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Abstract

Anisometric integrity measures defined as improvement and generalization of two existing mea-
sures (LIM, local integrity measure, and IF, integrity factor) of the extent and compactness of
basins of attraction are introduced. Non-equidistant measures make it possible to account for in-
homogeneous sensitivities of the state space variables to perturbations, thus permitting a more
confident and targeted identification of the safe regions. All four measures are used for a global
dynamics analysis of the twin-well Duffing oscillator, which is performed by considering a nearly
continuous variation of a governing control parameter, thanks to the use of parallel computation
allowing reasonable CPU time. This improves literature results based on finite (and commonly
large) variations of the parameter, due to computational constraints. The seamless evolution of key
integrity measures highlights the fine aspects of the erosion of the safe domain with respect to the
increasing forcing amplitude.

Keywords: Basins of attraction, dynamical integrity, anisometric measures, basin erosion, system
safety

1. Introduction

In nonlinear dynamics the possible coexistence of multiple attractors for a given system is well
known and, indeed, it represents the common situation named multistability [1, 2, 3]. A generic
attractor, be it a stationary (equilibrium) point, a limit-cycle, a quasi-periodic or a chaotic motion,
can be detected by inspecting orbits of the system as the time goes to infinity. Its basin of attraction
is the subset of the phase space, i.e. the set of initial conditions, that converges to it forward in
time. Because of multistability, the phase space is the union of various basins of attraction, one per
attractor, which do not intersect with each other, since the forward evolution in time is unique [4].

By modifying the system parameters the position of attractors change, and they can also bifurcate
leading to different attractors. Related basins of attraction are altered as well: basins deform and
reshape, new ones can appear or existing be destroyed. Even if system parameters slightly change,
a rapid erosion or a stratification of the basin can occur [5, 6], often as a consequence of homoclinic
intersection of stable and unstable manifolds [4].

A basin can be a substantially large region of the phase space but, if its structure is highly in-
tertwined or characterized by fractal boundaries, with a “small” compact part around the attractor,
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the long-term predictability depends on uncertainties in the initial conditions specification [7]. In
this case, the stability of an attractor in classical Liapunov’s sense, i.e. against infinitesimal dis-
turbances, does not have a practical engineering validity as noisy environments and imperfections
must be accounted for. The “practical stability” is needed instead of the “theoretical stability”,
and the safety of the system is related to the capability to accommodate “moderate” (small but not
infinitesimal) perturbations without undesired consequences [8].

The loss of engineering robustness due to larger excitations has been analyzed in the fundamental
work of Thompson [9]. The concept of dynamical integrity is therein introduced and applied to
a mechanical oscillator where the escape from a cubic potential well beyond the hilltop saddle is
presented. Several works have then examined the erosion of basins of attraction by focusing on
the practical stability reduction and the consequent vulnerability to disturbances. The contact of a
single-well attractor in the twin-well Duffing oscillator with the boundaries of its basin is examined
in [10]. The control, shift and reduction of the erosion of the basins of attraction has been studied
with the aim of the elimination of homoclinic tangencies and regularization of fractal basins both
in macro [11] and micro systems [12].

The estimation of the safety of basins of attraction plays a key role in a system design. The
issue has been addressed by Soliman and Thompson [13] and in the last years Rega and Lenci [14]
investigated different measures able to quantify an admissible set of initial conditions of the phase
space.

In dynamical integrity analyses it is crucial to study how the basins of attraction, and their in-
tegrity measures, evolve by varying a parameter of the system. This provides the so-called integrity

profiles [15, 16], that are very helpful in understanding the degradation of robustness, and allow to
fix some thresholds for safety.

Drawing integrity profiles requires building many basins of attractions, and thus it is very time
consuming. It is for this reason that integrity profiles are usually built only for “discrete” values of
the varying parameter. While being sufficient for an overall understanding of the system behaviour,
this misses some important aspects of the dynamics like, for example, sudden jumps (due to the
appearance of a new attractor inside the basin of a previous attractor) and locally strange behaviours
(commonly related to minor or rare attractors [17, 18]). It is thus extremely useful to have seamless
integrity profiles, which provide information otherwise lost.

This is the first goal of this paper, where “continuous” curves are obtained by building a huge
number of basins of attraction. This has been possible, in reasonable time, by using high perfor-
mance computation, and in particular parallel computing, adopting in the present analysis algo-
rithms developed by the authors for elaborating basins of attractions of high dimensional systems
[19, 20].

