∣∣2 =
|w|2

(1− |w|2)4
,
∣∣∣∂skw(w)

∣∣∣2 =
|w|2

(1− |w|2)2|1− w2|2
,

∥∥∥∂ckq(w)
∥∥∥2

H2(B)
=
∥∥∥∑
n≥0

n2qnwn−1
∥∥∥2

H2(B)
=

1 + |w|2

(1− |w|2)3
,

10



∥∥∥∂skq(w)
∥∥∥2

H2(B)
=

1

|w − w|2

(
2

1− |w|2
− 1

1− w2
− 1

1− w2

)
.

A direct application of Theorem 1.2, then, yields that, with respect to coordinates (d1, d2) ∈ (LIw , L
⊥
Iw

),

|d|2g(w) =
1

(1− |w|2)2
|d1|2 +

1

|1− w2|2
|d2|2.

The volume form dV olg associated with the metric g at any point w = x0 +x1i+x2j+x3k ∈ B is then

dV olg(w) =
dV olEuc(w)

(1− |w|2)2|1− w2|2
,

where dV olEuc(w) = dx0dx1dx2dx3 is the usual Euclidean volume element.

Proposition 4.2. Let δ := δH2(B) be defined as in (4). For any w, z ∈ B, δ(z, w) coincides both with the
value at z of the regular Möbius transformation Mw associated with w and with the vaule at w of the
regular Möbius transformation Mz associated with z, namely

δ(w, z) =
∣∣(1− qz)−∗ ∗ (q − z)

∣∣
|q=w =

∣∣(1− qw)−∗ ∗ (q − w)
∣∣
|q=z .

Proof. Let w, z be two points in B. By Proposition 2.12,

|〈kw, kz〉H2(B)| = |kw(z)| = |(1− qw)−∗||q=z = |1− ẑw|−1

where ẑ = (1− zw)−1z(1− zw), which implies∣∣∣∣∣∣
〈

kw
‖kw‖H2(B)

,
kz

‖kz‖H2(B)

〉
H2(B)

∣∣∣∣∣∣
2

= |1− ẑw|−2
(
1− |w|2

) (
1− |z|2

)
.

Thus, since |ẑ| = |z|, we get

δ2(w, z) = 1−

∣∣∣∣∣∣
〈

kw
‖kw‖H2(B)

,
kz

‖kz‖H2(B)

〉
H2(B)

∣∣∣∣∣∣
2

= |1− ẑw|−2
(
|1− ẑw|2 −

(
1− |w|2

) (
1− |z|2

))
= |1− ẑw|−2 ((1− ẑw)

(
1− wẑ

)
− (1− ww)

(
1− ẑẑ

))
= |1− ẑw|−2 (ẑ − w)

(
ẑ − w

)
= |1− ẑw|−2 |ẑ − w|2 =

∣∣∣(1− ẑw)−1 (ẑ − w)
∣∣∣2 =

∣∣(1− qw)−∗ ∗ (q − w)
∣∣2
|q=z

where the last equality follows from Proposition 2.12.
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The previous relation between the metric δ (which is the finite version of the metric g) and regular
Möbius transformations, is not unexpected. In fact, as studied in [6], the real differential (Mw)∗ of
the regular Möbius map Mw associated with a point w ∈ BIw acts on LIw by right multiplication by
(1 − |w|2)−1 and on L⊥Iw by right multiplication by (1 − w2)−1. Looking at equation (7), we see that
the coefficients of the metric g at the point w with respect to coordinates (LIw , L

⊥
Iw

) coincide in modulus
with the components of (Mw)∗. Moreover, the fact that g(w) measures vectors in LIw by multiplying
their Euclidean length by 1

1−|w|2 means that the restriction of g to a slice LI is the classical Poincaré
metric in the unit disc BI .

Using spherical coordinates, B = {retI | r ∈ [0, 1), t ∈ [0, π], I ∈ S}, if q = retI and we
decompose the lenght element dq = dq1 + dq2 ∈ LIw + L⊥Iw , then, since dI is orthogonal to I (because
I is unitary) we have |d1|2 = dr2 + r2dt2 and |d2|2 = r2 sin2 t|dI|2 where |dI| denotes the usual two-
dimensional sphere round metric on S ∼= S2. Therefore we get the expression of the metric tensor ds2

g

associated with g in spherical coordinates:

ds2
g =

dr2 + r2dt2

(1− r2)2
+

r2 sin2 t|dI|2

(1− r2)2 + 4r2 sin2 t
. (8)

That is, g is a warped product of the hyperbolic metric ghyp on the complex unit disc with the standard
round metric gS on the two-dimensional sphere [19].

4.1 Isometries and geodesics of (B, g)

From the expression (7) of g, it is clear that three families of functions act isometrically on (B, g):

(a) regular Möbius transformation of the form

q 7→Mλ(q) = (1− qλ)−∗ ∗ (q − λ) =
q − λ
1− qλ

,

with λ in (−1, 1);

(b) isometries of the sphere of imaginary units, which in polar coordinates r ≥ 0, t ∈ [0, π], I ∈ S
read as

q = retI 7→ TA(q) = retA(I),

where A : S→ S is an isometry of S;

(c) the reflection in the imaginary hyperplane,

q 7→ R(q) = −q.

Our goal is to prove the following classification result, thus proving the second part of Theorem 1.1.

Theorem 4.3. The group Γ of isometries of (B, g) is generated by maps of type (a), (b) and (c).

The proof requires a few steps. To begin with, we identify three classes of totally geodesic submani-
folds of B, each one related to a class of isometries.

