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Abstract

During seismic emergencies in historical urban scenarios, evacuation paths can suffer significant
damages and modifications due to both extrinsic (i.e.: building facing the path) and intrinsic (i.e.:
pavements state, the presence of underground lifelines or hypogeum) vulnerabilities. Such damages
and modifications can hinder the population’s evacuation and the first responders’ intervention,
mainly because of paths' blockage or unavailability in emergency conditions. Paths’ safety is
additionally affected by populations’ exposure conditions, also due to individuals’ motion in the
post-earthquake environment. Hence, an analysis of factors influencing the seismic risk of
evacuation paths and a consequent evaluation of their safety during the emergency are thus
desirable. This work aims to offer a preliminary and quick holistic method for seismic risk assessment
and damage level estimation of possible evacuation paths. Firstly, data about safety influencing
factors (i.e.: path use and exposure; geometric features; physical-structural features; extrinsic
vulnerability; seismic hazard) are collected, associated to related weights and organized in risk
indexes according to three calculation approaches. Then, according to real-world data, a correlation
about path risk-damage levels is proposed with the additional purpose to evaluate the method
capabilities in describing post-earthquake scenarios. Obtained results evidence that the proposed

methodology could help safety designers in the seismic emergency planning of urban paths (i.e.: by
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means of risk maps) by including the management of population’s evacuation routes towards
assembly points, the optimization of rescuers’ activities and the promotion of different priorities of

interventions on building heritage.

KEYWORDS: Earthquake emergency evacuation, Urban path network, Risk index evaluation, Safe

paths, evacuation path network, urban path damages.

1 Introduction

Earthquakes in a historical urban fabric can lead to critical situations which affect the built
environment and the exposed population during the event and the following post-event emergency

phases because of built scenario modifications due to earthquake damages [1-3].

In fact, earthquake-induced modifications to urban fabric can influence the effective safety levels
for population moving along evacuation paths and the related possibility to reach safe areas (e.g.:
no possibility to reach assembly points because evacuation paths could be blocked by debris) in
which individuals could receive the first responders’ support [4-7]. Debris generation from building
collapse could be added to street pavement cracks or land failure by provoking additional risks for

citizens’ evacuation and rescuers’ access to the damaged scenario [8-11].

According to a general risk assessment approach [12-14], the evacuation path risk depends on the

combination between:

e hazard, mainly in terms of soil category, morphology and topography, local amplification
phenomena also related to the position of the historical urban fabric (e.g.: on the top of a

hill) [15];
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e vulnerability as a function of: intrinsic vulnerability, which relates to the elements composing
the street itself, the related infrastructural elements (i.e.: street pavements, foundations,
embankment, and lifelines) [16] and the interfering elements, such as underground
structures) [9,17]; extrinsic vulnerability, which refers to the elements that do not directly
belong to the path itself but can compromise or block it (i.e.: buildings that can collapse by
blocking facing streets because of debris formation) due to the typical scenario of historic
city centres (i.e.: narrow streets with high facing buildings; network complexity);

e possible exposure conditions (i.e.: high density of citizen, tourists’ presence, mass-gathering

events) [18,19].

From this point of view, the proposal of a holistic risk index concerning evacuation paths network

elements can help safety planners to [2,18-23]:

e understand which factors are effectively able to affect safety conditions (before/during the
emergency);

e design proactive risk-reduction strategies (i.e.: interventions on buildings);

e design evacuation plans (i.e.: safest path choice) leading to efficient rescue operations’

management in historical scenarios.

Correlations between risk, event intensity and earthquake-induced damages could be able to offer
additional data for emergency scenario characterization [24]. Such scenarios’ predictions could be

also included in models for emergency and evacuation simulation [25-28].
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1.1 Background on evacuation path risk analysis

Methods for estimating the influence of extrinsic vulnerability have been largely debated, by
proposing different methodologies for building vulnerability assessment [20,29-31]. Macroseismic
methods seem to be more suitable for urban scale application because their application is based on
easy-to-detect building parameters [32]. Taking advantages of these methods, previous works gave
a quantification of produced debris on path network elements (i.e.: streets) by using correlations
between building vulnerability, macroseismic intensity and geometrical aspects [22]. A quick
methodology for assessing the seismic vulnerability of paths network by considering interferences

with building heritage damages was also proposed [22].

On the contrary, few works inquired about intrinsic path vulnerability. Previous studies principally
focused on paths’ network capabilities evaluating earthquake-induced effects in terms of variations
on possible traffic flows or social-economic consequences generated by one or more unusable paths
[33]. Other approaches dealt with particular structural features (i.e.: technical provisions, structural
project, soil compaction rather than liquefaction) of highway networks systems, by focusing their
attention on typologies whose presence in historical urban fabrics is limited (i.e.: trenches,

embankments, bridges) [10,34].

Other researches proposed to analyse the paths network by separately considering intrinsic and
extrinsic vulnerabilities for each composing element [16]. The application of this methodology needs
a detailed description of each path link, by including specific local surveys and related data collection
processes that could not be quickly employed in a wide scale assessment. Similar methods adopt
empirical and quick analysis criteria at the overall urban fabric scale, by trying to include hazard

characterization in terms of soil features and response [20].
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The intrinsic vulnerability features have been also associated with their seismic response through
fragility curves [35,36]. These curves describe the possibility for buildings, streets and pipelines to
reach a certain damage state in correspondence to specific earthquake severity values (e.g.: Peak
Ground Acceleration - PGA). In this way, the extrinsic vulnerability could be combined to the analysis
of intrinsic one by means of combinations of earthquake-induced effects. Since this approach
associates an own fragility curve for each studied street element, it seems to be quite onerous for
application to a wide-scale urban area. Moreover, it should be precisely calibrated for historical
scenarios. Concerning such description of street damages due to earthquake effects, simplified
methods based on discrete damage scale for paths elements (called “Road Damage Scale“ - RDS)
have been proposed [37]. Correlations between variables characterizing a seismic event (i.e.:
magnitude, distance from the epicentre and hypocentre distance) and street damages were
provided on real cases observations. Nevertheless, such an approach seems to overlook the path

risk-affecting factors.

Other works related to emergency management issues have considered urban paths as a
cooperating system, and have assessed their physical efficiency in order to guarantee the operability

of the contingency plan [11].

