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Abstract Viscous dampers are dissipation devices widely employed for seismic structural control. To date, the 
performance of systems equipped with viscous dampers has been extensively analysed only by employing deterministic 
approaches. However, these approaches neglect the response dispersion due to the uncertainties in the input as well as 
the variability of the system properties. Some recent works have highlighted the important role of these seismic input 
uncertainties in the seismic performance of linear and nonlinear viscous dampers. This study analyses the effect of the 
variability of damper properties on the probabilistic system response and risk. In particular, the paper aims at evaluating 
the impact of the tolerance allowed in devices’ quality control and production tests in terms of variation of the 
exceedance probabilities of the Engineering Demand Parameters (EDPs) which are most relevant for the seismic 
performance. A preliminary study is carried out to relate the variability of the constitutive damper characteristics to the 
tolerance limit allowed in tests and to evaluate the consequences on the device’s dissipation properties. In the 
subsequent part of the study, the sensitivity of the dynamic response is analysed by harmonic analysis. Finally, the 
seismic response sensitivity is studied by evaluating the influence of the allowed variability of the constitutive damper 
characteristics on the response hazard curves, providing the exceedance probability per year of EDPs. A set of linear 
elastic systems with different dynamic properties, equipped with linear and nonlinear dampers, are considered in the 
analyses, and Subset Simulation (SS) is employed together with the Markov Chain Monte Carlo method to achieve a 
confident estimate of small exceedance probabilities. 

Keywords Seismic reliability; Viscous dampers; Damper properties variability; Subset simulation 

1 Introduction 

Supplemental energy dissipation systems are widely employed for seismic control of new and existing structures. In 
particular, viscous dampers have proved to be very efficient devices for dissipating the seismic input energy into heat, 
by reducing the displacement and inter-storey drift demand in structures (Lavan an Dargush 2009; Pavlou and 
Constantinou 2006). If properly designed, moment-resisting frames with added dampers could also exhibit reduced 
force and acceleration demands compared to conventional frames (Karavasilis and Seo 2011). To date, the performance 
of systems equipped with viscous dampers has been extensively analyzed by employing only deterministic approaches, 
neglecting the response dispersion due to the uncertainties in the input as well as in the structural system properties. 
However, these deterministic approaches provide only an approximate assessment of the seismic performance (Bradley 
2013). Some recent works have highlighted the importance of the uncertainties in the seismic performance assessment 
of structures equipped with viscous dampers (Seo et al. 2014; Gidaris and Taflanidis 2015; Tubaldi et al. 2014a; 
Tubaldi et al 2015; Karavasilis 2016) and the different propagation of ground motion variability in systems equipped 
with linear or nonlinear viscous dampers (Tubaldi et al. 2014b; Tubaldi and Kougioumtzoglou 2015; Dall’Asta et al. 
2016), while the work of (Lavan and Avishur 2013) has analyzed the influence of the uncertainties concerning model 
parameters on the seismic performance. 

The present study focuses on the influence of the variability of the damper properties due to manufacturing. The 
nominal properties are declared by the manufacturers and these properties should be confirmed by the prototype tests 
later, during the design or construction phase. However, seismic codes allow variations of the single device’s properties 
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with respect to the nominal values (ASCE/SEI 2010; ASCE 41 2013; EN 15129 2010; EC8 2004), although bounded by 
tolerance limits allowed for the damper force. Consequently, design procedures usually involve a safety check based on 
the responses obtained by upper and lower bounds of the damper properties, chosen coherently with the test tolerances 
and modalities.  However, the variability of the damper properties is generally tested in a limited range of performance 
levels, around some design conditions, while the reliability assessment entails evaluating a significantly wider range of 
performance levels. In conclusion, the actual level of safety provided by the suggested design procedures is a problem 
requiring further investigation, as pointed out in (Dall’Asta et al. 2016), and the relevance of this topic is mainly due to 
the low robustness inherent to the structure-dampers system, where the unexpected dissipative device failure can lead to 
a progressive collapse of the potentially non-ductile structure. 

The present paper aims at evaluating the influence of these allowed tolerances in the probabilistic performance of 
the system, by providing information on the exceedance probability of the engineering demand parameters (EDPs) of 
most interest for the performance assessment (as described by response hazard curves) and by using an efficient and 
reliable approach. 

A preliminary analysis of the damper response is firstly developed to relate the variation of the damper constitutive 
characteristics to the tolerance allowed in the experimental tests and to analyze the variation in the dissipation properties 
of the device. A second step concerns the harmonic analysis of a set of linear elastic single degree-of-freedom systems 
with different dynamic properties coupled with linear and nonlinear viscous dampers. The relevant sensitivity analysis 
permits to evaluate the effect of the parameter variations for different frequencies and amplitudes of the external input 
and the results can help understanding the more complex seismic response.  

In the final part of the study, seismic hazard curves are developed for the set of dynamic systems considered in the 
previous harmonic analysis, covering different couplings between the seismic input frequency contents and the dynamic 
properties of the structural system. These curves provide the relation between the values of the EDPs of interest and the 
relevant yearly probability of exceedance. A sensitivity analysis, considering the maximum expected variation of the 
damper properties, is then carried out to assess the influence on the hazard curves. The EDPs considered include the 
maximum values of the deformation, related to the damage of the structural system and the damper failure (Pollini et al. 
2016; Mijamoto et al. 2010), the maximum values of the relative velocity, related to the damper force and the maximum 
absolute accelerations, related to the total base reaction and the damage of acceleration sensitive devices. In order to 
provide amplification factors that can be compared with reliability factors suggested by the seismic codes (ASCE/SEI 
2010; ASCE 41 2013), the response hazard curves are normalized by dividing the values of the EDPs by the 
corresponding design values. 

In addition to the damper variability, the uncertainties considered in the applications concern the earthquake 
scenario parameters and the ground motion characteristics. Other uncertainties concerning the structural model, albeit 
important in some situations (Lavan and Avishur 2013, Tubaldi et al. 2011), are neglected.  

It is noteworthy that the probabilistic response of the system was analyzed in many previous studies by employing 
approaches consistent with the PEER framework (Pinto et al. 2004; Porter 2003). This latter is a widely-employed 
framework that permits a separation of the tasks related to the seismic hazard, structural vulnerability and expected 
losses assessment. The application of the framework is usually based on a description of the seismic input in terms of a 
small set of real records. This approach does not permit to achieve an accurate estimate of small failure probabilities.  

For this reason, in this study the Subset Simulation algorithm, with Markov Chain Monte Carlo method, is 
employed to obtain a good estimate of small probabilities of exceedance (Au and Beck 2001; Au and Beck 2003). This 
simulation techniques require a seismological stochastic model and the one proposed in (Atkinson and Silva 2000; 
Boore 2003) is used for the analyses. 