The first family is the one related to isometries of type (a).
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Lemma 4.4. For any I ∈ S, the two-dimensional submanifold of B

BI = B ∩ LI = {retI ∈ B | r ∈ [0, 1), t ∈ [0, 2π]}

is totally geodesic. In particular, for any I ∈ S, BI is an hyperbolic disc.

Proof. Fix I ∈ S and let gIhyp be the restriction of the metric g to BI , which is just the classical hyperbolic
metric in the unit disc. We will show that each geodesic of (BI , gIhyp) is still a geodesic of (B, g).
Pick two points w, z in BI and let γ be the (hyperbolic) geodesic in BI joining w with z, and α(τ) =
r(τ) (cos(t(τ)) + sin(t(τ))I(τ)) be a parametrized curve which joins w = α(τ0) with z = α(τ1). If
πI (α) denotes the piecewise regular curve obtained by projecting α on BI ,

πI (α) (τ) = r(τ) (cos(t(τ)) + sin(t(τ))I) ,

since |dI| is orthogonal to BI , we conclude

length(α) ≥ length(πI (α)) ≥ length(γ).

The second family of totally geodesic submanifolds is related to isometries of type (b). For any
I ∈ S, we denote by C(I) the great circle obtained intersecting S with the plane L⊥I .

Lemma 4.5. For any J ∈ S, the three-dimensional submanifold of B

B(C(J)) = {retI ∈ B | r ∈ [0, 1), t ∈ [0, π], I ∈ C(J)}

is totally geodesic.

Proof. We will prove the statement by showing that the imaginary units identified by all points ly-
ing on a same geodesic always belong to the same great circle of S. More precisely, let γ(τ) =
r(τ) (cos(t(τ)) + sin(t(τ))I(τ)) be a parametrized geodesic of (B, g) such that{

γ(τ0) = x0 + y0I0

γ′(τ0) = v0 + w0J0

We want to show that, for any τ , the imaginary unit I(τ) of γ(τ) belongs to the great circle of S identified
by I0 and J0, namely that, for any τ , I(τ) ∈ C := C (I0 × J0) . Let ψ : S→ S be the reflection of S with
respect to C. Then the curve γ̃(τ) = r(τ) (cos(t(τ)) + sin(t(τ))ψ(I(τ))) is a geodesic of (B, g) such
that {

γ̃(τ0) = γ(τ0)
γ̃′(τ0) = γ′(τ0)

since ψ fixes I0 and J0. By the uniqueness of geodesics with assigned initial conditions, we get that
γ̃(τ) = γ(τ) and hence that ψ fixes I(τ) for any τ . Therefore we conclude that I(τ) ∈ C for any
τ ∈ I .

The third totally geodesic submanifold is the one related to the last class of isometries, type (c).
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Lemma 4.6. The three-dimensional submanifold of B

B (π/2) = {retI ∈ B | r ∈ [0, 1), t = π/2, I ∈ S} = {rI | r ∈ [0, 1), I ∈ S}

is totally geodesic.

Proof. The statement can be proven following the line of the proof of Lemma 4.5. The ingredients are
the fact that the map R : B → B, q 7→ −q is an isometry which fixes (punctually) B(π/2), and the
uniquness of geodesics with assigned initial conditions.

Considering the intersection of totally geodesic submanifolds of type B(C(J)) with B(π/2) allows
us to identify another family of totally geodesic submanifolds of B.

Corollary 4.7. Let C(J) be a great circle in S. Then the two-dimensional submanifold D (π/2, C(J)) ⊂
B(π/2), defined as

D (π/2, C(J)) = {retI ∈ B | r ∈ [0, 1), t = π/2, I ∈ C(J)} = {rI ∈ B | r ∈ [0, 1), I ∈ C(J)},

is totally geodesic.

Remark 4.8. Notice that for the two-dimensional submanifold D (π/2, C(J)) the following orthogonal-
ity relation holds:

D (π/2, C(J)) ∩ BJ = {0} and T0D (π/2, C(J)) = T0B⊥J .

Moreover, applying Möbius maps of the form Mλ to D (π/2, C(J)), we can extend the orthogonality
relation from the origin to all points in B ∩ R. In this way we obtain a family of totally geodesic
submanifolds

D (t, C(J)) = Mλ(t) (D (π/2, C(J)))

that, for t ∈ [0, π] and J ∈ S/{±1}, defines a foliation of the manifold B.

In order to have some understanding of the (global) behavior of the metric g, let us investigate some
metric properties of the discs of the type D

(
π
2 , C(J)

)
. Since the imaginary units taken into account

belong to C(J) ∼= S1, we can change coordinates, setting I = eiθ and |dI| = dθ, so that the metric g, on
D
(
π
2 , C(J)

)
, reduces to

ds2
D =

dr2

(1− r2)2
+

r2dθ2

(1 + r2)2
.

It is actually convenient to parametrize D
(
π
2 , C(J)

)
⊂ I ∼= R3 as a surface of revolution of the form

(Φ(ρ),Ψ(ρ) cos θ,Ψ(ρ) sin θ), where ρ is the arc length of the generating curve. Setting

ρ = ρ(r) =
1

2
log

1 + r

1− r
,

we get
dr2

(1− r2)2
= dρ2 and

r2

(1 + r2)2
=

1

4
tanh2(2ρ)

and hence, in coordinates (ρ, θ), we get that the metric is expressed as

ds2
D = dρ2 +

1

4
tanh2(2ρ)dθ2 = dρ2 + Ψ2(ρ)dθ2. (9)
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Remark 4.9. The Gaussian curvature K of the two-dimensional submanifold D
(
π
2 , C(J)

)
is positive.