Finally, the method for paths risk assessment developed by Task-4 of SAVE project activities [19]
tried to give a preliminary comprehensive overview on the risk-affecting factors concerning the
aforementioned emergency path-related issues. In general terms, this method (called “Cherubini’s
method” in the following) is aimed at evaluating the seismic risk of the whole historical centre by
defining the risk of each composing urban paths elements (i.e.: streets; squares; crossroads). To this
end, differently from previous studies, aspects involving paths structure and geometrical features

are merged to the ones referring to paths conditions in terms of traffic and exposure (i.e.:
5
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establishing if the path is an interconnection route or an access route, if it is travelled in one-way,
and evaluating its average traffic flow). Such aspects are then combined according to a weighted
approach to define the final path risk index. The Cherubini’s method offers wide capabilities on how
to collect and merge the risk-affecting factors and innovatively includes paths exposure issues, but
it should be improved by including the local seismic hazard and the seismic effects on soil related to

the infrastructures.

1.2  Work aim and main limitations

As underlined in Section 1.1, current methodologies seem to be affected by different lacks. Firstly,
they seem to overlook aspects related to typical elements of urban fabric (i.e.: the presence of
underground natural or artificial cavities that could influence the frequency spectrum of seismic
waves [38]), local soil response to earthquake shaking (i.e.: liquefaction) and other risk sources
affected by the presence of underground pipelines [39]. These conditions could cause damaging

consequences in case of leakages or explosions triggered by high-severity earthquakes.

Secondly, they generally avoid jointly considering causes and features linked with the path network
evaluation. Although some researches [10,19,20] offer reliable bases to this end, no one seems to
involve the analysis of historical centre scenarios by including the effects of intrinsic damaging of

streets.

Finally, methods to relate path risk and possible earthquake-induced damage state to safety
planners supporting activities for wide-scale applications in urban paths systems are not currently
available. Therefore, this paper firstly tries to develop a holistic methodology which considers all
the risk-affecting factors to provide path risk indexes in historical city centres. Then, three different

calculation approaches (and so three novel path risk indexes) to combine the risk-influencing factors

6
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are proposed and compared. Then, analyses on post-earthquake damage grades prevision are
innovatively included by linking the developed path risk indexes to paths damage scale provided by
previous works [37]. Real-world data are used to this aim. This holistic perspective allows
preventively assessing the path safety, and then evaluating path preservation strategies in the
aftermath of seismic events by considering the different aspects on which designers could

intervene.

The classification of risk conditions of each element (and of each composing part) in the evacuation
path network will help safety planners in choosing the better strategies to evacuate citizen and to
direct rescuers’ teams in emergency phase, as well as in evaluating the impact of different proactive

strategies of emergency management and risk reduction interventions.

2 Phases and methods

2.1 Phases

The paper is organised in the following phases:

e Paths network schematization, to univocally define the requirements for the elements
to be investigated (Section 2.2);

e Definition of paths risk-influencing factors according to the main parameters
suggested by the whole literature review: path configuration; exposure (Section 2.3.1);
geometrical features (Section 2.3.2); physical-structural features of infrastructural
elements (i.e.: streets) (Section 2.3.3); extrinsic vulnerability (Section 2.3.4); seismic

Hazard influence (Section 2.3.5);
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e Definition of the novel holistic path risk assessment methodology based on the
influencing factors, which is implemented by proposing three calculation approaches
to calculate the risk index (modified Cherubini’s method, Expert Judgement, Analytical
Hierarchy Process) (Section 2.4);

e Application of the three developed risk indexes to a real-world sample in order to
evaluate their capabilities and offer a preliminary validation, through the proposal of
a risk index-damage state level correlation (Section 2.5).

e Application of the novel methodology through the calculation approach-risk index
having the highest coefficient of determination R? to a representative case study to
preliminarily demonstrate its capabilities, by also means of risk maps representation

(Section 2.6).

Notations used in the following sections are resumed in Appendix A.

2.2  Path Network schematization

In order to evaluate the path network, this has to be divided into different composing elements
univocally determined, called Links and Nodes according to the definitions given in Table 1 [22,25].
A graphical example is offered by Figure 1. Different paths could be traced by connecting
consecutive links and nodes, to evidence rescuers’ and evacuees’ routes within the urban fabric,
and from/to specific emergency areas. Since the proposed methodology is based on the risk analysis
of the composing elements, the overall evaluation of each path risk can be performed by summing

the partial risk indexes.
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Table 1 Street network schematization; Links definition, the subdivision between types of Nodes and related assessment tools.

Path elements

kind

Definition

Identification

Assessment tools
code

Nodes

Control point

Square

1

crossroads, significant plano-
altimetric and structural
variations (i.e.: pavement
features, the presence of
structural elements such as
retaining walls, protection
measurements or bridges and
tunnels) along the path network
[22]

Nodes that can be considered
assembly points or rescuers’ first-
aid areas (e.g. wide open spaces,
where people spontaneously
gather and can safely wait for
rescuers’ arrival) [25]

Control points take the  Numeric code
maximum risk index of

links converged in it

evaluated through

Table 2

See Table 3 Alpha-
numeric code

Links

Connection between two
different nodes. A path composed
of segments with different
features can be schematized as an
ensemble of consecutive links,
divided by nodes.

See Table 2 Alphabetic
code

1 A Square is a particular node where building facades projections do not entirely cover the square’s area itself. Such

condition allows Squares to hold people during the emergency. For this reason, Squares need an ad hoc earthquake

evaluation.
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Figure 1 Example of a graphical representation of the path network scheme in a historical city centre map: Links (black segments) are
delimited by Control Points (Nodes) placed in each plano-altimetric or structural variations (grey circles). Squares, defined according

to Table 1, are highlighted by grey filled areas.

2.3 Risk-influencing factors definition for methodology definition

Starting from the literature discussion presented in Section 1, the proposed methodology tries to
collect all the risk-influencing parameters in six influencing factors combined by topics and discussed
in the following sub-sections. According to previous works [19,40,41], each parameter can be
characterised by different conditions, called “alternatives” (between two and five), which are
associated to a numeric value within the risk index, as described in Section 2.4. All the considered
influencing factors are defined by considering both the single path network composing elements
(intrinsic vulnerability and exposure conditions) and the elements that could directly compromise
its state (extrinsic vulnerability and seismic hazard). According to general Table 1 guidelines, the
proposed methodology evaluates the factors influencing path risk by means of two similar
Assessment Table: Table 2 shows the one related to Links risk assessment; Table 3 summarizes the

one for Squares assessment.