In previous works perturbations of initial conditions in displacement and velocity are assumed
to be equally important, and are then considered of the same level. In fact, previously proposed
(isometric) integrity measures do not distinguish between displacement and velocity, or more gen-
erally between different coordinates in phase space. However, it may happen that a system is more
susceptible, say, to velocity rather than to displacement, e.g. under the presence of an impulsive
excitation. It is thus useful to introduce measures that take into account this aspect. As a byprod-
uct, this allows us to better deal with mechanical degrees of freedom (displacements vs velocities)
that have different physical dimensions, being thus affected by the choice of the system of mea-
surement. This is the second goal of this paper. Anisometric integrity measures weighting in a
different way each coordinate of the phase space are introduced and deeply investigated.

Both seamless integrity profiles and the performance of different integrity measures are investi-
gated with reference to the global dynamics of a two-well bistable Duffing oscillator. The paper is
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organized as follows. Anisometric integrity measures are defined in Sect. 2 as generalization of the
underlying isometric ones. The considered paradigmatic model is illustrated in Sect. 3. Seamless
variation of all measures for competing resonant and non-resonant attractors of the two-well Duff-
ing oscillator is comparatively addressed in Sect. 4, by dwelling on their features and capability
to identify regions of the phase space with predictable outcomes. In particular, their evolution in
a 3D phase-parameter space is addressed in Sect. 5. The last section draws some conclusions and
hints for future developments.

2. Isometric and anisometric dynamical integrity measures

If not preliminarily defining/identifying an actual safe basin, as discussed in [8, 14], the most
straightforward integrity measure of a basin of attractor is represented by the Global Integrity
Measure (GIM), namely by its hyper-volume, that reduces to an area in 2D problems. The GIM

cannot be deemed a prudent indicator because it accounts for both compact and fractal, i.e. dynam-
ically non-integer, parts of the basin. A more refined measure able to get rid of the unsafe fractal
tongues from the integrity evaluation is the Integrity Factor (IF) [14]. The IF considers only the
compact part of the basin and calculates the largest hyper-sphere within (circle in 2D cases). A
more conservative measure is represented by the Local Integrity Measure (LIM), whose definition
retraces the IF, being again the radius of the largest hyper-sphere entirely contained in the basin but
constrained to be centred at the attractor of reference. A less used measure, expression of the safe
attractor stability, is the impulsive integrity measure (IIM). It is the distance between the attractor
and the nearest boundary of the basin along the direction related to the generalized velocity. IIM

±

indicates the minimum of the distances along positive (IIM
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�) directions.
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Figure 1: Example of an overall hypothetical attractor-basin phase portrait with the illustration of the integrity mea-
sures. The black spot on the left part of the figure represents the considered attractor.

As it can be perceived, all the aforementioned measures do not account for inhomogeneous sen-
sitivities of the state space variables but, in practical applications, a system could be primarily
affected by perturbations in one of its characteristic quantities (e.g. velocity, position, etc.). The
local integrity measure is thus generalized with the introduction of the Anisometric Local Integrity

Measure (ALIM) that is non-equidistant in the state-space coordinates. It is defined as the max-
imum of the two semi-axes of an ellipse centred in the safe attractor and totally contained in the
largest compact (i.e. safe) portion of the basin. As a matter of fact, since integrity measures are
commonly normalized to the same “initial” values, considering the length of the minor semi-axis
or the area of the ellipse is equivalent to the assumed definition.
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The ALIM requires to a priori fix the ratio between the axes of the ellipse along, e.g., the velocity
and displacement directions, here denoted by b and called anisometric parameter; this reflects the
different sensibility we have along the two directions. If b = 1 the ALIM reduces to the LIM while
b = 0,• describes a measure solely accounting for either one of the two generalized coordinates,
e.g. IIM for b = •. We can alternatively use a = arctan(b ), which ranges in [0,p/2] and does not
assume infinite values.

Analogous definition can be formulated for the Anisometric Integrity Factor (AIF) with the due
differences. The center of the AIF , as in the IF , is not constrained in the basin attractor and,
thus, it is “free” to move within the basin accommodating jagged surfaces. Again, the measure
corresponds to the maximum of the two semi-axes of the biggest ellipse totally contained in the
safe basin. Finally, the AIF is the IF for b = 1. In Figure 1 a separate illustration of the described
measures is reported over an overall hypothetical attractor-basin phase portrait. It is worth to note
that the integrity measures are usually normalized with respect to a reference value. However, the
measures reported in this work have not been rescaled in order to facilitate the comparison with
respect to the phase-space dimensions, especially for the anisometric cases.