In fact, see e.g. [12], with respect to coordinates (ρ, θ) it can be computed as

K =
−Ψ′′(ρ)

Ψ(ρ)

which is a non-negative quantity since Ψ(ρ) = 1
2 tanh(2ρ) ≥ 0 and Ψ′′(ρ) ≤ 0. This in particular

implies that the sectional curvature of (B, g) is positive on all sections D
(
π
2 , C(J)

)
, while it is negative

on all slices BI .

It is possible to study geodesics of D
(
π
2 , C(J)

)
by means of the Euler-Lagrange equations{

∂
∂θL = d

dt
∂
∂θ̇
L

∂
∂ρL = d

dt
∂
∂ρ̇L

associated with the Lagrangian

L(ρ, θ, ρ̇, θ̇, τ) =
1

2

(
ρ̇2 +

tanh2(2ρ)

4
θ̇2

)
,

namely {
0 = d

dt

(
tanh2(2ρ)

4 θ̇
)

tanh(2ρ)1−tanh2(2ρ)
4 θ̇2 = ρ̈.

(10)

The first equation in (10) yields
tanh2(2ρ)

4
θ̇ = A,

for some constant A. If A = 0, we get θ̇ = 0 and hence the second equation in (10) implies that ρ̈ = 0.
If otherwise A 6= 0 we get θ̇ = 4A

tanh2(2ρ)
which implies |θ̇| > 4|A|. Therefore all generating curves,

with θ̇ = 0, are geodesics of D. Which is not surprising since they correspond to radii γ(r) = re
π
2
I

for I ∈ C(J). The other important fact that arises is that for any point q ∈ D
(
π
2 , C(J)

)
\ {0} any

geodesic corresponding to A 6= 0 intersects in finite time the “radial” geodesic through q. This leads to
the following result.

Lemma 4.10. Let J ∈ S. For any q ∈ D
(
π
2 , C(J)

)
such that q 6= 0, the injectivity radius at q is finite.

On the other hand, the injectivity radius at q = 0 is infinite.

This important metric property of the point q = 0 is useful to classify the isometries of (B, g). First of
all it tells us that isometries map the real diameter of B to itself.

Lemma 4.11. Let Γ be the group of isometries of (B, g). Then, for any φ ∈ Γ, φ(B ∩ R) = B ∩ R.

Proof. Consider first q = 0. Since the injectivity radius at q = 0 is infinite, then, for any φ ∈ Γ, the
injectivity radius at φ(0) is infinite as well. By post-composing φ with a regular Möbius transformation
of type (a) Mλ we can map 0 to D

(
π
2 , C(J)

)
(for some J ∈ S) and hence Lemma 4.10 yields that

Mλ(φ(0)) = 0. Since Mλ preserves the real diameter of B, we get that φ(0) ∈ R. To conclude, notice
that we can map each point of B ∩ R to 0 by means of a regular Möbius map of type (a).
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We can finally prove the Classification Theorem for isometries of (B, g).

Proof of Theorem 4.3. Let Φ ∈ Γ be an isometry of (B, g). Up to composition with a regular Möbius
transformation of type (a) and with the map R : q 7→ −q, we can suppose that Φ(0) = 0 and that, by
Lemma 4.11, Φ(B ∩ R+) = B ∩ R+.

We now show that Φ fixes B(π/2). Set B̃(π/2) = Φ(B(π/2)). Since Φ is an isometry, Lemma
4.6 implies that B̃(π/2) is a totally geodesic submanifold of B. Moreover, since Φ(0) = 0, since the
geodesics starting at 0 lie on slices, and since, by Lemma 4.4, the slices carry the usual hyperbolic-
Poincaré metric: we have that Φ maps radii γI(r) = re

π
2
I to radii of the form Φ(γI(r)) = reθ(I)ψ(I)

with θ(I) ∈ [0, π], and ψ(I) ∈ S. Let us show that θ is actually constant on S.
If dg denotes the distance function on B associated with g, recalling equation (8), on the one hand we
have

dg (Φ(γI1(r)),Φ(γI2(r))) = dg (γI1(r), γI2(r)) = dg

(
re

π
2
I1 , re

π
2
I2
)

≤ r

1 + r2
dS(I1, I2)

r→1−→ 1

2
dS(I1, I2), (11)

where dS denotes the usual spherical distance on the unit sphere S. In particular we deduce that

dg (Φ(γI1(r)),Φ(γI2(r)))

is bounded as a function of r. On the other hand, if α(τ) = r(τ)et(τ)I(τ) is a parametrized geodesic
joining α(τ1) = Φ(γI1(r)) and α(τ2) = Φ(γI2(r)), we have

dg (Φ(γI1(r)),Φ(γI2(r))) = dg

(
reθ(I1)ψ(I1), reθ(I2)ψ(I2)

)
= length (α([τ1, τ2]))

=

∫ τ2

τ1

√
r′(τ)2 + r2t′(τ)2

1− r(τ)2
+

r(τ)2 sin2(t(τ))I ′(τ)2

(1− r(τ)2)2 + 4r(τ)2 sin2(t(τ))
dτ

≥
∫ τ2

τ1

√
r′(τ)2 + r(τ)2t′(τ)2

1− r(τ)2
dτ ≥ dhyp(reθ(I1)I , reθ(I2)I)

where I is any fixed imaginary unit and dhyp the hyperbolic distance associated to the restriction gIhyp
of the metric g to B ∩ LI . If, by contradiction, θ(I1) 6= θ(I2), then the distance dhyp(reθ(I1)I , reθ(I2)I)
tends to infinity as r goes to 1, contradicting (11). Then, θ(I1) = t(τ1) = t(τ2) = θ(I2): θ is constant
on S.