10
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In general terms, both Table 2 and Table 3 contain information about exposure, geometrical

features and physical-structural features, subsoil conditions and vulnerability of facing buildings.

The Squares Assessment Table (Table 3) includes specific parameters that are proposed in addition

to the ones of Link Table or replace some of them because of specific Squares features. Parameters

linked to specific street typologies (e.g.: bridges, viaducts and tunnels) are omitted in the current

work proposal because they are rarely present in historic city centres.

Table 2 Link Assessment Table: factors, parameters and associated alternatives are reported to evaluate the risk-influencing aspects

of links within the urban path network. IDs for factors and parameters are assigned to connect this table with Table 4.

ID Factors ID Parameters Alternatives
A Path analysis A.1 Link code -
1° Node code -
2° Node code -
A.2  State Clear
Partially obstructed
Obstructed
B Exposure B.1  Street type Interconnection
Access
B.2  Direction of travel Single
Double
B.3  Carriageway Separated
Unique
B.4  Pathtype Urban
Suburban
B.5 Average Flow Low
Medium
High
C  Geometric features C.1  Length (m) 0<L<0.33 Ly
0.33 Linax < L £ 0.67 Linax
0.67 Linayx < L < Linax
C.2  Width (m) 0.67 Wyax < W = Wax
0.33 Wax < W< 0.67 W
0<W<0.33 W
D  Physical-structural features D.1  Finishing surface Asphalted
Paved
Rough
D.2  Potential landslides No landslide, retaining walls in both
sides
Landslide, retaining walls in one side
Landslide, no retaining walls
D.3  Underground elements Low-risk pipes

11



650

651

652 High-risk pipes

653 Caves, cisterns or cavities

654 D.4  Conservation state High

655 Medium

656 Low

657 D.5 Street Typology Level link

658 Hillside link, with retaining walls

659 Hillside link, without retaining walls

660 Tunnel

661 Bridge and viaduct

662 E Extrinsic vulnerability E.1l  Vuink 0 < Vjink € 25%

663 25% < VNjink < 50%

664 50% < Vniink £ 75%

665 75% < Vyjink £ 100%

666 F Seismic hazard F.1  Design ground acceleration (ag) ag < 0.05g

667 0.05g <ay<0.15g

668 0.15g < a4 = 0.25g
ag>0.25g

669 F.2  Ground type A

670 B

671 C

672 D

673 E

674 F.3  Topographic amplification factor  T1

675 T2

676 T3

677 T4

678

679

680

681

682

683

684 Table 3 Squares Assessment Table: parameters and associated alternatives are reported only for factors B, C and D (and the related

222 parameters) that are different from Links Assessment Table according to how defined in Section 2.3. The other factors (A, E and F) are

687 the same as reported in Table 2.

688

689

690 ID Factors ID Parameters Alternatives

691 B  Exposure B.1  Usage Wide crossroad

692 Pedestrians’ zone

693 Parking area

694 B.2  Presence of obstacles Absence

695 Presence

696 B.3  Square type Urban

697 Suburban

698 B.4  Average Flow Low .

699 Medium

700 High

701 C  Geometric features C1 0.67 Amax < A < Apax

202 0.33 Apmax <A <0.67 Anax

203 _ 0<A<0.33Au

704

705 12

706

707

708
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Physical-structural D.2  Potential landslides No Iandslic.le, retaining walls in more
features than one sides
Landslide, retaining walls in one side
Landslide, no retaining walls
D.5  Square Typology Level Square
Hillside Square with retaining walls
Hillside Square without retaining walls

2.3.1 Path analysis and Exposure

The Link Assessment Table identifies the inspected street element through a code and their
respective nodes; a preventive information about link accessibility is also given to investigate only

usable paths in emergency conditions (Table 2, ID=A).

For both Links and Squares, the exposure factor (ID=B) is assessed in terms of path role and

importance that it assumes within the urban fabric during the emergency.

In Table 2, ID=B concerns link exposure-affecting parameters from the point of view of functional
analysis. Paths can represent an access route to the urban environment strategic in emergency
phases or can constitute an interconnection among safe areas or strategic buildings [11]. Moreover,
the link is considered an effective evacuation path in case of absence of barriers, traffic lane dividers,
bollards or further obstacles that entirely limit the width of lanes or even prevent the access of

rescuers/evacuees. Average flow refers to a semi-quantitative assessment of traffic along the path.

In Table 3 ID=B parameters are modified so as to consider the specific features of squares and, first
of all, their intended use: wide crossroad, characterized by multi-directional movement of both
vehicles and pedestrians; pedestrian zone; parking area, characterized by possible available areas
limitations due to parked vehicles. In addition, other square-specific parameters refer to the

presence of architectural elements like street furniture, fences, low walls, trees which could be

13
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widespread in the square area and could interfere with pedestrians’ motion/rescuers’ access or

emergency operations.

2.3.2 Geometric features

As reported in Table 2 ID=C, the length of the street affects the travel time required to reach a
destination, while its width can influence the evacuation flows because of interfering obstacles that
could also limit the effective width of the path (i.e.: urban furniture; debris presence due to
damaged buildings). The paths sample in the considered urban historical area is organized by
following a related dimensional scale in terms of width W and length L. Longer and narrower paths
in the sample are considered as more hazardous in respect to the others. For Squares, the

considered geometrical parameter concerns the area extension (Table 3, ID=C).

2.3.3 Physical-structural features

The evaluated parameters in Table 2 ID=D firstly concern street surface (asphalted, paved or rough),
that could influence the streets’ accessibility also related to its conservation state. Indeed street
pavement typologies and their state of conservation could affect the evacuation process causing

pedestrians accidents or injuries during the escape [42].

Potential slide down of soil and rocks on both sides of the path and the preventing measures (e.g.:
retaining walls) are identified so as to include risks due to the blockage of the path to evacuees and

rescuers’ vehicles, causing problems and delays to the emergency mobility [15].