The previous definitions of ALIM and AIF are valid in the 2D case. Extension to higher di-
mensional systems is straightforward, and requires fixing the ratios between all the N-axes of the
hyper-ellipsoid in the N-dimensional phase space, according to the sensibility we have on each
coordinate. Details of this extension are left for future works.

3. Dynamic model

Based on the outlined framework, the global dynamics of the two-well/bistable Duffing oscillator
is investigated. This archetypical system is able to describe many nonlinear systems and it is a
powerful model to study qualitatively several nonlinear behaviours; the governing equation is (see
eq. (7.1.2) of [21])

ÿ+2z ẏ� y+ gy
3 = f cos(Wt) , (1)

which in the state space formulation becomes
(

q̇1 = q2,

q̇2 =�2z q2 +q1 � gq
3
1 + f cos(Wt) .

(2)

For the present analysis a linear viscous damping z = 0.025 is considered, whereas other constant
parameters are g = 1, W = 1.2 (as in Fig. 7.12(b) of [21]). The state space {q1,q2}, describing
all the possible pairs {position, velocity} for the oscillator, is here limited to q1,2 2 [�2,2] and
a square grid composed of 5002 cells is considered for its discretization. A parametric variation,
with respect to the excitation amplitude ( f 2 [0.02,0.135]), is performed with a small step D f =
0.000254154; this step is so small that practically we are performing a “continuous” analysis of
the system for varying f . However, being this methodology computationally expensive, it can
be systematically applied only if implemented by means of efficient and targeted algorithms, e.g.
parallel computing, able to exploit the best performances of recent computational architectures
[19, 20].
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(a) (b)

Figure 2: Sliced 3D views of the domain of parametric variation of basins of attraction.

Figure 2 shows stacks of basins of attraction in three-dimensional graphics. It is here underlined
that only 2D sections with f = const are proper basins of attraction. Both Figure 2(a) and Fig-
ure 2(b) are carved to illustrate basins’s evolution as function of the excitation amplitude. The
considered varying parameter f disrupts progressively the domains, bringing them to assume a
fractal configuration. Furthermore, the continuous metamorphosis of basins shown in Figure 2
represents a new useful feature for the determination of safe working regions and critical thresh-
olds towards dynamically non-integer domains.

4. Seamless variation of dynamical integrity measures

In this section we undertake an integrity analysis of the basins portraits by evaluating four dif-
ferent measures, namely the LIM, the ALIM, the IF and the AIF . Integrity profile curves for
the left and right attractors of the considered system are reported in Figure 3(a) and Figure 3(b),
respectively.
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Figure 3: Integrity profile curves. The ratio for the anisometric measures is b = 2. The inset pictures show the
shape of the integrity measures for f = 0.0649853. Darker colors of the curves refer to R-basins of large-amplitude
(i.e. resonant) attractors. With the labels R1 and R2 are highlighted four drops in the measures due to rare attractors
[17, 18]. a) Basin and measures for “left side” attractors. b) Basin and measures for “right side” attractors.

In each figure two sets of four curves depict integrity measures for the non-resonant (NR, small
amplitude) and resonant (R, large amplitude) attractors, whose basins (with increasing excitation
amplitude) in the two wells are decreasing and increasing, respectively. The lines referred to the
small/large amplitude attractor end/start with null values. Four measures are reported: IF (red/dark
red), ALIM (blu/dark blu), LIM (gray/dark gray), AIF (green/dark green). A decreasing/increas-
ing trend is reflected in a reduction/increment of dynamical integrity of the system. The curves
reported in Figure 3(a) and Figure 3(b) show similarity in their behaviour. Measures connected
with the small amplitude attractors present a first region where they are generally insensitive to
the variation of the driving parameter f . Then, sudden drops of the integrity measure directly
connected with the appearance of resonant attractors occur. Finally, an ever-decreasing trend cor-
responds to the non-resonant basins shrinking towards zero. Regards the basins of the resonant
attractors, after their appearance, an alike behaviours can be recognized for the couples AIF/IF
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and ALIM/LIM. Local integrity measures present an increasing trend only for a small portion
in the variation range of the excitation amplitude, contrary to AIF/IF that have a more extended
growing region. Moreover, it can be observed that the distance between anisometric (ALIM or
AIF) and corresponding isometric (LIM or IF) measures, for a fixed value of the parameter f ,
demonstrates how the different sensitivity on the generalized coordinates affects the evaluation of
the integrity measure.