Therefore we have that B̃(π/2) is ruled by radii of the form γ̃(r) = ret0I for some constant t0. If
t0 = π/2, then we are done. Suppose then t0 6= π/2. Since B̃(π/2) and B(π/2) intersect at 0 and they
are three-dimensional submanifolds in H, the intersection V of their respective tangent spaces at 0 must
have dimension 2 or 3. Let v be a vector in V and let r 7→ reJt be the reparametrized geodesic with
initial velocity v. The geodesic lies on both B̃(π/2) and B(π/2), hence t0 = t = π/2. (A different proof
consists in showing that, if t0 6= π/2, then B̃(π/2) is not smooth at the origin).

The next step is to show that the restriction of Φ to B(π/2) is an isometry TA of type (b) for some
isometry A of the sphere S. We have that

dg (Φ(γI1(r)),Φ(γI2(r))) = dg

(
re

π
2
ψ(I1), re

π
2
ψ(I2)

)
. (12)

We now prove an improvement of (11).

16



Lemma 4.12.
lim
r→1

dg

(
re

π
2
I1 , re

π
2
I2
)

=
1

2
dS(I1, I2).

Proof of the lemma. Only the case I1 6= I2 is interesting. Let D (π/2, C(J)) be the two-dimensional
manifold introduced in Lemma 4.7 which contains the reparametrized geodesics r 7→ re

π
2
Ij , j = 1, 2.

The metric g restricted to the totally geodesic surface D (π/2, C(J)) was discussed earlier in this sub-
section, where we gave it the expression (9). Since Ψ′(ρ) = 1/ cosh(2ρ) ≤ 1, the surface can be iso-
metrically imbedded as a surface S in R3, with parametric equations (u(s, θ), v(s, θ), z(s, θ)) = χ(s, θ),
where: 

u = p(s) cos(θ);

v = p(s) sin(θ);

z = s.

Here s ≥ 0, θ ∈ [−π, π] and p : [0,+∞)→ [0, 1/2) is a smooth, increasing function such that p(0) = 0
and lims→∞ p(s) = 1/2. The relationship between p and Ψ is the following: if

∫ s
0

√
p′(σ)2 + 1dσ = ρ,

then p(s) = ψ(ρ). Now, r = constant → 1 corresponds to s = constant → ∞, and the choice of I1

and I2 corresponds to a choice of θ1 and θ2. Let k be the metric on the surface. It is elementary that

lim
s→∞

dk(χ(s, θ1), χ(s, θ2)) =
1

2
dS1(θ1, θ2)

is one-half the distance between θ1 and θ2 on the unit circle, which is the same as one-half the distance
between I1 and I2 in S.

Equations (11) and (12) together with Lemma 4.12 imply that that ψ : S → S is an isometry of the
sphere S, i.e. Φ|B(π/2) = Tψ|B(π/2). In conclusion, T−1

ψ ◦ Φ is an isometry that fixes R ∩ B and B(π/2)

and hence its (real) differential at the origin (T−1
ψ ◦ Φ)∗[0] : T0B → T0B is the identity map. Therefore

T−1
ψ ◦ Φ is the identity map as well and the theorem is proved.

4.2 Volume form on the boundary of B

If we restrict the metric g to a three-dimensional sphere rS3 of radius r, in spherical coordinates we get

ds2
rS3 =

r2

(1− r2)2
dt2 +

r2 sin2 t

(1− r2)2 + 4r2 sin2(t)
|dI|2

whose corresponding volume form is

dV olrS3(retI) =
r3 sin2 t

(1− r2)((1− r2)2 + 4r2 sin2(t))
dtdAS(I)

where dAS denotes the area element of the two-dimensional sphere S. This volume form (after a nor-
malization) induces a volume form on the boundary S3 of the unit ball: if u = esJ ∈ S3, we have

dV olS3(u) := lim
r→1−

(1− r2)dV olrS3(ru) = lim
r→1−

(1− r2)r3 sin2 s

(1− r2)((1− r2)2 + 4r2 sin2(s))
dtdAS(I)

=
1

4
dtdAS(I).
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Notice that dV olS3 is the product of the usual spherical metric on the two-dimensional sphere S with the
metric dt on circles S3

I which appears in the definition of Hardy spaces given in [11]. Moreover in [11] it
is proven that any f ∈ H2(B) has radial limit along almost any radius and hence, denoting (with a slight
abuse of notation) the radial limit by f itself, we have

Proposition 4.13. If f ∈ H2(B), then∫
S3
|f(u)|2dV olS3(u) =

1

8

∫
S

∫ 2π

0
|f(etI)|2dtdAS(I) =

π

2
||f ||2H2(B).

An analogous relation holds for the Hardy space on the right half space. See Section 5.

4.3 Proof of Theorem 1.3

Let a ∈ B, a 6∈ R, and consider the map φ(q) = (1− qā)−∗ ∗ (a− q). Then, we can write

φ(q) =
( ∞∑
n=0

qnan
)
∗ (a− q) =

∞∑
n=1

qnān−1(|a|2 − 1) + a.