A specific parameter is added by this work to include the existence of caves, cisterns and natural or
artificial underground structures that are typical of the historical urban environment [17]. These

subsoil vulnerable elements could provoke instability leading to local street collapses. Furthermore,

14
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pipes placed at scarce depth could be considered as weak points for the street safety. Such lifelines
are distinguished between [39,43,44]: low-risk lifelines such as electrical power or water supply
systems with restrained pipes dimension; high-risk lifelines like gas and oil distribution networks. In
this way, the study also evaluates the risk connected to pipelines of gas or water supply system that

could lead to cascade effects (i.e.: dangerous gas leaks, fires, local soil destabilization).

2.3.4 Extrinsic vulnerability

In Table 2, ID=E innovatively takes advantage of the street vulnerability method [22] referred to
aspects concerning extrinsic vulnerability assessment by inquiring the building heritage directly
facing paths or squares. Thus, according to a related geometric approach for path blockage [4], if
the width W, of the urban space (street/square) facing the building b is higher than the building
average height H;, [m], the building is considered as not interfering and hence it is not inquired
[4,22]. Vulnerability Index Vink considers the interfering building and is a function of: building
incidence I}, on the link defined as the ratio between building L; and link L lengths, respectively (1,
= Lp/L); building vulnerability V» expressed according to the macroseismic method to ensure quick
application for historical city centre scale [32] (a probable scenario is given in Figure 1). For each link
j, Vunkj is calculated as shown in Equation (1) by considering the buildings on the link j:

Viink,j = va *b &

bej

However, within buildings in the same scenario, link vulnerabilities must be normalized by the
maximum Vll-nk,j obtainable in that scenario. According to [20,22], obtained V'~ tink) are divided into

four alternatives, as shown in Table 2 section E.

15
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2.3.5 Seismic hazard

Seismic hazard factors are innovatively introduced by this work on path risk assessment. The
observation of real cases highlights how both base and local features of soil can be relevant for the
paths’ damaging, because of cracks or damages occurring on the ground and directly affecting the
carriageway state [15]. Our methodology, taking advantages from Eurocode 8 [45], proposes to
evaluate the seismic hazard basing on the design ground acceleration (a,) [g] related to each seismic
zones, the ground types and also, according to Italian building code, on the topographic
amplification factors [46]. The adoption of the Eurocode 8-based criterion ensures a quick
application even if low-detailed resources and no geotechnical documentation or local surveys on

soil (such as microzoning studies) are available [47].

2.4 Risk Index definition

Three different calculation approaches are proposed to combine the risk-influencing factors
described in Section 2.3 and then to obtain the final Risk Index IRJ- for each link. In general terms, a
holistic method can be operatively applied by considering a Multi-Criteria Decision Making process
[48] in which the defined risk-influencing factors do not necessarily have the same relevance in the

overall risk index.

Table 4 Features of the three calculation approaches are reported with the aim to compare the introduced modification in respect to

[19].
[19] Modified Cherubini’s Expert judgement Analytical Hierarchy Process
approach
Modified parameters - Added the parameter “Underground elements” in Physical-structural features factor
and factors
Added the factor “Extrinsic vulnerability” with a single parameter (Viink)
Added the factor “Seismic hazard” with following parameters: “Design ground
acceleration”, “Ground type” and “Topographic amplification factor”
Values Cherubini’s approach Values are given following Values are given by the Given through Analytical
Cherubini’s approach Expert judgement Hierarchy Process
16
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Weights Cherubini’s approach approach Weights are given by the  Two sets of weights are
Expert judgement given for each factor and
parameters through the
Analytical Hierarchy Process

IR calculation The weighted sums are The weighted sum is The index is obtained The calculation is given by a
approach firstly normalized on firstly normalized on through the sum of SPik  first weighted sum on Wik

factors maximum factors maximum values weighted on for each parameter and then

obtainable value and then obtainable value and then related Wck for each on Weg for each factor

on related weight for each ~ on related weight for each ~ factor

factor factor
I j formulation Z . Z ‘ 5 5

5 ( L. S""K) 5 ( i S””() > (ZSW . WcK) Y s+ Wi « wer)
——*Wcg —« Wcg k=1%Vi k=1 "
=4Ol sphit =4Ol spit
L L

2.4.1 Modified Cherubini’s approach

The first calculation approach, based on Task-4 of SAVE project [19], tries to fill its lacks through
some changes including influencing factors and parameters defined in previous Section 2.3 and
highlighted in Table 4. Each factor containing influencing parameters is associated with a weight to
establish a hierarchy of influence (values and weights are reported in Table 5). In this case, the final

Risk Index I ; is assessed through the Equation (2):

where:

e Spkis the value conferred to the i-th parameter of the K-th factor;
o SpMaXis maximum attributable value to the i-th parameter of the K-th factor;

e Wckis the weight related to the K-th factor;
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According to [19], Equation (3) permits to obtain the correspondent normalized index for each link (

IRnJ):

2.4.2 Expert judgement

The second approach establishes an alternative hierarchy among factors based on an expert
judgement [49]. Different weights are associated to each factor and different values are associated
to each alternative according to Table 5 while considering the Expert Judgement approach, thus

another formulation for Risk Index Ip j assessment is defined in Equation (4):

5
Ihj= ), (ZSpl-K : WcK) @)
k=1 i

According to the previous definition of Spj, Sp"”l-‘,‘}X and Wcg, Equation (5) normalizes the obtained

Risk Index:

IR,j
Ipnj= —
Z (ZSp’%X * WCK) (5)
=1\1
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2.4.3 Analytical Hierarchy Process

The third proposed way to reach the Risk Index Ipjcan be supported by Analytical Hierarchy Process
(AHP) developed by [41] and used with the same purpose in this field by [50]. This approach needs
to introduce a second level of weights to each parameter (Wik) establishing an influence scale
among them. The AHP considers that the sum of conferred weights must be equal to one both for
factors and for each parameter. In this way, the generated Risk Index varies between zero and one
and it does not require further normalization. The weight distributions (reported in Table 5 in AHP
section) are obtained through the open source tool AHP Online System? and the calculated Ratio of
Consistency (lower than 10%) confirms the acceptability of the proposed weights. Equation (6)
shows the proposed calculation of the Risk Index, that is gained by defining Wik as the weight

related to the i-th parameter:

5

Ip;= Z ((ZSPL'K * Wig) * Weg) (6)

k=1

Regardless of the chosen approach, Ip; and Igy; can be collected in tables and graphically
represented on urban centre maps to directly recognise where most dangerous paths (links) are
collocated and how the safe areas (squares) are connected between them.