2 Damper response sensitivity 

Fluid viscous devices can either show an elastic deformation or not, depending on some minor inner manufacturing 
detail (i.e., presence of accumulator for preventing fluid compression). Despite a Maxwell model (i.e., an elastic spring 
and a viscous dashpot in series) is often employed for modelling purposes (Christopoulos and Filiatrault 2006; Symans 
and Constantiou 1998), in this work the compliance is neglected, and the dampers are modelled as nonlinear viscous 
dashpots whose constitutive law can be described in the form (Constantinou and Symans 1992; Symans and 
Constantiou 1998; Castellano et al. 2012) 

    vvcvdF sgn
  (1) 
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where v is the velocity between the damper’s end, Fd is the damper resisting force, c and  are two constitutive 

parameters: the former is a multiplicative factor, while the latter describes the damper nonlinear behaviour (for 
the linear case). 
In a sensitivity study aimed at evaluating the consequences of variations of the damper parameters on the system 
performance, these two parameters could be assumed to vary freely. However, the code indications on production 
control tests suggest a different approach to the sensitivity analysis, involving a constrained variation of the 
characteristic parameters directly linked to the acceptance criteria, as explained hereafter. In general, the seismic design 

of dissipative devices, such as viscous dampers, is based on a design value of the displacement *u  and velocity *; the 

control tests are generally oriented to check the damper behavior at this design condition. In particular, sinusoidal cycles 

with the displacement histories    *** /sin utvutu   are imposed to the damper and the corresponding maximum 

damper force dF  is measured. Some tolerance is allowed in the force value and acceptance criteria usually require that 

the difference between the measured value of the maximum force Fd and the expected (design) value Fd
* is not too 

significant. More precisely, Fd must be within the interval     ** 1;1 dUdL FpFp   defined by the lower and upper 

values (respectively pL and pU) of a tolerance parameter p (ASCE/SEI 2010; ASCE 41 2013; EN 15129 2010). The 
safety check is coherently carried out by employing a lower/upper bound approach, considering the worst conditions 
compatible with the acceptance criteria (ASCE/SEI 2010; ASCE 41 2013; EN 15129 2010). 

In this context, it is useful to establish a relationship between the variability of the response of the system equipped 
with the device and the outcomes of the acceptance tests. Thus, in this study the response is investigated by introducing 
the parameter p, describing the acceptance tolerance, and by studying the response variability for those constrained 

pairs of constitutive parameters  ,c  providing the same force variation *
dpF  at the design velocity *v . At this regard, 

it is useful to replace the constitutive relation of Eqn. (1) with a dimensionless one focusing on the design conditions 

and expressed in terms of the velocity *v  and the reference values of the constitutive parameters  00 ,c  

       
ˆ*01 vf d   (2) 

where */ vv , */ ddd FFf  , 0/ˆ cc , having denoted by ĉ  the variation of the parameter c  and by ̂  the variation 

of  . The previous expression holds for positive velocity values only but it is sufficient for the following discussion 

about the constitutive parameters. 
For given tolerance p , the normalized force cannot exceed the following limit value at the reference velocity 

   pfd  11  (3) 

and the combination of the two last equations leads to a constraint on the possible variations of c and  . This 

constraint associated to p  can be expressed by the equation 

  
 

1
*

1ˆ
ˆ








v

p
p  (4) 

where the variation 0ˆ cc p of c  is not free but derives from the variation ̂  of . 

By substituting the expression of   ˆp  according to Eqn.(2) into Eqn.(4), one obtains 

         ˆ01ˆ; pfdp   (5) 

As expected,   ˆ;dpf   is equal to p1  at the design condition (i.e., for 1 ), and varies by varying the velocity. 

In order to compare cases with different ̂  values, it is useful to observe that the ratio between the varied normalized 

force   ˆ;dpf  for a given ̂ , and for ̂ = 0, is 

 
 
 



 ˆ

0;

ˆ;


dp

dp

f

f
 (6) 
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This ratio is the same for systems with different reference pairs  00 ,c  and it depends on the variation ̂  only. 

Increment or decrement of this ratio are controlled by the sign of ̂ . The ratio is equal to 1 when 1  and also for 

̂ = 0, i.e., if only c is allowed to vary (in this case, the varied forces are proportional to the reference one at all the 

velocities).   
Fig. 1 describes the variation of the force-velocity relation in the neighborhood of the linear case ( 10  ) and the 

nonlinear case ( 3.00  ). The curves corresponding to the tolerance limit 15.0Up  (blue curves) and 15.0Lp  

(red curves) are plotted and compared with the curves corresponding to the reference condition (black curves). The 

results concerning 0ˆ   ( pp  ) are reported by a red/blue solid line. The investigated range of variation of ̂  is 

bounded by the upper limit 137.0ˆ U  and the lower limit 152.0ˆ L , with p following from Eqn. (4). The two 

extreme -variations above ( U̂ , L̂ ) have been obtained by posing the normalized force ratio  ˆ  in Eqn. (6) equal to 

%10  at a velocity which is twice the design one ( 2 ). 

It is worth to note that statistical information on the values of the variation ̂  observed in experimental tests are not 

available in the literature, at least to the authors’ knowledge. The investigated range of variation is such that: 1) it 
complies with the code’s provisions concerning the tolerance on the damper’s force response at the design velocity; 2) it 
is meaningful from a physical point of view, and consistent with some experimental test results (Infanti et al. 2004, 

Castellano et al. 2012), where the force variability can be attributed to variations of both c and  with respect to the 
nominal values.  

It is noteworthy that according to other experimental tests (Seleemah AA, Constantinou 1997) the damper force 
variation may appear to be controlled by variation of c only. More experimental studies are required to investigate this 
aspect. 

  
(a) (b) 

Fig. 1 Damper response function: a linear case (=1); b nonlinear case (=0.3) 

By referring to Fig. 1, it is possible to observe that a variation of c  only ( 0ˆ  ) provides a homogeneous effect and the 

force variation is equal to the tolerance parameter p  at all the velocity levels. More interestingly, the variation of 

induces a non-homogeneous variation of the force. In the field of velocities larger than the design one ( 1 ) two 

curves diverge from the reference one and they correspond to the cases where ̂  has the same sign of p , i.e. 0ˆ p . 

The variations increase as the velocity increases. The remaining two cases where 0ˆ p provide curves approaching 

the reference curve when the velocity increases and intersecting it when the velocity is sufficiently large. Opposite 
trends can be observed for velocity levels lower than the reference one.  In this case, even larger force variations can be 
observed for some velocity levels. The curves cannot however diverge in this case and all of them tend to zero when the 
velocity approaches zero. 

To complete the response analysis of the device, it is useful to consider the influence of the constitutive parameters 
variations on the dissipative properties. 
The expression of the energy dissipated in a sinusoidal cycle with circular frequency   and amplitude /v  is 
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    



 1

,



cv

vWd  (7) 

where    is a geometric function related to the shape of the cycle (Symans and Constantiou 1998; Tubaldi et al. 

2015). As previously, it is useful to define a dimensionless expression,  dw , obtained by dividing  ,vWd  by the 

energy dissipated at the design velocity value v* by a system corresponding to the reference parameters (c0,a0) : 

       
   



 

0
0

0ˆ ˆ
*1 dd wvw


  (8) 

This ratio does not depend on the circular frequency,   1
0

0  dw   describes the trend observed in the reference 

system  00 ,c  by varying the velocity only, and the other quantities have been previously introduced. The expression 

corresponding to the case of fixed tolerance p  can be derived by the constraint of Eqn. (4) and the ratio between the 

varied and reference situation is  

 
 
     

 0

0ˆ

0

ˆ
1

ˆ;






  

 p
w

w

d

dp  (9) 

Fig. 2 describes the trend of this ratio for the upper and lower limits of p  and ̂  used in the previous discussion about 

the force variations. Differently from the previous case, the variation ̂  influences the dissipated energy also at the 

reference velocity 1 . As in the case of the damper forces, the curves concerning the cases with 0ˆ p  diverge 

from the reference curve for high velocity levels but in the case of the dissipated energy the intersection between the 

curves with different ̂  is shifted towards velocity values larger than one. The curves for the energy variation in the 

linear case have a parabolic trend of variation with respect to the variation of the normalized velocity while they exhibit 

limited variations for a variation of ̂ . In the nonlinear case, the curve curvatures are lower and the percentage 

variations due to a variation of ̂  are larger than the variations observed in the linear case. These different trends in the 

curvature and in the variation amounts provide information useful for understanding the trends in the dynamic response 
discussed in the following section. 