Taking into account that q and q̄ commute and manipulating geometric series, we find expressions for
the spherical derivative of φ :

∂sφ(q) = (q − q̄)−1
∞∑
n=1

(qn − q̄n)ān−1(|a|2 − 1)

=
∞∑
n=1

qn−1
n−1∑
k=0

(
q−1q̄

)k
ān−1(|a|2 − 1) =

∞∑
k=0

q̄k
∞∑
m=0

qmām āk(|a|2 − 1),

and for the Cullen derivative of φ:

∂cφ(q) =

∞∑
n=1

nqn−1ān−1(|a|2 − 1).

Thus,
∂cφ(0) = ∂sφ(0) = |a|2 − 1

and (see also Remark 4 in [6])

∂cφ(a) = (|a|2 − 1)−1 and ∂sφ(a) = (ā2 − 1)−1.

Consider now a tangent vector d ∈ T0B (identified with the space of quaternions) such that d ∈ L⊥Ia
(whereLIa is the unique slice containing the point a). Recalling the decomposition of the real differential
of a regular function in terms of spherical and slice derivatives, we have

φ∗[0](d) = d∂sφ(0) = d(|a|2 − 1) ∈ TaB ∩ L⊥Ia ,

and, if we apply to this new tangent vector the real differential of φ at a, φ∗[a] : TaB→ T0B, we get

φ∗[a](φ∗[0](d)) = d
1− |a|2

1− ā2
.
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Since d ∈ T0B∩L⊥Ia and (ā2−1) ∈ LIa , the vector φ∗[a](φ∗[0](d)) lies in T0B∩L⊥Ia . Now,
∣∣∣1−|a|21−ā2

∣∣∣ < 1

if a ∈ B \ R. Let Be be the unit disc in T0B ∩ L⊥Ia , with respect to the Euclidean metric induced by the
identification of T0B and H. The linear map φ∗[a] ◦ φ∗[0] maps Be into a proper subset of itself, hence
it can not be isometric.

5 Metric in the right half space H+

Consider the right half space H+ = {q ∈ H | Re(q) > 0}. The Cayley map C : B→ H+,

C(q) = (1− q)−1(1 + q),

is a regular bijection from the quaternionic unit ball onto the quaternionic right half space with regular
inverse the function C−1 : H+ → B,

C−1(q) = (1 + q)−1(q − 1).

The aim of this section is to study the image (H+, h) of (B, g) under the map C, where h is the pullback
of the metric g by the map C−1. In the introduction we labeled g and h by the same letter, since C is by
definition an isometry from (B, g) to (H+, h). Let u ∈ H+ and let v = v1 + v2 be a tangent vector in
TuH+ ∼= LIu + L⊥Iu . The length of v with respect to h is

|v|h(u) =
∣∣(C−1)∗[u](v)

∣∣
g(C−1(u))

where (C−1)∗[u] is the real differential of C−1 at the point u ∈ H+. Recalling the decomposition of
the real differential of a regular function in terms of its slice and spherical derivatives, if v = v1 + v2 ∈
LIu + L⊥Iu we can write

(C−1)∗[u](v) = v1∂cC
−1(u) + v2∂sC

−1(u) = v1
2

(1 + u)2
+ v2

2

|1 + u|2
.

Hence (C−1)∗[u] preserves the decomposition TuH+ = LIu + L⊥Iu and we get

|v|2h(u) =
1

(1− |C−1(u)|2)2

4

|1 + u|4
|v1|2 +

1

|1− C−1(u)2|2
4

|1 + u|4
|v2|2

=
1

4 Re(u)2
|v1|2 +

1

4|u|2
|v2|2.

If v ∈ LIu then its length is, not surprisingly, the hyperbolic length in the hyperbolic half plane H+
Iu

=

{x + yIu |x > 0, y ∈ R}. Notice that C maps BI to H+
I for any I ∈ S and it maps the totally geodesic

submanifold B(π/2) to H+(π/2) := C (B(π/2)) = {q ∈ H+ | |q| = 1} i.e. the right half of the
three-dimensional unit sphere S3. Then it is not difficult to verify that the isometry group of (H+, h) is
generated by the images under C of isometry of (B, g) of type (a), (b) and (c),

(a’) linear maps preserving the positive real half-axis,

q 7→ qλ,

with λ > 0;
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(b’) isometries of the sphere of the imaginary units, which in polar coordinates r ≥ 0, t ∈ [0, π/2),
I ∈ S read as

q = retI 7→ TA(q) = retA(I),

where A : S→ S is an isometry of S;

(c’) the inversion in the three-dimensional unit (half) sphere

q 7→ 1

q
.

Acting on H+(π/2) by means of isometries of type (a′) we obtain totally geodesic regions of the form
{q ∈ H+ | |q| = R} for R > 0, that can be sliced in totally geodesic two-dimensional submanifolds,
corresponding to submanifolds of type D(t, C(J)) in the ball case.

In this setting it is possible to introduce horocycles, i.e. hyperplanes of points with constant real part,
Hc = {q ∈ H+ | Re(q) = c} for some constant c > 0. They deserve the name of horocycles because
their intersection with each slice LI is a proper horocycle in the hyperbolic half plane H+

I . Isometries of
type (a′) map horocycles one into another.