Table 5 Weights of factors (Wck), weights of parameters (Wik) and the related values (Spix) are reported for the

three different considered approaches: Modified Cherubini’s approach, Expert judgement and the Analytical Hierarchy

Process.

Modified Cherubini’s Expert judgement Analytical Hierarchy Process (AHP)
approach
Factor Parameter .
D D Weg Spik Weg Spik Wey Wik Spik
B B.1 0.2 0.4 0.333 0.4 0.045 0.272 0.5

2 AHP Online System available at: https://bpmsg.com/academic/ahp-hierarchy.php (last access: 2018/04/17).
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1162
1163
1164
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0.6 0.6 1
B.2 0.6 0.6 0.272 0.5
0.1 0.1 1
B.3 0.2 0.2 0.036 1
0.1 0.1 0.5
B.4 0.6 0.6 0.272 1
0.3 0.3 0.5
B.5 0.1 0.1 0.147 0.33
0.3 0.3 0.67
0.5 0.5 1
C1 0.40 0.1 0.667 0.1 0.067 0.667 0.33
0.5 0.5 0.67
1 1 1
C.2 0.2 0.2 0.333 0.33
0.4 0.4 0.67
0.6 0.6 1
D.1 0.80 0.3 1.000 0 0.381 0.143 0.33
0.55 0.3 0.67
0.8 0.5 1
D.2 0.1 0 0.429 0.33
0.8 0.8 0.67
1 1 1
D.3 0.1 0.33 0.143 0.33
0.6 0.67 0.67
0.8 1 1
D.4 0.3 0 0.143 0.33
0.55 0.3 0.67
0.8 0.5 1
D.5 0.1 0 0.143 0
0.4 0.4 0.25
0.5 0.5 0.5
0.6 0.6 0.75
0.8 0.8 1
E.1 0.60 0.25 1.000 0.25 0.126 0.126 0.25
0.5 0.5 0.5
0.75 0.75 0.75
1 1 1
F.1 1.00 0.25 1.000 0.25 0.381 0.400 0.25
0.5 0.5 0.5
0.75 0.75 0.75
1 1 1
F.2 0 0 0.400 0
0.25 0.25 0.25
0.625 0.625 0.5
1 1 1
0.75 0.75 0.75
F.3 0 0 0.200 0
0.25 0.25 0.5
0.25 0.25 0.5
0.5 0.5 1
20
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2.5 Risk Indexes application and comparison

The three approaches on risk indexes assessment of path network (Modified Cherubini’s approach,
Expert Judgment and the AHP approach) are applied to a real-world sample to evaluate their
capabilities and offer a preliminary validation of each one. To this aim, a risk index-damage state
level correlation, based on damage levels given by [37], is also offered in order to demonstrate the

reliability of the proposed calculation approaches through the comparison between assessed

normalized Risk Index and damages suffered by links from real cases observation.

Figure 2 Urban scenario damages in the Central Italy seismic sequence in 2016: A) street pavement cracking due to unstable slopes
and landslides-induced effects (Intrinsic vulnerability); B) an aerial view of Amatrice (RI, Italy) main street, that is partially blocked by
ruins formation provoked by buildings collapse; debris impeded rescuers’ interventions (Extrinsic vulnerability). Video frames by Corpo

Nazionale dei Vigili del Fuoco http://www.vigilfuoco.tv/ (last access 2018/04/17).
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Risk Assessment Tables are compiled for a paths sample® concerning Italian historical city centres
struck by the 2016 Central Italy seismic sequence, the 2012 Emilia Romagna region (Italy) and the
2009 Aquila (Italy) earthquake. Most of the considered links are highly affected by street pavement
modifications or paths’ blockage due to unstable slopes, landslide or debris accumulations that
contribute to urban scenario modifications as shown by the examples in Figure 2. For each link in
the sample, Ip and Ipp,j values are calculated following each proposed calculation approach. The
damage level of each path is evaluated by comparing photographic documentation of links before
and after the earthquake event, and by adopting the description of post-earthquake damages
effects according to the Road Damage Scale (RDS) [37]. RDS can vary from 0 to 5 (integer scale). The
adopted damage scale for paths considers damages due to landslides, unstable slopes and cracks to
the street, debris presence along the street and presence of failed external elements that could
impede partially or completely the path accessibility. Then, Ipp,j— RDS pairs are organized to
evaluate the risk index capability in describing possible critical conditions in post-earthquake
scenarios. The three proposed risk assessment approaches are considered validated if a higher risk
index corresponds to a higher link damage level. According to general tri-linear trends in earthquake
safety and damage assessment, by including fragility curves and studies on seismic vulnerability
[8,32,35,51], a linear interpolation between IRnJ- — RDS pairs is then performed according to
previous studies’ approaches [37]. Finally, a comparison of produced regression lines is provided
through the evaluation of coefficient of determination R? to define the more suitable calculation

approach (based on data fitting effectiveness) among the considered ones.

3 The database is uploaded as supporting file and also available at: https://goo.gl/yzHNTQ (last access: 2018/04/29)
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2.6 Application to a case study

Among the three Risk Index calculation approaches, the one having the highest coefficient of
determination R?is chosen to be applied on a case study referring to an Italian historical city centre,
with the purpose to give a real application of the research. This case study (different from previously
employed sample) is referred to a representative Italian historical centre: Offida (Italy). Offida’s city
centre has been affected by intense seismic activity over times?, including the ones connected to
the Central Italy seismic sequence in 2016-2017 (in this case, without reporting considerable
damages). Paths network shows a medieval compact and irregular urban fabric due to the hilly site
conformation, and it is mainly characterized by historical masonry buildings. Offida also owns
particular risk features from a touristic point of view, and so for the exposure-related parameters,
because of its significant cultural heritage (religious sites, a theatre hosting exhibitions during the

whole year, museums, cultural events in both winter and summer seasons).

Although the methodology could be applied for all the outdoor public spaces in an urban centre,
this work would like to focus on paths selected among the network according to the following
criteria, so as to evidence the capabilities connected to safety planners application in intervention

strategies definition and evacuation plan design:

e only links accessible by vehicles are considered;
e paths involved by the presence of facing masonry buildings are considered to focus
literature-supported evacuations on extrinsic vulnerability;

e accessible squares are considered while private courtyards are excluded.