  
(a) (b) 

Fig. 2 Dissipated energy per cycle: a linear case (=1); b nonlinear case (=0.3) 

3 Dynamic response sensitivity 

The previous section analyzes the quasi-static response of the device under assigned sinusoidal deformation histories 
with different amplitude. However, the observed results cannot be directly transferred to the response of dynamical 
systems with nonlinear viscous dampers. 
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In this section, a preliminary study of the dynamic behaviour is carried out to give evidence to some qualitative 
results useful for understanding the seismic response discussed in the next section. For this purpose, the harmonic 
response of a single-degree of freedom (S-DOF) system to an input force of increasing intensity is considered. The 

differential equation providing the motion  tu  is 

             tmAtkututuctuctum L 
sinsgn    (10) 

where m  is the mass, Lc  is the constant describing a basic linear inherent damping, c  and  are the constants 

describing the nonlinear added viscous damper, k  is the system elastic stiffness and the dots denote time derivatives.  

The external input consists of a sinusoidal base motion with acceleration amplitude A  and cyclic frequency  . The 

initial conditions are assumed null, and the results shown concern the periodic stationary response observed after the 

transient behaviour has vanished. Reference scale values u  and t  can be chosen for the displacements and time 

respectively and the equation can be written in the dimensionless form 

              



t

u

tA

m

tk

um

tc

m

tcL sinsgn
22

1

2

 


  (11) 

where tt /  and uu / . The problem is fully described by assigning a set of 4 dimensionless constants (Tubaldi et 

al. 2015; Makris and Black 2004a) and the formulation can be further simplified by relating the time scale factor to the 

dynamic properties of the undamped oscillator, kmt //1    (natural period 2/ ). After substituting, the problem 

formulation reduces to 

            





  










 

 sinsgn
212 u

A

um

c

m

cL   (12) 

The problem description is completed by assigning the other dimensionless constants:  mcL /1   describes the 

inherent damping and it is twice the usual damping factor,   12
2 / umc  is a term proportional to the nonlinear 

damping,   is the exponent describing the nonlinear behaviour, and uA 2/  and  /  describe the amplitude and 

oscillating properties of the external input respectively. 
Three different dynamic systems are considered in the dynamic analysis, which differ in their characteristic periods 

that are: sT 5.01   (  4 ), sT 0.12   (  2 ), sT 0.33   (  3/2 ). These values can be roughly assumed to 

describe the case of stiff low-rise buildings, deformable middle-rise buildings and isolated buildings, respectively. All 

the systems have the same inherent damping parameter 1.01  , associated to a damping factor equal to 5%.  

The analysis results obtained for the linear case ( 0.10  ) and the nonlinear case ( 3.00  ) are discussed and 

compared for three different input levels, corresponding to different normalized displacement amplitudes. The first 

input level corresponds to an acceleration intensity 1A  selected to provide a maximum displacement demand equal to 

the design value *uu   (    1max  ), in a linear system with an additional damping described by 5.02  , 

corresponding to a damping factor equal to 25%. The coefficient 0c  of the reference case follows from the expression 

of  2 . In order to allow the comparison between the linear and the nonlinear case, the parameter 2  of the nonlinear 

case and relevant 0c  are calibrated to provide the same maximum displacement of the linear case. Further information 

on the choice of the value *u  and the calibration of the viscous coefficients can be found in Section 4.4, concerning the 

response to the seismic input. 

The other two different levels correspond to a lower acceleration level 5.0A , providing a maximum displacement 

equal to u5.0 , and a higher acceleration 2A , providing a maximum displacement equal to u2 . Design values reported 

in the following Table 1, relevant to a realistic seismic scenario, are chosen for the nonlinear harmonic analysis. 

Design displacement values *u  and associated acceleration amplitudes are different for the three dynamic systems 

but due to space constraint only the results of the system with the intermediate characteristic circular frequency 
 2  are presented and discussed in this section. As it can be verified, the coefficients of the dimensionless equation, 

included the nonlinear term, are very similar for the three cases, in consequence of the length scale factor employed 
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which is equal to the seismic design values *uu   of the displacements and the time scale, equal to /1 . This is due to 

the equivalence criteria requiring similar dissipative properties for all the cases considered at *u . As a consequence, the 

stationary solutions and the relevant amplitudes reported hereinafter for different intensity levels and different circular 
frequency ratios are very similar for the three oscillators. 

The results for the linear and nonlinear cases are reported respectively in Fig. 3 and Fig. 4. For each acceleration 

level (rows corresponding to 5.0A , 1A , 2A ), the reference solution related to the parameter pair  00 ,c  (solid black line) 

is compared with the varied solutions evaluated for the lower (red curves) and upper (blue curves) tolerance limits 

considered in the previous section ( 15.0Lp , 15.0Up ). In both the cases, the previous two limit values of the 

variation of   are considered: 152.0ˆ L  (dashed line) and 137.0ˆ U  (dotted line). Reported in the figures are 

the maximum dimensionless displacement (first column) and the maximum damper force (second column) measured in 

the stable response in the circular frequency range  5.2,0/  . In particular, the ratio between the measured damper 

force and the maximum value observed for the reference solution at the intermediate acceleration level, is reported. 
Finally, the damper force-displacement periodic response is plotted in the third column.  

A
0.

5 

 

A
1 
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Fig. 3 Dynamic harmonic response for the linear reference case ( 0.10  ) 

The maximum displacement obtained for the reference force amplitude 1A  is analyzed first. This response parameter 

is influenced by the variation ̂ , as expected in consequence of the variation of the dissipative properties observed in 

the previous section (Fig. 2). At stable conditions the maximum displacement is controlled by the balance between the 
external work per cycle and the energy dissipated by the system per cycle. The variation of the external work is 
approximately proportional to the maximum displacement variation while the dissipated energy variation has a 
nonlinear dependence on the displacements, strongly influenced by the parameter  . These considerations about 
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energy balance explain the differences observed between the linear and nonlinear cases as well as the larger variation 
amplitude of the latter case. For the whole range of frequencies analyzed, the maximum and minimum displacement 

variations are observed for the pairs Lp , U̂  and Up , L̂ , respectively, for both the linear and nonlinear damper. As 

expected, the damper forces show an opposite trend; in the linear case the maximum and minimum forces are obtained 

for the pairs Up , U̂  and Lp , L̂ , around 1/   respectively and inverted trends, with maximum and minimum 

corresponding to the pairs Up , L̂  and Lp , U̂ , are observed for   far from  . 

The nonlinear response is quite different and more complex than the linear one. Unlike the linear case, larger 

variations can be observed around 1/   and the response curve is generally “flatter” than the curve of the linear 

case. The differences measured in the damper force do not vary drastically by shifting the external force circular 
frequency even if, as in the case of linear damper, there are intersections causing the curves trend inversion between the 

resonant zone and the frequencies further from  . Thus, the cases providing the extreme force values at 1/   are 

not the same providing the maximum force values for higher and lower circular frequencies. This latter feature can be 
of interest in the seismic analysis because it implies that an earthquake with a fixed frequency content can provide 
different response variations on dynamic systems with different characteristic periods. 

The normalized system response changes by applying the lowest input level 5.0A  and the highest input level 2A . 