If we restrict the metric h to horocycles we obtain that the length of a vector v = v1 + v2 ∈ TuHc
∼=

RIu + L⊥Iu tangent to the horocycle Hc at the point u ∈ Hc, can be written as

|v|2Hc =
1

4c2
|v1|2 +

1

4(c2 + | Im(u)|2)
|v2|2

and the corresponding volume form at u = c+ x1i+ x2j + x3k is

dV olHc(u) =
dV olEuc(u)

8c(c2 + | Im(u)|2)
,

(since the component in LIu is one-dimensional) where dV olEuc(u) = dx1dx2dx3 is the standard Eu-
clidean volume element. If we want to define a (non-degenerate) volume form dV ol∂H+ on the boundary
∂H+ of the quaternionic right half space we can not directly take the limit of dV olHc as c approaches 0,
we need indeed first to normalize it. For any u ∈ ∂H+, we define

dV ol∂H+(u) := lim
c→0+

c (dV olHc(u+ c)) = lim
c→0+

dV olEuc(u+ c)

8(c2 + | Im(u+ c)|2)
=
dV olEuc(u)

8| Im(u)|2
=
dV olEuc(u)

8|u|2
.

(13)

5.1 Hardy space on H+

We will show that, as in the case of the metric g on B, the invariant metric h on H+ introduced in the
previous section and in particular the corresponding volume form (13), is related with the quaternionic
Hardy space on the right half space H+. It is possible to define the Hardy space H2(H+) on H+ as the
space of regular functions f : H+ → H of the form,

f(q) =

∫ +∞

0
e−ζqF (ζ)dζ, (14)
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with F : R+ → H, such that

||f ||2H2(H+) :=

∫ +∞

0
|F (ζ)|2dζ < +∞. (15)

Proposition 5.1. The quaternionic Hilbert space defined by (15) has reproducing kernel

k(q, w) = (q + w)−∗.

Proof. Let w be a point in H+. The reproducing function of H2(H+) at w, if it exists, has to be a
function

k(q, w) = kw(q) =

∫ +∞

0
e−ζqG(ζ)dζ

where G : R+ → H belongs to L2(R+) and it satisfies

f(w) = 〈f, kw〉H2(H+) =

∫ +∞

0
G(ζ)F (ζ)dζ =

∫ +∞

0
e−ζwF (ζ)dζ.

Hence G(ζ) = e−ζw, which implies G(ζ) = e−ζw̄. That is, the kernel function is

kw(q) =

∫ +∞

0
e−ζqe−ζw̄dζ.

To obtain a closed expression of kw(q), let first q be a (positive) real number. In this case q commutes
with all points in H+ and we can write

kw(q) =

∫ +∞

0
e−ζ(q+w̄)dζ =

1

q + w
.

Consider now the function q 7→ (q + w)−∗ (here the regular reciprocal is defined with a slight general-
ization of Definition 2.10, see [13]). This function is regular and it coincides with q 7→ (q+w)−1 on real
numbers. Thanks to the Identity Principle for regular functions, Theorem 1.12 in [13], we obtain that the
reproducing kernel is kw(q) = (w + q)−∗ =

∫ +∞
0 e−ζwe−ζq̄dζ.

Another way to obtain the reproducing kernel on H2(H+) is the following.

Proposition 5.2. Denote by kH2(B) and by kH2(H+) the reproducing kernels of the Hardy space on the
unit ball H2(B) and on the right half-space H2(H+) respectively. Let C : B→ H+ be the Cayley map,
C(q) = (1 − q)−1(1 + q). For any z, w ∈ H+, the function kH2(B)(C

−1(w), C−1(z)) is a rescaling of
the reproducing kernel of H2(H+):

kH2(B)(C
−1(w), C−1(z)) =

1

2
(1 + z)kH2(H+)(w, z)(1 + w).

Proof. The map C−1, having real coefficients, is slice preserving. Hence, we can compose kH2(B) with
C−1 preserving (left) regularity in the first variable and (right) “anti-regularity” in the second one. We
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have, then,

kH2(B)(C
−1(z), C−1(w)) = (1− qC−1(w))−∗|q=C−1(z)

=
(
1− 2C−1(z) Re(C−1(w)) + C−1(z)2|C−1(w)|2

)−1 (
1− C−1(z)C−1(w)

)
= (1 + z)2|1 + w|2

(
|1 + w|2(1 + z)2 − 2(1− z2)(1− |w|2) + (1− z)2|1− w|2

)−1

· (1 + z)−1 ((1 + z)(1 + w)− (1− z)(1− w)) (1 + w)−1

= (1 + z)
1

4

(
z2 + 2zRe(w) + |w|2

)−1
2 (z + w) (1 + w)

=
1

2
(1 + z) (z + w)−∗ (1 + w) =

1

2
(1 + z)kH2(H+)(w, z)(1 + w).

Now we want to show that the volume form on ∂H+ obtained in (13) is the natural volume form for
the Hardy space H2(H+). In fact, let f(q) =

∫ +∞
0 e−ζqF (ζ)dζ ∈ H2(H+). For any I ∈ S, we can

decompose the function F as F (ζ) = F1(ζ) +F2(ζ)J where J is an imaginary unit orthogonal to I and
F1, F2 : R → LI . It is possible to prove (see [2]) that functions in H2(H+) have limit at the boundary
for almost any point yI ∈ ∂H+ = {vJ | v > 0, J ∈ S}. If we denote by dAS the usual surface element
of the unit two-dimensional sphere S, thanks to equation (13) and to the orthogonality of I and J , we
can write∫

∂H+

|f(yI)|2dV ol∂H+(yI) =

∫
∂H+

|f(yI)|2dV olEuc(yI)

8y2

=

∫ +∞

0

(∫
S

∣∣∣∣∫ +∞

0
e−ζyIF (ζ)dζ

∣∣∣∣2 y2dAS(I)

8y2

)
dy

=
1

8

∫
S

(∫ +∞

0

∣∣∣∣∫ +∞

0
e−ζyI (F1(ζ) + F2(ζ)J) dζ

∣∣∣∣2 dy
)
dAS(I)