4Seismic activity of Offida (Italy): https://emidius.mi.ingv.it/DBMI11/query_place/ (last access on 2018/04/17).
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Risk indices are assessed for each link and node.

In order to graphically evidence the riskiest paths within the urban fabric, a Seismic Risk Map is
proposed. This can be a tool for supporting emergency management directly obtained from the
proposed methodology application (regardless of the calculation approach). In addition, another
map named Intervention Priority Map is defined to assign resources for risk-reduction strategies

within the studied urban centre by means of an immediate graphic representation.
The Seismic Risk Map is obtained with the following steps:

® Igy,; is calculated in according to Section 2.4.2 for each link;

o gy values are grouped in a scale composed by four sets also according to literature studies
[20,40]: Low risk (0%-25%), Medium-Low risk (25%-50%), Medium-High risk (50%-75%), High
risk (75%-100%);

e FEach set corresponds to a different colour on the map.
The Intervention Priority Map follows the following rules:

® Igyvalues are calculated as explained in Section 2.4.2;
e the maximum I, ; value is obtained for the studied sample and it is defined as Iy, 53

e Priority Intervention Indices I;p are obtained according to the Equation (7) below:

Iip= IRn'j/Imax, S (7)
e [;p values are grouped in a scale composed by four sets: Low priority (0%-25%), Medium-
Low priority (25%-50%), Medium-High priority (50%-75%), High priority (75%-100%) which

are associated to different colours in the map.
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3 Results

3.1 Comparisons between Risk Indexes and damage

Figure 3 shows the linear correlations between noticed damages and assessed Indices obtained for
the three proposed approaches. Results show a lower risk index limit (about 20%) that corresponds
to no damages for all the three approaches®. A Risk Index close to zero is not observed because, in
the analysed cases, some risk-affecting parameters are always present (and different from zero),
such as the local seismic hazard. At the same time, from RDS=4 to RDS=5 the trend is only traced

because of the lack of real-world data, due to the currently analysed sample characterization.

The graphical comparison and the analytic results (regression equation for each approach) in Table

6 underline that:

1) For all the three approaches, a trilinear trend is present. The sloped line is similar for each one.

Figure 3 graph B) displays a lower damages increase than the other graphs.

2) R? values are generally acceptable, even if the modified Cherubini’s approach has the lowest R?,
and it graphically seems to assume a not strictly monotonous linear trend too. The Expert
Judgement approach expresses the better regression model in respect to the other two approaches,

according to its R? value.

3) The AHP-based approach is developed so as to follow an evaluating calculation approach
previously applied in other studies (i.e.: [40,50]) that limits subjective interpretations about weights

assignment. For these reasons, it seems to be the most rigorous approach. Anyway, appendix B data

5 As reported by grey line in Figure 3, it is possible to identify a first segment that represents a step from zero to around
20% of I, in case B) and around 24-30% of I, and I in cases A) and C) also according to Table 5.
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shows how differences between AHP and Expert Judgement approach predictions are really close
one to each other, by confirming their similarities. Anyway, when considering a specific link, Igy;
values from the three approaches (see Appendix B) are very similar (average percentage difference

equal to 5%).

Table 6 Comparisons among proposed approaches in terms of trend lines equations. The table also shows data about the domain in

terms of Risk Index, and the obtained R-squares for Irnj- RDS pairs correlations.

Compared approaches Equations Domains R?

RDS=0 Trnj < 24%

Modified Cherubini’s approach RDS = 10.13 Iy, - 2.24 24% < Ipnj <73% 0.57
RDS =5 Ignj > 73%
RDS=0 Ipnj < 20%

Expert judgement RDS = 8.86 Ign; — 1.79 20% < Irnj <77% 0.78
RDS=5 Ignj > 77%
RDS=0 Irj <30%

Analytical Hierarchy process RDS = 11.46 Ip; - 3.47 30% <Irj <74% 0.74
RDS =5 Irj > 74%

Such results confirm the capabilities of the risk index by means of the related predictions of
damages: the higher the Iz, ; the higher the RDS. A sufficient reliability of the proposed novel holistic
method and a satisfied sensitivity of Links Assessment Tables is reached independently from the
three approaches involved to elaborate the final Iz, . The choice of a specific risk index, thus, only
seems to affect the trustworthiness (in terms of confidence, according to the R? values) and the

precision of estimations.

26



1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593

"a) %)
= &
2 2
1 “a 1
0~ ‘a % [ s
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
IRnj IRn,j IR
A) Modified Cherubini’s approach B) Expert Judgement C) Analytical Hierarchy Process

Figure 3 Tri-linear correlation between analysed path risk indices (Irj and IRj) and related street damages levels (RDS): A) Modified
Cherubini’s approach; B) expert judgment; C) Analytical Hierarchy process. Dashed lines predict expected trends in domains where

data sample are not currently present. Equations for the three regression trends are offered by Table 5.

3.2 A historical urban centre

The risk maps in Figure 4 and Figure 5 permit to graphically have under control the overall risk
situation of the selected paths of Offida (AP), describing the evaluated scenario. Appendix C offers
detailed numeric results. It is possible to recognize which parameters influence those values by
focusing on links with higher risk. The analysis of the related tables and assigned values to
parameters evidence that the case-study paths network is mainly characterized by a Medium-Low
risk: this result highlights the homogeneity of the urban fabric. Some other dangerous situations are
evaluated. As shown in Figure 4, the link “V” is located close to slope edges with possible landslides.
Moreover, the risk index is influenced by exposure factors. In fact, the considered paths have an
access role to the city centre and it is used as a one-way street. For these reasons, it results in
Medium-High risk. Intervention Priority Map in Figure 5 shows links “S” and “T” with a Medium-
High priority level, located near areas with potential landslides. The same level is attributed to links

“M” and “R”, but they are developed on level ground. A high index is reached because of the
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presence of buildings with relevant seismic vulnerability. In addition, the specific situation of the

segment “V” is remarked, which can represent an access street to the city centre.

Seismic Risk Map and Intervention Priority Map seem to be not so different in terms of outcoming
results. Nevertheless, while the first allows comparing maps of different city centres thanks to its
risk index absolute scale representation, the second permits to detect risk variation between paths

of the same city centre, because of its different formulation (see Equation (7)).

