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Abstract

Nowadays future energy perspectives are extensively discussed worldwide to address

climate crisis and reach a signiĄcant decarbonisation. A new green energy economy is rapidly

emerging and electrical energy even more holds fundamental role in this context. In order to

face climate change, economical issues and encourage green transitions policies, investing

in energy system transformation represents one solution in the path to climate neutrality

and social equity. Therefore, the inclusion of renewables in future energy scenarios will lead

to an increasing integration in national grids of Battery Energy Storage System (BESS),

due to their Ćexibility and regulation capacity, solving the problem of renewable energy

intermittency. Thus, an extensive study regarding lithium ions BESS analysis, aging modeling

and their application in innovative scenario is conducted in this thesis in order to improve

aging dynamics modeling, develop methodologies for state of health estimation and improve

control and management of BESS operating conditions and assist energy planning strategies

involving batteries. Firstly, a sensitivity analysis is conducted to evaluate robustness of

parametric aging models and an automatic algorithm based on data-driven techniques is

developed for online SOH estimation without a prior knowledge of BESS usage modality.

Then, a least-square support vector machine (LS-SVM) model is investigated and compared

to several models presented in literature for future torque demand prediction in order to

improve electric vehicles (EVs) efficiency and consequently reduce effect of aging dynamics.

An optimised State of Health (SOH) management and reduced degradation are results of an

improved EVs management systems. As last, a simulation software is developed to facilitate

BESS integration in vehicle-to-grid V2G scenario and to assist energy planning management

in demand side Ćexibility (DSF) scenario. The simulator allows to deĄne EVs district and

obtain usage proĄles of the whole EV Ćeet. Moreover, simulator consider aging dynamics on

entire EVs district.
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Sommario

Le prospettive future nel settore energetico sono al centro di un dibattito internazione

che cerca di risolvere la crisi legata al cambiamento climatico arrivando ad un signiĄcativo

processo di decarbonizzazione. Una nuova "green economy" sta emergendo rapidamente

e lŠenergia elettrica sempre più detiene un ruolo centrale in questo contesto. Al Ąne di

affrontare il cambiamento climatico, i problemi economici e favorire la transizione verde,

gli investimenti nella trasformazione del sistema energetico rappresentano lŠunica soluzione

sulla strada verso la neutralità climatica e lŠequità energetica. Quindi, lŠinclusione delle

fonti rinnovabili allŠinterno di futuri scenari energetici porterà allŠintegrazione nelle reti

elettriche nazionali di sistemi di accumulo energetici a batteria (battery energy storage

system BESS) grazie alla loro capacità di regolazione e Ćessibilità, costituendo una soluzione

al problema dellŠintermittenza delle fonti rinnovabili. Quindi unŠanalisi dettagliata di BESS

agli ioni di litio, comprendente la relativa modellazione delle dinamiche di invecchiamento

e la loro possibile applicazione in scenari innovativi, è stata condotta in questa tesi con lo

scopo di migliorare lŠattuale conoscenza e modellazione delle dinamiche di invecchiamento,

sviluppare metodologie per la stima dello stato di salute e migliorare la gestione e il controllo

delle condizioni operative delle batterie e assistere strategie di pianiĄcazione energetica

che includano i BESS. In primo luogo, unŠanalisi di sensitività è stata condotta al Ąne di

valutare la robustezza dei modelli parametrici di invecchiamento proposti in letteratura ed

è stato sviluppato un algoritmo automatico basato su dati per la stima online dello stato

di salute dei BESS senza una conoscenza a priori delle modalità di funzionamento. Un

altro contributo legato allŠinvecchiamento dei veicoli elettrici (EVs) è stato lo sviluppo di

un modello least-square support vector machine (LS-SVM) per la predizione della coppia

richiesta dal guidatore e il confronto con altre tecniche proposte in letteratura. Una predizione

più accurata della coppia richiesta dal guidatore consente infatti di ottimizzare il sistema di

gestione energetica del veicolo riducendo la degradazione della batteria. InĄne, un simulatore

è stato sviluppato per favorire lŠintegrazione dei BESS in scenari vehicle-to-grid (V2G) per la

gestione della Ćessibilità energetica del carico nelle reti di distribuzione elettrica. Il simulatore

permette di deĄnire una Ćotta di veicoli elettrici e di caratterizzarne i proĄli di utilizzo e il

loro invecchiamento.
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Chapter 1