=
1

8

∫
S

(∫ +∞

0

∣∣∣∣∫ +∞

0
e−ζyIF1(ζ)dζ +

∫ +∞

0
e−ζyIF2(ζ)Jdζ

∣∣∣∣2 dy
)
dAS(I)

=
1

8

∫
S

(∫ +∞

0

∣∣∣∣∫ +∞

0
e−ζyIF1(ζ)dζ

∣∣∣∣2 dy +

∫ +∞

0

∣∣∣∣∫ +∞

0
e−ζyIF2(ζ)dζ

∣∣∣∣2 dy
)
dAS(I)

=
2π

8

∫
S

(∫ +∞

0
|F1(ζ)|2 dζ +

∫ +∞

0
|F2(ζ)) |2dζ

)
dAS(I)

where the last equality is due to the classical Plancherel Theorem. Therefore, thanks again to the orthog-
onality of I and J ,

Proposition 5.3. If f belongs to H2(H+) and F is as in (14), we have the equalities:∫
∂H+

|f(yI)|2dV ol∂H+(yI) =
π

4

∫
S

(∫ +∞

0
|F (ζ)|2 dζ

)
dAS(I) = π2||f ||2H2(H+). (16)

Propositions 5.1, 5.2, and 5.3 provide four isometric definitions of H2(H+).
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5.2 A bilateral estimate for the distance and the proof of Theorem 1.4

In the right half space model it is easier to prove a bilateral estimate for the distance associated with the
invariant metric h. Fix a imaginary unit I0 and define the projection

π : x+ yI 7→ x+ yI0, (17)

with x real and y ≥ 0. Let dhyp be hyperbolic distance in H+
I0

= {x + yI0 : x > 0, y ∈ R}: dhyp is
the distance associated with the Riemannian metric tensor ds2

hyp = (dx2 + dy2)/(4x2). Let now dS be
the usual spherical distance on the unit two-dimensional sphere S, associated with the metric tensor ds2

S.
Then, the metric tensor associated with h can be decomposed as

ds2
h = ds2

hyp +
y2

4(x2 + y2)
ds2

S.

Theorem 5.4. Let qj = xj + yjIj , j = 1, 2, be points in H+: xj > 0, yj ≥ 0. The following estimate
for the distance function dh associated with the metric h holds:

dh(q1, q2) ≈ dhyp(π(q1), π(q2)) + min

{
yj
|qj |

: j = 1, 2

}
dS(I1, I2),

where ≈ means that we have a lower and an upper estimate for the right hand side in terms of the left
hand side, with multiplicative constants C1, C2 independent of q1, q2.

Proof. We may suppose that y1/|q1| ≤ y2/|q2|.
The upper estimate is elementary. Let γ be a curve going from q1 to x1 +y1I2 ∈ H+

I2
leaving x = x1

and y = y1 fixed, and varying the imaginary unit I only. Suppose, more, that I varies along a geodesic
on S, which joins I1 and I2. Then,

length(γ) =

∫
γ

y1

2|q1|
dsS =

y1

2|q1|
dS(I1, I2).

Let now δ be a hyperbolic geodesic in LI2 , joining x1 + y1I2 and q2: length(δ) = dhyp(π(q1), π(q2)),
which proves the estimate.

The lower estimate is more delicate. Let γ be a curve in H+ joining q1 and q2. Then,

length(γ) =

∫
γ
dsh ≥

∫
π(γ)

dshyp ≥ dhyp(π(q1), π(q2)). (18)

We have then to show that ∫
γ
dsh &

y1

|q1|
dS(I1, I2). (19)

Since the right hand side of (19) is bounded, and we have already proved (18), it suffices to show that (19)
holds when dhyp(π(q1), π(q2)) ≤ 1. By elementary hyperbolic geometry, see the “sixth model” in [8],
and using the fact that dilations p 7→ λp are isometric for λ > 0, we can assume that π(q1) and π(q2) both
lie in the squareQn = {x+yI0 : 1 ≤ x ≤ 2, n ≤ y ≤ n+1} ⊂ LI0 , for some integer n ≥ 0. Consider
now q3 = x3+y3I3, y3 ≥ 0 the point along γ which minimizes y3/|q3|. We can assume that π(γ) (hence,
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π(q3)) is contained in Q̃n = {z = x + yI0 : x > 0, y ≥ 0, 1/2 ≤ x ≤ 2, n − 1/2 ≤ y ≤ n + 3/2},
otherwise length(γ) ≥ 1 (which would imply the estimate (19) we are proving). Let t ≥ 0 be the angle
between the positive real half axis R+ and the half line originating at 0 and passing through π(q3). For
j = 1, 2, 3:

tj ≈ sin(tj) = yj/|qj |.

We have two cases. Either y3/|q3| ≥ 1/2 · y1/|q1|, but then we are done because∫
γ

y

2|q|
ds2

S ≥
y1

2|q1|
dS(I1, I2).

Or y3/|q3| ≤ 1/2 · y1/|q1|. Then n = 0, and∫
γ
dsh ≥ length(π(γ)) & max(|π(z1)− π(z3)|, |π(z2)− π(z3)|) ≥ |π(z1)− π(z3)|

& y1 &
y1

|z1|
dS(I1, I2).

Overall,
∫
γ dsh & y1

|z1|dS(I1, I2), as wished.

Changing coordinates from the right half plane to the ball, we have the same bilateral estimate in the
ball model.