As a consequence of their definitions, for the anisometric measures the sorting AIF � ALIM is
always preserved, but we cannot draw conclusions about the sorting between ALIM and IF , even if
for their isometric subfamilies is IF � LIM. The inset plot in both subfigures of Figure 3 illustrates
that the ALIM can be greater, equal or less than IF . Indeed the reported basins for f = 0.0649853
present a value for the small amplitude attractors in the two wells with ALIM less or greater than
the IF , whereas for the large amplitude attractors it is always IF > ALIM. Thus in the presented
configuration with b = 2, for the large amplitude attractor the non-equidistant measure results
more conservative. Furthermore, it can be noted that AIFs present the largest values for all the
considered attractors. This is a consequence of the fact that the basins of attraction are somehow
stretched in the vertical direction, as can be seen from the insets in Figure 3; thus, this property is
no longer true if we assume b < 1.

To practically compute the anisometric (isometric) integrity factor AIF (IF), we considered all
points of a given basin of attraction B. For each point P we determined the largest b = 2 ellipse
(circle) centered in P and tangent to the basin boundary ∂B, and measured its maximum semi-axis
(radius) R = R(P). The AIF (IF) is just, by definition, the largest value of R for varying point P

within the basin, AIF/IF = maxP2B{R(P)}. This algorithm stresses the fact that AIF (IF) is a
property of the whole basins of attraction. It is worth to remark that this algorithm is not needed
in the computation of ALIM (LIM), since in this case the center of the ellipse (circle) is fixed - it is
the attractor.

While not being the integrity factor, it can be useful to draw the function R(P) in order to have
a measure of the sensitivity to imperfections of the various parts of the given basin of attraction.
This permits to evaluated the safety of the subsets of B.

Drawing all together the functions R(P) of each basin of attraction can help to identify safe and,
mostly, reliable, regions in the phase space where the system outcome is totally predicted. For
f = 0.0581232 this has been done in Figure 4(a) for the AIF and in Figure 4(b) for the IF .

The ellipses (circle) corresponding to the AIF (IF) of the 4 basins of attraction are also reported
in Figure 4(a) (Figure 4(b)): it is immediate to check that they are centered in the points with the
highest R(P), according to the definitions of the integrity factors.
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Figure 4: Density plots illustrating the distribution of the R(P) function over the entire domain for f = 0.0581232.
Red dashed ellipses/circles indicate the maximum values of the measures, corresponding to a) AIF (b = 2) and b) IF .

The use of algorithms to determine simultaneously the evolution of the basins is an appealing
feature, which overcomes the usual analyses based on discrete (and commonly spread) values of
the parameter or focused only on the variation of the basin boundaries with respect to a starting
basin. A nearly continuous approach also permits to catch quite easily the presence of rare attrac-
tors [17, 18]. Two rare attractors, designated as R1 and R2 within the Figure 3, responsible for a
local reduction of the system integrity, are reported in Figures 5 and 6 (the evolving green tongues
with red attractors). Commonly rare attractors, while being interesting from theoretical point of
view, are not directly important from a practical point of view, as they exist in very narrow ranges
of the parameter space. However, their indirect effects could be very important; for example, as
a consequence of various heteroclinic intersections, they may be responsible for the fractalization
- and thus reduction of the dynamical integrity - of basins of major attractors. For this reason
they must be carefully investigated in any case [22]. In particular, the computation of dynamical
integrity measures in presence of rare attractors highlights sudden, yet localized, variations in the
measures and a consequent reduction of the inner safety of the system. For all this, an adequate
resolution in the parametric study is required in order to avoid an overlook of cells belonging to
unsafe basins.
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Figure 5: Basins of attraction with the appearance, evolution and disappearance of left and right rare attractors (R1).
a) Period-5 R1 attractors ( f = 0.084809). b) Period-10 R1 attractors ( f = 0.085318) . c) Period-20 R1 attractors just
before their disappearance ( f = 0.085445).
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Figure 6: Basins of attraction with the appearance, evolution and disappearance of left and right rare attractors (R2).
a) Period-4 R2 attractors ( f = 0.0100821). b) Period-8 R2 attractors ( f = 0.01026). c) R2 attractors just before their
disappearance ( f = 0.0102854).