Introduction

Nowadays, due to the recent soaring in energy prices worldwide [1] and due to climate change,

which could be the future energy perspectives and feasible innovative scenarios are the focal

points of one of the most discussed threads among the entire world. The climate crisis

and the ongoing increase of climate change pace have oriented worldwide research labs and

companies to investigate technologies in order to reach substantial decarbonisation and the

consequent reduction of emissions. A new energy economy is indeed rapidly emerging, mainly

driven by policy action and technology innovation. Furthermore, electricity even more plays

a key role in consumersŠ lives and seems to guarantee to become the main energy source on

which citizens will depend for all their daily needs: eating, mobility, lighting and achieving

thermal comfort throughout the year. Thus, well-being and beneĄts of peopleŠs lives rely

on its reliability and affordability. Moreover, energy problems have a social and economic

impact on low and lower-middle-income households, particularly when energy prices increase,

due for instance to the actual global demand for gas soaring and the consequent effect in

power market, forcing family unit to fall behind on the payments of their utility bills [2, 3].

Therefore, without effective policies to prepare for and manage these Ćuctuations, the daily

variation of demand could increase in pursuance of declared pledges to 270 gigawatts (GW)

in the European Union (from 120 GW today) and over 170 GW in India (from 40 GW) by

mid-century [4]. In order to face climate change, economical issues and encourage green

transitions policies, investing in energy system transformation represents the only solution

in the path to climate neutrality and social equity. One of the problem is that fossil fuel

wonŠt phase out energy market in next decades [5] because of the necessity to deal with

actual energy needs. State policies should halt fossil fuel subsidies to allow investment of

national budgets in innovative technologies and in dumping potential distribution effects

of the transition, tackling the main technological barriers to this passage. In some regions,

clean technologies have already increasingly become the principal solution for consumers

due to both policy support and to their cost-effective choice: solar PV or wind actually

constitute the cheapest available source of new electricity generation in power sector and

among several end-uses technologies[4]. In many markets for example, because of total costs

of ownership, the case of EVs is one of the most persuasive scenario. Thus, further public

and private investments are crucial for energy system transition with regard particularly

to storage and decentralised electricity production in order to improve resilience and to

attenuate renewed electricity price increases. An acceleration is required for achieve both a

socially fair transition to climate neutrality by 2050 and an insurance against the sort of price

shocks, especially for states which hugely depends on energy import, such as the EU. Indeed,

EU net energy import dependency reached 60.6 % in 2019 compared to 58.2% in 2018 and

56% in 2000; the highest level in the past 30 years that leads to 31 million people affected by

energy poverty in EU. [6]. By a technological point of view, if nations seriously begin to place

1



Chapter 1 Introduction

policies in the way for net zero emission for 2050, wind turbines, solar panels, lithium-ion

batteries, electrolysers and fuel cells market will grow tenfold to USD 1.2 trillion by 2050 [4].

In EU, member states have already phased out coal achieving for 2020, along with pandemic

condition, to a reduction of EU greenhouse gas emissions (including international aviation)

down to 31 % compared to 1990. Renewable energy resources indeed overcame fossil fuels

as main power source positioning at 38 % of EU electricity vs the fossil fuels at 37 % and

nuclear at 25 % [6].

1.1 Energy storage

Therefore, current integration of renewables in innovative energy scenarios and the resulting

need of store energy is becoming increasingly critical and it will be the key point for the

deployment of Renewables Energy Systems (RESs) worldwide in the upcoming years [7]. In

particular, energy storages will lead to an increase of connections between RESs and national

grids, directly facing with the problem of the intermittent nature of renewables [8]. The

supply uncertainty is a critical aspect and characterises the whole green energy scenario: for

example wind blows neither continuously nor according to electricity demand and power

generation from solar panel is widely affected by its sensitivity to weather conditions, air

pollution and other factors inĆuencing solar radiation intensity [9]. To overcome this, Energy

Storage Systems (ESSs) are currently being applied since they can provide the possibility of

decoupling energy generation and demand, besides contributing to the grid Ćexibility through

the supply-demand balance [10]. ESSs are classiĄed based on the form of stored energy, and

their proper use is strictly dependent on the application: their technical characteristics such

as energy capacity, charge/discharge dynamics, self-discharge rate, energy-power ratio, and

life cycles have to be carefully considered for choosing the most suitable technology [11].