Corollary 5.5. Let dg be the invariant distance associated with the metric g in the ball model and let
q1, q2 be points of B. If π is defined as in (17), then:

dg(q1, q2) ≈ dhyp(π(q1), π(q2)) + min

{
yj

|1− q2
j |

: j = 1, 2

}
dS(I1, I2).

We collect some facts which will be used in the proof of Theorem 1.4.
It is well known (see [11]) that regular, bounded functions have radial limits along almost all radii,

f(etI) := lim
r→1

f(retI)

exists for a.e. (t, I) ∈ [0, π] × S. We start with a Lemma which might have independent interest; for
instance, it provides a different route to prove the classification of the isometries for the metric g.

Lemma 5.6. If ϕ : B→ B is Lipschitz with respect to the metric g and

lim
r→1

ϕ(retI1) = esJ1 ∈ ∂B (20)

exists, with s ∈ [0, π] and J1 ∈ S; then for each I2 in S, if the limit limr→1 ϕ(reI2t) exists, then

lim
r→1

ϕ(retI2) = esJ2 (21)

for some J2 in S. The values of t and s in (21) are the same as in (20).
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Proof. Let uj = etIj , with the same t ∈ [0, π]. By Lipschitz continuity,

d(ϕ(ru1), ϕ(ru2)) . d(ru1, ru2)

≈ rt|I1 − I2|
(1− r) + rt

. |I1 − I2|
≤ 1. (22)

By the lower estimate in Corollary 5.5 and (22),

dhyp (π (ϕ(ru1)) , π (ϕ(ru2))) . 1.

But this and elementary hyperbolic geometry imply that, if limr→1 ϕ(ru1) = esJ1 , then the limit
limr→1 π (ϕ(ru2)) = L exists and L = esI0 (recall that π : B → LI0). Since limr→1 ϕ(retI2) = L
exists by hypothesis and π is continuous, it must be π(L) = esI0 , then L = esJ2 for some J2 in S.

The statement of Lemma 5.6 can be sharpened in several ways. For instance, the Lipschitz assump-
tion might be weakened to a sub-exponential growth assumption. We apply it to show that inner Lipschitz
functions are scarce.

Proof of Theorem 1.4. Being inner, f has boundary limits along radii r 7→ retI for a.e. I in S and t in
[0, π]. We write for such couples of (t, I): f(etI) := limr→1 f(retI). We can assume without loss of
generality that the limit exists for two antipodal imaginary units L and −L, and hence, in view of the
Representation Formula 2.5, for any L ∈ S. If f is regular and Lipschitz with respect to the distance dg,
thanks on the one hand to the Representation Formula 2.5, on the other hand to Lemma 5.6, we have that
for any I ∈ S

b(t) + Ic(t) = f(etI) = es(t)J(s,I)

where b(t), c(t) ∈ H, and s(t) ∈ [0, 2π] and J(t, I) ∈ S. Then Re(f(etI)) = Re(f(etL)) for any L ∈ S
and in particular for L = −I , which gives

Re(b(t))− 〈I, c(t)〉 = Re(b(t) + Ic(t)) = Re(b(t)− Ic(t)) = Re(b(t)) + 〈I, c(t)〉

(where 〈·, ·〉 denotes the standard scalar product in R4). Since I is any imaginary unit, we necessarily
have that c(t) ∈ R.

Also, comparing imaginary parts, for any L1, L2 ∈ S we have | Im(f(etL1))| = | Im(f(etL2))|.
Then, if b = b0 + b1K with b0, b1 ∈ R, K ∈ S (omitting the dependence on t), when L1 = K and
L2 = −K we get

|b1 +c| = | Im(b0 +b1K+cK)| = | Im(f(etK))| = | Im(f(e−tK))| = | Im(b0 +b1K−cK)| = |b1−c|.

Therefore almost every t ∈ [0, π] belongs to D ∪ E:

D = {t : c(t) = 0}, E = {t : b1(t) = 0}.

Consider first the case when t ∈ D holds a.e.. Then f(etI) = b(t) for almost every t. Since boundary
values uniquely identify f (see [11]) and by invariance under rotations of S, we deduce that

f(retI) = Φ(r, t),
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for some function Φ. In particular, f can not be open (dim(f(B)) ≤ 2), hence (see Theorem 7.4 in [13])
it must be constant; thus it is not inner. Then E has positive measure. For t in E,

b(t) + Ic(t) = f(etI) = es(t)J(t,I)

with b and c real valued, hence J = I:
f(etI) = es(t)I (23)

for t in F . By the Splitting Lemma 2.7, if J ⊥ I is fixed in S, then there are holomorphic functions F,G
on BI such that

f(reτI) = F (reτI) +G(reτI)J.

By (23), G(etI) = 0 for t in E. Since E has positive measure, this implies that G vanishes identically
and hence f(reτI) = F (reτI) for all 0 ≤ r < 1 and 0 ≤ τ ≤ π. That is, f is slice preserving.

We have to verify that f is a contraction with respect to the metric g, and this can be verified at the
infinitesimal level. Let q be a point in a fixed slice B ∩ LI . (i) Since f is slice preserving, its restriction
to B ∩ LI is an inner function in the one dimensional sense, hence it is a contraction of the Poincaré-
hyperbolic metric on B ∩ LI . (ii) On the other hand, preserving the slices, f acts isometrically in the S
variables, with respect to the spherical metric on S. (iii) Now, the space tangent to B ∩ LI at q and the
space tangent to Re q + S at q form an orthogonal decomposition, with respect to the metric g, of the
space tangent to B. From the expression for g given in (8) and facts (i)-(iii) one easily deduces that g is
a contraction.
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