Low risk

. Medium-Low risk
@ Medium-High risk

@ Hion risk

Figure 4 Seismic Risk Map of the selected part of Offida (AP) paths network. Links are marked with letters, nodes with numbers and

the wider filled areas are the squares considered in this case study application. According to Section 2.6 definition, such elements are
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associated with the four risk levels (represented to the four shades of grey). Squares identified by black circled are considered as not

relevant in emergency management for their limited dimension.

Low priority
. Medium-Low priority
. Medium-High priority
@ Hion priority

Figure 5 Intervention Priority Map of a portion of Offida (AP) paths network. According to the same map description of Figure 4, and

to Section 2.6 definition, the map priority rank is referred to the risk index normalized on the case study maximum risk value.

3.3 Holistic methodology capabilities for future applications

The previous methodology for the seismic risk assessment of evacuation paths attempts to provide
a new concept to consider all factors influencing the evacuation process. The proposed holistic
methodology firstly allows defining a percentage value that gathers risk-affecting factors (i.e.:
referring to the normalized risk indexes). Hence, the outcoming overall evaluation does not involve
a separate layers description [20]. At the same time, the adoption of quick evaluation methods also
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guarantees to use it in a straightforward way by detecting wide urban historical areas. In particular,
differently from other previous studies, it tries to combine path intrinsic and extrinsic vulnerability.
In such a way, unlike previous works [22], this novel method can include obstructions and
interruptions not only caused by ruins formation, but also by eventual structural failures, landslides
or street pavement cracking. Besides, it can also give significant bases for the integration of
exposure factor (inquired by means of quick path related features data collection) in such

evaluations.

Secondly, vulnerability assessment, related to the path itself (intrinsic vulnerability), concerns
frequent situations belonging to the urban environment, differently from other methodologies
referred to particularly typologies of main streets [10,16]. In respect to previous researches, the
proposed methodology application could be extended to typical elements present in path
infrastructural elements like bridges, viaducts or tunnels that can be also placed outside the urban

fabric.

Finally, this work considers important factors that could represent vulnerable elements in historical
urban areas, according to the base reference method (i.e.: [19]). Anyway, in respect to such method,
caves, cisterns or hypogeum hidden under street pavement or lifelines, pipes and culverts are

effectively considered.

4  Conclusion and remarks

The risk assessment of evacuation paths in urban areas in case of earthquake emergencies is useful
to evaluate the safety of an urban scenario and exposed population, especially during the
evacuation process. Particular attention has to be paid to historical urban environment where

pedestrians’ evacuation can be hardly stressed or impeded by hazards due to the complex urban
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fabric, its composing elements and vulnerabilities, the earthquake effects on them (e.g.: ruins
formation from buildings collapse along streets, ground failures or links interruptions due to their
damage). To perform such safety evaluation at historical urban scale, rapid methods should be
preferred because of the urban scale dimension, while a holistic method should be adopted since
many factors (vulnerability, hazard, and exposure) contemporarily affect the safety levels during

and in the post-earthquake scenario.

In this paper, a novel methodology for assessing the risk level of the evacuation paths in the seismic
emergency has been proposed. Buildings collapse and intrinsic vulnerability of street typologies are
now considered. The holistic risk assessment also involves different seismic hazard and exposure
conditions. Then, each risk-affecting factor (and related parameter) is considered in a weighted
manner according to three different approaches. A preliminary methodology validation was
performed by applying it to a sample of paths placed in seismic damaged historical urban fabrics
and a good agreement was found. The present work relates to a real-world sample (actually limited
to significant Italian case studies) selected to apply the proposed methodology, the related
calculation approaches and the evaluation of post-earthquake damage. Hence, future activities
should enlarge the reference sample so as to increase the method robustness and to improve the
risk-damages prediction criteria effectiveness. From this point of view, since the holistic
methodology adopts quick characterization criteria due to the possible implementation at a wide
urban scale, method’s verification needs to be supported by samples from several earthquakes

databases.

Future researches could also develop a paths damages prediction algorithm towards simulating
different scenarios for different macroseismic intensity inputs, so as to consider the effective

earthquake severity in damages assessment.
31



1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888

Anyway, according to current results, this novel holistic methodology can be applied to have under
control the overall risk situation of paths in historical centres and so to provide evaluation tools for
scenario assessment and emergency planning. The damage prevision criterion could also support
the development of pedestrians' evacuation simulators in urban outdoor environments. By focusing
on debris formation, behavioural aspects and human motion speed, simulation models could take
advantages from this study in aspects related to pedestrians’ safer path choice and losses of street
integrity/capability due to earthquakes. Besides, it could be a first criterion to evaluate and taking

into account streets vulnerability and their damages in evacuation procedures.

During the evaluation of evacuation management strategies, results from its application could
suggest which links should be excluded from selected paths because of their high-risk level, and

which could be considered safer (according to a relative scenario sample-based scale).

The proposed seismic risk assessment methodology could be combined with simulation tools for
analysing the evacuation process and the use of paths in historic city centres. In such way, results
could also be useful to local authorities to suggest where directing risk-reduction interventions and
resources following an order of intervention priority (e.g.: through a path risk maps of the historical

urban fabric: Seismic Risk Map and Intervention Priority Map).
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5 Appendix A

Table 7 Notation table.

Symbol Measure Description
Seismic risk, related to the number of people killed or injured, the damage to

R - property and the impact on economic activity due to the occurrence of the
disastrous event

v - Seismic vulnerability, related to the “weakness” of the element

H - Seismic hazard, related to the possibility of future seismic actions

£ i Seismic exposure, related to the presence and the “value” of buildings and
other objects and to the possible consequences on human life

ag m/s? Peak ground acceleration (PGA)

Irj - Street network Risk index for j-link

Irn,j - Normalized street network Risk index for j-link

Wiy - Weigh related to the i-th parameter

Wey - Weigh related to the k-th factor

Spix - Value conferred to the i-th parameter of the k-th factor

Spjmax - Maximum attributable value to the i-th parameter of the k-th factor

v i Seismic vulnerability index of the considered

b building through the macroseismic method

Incidence of the building in the link, as the ratio between

b - . .
building and link lengths

Lp m Building length

Viinkj - Seismic vulnerability of the j-link

VNjinkj - Normalized seismic vulnerability of the j-link

RDS - Road Damage Scale [37]

Average Flow Veic./h Number of vehicles that travel across a section per unit time

L m Link length from node to node

Limax m Maximum link length in the analysed sample

w m Link width in terms of carriageway average extension

W nax m Maximum Link width in the analysed sample

A m?2 Area of evaluated Square

A m?2 Maximum Square area in the analysed sample

max
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6 AppendixB

Table 8 Method validation sample data. The assessed link is identified through to the relative ID by showing related: location and

reference earthquake; evaluated risk index (I ;) and normalised index (I, ;) according to the three approaches (in the AHP approach,

such values are equal); Road Damage Levels (RDS).