In Figure 7 is reported the variation of the ALIM with respect to the b ratio. The curves below the
LIM (red curve with b = 1) are obtained with a ratio less than the unit (b = 1/2,1/3). Since the
shape of the basins is stretched along the q2 coordinate, this results in small measures limited by the
contact with other basins along q1. The integrity measure shows a convergence, by increasing the
b ratio (b = 1.2,1.5,2,3), indeed only a shallow discrepancy can be detected in between ALIMb=2
and ALIMb=3, although more remarkable in the resonant attractors.

In the present approach the anisometric parameter b is fixed a priori, thus reflecting our percep-
tion on the different sensitivity to variations of different state space variables. The fact that in the
present case ALIM is practically an increasing function of b means that the system is more sensi-
tive to the q1 variable, as confirmed by the fact that, in general, the basins are stretched along the
q2 (velocity) direction. This implies that for an actually safe system design it would be necessary
to refer to the integrity profiles obtained with b less than unity.

A more comprehensive approach could be pursued, in which b is not fixed a priori, but left free
during the integrity analysis. It can be, for example, the one providing the largest area of the
involved ellipses. In this case, b would be a result of the analysis, so that the integrity evalua-
tion would directly shed light on the different sensitivity of the considered system along different
directions. The development of this idea is left for future work.
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Figure 7: Variation of the ALIM with respect to the ratio b . In each subfigure 7 curves are reported with b =
1/3,1/2,1,1.2,1.5,2,3. a) ALIM for “left side” attractors. a) ALIM for “right side” attractors.

5. Evolution of integrity measures in a 3D phase-parameter space

Along with the integrity profiles, the full control of safe regions, in order to avoid overestima-
tions, relies on the systematic metamorphoses evaluation of the measure in the phase/parameter-
space. Three-dimensional sweeps for the considered integrity measures are shown in Figures 8
and 9. In each subplot an inset above-orthographic view visualizes the evolution of the attractors
position in the phase plane up to their disappearance.

Figure 8(a) and Figure 8(b) compare the local integrity measure in the isometric and anisometric
version, respectively. It can be observed the sudden reduction of the values for the non-resonant
attractors, reported in red and blue blended colors, in connection with the appearance and growth of
the resonant attractors (green and purple colors), which then also disappear over a longer parameter
interval. Obviously the positions of the centres on both the cases are identical since they are
bound to the attractor. On the contrary, the location of the centres for IFs and AIFs can differ
sensibly as reported in Figure 9. Moreover, the evolution is only piecewise connected, thus, to an
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optimal integrity profile curve can be associated to a spread dislocation of the measure within the
compact part of the basin, as it can be noticed mostly for the green and purple resonant basins.
The characterization of safe working regions based on three-dimensional integrity manifolds, as
illustrated in Figures 8 and Figures 9 is an added-value to the mere integrity profiles. Indeed, it
evaluates the magnitude of the integrity measure, combined with its actual space localization, as
function of a design parameter.

(a) (b)

Figure 8: 3D variation of the local integrity measures for both left and right attractors. The above-orthographic view
is shown in the upper side inserted pictures. a) LIM. b) ALIM (b = 2).

(a) (b)

Figure 9: 3D variation of the integrity factors for both left and right attractors. The above-orthographic view is shown
in the upper side inserted picture. a) IF . b) AIF (b = 2).

6. Conclusions

The generalization of two existing dynamical measures, namely the local integrity measure and
the integrity factor, has been proposed with their anisometric extensions. The introduced measures
are able to identify properly a different sensitivity of the generalized coordinates to a parameter
variation. To illustrate the new concepts, a study of the global dynamics of the two-well/bistable
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Duffing oscillator has been presented. A parametric investigation with respect to the external exci-
tation amplitude has been performed with a reduced step size, getting a nearly seamless evolution
of integrity measures. By means of three dimensional plots, illustrating the basins erosion through
the distribution of the integrity measures in phase-space with respect to the driving parameter, a
better visualization and identification of safe regions has been achieved.

The presented idea of anisometric dynamical integrity measures will be extended to higher di-
mensional systems in future developments. Furthermore, new insights can be deduced from the
analysis of basins by using unfixed anisometric grades. Thus, the different sensitivity of the system
to specific perturbations can come up as result of the evolution of anisometric parameters.
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