For 5.0A , the extreme positive and negative displacements variations are still provided by the pairs Lp , U̂ and Up , L̂  

respectively (along the whole frequency range) as in the case of 1A , whereas for 5.0A  they are governed by the 

Lp , L̂ and Up , U̂  pairs around 1/  . The damper forces in correspondence of the input amplitudes 5.0A and 

2A exhibit a trend opposite to that of the displacements. 

All the trends qualitatively described above are consistent with the trend of variation with ̂  of the dissipated 

energy reported in Fig. 2, where the curves relevant to L̂  and U̂  intersect at a velocity value larger than *v . The 

trend of the positive extreme variations of the displacements and the trend of the damper force variations can be 
explained on the basis of similar observations.  
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Fig. 4 Dynamic harmonic response for the nonlinear reference case ( 3.00  ) 

4 Seismic performance sensitivity  

4.1 Seismic performance description 

The seismic assessment and design of structures aims at ensuring that the probability that a EDP of interest D  exceeds 

a fixed threshold fd ,  fdDP > , is lower than an acceptable value fP . The generic response D  accounts for the 

uncertainties in the loading actions and in the system response. Typical EDPs employed in the context of performance 
assessment of building with viscous dampers are: inter-storey drifts, absolute floor accelerations, total base shear, 
damper strokes and forces.  

Design codes and practical assessment procedures aim at satisfying the reliability constraint in an indirect way, by 

evaluating, via structural analysis, a conventional demand measure fdd *  for a loading level whose exceedance 

probability *P is higher than the acceptable probability fP  (Bradley 2013). A series of factors is then used to increase 

the demand *d  up to the target value fd  (Wen et al. 2003). In the specific case of the seismic analysis of buildings 

equipped with dampers, the design is carried out by evaluating the response for seismic events with a mean annual 
frequency of occurrence approximately varying from 1·10-2 (serviceability limit state) to 2·10-3 (ultimate limit state) 
(ASCE 7 2010; Probabilistic Model Code 2000; EC0 2002) while the safety goal is to achieve a probability of failure 
per year lower than 10-5-10-6 (ASCE 7 2010; EC0 2002). 

In order to relate the design condition, described by the pairs  **, Pd , to the effective failure condition, described 

by the couple  ff Pd , , it is useful to evaluate first the response hazard function  

    dDPdGD >  (13) 

associating a generic value of the EDP threshold d  to the corresponding probability of exceedance. The conventional 

design value *d  can be linked to the response value associated to a given probability of exceedance by introducing the 

inverse function GD
-1(P) and defining the ratio 

    
*

1

d

PG
P D

d


  (14) 

This ratio can be interpreted as the amplification factor for the design value *d  providing the EDP value corresponding 

to the desired probability of exceedance P, and  fd P  can be compared with the reliability factors suggested by some 

recent seismic codes (ASCE 41 2013; EN 15129 2010) and used in semi-probabilistic methods for safety verifications. 

Design procedures generally introduce a further simplification as they prescribe to evaluate *d  by means of a 

deterministic analysis rather than a probabilistic one. In fact, the seismic design is usually based on the description of 
the seismic input in terms of a pseudo-acceleration response spectrum and a reduced set of (artificial or natural) ground 

motions accounting for the record-to-record variability effects. The conventional design value of the response *d  is 

obtained as the mean of the maximum response values. This design approach introduces further sources of 
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approximation in the evaluation of the system reliability which are not addressed in this work (Bradley 2013; Wen et al. 
2003). 

4.2 Uncertainty description 

In this paper, the uncertainties taken into account concern the seismic input and the viscous damper properties, while 
the uncertainties in the other structural model parameters (e.g., material, geometrical properties, etc.), usually having a 
minor influence on the probabilistic response (Tubaldi et al. 2011), are not considered (i.e., these quantities are assumed 
to be deterministic). The uncertainties in the seismic input  are described by a statistical model while the uncertainties in 
the damper properties are considered in the context of the sensitivity analysis, in order to relate the variation of these 
parameters to the variation of the statistical properties of the system response. In general, two different approaches can 
be employed for the probabilistic representation of ground motions. The first approach is a conditional intensity 
measure (IM)-based one, requiring the selection of a set of real ground motion records to represent the record-to-record 
variability effects conditional to an IM value, whereas the second one is based on a fully stochastic representation of the 
seismic input. This paper employs the second approach, in conjunction with Subset simulation to achieve an accurate 
estimate of small failure probability. 

The most representative and widely used stochastic ground motion models are the Atkinson and Silva (AS) ground 
motion (GM) model (Atkinson and Silva 2000) and the Razeian and Der Kiureghian (RDK) GM model (2010) 
respectively. The former accounts for the physic process behind a seismic event (fault rupture, waves propagation 
trough the medium, site amplification) through an analytical description of the earthquake’s spectral distribution (the 
so-called source-spectrum, corresponding to the mean Fourier spectrum of the simulated accelerograms); the latter 
instead, consists in fitting a set of properly time-and-frequency-modulated time-signal on a suite of recorded ground 
motions. The two mentioned GM models differ the one to each other for many aspects, the main of which are described 
below. The RDK model accounts for the non-stationary spectral content, a feature of interest for structural systems 
whose fundamental frequencies shift during the earthquake as a consequence of hysteretic behaviour. Being the model 
parameters calibrated on a specific seismic database the use is constrained within a limited range of seismic scenarios. 
The record-to-record variability is also well-accounted for. The AS model does not account for the spectral variability 
and the record-to-record variability needs to be improved by adding some external source of variability (Jalayer and 
Beck 2008). However, this model can be used in a wide range of seismic scenarios. The presented study concerns 
structural systems with fixed resonant frequency and the AS GM model has been preferred due to its greater flexibility.  

The seismic input is described by defining a seismic source characterized in terms of moment magnitude Mm and 
source-to-site (hypo-central) distance R. This description is completed by the specification of a stochastic ground 
motion model accounting for the properties of the construction site. The intensity of the seismic event is described by 
the moment magnitude Mm and its uncertainty is modeled by the Gutenberg-Richter law defined in the interval [mm,min, 
mm,MAX] and corresponding to the following PDF of Mm given an earthquake event (Gutenberg and Richter 1958):  

  
MAXmm

m

mm

m

mM
ee

e
mp

,min, 











    MAXmmm mmm ,min, ,  (15) 

where  = ln(10)b (through the parameter b) is a parameter related to the number of the expected earthquakes per year 
with magnitude exceeding mm. More precisely, it is assumed that the occurrence of an event with Mm > mm is a Poisson 

process with exceedance frequency (mm) = 10a-bm   and no event is expected for Mm > mm,MAX. It is also assumed that 
no significant response is observed for Mm < mm,min, so the response hazard function, referred to a time interval one year 

long, can be obtained as       min,>|>1 min,
mm

m
d mMdDPedG mM by starting from the outcomes of the subset 

procedure  min,>|> mm mMdDP .  

The ground motion is generated by starting from a white noise w(t), described by the N-dimensional vector w of 

values iw  assumed at the instant ti = it, where t is the finite time interval assumed for the numerical integration. 

Following the Atkinson-Silva model (Atkinson and Silva 2000; Boore 2003), the ground motion is obtained by 
modulating in time the white noise by means of the function e(t), which yields the time-function z(t)=e(t)w(t). The 

amplitude and the frequency content are obtained by multiplying its Fourier transform  fz  (normalized to have a 

mean square amplitude of unity) by the radiation spectra  fSmod , where  fS  is a deterministic function of the 
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frequency f while mod is a scaling factor describing the amplitude variability (Jalayer and Beck 2008). The final ground 

motion acceleration a(t) is obtained by the inverse Fourier transform of    fSfz mod . The time modulating function 

and the radiation spectra S depend on the moment magnitude, the distance and the local characteristic of soil. The 

scaling factors mod  are generated from a random variable with lognormal distribution and unit median value. Further 

details on the ground motion model are reported in Appendix 1. 