Modified Cherubini’s

code Location Earthquake approach Expert judgement AHP RDS
Irj lpn;j Irj lrnj Irj

A Arquata del Tronto (AP) Central Italy 2016 1.22 41% 3.57 40% 44% 2
B Pescara del Tronto (AP) Central Italy 2016 1.65 55% 5.13 58% 58% 3
C Norcia (PG) Central Italy 2016 1.18 39% 3.36 38% 43% 1
D Norcia (PG) Central Italy 2016 1.30 43% 3.73 42% 46% 1
E Norcia (PG) Central Italy 2016 1.50 50% 4.79 54% 56% 3
F Castelluccio di Norcia (PG) Central Italy 2016 1.51 50% 4.92 55% 60% 2
G Castelluccio di Norcia (PG) Central Italy 2016 1.54 51% 4.99 56% 60% 3
H Tra Valli Umbre (PG) Central Italy 2016 1.53 51% 5.18 63% 63% 4
| Forca Canapine (PG) Central Italy 2016 1.61 54% 3.17 65% 63% 4
J Amatrice (RI) Central Italy 2016 1.16 39% 1.96 36% 45% 1
K Offida (AP) Central Italy 2016 0.75 25% 2.00 22% 32% 0
L Tolentino (MC) Central Italy 2016 0.76 25% 5.33 22% 31% 0
M Accumoli (RI) Central Italy 2016 1.72 57% 4.58 60% 59% 3
N Amatrice (RI) Central Italy 2016 1.73 58% 4.83 51% 54% 3
(e} Amatrice (RI) Central Italy 2016 1.83 61% 4.82 54% 58% 3
P Onna (AQ) Aquila (Italy) 2009 1.36 45% 4.29 59% 56% 4
Q Onna (AQ) Aquila (Italy) 2009 1.32 44% 4.29 48% 53% 2
Fossa (AQ) Aquila (Italy) 2009 1.41 47% 4.86 59% 58% 4

S Arischia (AQ) Aquila (Italy) 2009 1.44 48% 4.66 52% 51% 3
T San Felice sul Panaro (MO) Emilia (Italy) 2012 1.28 43% 3.84 47% 44% 2
U San Carlo (FE) Emilia (Italy) 2012 1.24 41% 3.49 39% 47% 2
\ San Carlo (FE) Emilia (Italy) 2012 1.29 43% 3.62 41% 48% 3
W Mirabello (FE) Emilia (Italy) 2012 1.33 44% 3.62 41% 47% 2
X Sant’Agostino (FE) Emilia (Italy) 2012 1.40 47% 3.66 41% 50% 2
Y San Carlo (FE) Emilia (Italy) 2012 1.29 43% 3.62 41% 48% 3
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2007

2008
2009 .

7 Appendix C
2010 PP
2011
2012 Table 9 Case study application results from the historical centre of Offida (AP) Italy, by collecting obtained values from inquiring
2013
2014 parameters according to Section 2 definition for each link and squares. For both paths network elements, the evaluated risk indices
2015 (Ir;) and the normalised ones (g, ;) are shown.
2016
2017
2018 ID case A B c D E F Irj ko
2019
2020 Links
2021 A Clear 0.47 0.20 0.73 0 1.25 2.65 29%
2022
2023 B Clear 0.50 0.33 0.97 0.25 1.00 3.05 33%
2024 C Clear 0.43 0.33 0.97 0.50 1.00 3.24 35%
2025
2026 D Clear 0.50 0.60 0.97 0.50 1.00 3.57 39%
2027 E Clear 0.60 0.47 1.27 0.50 1.00 3.84 42%
2028
2029 F Clear 0.50 0.60 0.97 0.75 1.00 3.82 42%
2030 G Clear 0.60 0.33 1.27 0.50 1.00 3.70 40%
2031
2032 H Clear 0.50 0.33 0.97 0.75 1.00 3.55 39%
2033 | Clear 0.50 0.33 1.57 0.50 1.00 3.90 42%
2034
2035 L Clear 0.50 0.33 1.57 0.25 1.00 3.65 40%
2036 M Clear 0.50 0.73 1.47 0.50 1.00 4.20 46%
2037
2038 N Clear 0.50 0.33 1.27 0.75 1.00 3.85 42%
2039 (0] Clear 0.60 0.20 1.27 0.50 1.00 3.57 39%
2040
2041 P Clear 0.67 0.60 1.27 0.75 1.00 4.29 47%
ggjg Q Clear 0.60 0.33 1.27 0.75 1.00 3.95 43%
2044 R Clear 0.67 0.33 1.27 0.75 1.00 4.02 44%
2045
2046 S Clear 0.53 0.93 1.63 0.25 1.25 4.60 50%
2047 T Clear 0.53 0.33 1.93 0.25 1.25 4.30 47%
2048
2049 U Clear 0.53 0.33 0.63 0.50 1.25 3.25 35%
2050 % Clear 0.73 0.60 2.47 0.25 1.25 5.30 58%
2051
2052 YA Clear 0.53 0.33 0.33 0.25 1.25 2.70 29%
2053 Squares
2054
2055 P1 Clear 0.43 0.07 1.73 0 1.25 2.45 30%
2056 P2 Clear 0.47 0.67 0.33 0.25 1.25 2.96 35%
2057
2058 P3 Clear 0.53 0.07 1.67 0.50 1.00 3.77 45%
2059 P8 Clear 0.67 0.07 1.27 0.50 1.00 3.50 42%
2060
2061
2062 35
2063
2064

2065
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2110
2111
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P10 Clear 0.67 0.07 1.27 0.50 1.00 3.50 42%

P11 Clear 0.50 0.07 0.97 0.50 1.00 3.04 36%
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