The set of variables  w,,, modrmm  describes the motion and consists of the three scalar quantities mm, r, and the 

vector-valued quantity w whose dimension N depends on the discretization of the time interval. 

4.3 Response hazard curve evaluation 

Let X be the vector valued random variable of the system lying in the domain , including both the variables describing 
the ground motion, for which a stochastic model is required, and the structural system uncertainties. The system 

parameters are described by the vector   collecting the damper parameters p  and ̂ , as discussed in the previous 

section. 

The performance measure is a random variable D , whose values are positive, 0d . The exceedance of a generic 

value d  of the EDP, corresponds to the sub-region     dgDd >|:  xx , having denoted with 

   RgD :|x  the response function providing the value of the parameter d , once the samples x  and the 

parameters   are assigned. The response hazard function can be computed as 

       xxx dpIdG XdD  ||   (16) 

where  xXp  if the probability density function (PDF) of the system variables and  |xdI  is an indicator function, 

such that 1dI  if  dx  (equivalently   dgD |x ), otherwise 0dI . In the following, it is assumed that 

 xXp  is not influenced by  , although the formulation can be extended to the general case  |xXp  (Au 2015). 

According to the prescriptions of the Annex C of the European seismic code (EC0 2002) concerning the required 
structural performance, for systems belonging to intermediate reliability classes (RC2 in EC0), a failure probability of 

the order of magnitude of 10-6 has to be considered (reliability index =4.75 of EC0) for the ultimate limit state 
condition to ensure a proper structural safety level. For this reason, the probabilistic analyses carried out in this paper 
are oriented to estimate the response hazard curves up to the probability of exceedance GD=10-6. 

The solution of the reliability problem expressed by the integral of Eqn. (16) requires resorting to simulation. 
However, given the very small probabilities involved in this problem, it is not possible to use the robust direct Monte 
Carlo (MC) approach, because too many samples and simulations would be required to achieve confidence in the failure 
probability estimates (e.g. at least 106 million samples would be required to ensure a coefficient of variation of 10% in 
the estimates of a failure probability of the order of 10-4). For this reason, the Subset Simulation (SS) method (Au and 
Beck 2001; Au and Beck 2003) with Markov chains Monte Carlo (MCMC) method is adopted in this work. The idea 

behind the SS method is that the failure domain f  can be decomposed into a nested sequence of domains 

corresponding to progressively "less-rare" events 11 ...  mmf   in such a way that the target small 

probability    mf PP   can be viewed as a product of larger (conditional) probabilities 

   1

1 11
( ) |

m

m i ii
P P P




      . The intermediate probabilities can be conveniently estimated via the Markov 

chain Monte Carlo method, which allows to generate samples with a conditional probability distribution p(x|i).  
A synthetic description of the method is given below. Fist, a direct MC analysis is performed in order to 

preliminarily investigate the domain . N independent identically distributed (i.i.d.) samples are generated, each one of 

whom furnishes a corresponding response value Dg . Once a fixed percentile ps (a convenient value suggested in Au 

and Beck 2001, also used in this work, is represented by ps =10%) has been chosen, it is possible to adaptively estimate 

a response threshold d1 as the percentile value    sD pdgP 1>| x ; by this way, a first intermediate failure region 

  11 >|: dgD xx  is identified and, despite it is quite far from the target one m  it contains useful information 

for moving the simulation towards m . Now, the Nps (intermediate) failure samples lying in 1  are used as seeds for 
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generating new N(1-ps) conditional samples able to further populate the region 1 . This is possible thanks to the 

Modified Metropolis algorithm that, starting from each seed distributed as  xXp , generate new conditional samples 

(i.e., distributed as  1xxXp ) as states of a Markov chain (a process in which the next state depends on the current 

one only). According to the Metropolis algorithm the current value of a chain’s state is used for the generation of the 
next one by means of a properly chosen proposal pdf having the role of furnishing a next-state candidate; this last can 
be accepted as next state or rejected based on the fulfilment of an accept-reject rule. A discussion about the possible 

choice of the proposal pdf can be found in Au and Beck (2001). Once N samples are available in 1 , a new threshold 

level d2 is adaptively identified as the 10% percentile of the new N samples lying in 1 and the MCMC procedure is 

repeated until the target failure probability P( m ) has been estimated.  

It is noteworthy that although the intermediate failure probabilities are introduced for computational reasons, they 
can be used to effectively estimate the full response hazard curve as they provide the values of the demand 
corresponding to exceedance probabilities higher than the failure probability (Au and Beck 2001; Au and Beck 2003). 

4.4 Results  

In order to evaluate different coupling between the dynamic system properties and the seismic input frequency content, 
the three S-DoF systems with different characteristic periods, previously introduced, are considered to study the seismic 

response. As previously, two added dissipative systems are analysed, the former is a linear one with 0.10   and the 

latter is a nonlinear one with 3.00  .  

The viscous constant c for the linear system has been designed to add a damping factor equal to 0.25, whereas the 
one for the nonlinear system has been calibrated to provide similar performances at the design conditions. More 

precisely, the equivalence has been established by considering the value *u  assumed by the displacement hazard curve 

 *uGU  for P = P* as performance indicator. For each of the three characteristic periods considered, the linear and 

nonlinear damping system provide the same values of *u  at the probability of exceedance )( ** uGP U =0.0021 (10% 

within 50 years); this probability value is usually assumed to define the seismic design loading for ultimate limit state 
conditions (ASCE 7 2010; Probabilistic Model Code 2000; EC0 2002). 

The dynamic response is controlled by (11), modified as follows (Tubaldi et al. 2015) 

             





 
 


 sgn
12 um

c

m

cL  (17) 

where the dimensionless time history    is the ratio between the base acceleration time history and the reference 

acceleration value 2u . 

The seismic scenario is defined by the following values of the seismic hazard parameters: 5.4a , 0.1b , mm,min = 

5, mm,MAX = 8. The time histories are generated coherently with the Atkinson-Silva model, synthetically reported in the 

Appendix, by assuming a fixed hypo-central distance kmr 20 , and the soil conditions are described by 

smVS /310 (corresponding to stiff soil, Boore and Joyner 1997).  

Table 1 reports, for the three different dynamic systems, the reference values of the viscous damper properties ( 0  

and 0c ) and the corresponding values of the EDPs of interest observed for the linear and nonlinearly damped cases at 

the design condition. The EDPs considered for the comparison are: the maximum relative displacement U (controlling 

the structural system’s damage, the damage of displacement- sensitive non-structural components, and the damper 

stroke), the maximum relative velocity V  and the maximum force on the damper dF  (controlling the damper failure), 

the maximum absolute acceleration Acc  (controlling the total base reaction and the damage of acceleration-sensitive 

non-structural components). 
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Table 1 Properties of the damping systems and relevant response at the design conditions 

Characteristic period  s 0.5 1.0 3.0 

Viscous Properties 0   1.00 0.30 1.00 0.30 1.00 0.30 

mc /0  [s/m] 6.283 2.486 3.142 1.360 1.047 0.364 

Demand at *P  *u  [m] 0.026 0.026 0.060 0.060 0.132 0.132 
*v  [m/s] 0.34 0.32 0.45 0.43 0.49 0.51 
*
dF  [N] 432.11 350.21 284.12 210.50 102.73 59.31 

*a  [m/s2] 4.59 4.44 2.65 2.62 0.78 0.73 

Subset simulation is performed to estimate the reliability of the damped systems for both the linear and nonlinear 
viscous dampers cases. A time-interval st 02.0 is considered, corresponding to N=3750. In order to estimate 

exceedance probabilities up to 10-6, the simulations are carried out using 6 conditional levels (with threshold levels 
identified by a percentile equal to 10%) with 1500 samples/level and a total number of samples equal to 1350x5 + 1500 
= 8250. The result shown hereafter are the average of 50 independent simulations. 

The first part of the following discussion compares the response hazard curves of the reference systems obtained by 

considering the nominal damper properties. These curves are expressed by the ratio d (see Eqn. (14)), providing the 
values of amplification or reliability factors accounting for the effects of the variability of the seismic input only. The 
second part analyses the effects of the variability of the viscous damper properties, showing the variation of the factors 

d with respect to the reference condition. The approach followed is consistent with the suggestion given by the 
European code of practice on anti-seismic devices (EN 15129 2010), where the damper force amplification factor to be 
used in the safety check is split into two contributions accounting separately for these two different sources of 
uncertainties. On the other hand, no clear indications are furnished on the displacement amplification for the stroke 
safety check. 

4.5 Probabilistic response at the reference conditions 

At the reference conditions ( 0ˆ ,0  p ), the set of uncertain parameters considered for the performance assessment 

consists of those characterizing the earthquake excitation, i.e., the magnitude m, the white-noise components iw , for I 

= 1, 2, ..., N, and the model error mod . As already discussed, the structural system parameters are assumed to be 

deterministic. 
Fig. 5 reports and compares the hazard curves of the systems with different characteristic periods obtained by 

considering the linear and nonlinear added dampers. Because of the adopted design criterion, the linearly and 

nonlinearly-damped systems with the same vibration period are also characterized by the same displacement *u  at the 

probability of exceedance *P while the other EDPs exhibit different values. The ratios d (see Eqn. (14)) between the 
demand parameters and the reference values corresponding to the design conditions are reported in the horizontal axes 
of Fig. 5.  

The linearly- and nonlinearly-damped systems exhibit different probabilistic responses within the considered range 
of exceedance probabilities up to 10-6. Since the displacement and velocity hazard curves have very similar trends, only 

the curves for the former EDP are shown in the figures. As expected, the linear and nonlinear curves intersect at *P and 

the relevant displacement ratio U  is equal to 1.0. For probabilities of exceedance lower than *P , the displacement 

ratios U  observed in the nonlinear case are larger than the corresponding ones observed in the linear case, confirming 

that the nonlinear solution becomes more demanding than the linear one for rare events. An opposite trend is observed 
for probabilities of exceedance larger than the design one.  

The damper force ratios 
dF  follow an opposite trend with values of the linear system larger than the values of the 

nonlinear one for small probabilities (rare events). In fact, the damper force curve follows a trend similar to the trend of 
the displacement curve in the linear case only, whereas in the nonlinear case the trend is significantly modified by the 

exponent  lower than 1. This leads to the opposite conclusion with respect to displacements, i.e. nonlinear devices are 

notably less demanding for *PP  than linear ones. The accelerations show also a different trend and the performance 
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required by the nonlinear system is generally higher than that required by the linear system both for frequent ( *PP  ) 

and rare ( *PP  ) events.  
Similar qualitative trends can be observed in all the three cases corresponding to different periods of vibration but 

the quantitative results are different. In fact, for a given target probability level, larger values of the ratios d are 
obtained for the displacements and velocities by increasing the characteristic periods, while smaller differences are 

observed for the absolute accelerations. The observed trends are consistent with those reported in previous studies 

carried out on similar dynamic systems (Tubaldi et al. 2014) and obtained by employing a conditional IM-based 
approach. 
 

T Displacements Damper forces Absolute accelerations 
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Fig.5 Normalized response hazard curves for linear (=1.0) and nonlinear (= 0.3) dampers 

4.6 Effect of viscous damper properties variability 

This section illustrates and discusses the influence of the variability of the viscous damper properties on the response 
hazard curves. In Figs. 6-9, the response hazard curves of the previous section obtained for the set of linear and 
nonlinear cases by considering the reference damper parameters are presented together with the corresponding curves 
obtained for the varied damper parameters. As for the previous analyses concerning the damper constitutive response 
and the system dynamic response, the two limit values pL = - 0.15 and pU = + 0.15 are assumed for the variation of the 

force at the design conditions and the extreme values 152.0ˆ L  and U̂  = + 0.137 are considered for the variation 

of the exponential coefficient. In the horizontal axis of the plots, the EDPs are normalized by their corresponding 
reference values (i.e., those related to the probability P*). When necessary to improve readability, the results observed 
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for values of d < 1 (with a probability of exceedance P > P*) are shown separately from the results observed for d > 1 
(relevant to probability of exceedance P < P*).  

Fig. 6 reports the displacement hazard curves for both the linear and the nonlinear case corresponding to different 

variations of c and . Consistently with the harmonic analysis results (see Figs. 3-4, case A2), in the field of rare events 

( *PP  ), the largest differences are measured for the variation pair LLp ̂,  (most demanding case) and UUp ̂,  (least 

demanding case). In the field of frequent events ( *PP  ), the most demanding case corresponds to the pair ULp ̂,  and 

the least demanding to the pair LUp ̂, . These results are consistent with those of harmonic analysis (Figs. 3-4, case A0.5) 

as well. 
The trends of the curves of the velocity V , reported in Fig. 7, are similar to the trends of the displacements, and the 

parameters pairs furnishing the extreme variations in the fields of frequent and rare events are the same of those of the 
displacement curves, as expected. In Fig. 8, the damper force hazard curves are reported. These response parameters are 
derived quantities obtained from velocities via a nonlinear constitutive law. Since the constitutive parameters vary on a 
case-by-case basis, the trends of variation for the force hazard curves are significantly different from those for the 
velocity curves. In particular, the observed variations are higher than velocity variations also in the neighborhood of the 
linear case, as a consequence of the combined variations of the velocity and of the constitutive parameters. Moreover, 
differently from the previous case of kinematic quantities and consistently with the harmonic analysis results, the 

extreme variations in the field *PP   is obtained for the pairs UUp ̂,  (most demanding case) and LLp ̂,  (less 

demanding case). Differently, for *PP  , the most demanding case is obtained with the pair LUp ̂,  and the less 

demanding one with the pair ULp ̂, . Fig. 9 shows the hazard curves of the absolute acceleration. The probability of 

exceedance of the absolute accelerations is less sensitive to the variations of the damper properties. This quantity is 
proportional to the total force acting on the system, and thus it is affected by both the damper forces and the elastic 
system forces, proportional to the displacements, showing opposite sensitivity with respect to the parameter variations.  

In the field *PP  , positive extreme variations occur for LLp ̂,  and extreme negative variations for UUp ̂, . Some 

notable variations are observed in the field of very frequent events with 210P , in the nonlinear case. 
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Fig. 6 Displacement hazard curves 
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Fig. 7 Velocity hazard curves 
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Figure 8. Damper force hazard curves. 
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Fig. 9 Absolute acceleration hazard curves 

The analysis of the effects of the variability of the viscous damper property on the seismic performance is completed by 

Tables 2-5, providing the maximum percentage variations of d with respect to the values observed for the reference 

condition, obtained by considering the most demanding variation of c and  (Zona et al. 2012). In the same tables, the 
variations provided by a c variation only (equal to p) are reported for comparison purposes. 
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First of all, it is worth to note that in general the maximum variations of d, obtained by varying the parameter c only, 
are different for the different cases analyzed (linear and nonlinear systems with different periods) but are more limited 

with respect to the corresponding variations obtained by varying both c and . In this last case, the obtained variations 

are more significant and scattered, although some trends may be individuated. In particular, the ratio U  (reported in 

Table 2) exhibits opposite trends of variations in the linear case than in the nonlinear case. In fact, in the linear case the 
variations increase by decreasing P and by passing from the stiffest case ( sT 5.0 ) to the most deformable one 

( sT 0.3 ), whereas in the nonlinear case, the variations increase by increasing P and by passing from the most 

deformable case to the stiffest one. For the ratio V (Table 3), the same trends are observed by varying P, but in this 

case the variations are larger for the stiffest system both in the linear and nonlinear cases. For what concerns the forces, 

in both the linear and nonlinear cases the variations of 
dF  increase by decreasing P and by increasing the flexibility of 

the system. The values of the variations are all notably high in this case, due to the effect of the combined variations of 
the velocity and of the constitutive parameters, as already explained before. In particular, the obtained variations are 
significantly larger than the tolerance limits allowed for the force at the reference condition (15%), whereas values of 
the variations more similar to this limit are obtained in the case where only c is varied. Finally, limited variations are 

obtained for the ratio ccA  (Table 5), with less evident trends.  

Table 2 Maximum percentage variations of the ratio U  for different exceedance probabilities 

 sT 5.0  sT 0.1  sT 0.3  

 Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

P  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  
210  7.5 12.2 17.3 35.7 6.1 11.7 10.7 24.9 6.5 7.7 8.9 10.7 

0021.0* P  7.1 8.2 13.1 17.9 7.3 9.5 9.7 14.9 9.4 9.7 8.4 9.2 
410  8.9 12.1 12.0 14.4 7.9 13.1 7.9 14.2 9.1 15.9 6.0 9.3 
510  8.4 15.0 9.9 14.8 7.7 17.1 6.2 14.0 9.5 21.0 3.1 7.1 
610  7.5 16.5 7.1 13.3 6.4 20.3 5.3 12.8 9.7 23.8 2.5 7.3 

Table 3 Maximum percentage variations of the ratio V  for different exceedance probabilities 

 sT 5.0  sT 0.1  sT 0.3  

 Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

P  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  
210  6.7 10.6 13.5 26.8 5.3 8.0 8.0 14.9 0.4 2.1 1.0 2.9 

0021.0* P  7.7 9.4 11.1 14.7 5.8 7.1 10.0 12.4 2.3 5.7 3.5 3.4 
410  8.1 11.5 7.7 11.9 5.9 12.5 7.4 11.2 3.2 12.5 3.7 7.7 
510  9.1 15.7 5.6 13.9 6.4 16.5 7.1 11.9 5.0 13.9 4.0 7.8 
610  9.7 20.7 4.4 14.2 7.8 19.4 5.2 10.6 6.1 15.5 6.0 7.8 

Table 4 Maximum percentage variations of the ratio 
dF  for different exceedance probabilities 

 sT 5.0  sT 0.1  sT 0.3  

 Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

P  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  
210  8.4 11.3 11.5 25.3 9.3 14.7 12.9 24.3 13.6 15 14.2 17.7 

0021.0* P  8.8 12.5 12.0 13.0 8.5 14.0 13.7 16.2 14.2 21.4 14.7 24.4 
410  8.3 18.1 13.0 27.1 8.6 21.5 13.8 33.3 13.6 31.6 14.6 45.2 
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510  8.7 22.3 13.3 37.2 9.3 26.1 13.8 44.4 12.5 37.7 14.7 57.2 
610  9.2 26.1 13.5 46.8 12.2 30.0 14.0 53.0 11.1 43.0 15.0 68.1 

Table 5 Maximum percentage variations of the ratio ccA  for different exceedance probabilities 

 sT 5.0  sT 0.1  sT 0.3  

 Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

Linear 
( 0.1 ) 

Nonlinear 
( 3.0 ) 

Linear 
( 0.1 ) 

P  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  ĉ  ̂,ĉ  
210  3.9 4.4 4.5 7.5 1.0 3.5 1.6 5.0 5.2 6.9 7.0 12.8 

0021.0* P  3.1 3.2 6.4 7.9 4.1 3.7 5.3 4.5 2.2 4.5 1.3 2.8 
410  2.2 4.7 5.2 6.7 5.7 7.4 6.8 10.8 -0.3 2.2 4.8 5.9 
510  1.9 6.3 2.8 7.7 6.0 10.2 6.5 12.1 0.9 2.6 5.3 6.8 
610  2.0 8.3 1.5 6.5 5.8 12.7 5.4 10.4 1.8 3.3 4.6 5.5 

 
To summarize the outcomes of the study carried out in this section, it can be observed that the probabilistic 

responses, described by the hazard curves for the different EDPs and for the different systems considered, exhibit a non-
negligible variability when the damper’s parameters are varied, with maximum variations with respect to the reference 
case of up to 36% and 68% for respectively low and high exceedance probabilities. These variations are not consistent 
for the different EDPs and system considered. Although the aim of this paper is not to furnish quantitative prescriptions, 
it is worth to highlight that, should these trends and results be confirmed by further studies (i.e., considering more 
realistic nonlinear structural systems), it may be appropriate to propose some amplification factors to be used for the 
design of the dampers and the structure and accounting for the effects of the uncertainty of the damper properties. As 
suggested by the outcomes of this preliminary investigation (Figures 6-9 and Tables 2-5), the amplification factors 
required to achieve different safety levels (i.e., different limit states, each one related to fixed probabilities of 
exceedance) should be different for the different EDP considered and also for the different degree of nonlinearity (i.e., 

the exponent ) characterizing the viscous devices. These amplification factors could be used for design purposes, in 
order to achieve consistent safety levels for systems equipped with viscous dampers, in agreement with current seismic 
codes. 

5 Conclusions 

Structural systems with viscous dissipative devices are systems with potentially limited robustness, whose reliability 
can be notably influenced by the damper properties variability. This work analyses this issue by considering a set of 
linear S-DoF systems with different dynamic properties equipped with linear/nonlinear viscous dampers and by 
evaluating the changes in the probability of exceedance of different performance parameters (hazard curves) due to the 
variability of the damper properties. The dampers are designed in the different case studies to achieve the same seismic 
performances at the design conditions. 

The initial part presents the results of a preliminary study carried out to directly link the response quantities 
controlled in the production and quality tests to the constitutive parameters. The field of variations compatible with the 
tolerances usually considered in the seismic design is identified and a sensitivity analysis of the influence of the damper 
property variations on the dynamic structural response is presented first. Successively, results concerning the sensitivity 
of the seismic response are presented. The influence of model parameter variations on the performance of structural 
systems is often limited because of the large dispersion induced by the seismic input characteristics. However, in the 
considered case, significant variations are observed in the probabilistic response, both in the field of rare events, of 
interest for the safety evaluation, and in the field of frequent events, of interest for serviceability. In particular, these 
variations are limited if only the damper constant is varied, whereas they are significant if also the velocity exponent 
coefficient changes.  

The observed results are different for the different performance parameters considered, which include the 
displacements (related to structural/non-structural damage), the velocities, the damper forces (related to the damping 
system cost and safety), and the absolute accelerations (influencing total forces and the damage to acceleration sensitive 
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contents). The results are also influenced by the dynamic properties of the structural systems and the case studies with 
low fundamental period are generally more sensitive to damper property variations than the case studies with higher 
period. As expected, large differences are observed between the results obtained for the case of linear and nonlinear 
viscous dampers. 

The proposed overview of sensitivity analysis results for linear elastic S-DoF systems constitutes a first step towards 
the development of more reliable procedures for the design and retrofit of buildings with viscous dampers, and it 
provides information useful for the calibration of safety factors for the design values of the response parameters 
(controlling the damper and system performance) to be employed within a code-based analysis approach.  

Further works will be oriented to extend this study to real multi-degree of freedom structures in order to account for 
both higher modes contribution and the presence of more devices with different viscous properties. Furthermore, 
structural system nonlinearity will be considered to achieve a more realistic prediction of the response under very rare 
earthquakes (i.e., with exceedance probability beyond 10-4). 
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List of symbols and acronyms 
 
Latin upper-case letters 
 

A  Acceleration amplitude of the harmonic input 
Acc  Maximum absolute acceleration (random variable) 
D  General EDP of interest (random variable) 
Fd  Damper’s force 
GD(d)  Response hazard function associated to a general EDP’s threshold d 

Id  Indicator function 
Mm   Moment magnitude (random variable) 
P  Probability of exceedance  
R   Hypo-central distance (random variable) 
S  Atkinson-Silva radiation spectrum 
T  Fundamental period of the system 
U  Maximum relative displacement (random variable) 
V  Maximum velocity (random variable) 
VS  Shear wave velocity 

Wd  Amount of energy dissipated by the damper in a sinusoidal cycle 
X  Vector of the system parameters (random variable) 
 
 
Latin lower-case letters 
 

c  Viscous coefficient (damper’s constitutive parameter) 
d   Generic EPD’s threshold value 
e  Time-envelope function 
fd  Ratio between the damper’s force Fd and corresponding design value Fd

* 

fdp ( ̂ ) Normalized force for variations ̂  satisfying the constraint posed by the tolerance on the force 

gD  Response value for generic parameter d 
k   System elastic stiffness 
m  System mass  
mm   Sample of moment magnitude 
p  Tolerance parameter applied to damper’s force response under control and production tests 
pM  PDF of Magnitude  
ps  Percentile value used for performing Subset simulation 

pX  Joint PDF of X 
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r  Sample of hypo-central distance  

rf ( ̂ )  Ratio between normalized forces for any ̂  and for ̂  = 0. 

t  Time 
u  Displacement 
v  Velocity 
w  White-noise signal amplitude 
wd  Dimensionless expression for Wd 
wdp  wd corresponding to the varied configuration for the tolerance p 
x  Sample of random variable vector X 

 
Greek upper-case letters 
 

  Domain collecting the parameters 
  Domain collecting the random variable X
 
Greek lower-case letters 
 

  Velocity exponent (damper’s constitutive parameter) 

  Parameter of the Gutenberg-Richter law for the magnitude 

mod  Log-normal random variable accounting for the radiation spectrum amplitude variability 

  Ratio between the perturbed viscous coefficient ĉ and its reference value c 

d(P)  Amplification factor for the design value d* corresponding to probability of exceedance P 

Acc   Amplification factor for the maximum acceleration 

Fd  Amplification factor for the maximum damper force 

p( ̂ )  Ratio subjected, through p, to the constraint on the damper force response 

U  Amplification factor for the maximum displacement 

V  Amplification factor for the maximum velocity 

  Ratio between the velocity v and its design value v* 

   Geometric function (of governing the amount of viscously dissipated energy in a Fd-u cycle 

   Magnitude exceedance frequency according to the Poisson process 

  Dimensionless parameter for the system linear viscous coefficient cL

  Dimensionless parameter for the damper viscous coefficient c
  Vector collecting the damper’s parameters (p, c, )
  Dimensionless time, defined as tt /  
  Circular frequency 

  Dimensionless displacement, defined as uu /  

 
Subscripts and superscripts 
 

( ∙ )*  Design value of parameter ( ∙ ) 
( ∙ )0

  Reference value of the parameter ( ∙ ) 
( ∙ )f

  Value of ( ∙ ) at the failure condition 
( ∙ )U

  Upper bound value 
( ∙ )L

  Lower bound value 
( ∙ )I

  Inherent damping 
( ∙ )MAX

  Maximum value 
( ∙ )min

  Minimum value 
 
Mathematical operators 
 

| ∙ |  Absolute value operator 

  First order time derivative operator 

  Second order time derivative operator 
sgn( ∙ )  Sign extractor operator 
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sin( ∙ )  Sine trigonometric operator 
ln( ∙ )  Natural logarithm of  ( ∙ ) 
   Value of parameter ( ∙ ) used for adimensionalization 

 
Acronyms 
 

EDP  Engineering demand parameter 
IM   Intensity measure 
PDF  Probability density function 

Appendix – Details of the Atkinson-Silva Ground Motion Model 

The Atkinson-Silva ground motion model (Atkinson and Silva 2000) used in this work is characterized by the radiation 
spectrum S(f) and the time modulating function e(t). The radiation spectrum gives a spectral representation of the 
ground motion at the construction site, accounting for several physical contributions influencing the wave propagation. 
Its analytical expression is 

 )()()()()( 0mod fVfSfSfSfS fn    (18) 

The (two corner frequencies) point-source spectrum is represented by  fS0  
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where, 0M  is the seismic moment (expressed in dyne·cm), related to the moment magnitude mM  by 
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and C is a constant given by   
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where R̂ , V , sF  are respectively the radiation pattern ( 55.0ˆ R ), a factor partitioning the total shear-wave energy 

into 2 horizontal components ( 71.0V ) and the free-surface amplification factor ( 0.2sF );   and   represent the 

soil density ( 3/8.2 mt ) and wave velocity ( skm /5.3 ) near the source; the multiplicative factor 10-20 is in order 

to obtain cm as unit dimension for the ground motion (cm/s2  for accelerations). The two corner frequencies af  and bf , 

and the   parameter are related to the magnitude by 

   ma Mf  496.0181.2log  (22) 

   mb Mf  227.0380.1log  (23) 

   mM 670.0223.3log   (24) 

The )( fSn  function, characterizing the path effects of seismic waves, is given by  
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where the 1/R term represents the geometrical spreading effect. The effect of the waves-transmission is accounted by 
the quality factor )( fQ ,, defined as 

 nfQfQ 0)(   (26) 
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whit 1800 Q and 45.0n regional parameters. The )( fS f  function accounts for the path-independent loss of high-

frequency in the ground motion and it is defined by  
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Whit k = 0.03 and fmax = 100 Hz. The soil amplification factor V(f) is taken according to (Boore and Joyner 1997) for 

generic soil (VS,30 = 310 m/s). The model-error parameter mod  is the adding lognormal random variable (ln = 0, ln 

= 0.5), according to Jalayer and Beck (2008), used for increasing the record-to-record variability. For which concerns 

the envelope function  te , it is given by 
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with parameters   1)ln(1

)ln(





b , 


b

c  , 
  b

a 








1exp

and =0.05, =0.2 [0]. 

The ground-motion total duration is equal to wn TT 2   with  wT  defined as 
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The hypo-central distance R  from the earthquake source to the site can be defined as follow, in function of the 

epicentral distance re and the moment dependent nominal pseudo-depth h (   05.015.0log  mMh ) 

 22 hrR e   (30) 
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