Considering the energy sector, namely stationary applications, the most common storage

technology is the Battery Energy Storage System (BESS). Due to their higher Ćexibility and

regulation capacity, BESSs are the most spread and mainly used in large-scale constructions

[12]. Ramos et al. [13] presented both business models and regulatory challenges of the future

energy storage implementation in the Finnish market context, focusing mainly on large-scale

simulations. In particular, a great amount of small and medium sized BESSs, connected to a

national grid with high level of renewables, led to several advantages: both self-sufficiency

and self-consumption levels were increased, network losses were decreased, and the impact

of renewable energy in the network was mitigated. Wan Abdullah et al. [14] investigated

on the use and the beneĄts of using BESSs in the Malaysian electric network to determine

their commercial and technical feasibility. Results showed a considerable reduction of the

peak demand, a higher response to the electricity demand variability, and a better frequency

regulation within the grid. Subsequently, these pros have fallen on the end-usersŠ monthly

bills since a consistent economic saving has been achieved, thus leading to a promising future

of the implementation of BESSs in the Malaysian electric network itself to achieve the target

of 20% renewable energy penetration by 2050. However, the future application of BESSs is

not only focused on large-scale applications, but also in small-scale ones (e.g., residential

building, offices, energy intensive industries, and Electric Vehicles (EVs) charging stations).

Saini et al. [15] discussed on the application of small-scale BESSs in commercial, residential,

and industrial sectors with different load proĄles, highly variable during the day. BESSs

are coupled with Photovoltaics (PV) to store renewable energy before being used by the

end-users, or to be integrated with the local electric grid. To resemble the behaviour of a

2



1.1 Energy storage

PV-BESS system, a function that decides both time and capacity of charging and discharging

of batteries has been developed to manage the PV penetration, and improve the voltage

proĄle as well. In particular, the daily energy losses can be reduced and the reverse power

Ćow in the distribution system can be properly handled without deviating the operational

limits. Results showed that yearly energy losses decreased and, at the same time, BESSs

allowed PV to be easily integrated into the electric grid since both over voltage and reverse

power Ćow have been sensibly reduced. Mustafa et al. [16] focused the attention on the use

of BESSs in the health sector in UK, mainly hospitals, so that the Ćexibility can be provided

to the national electric grid. Four scenarios have been studied where PVs were coupled with

BESSs. Results showed that an economic convenience has been found only if a group of

hospitals operate together to provide a Ćexibility service to the electric grid, since PayBack

Periods (PBPs) lower than 3 years and a Net Present Value (NPV) higher than £5 million

have been achieved. Thus, BESS technological investigation and integration analysis are

necessary to deal with the promising scenario that could be open. By a chemical point of

view, Li-ion have replaced the previous batteries technologies in most of current application.

They are characterised with respect to older solutions by an elevated energy density (as shown

in Figure 1.1), no memory effect, low maintenance need, being cost-effective solution, supply

and absorption of high amount of current, wide depth of charge/discharge, low self-discharge

rate [17].

Figure 1.1: A diagram of the speciĄc energy density and volumetric energy density of various
battery types. Li-ion batteries represent the best solution over the other types of
chemicals [17].

Thus, BESSs are mainly based on Li-ion, which operate with red-ox reactions occurring

between the species that compose the batteryŠs electrodes. Given the electro-chemical energy

conversion pathway, BESSs are highly modular and for this reason they can be applied at

different scales as previously discussed [18]. Moreover, Li-ion batteries present extremely
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high round-trip efficiency (round-trip of ≥ 90%) compared to others types of ESSs [19], and

fast charge/discharge dynamics as well [20]. Considering the versatility of BESSs, both

energy planning and scheduling phases are crucial for their proper functioning in different

applications, not only as a bulk energy storage, but also for price arbitrage, grid Ćexibility,

load following, and frequency regulation [21]. Hence, an appropriate BESSs model, which

describes their main technical characteristics and dynamics, must be used as input for their

planning phase. Since energy scheduler have to decide the optimal solution among different

technologies, the modelŠs coherence and reliability, and also other systems considered in

energy planning models, directly inĆuences the results of the energy planning; therefore,

a scenario-based validated BESSs model, able to assess different technological details at

system level and to characterise most incisive parameters, is fundamental for energy planning

phase. ScientiĄc literature has focused in developing model to characterise battery dynamics.

Chemical, thermal and electric models have been develop to simulate the dynamic of the

batteries with the application for automotive context in [22, 23, 24, 25, 26]. Moreover, it is

widely diffused in literature to model batteryŠs electrical performance by means of circuital

models. The main models used are:

• the 0th order electrical model that is a simpliĄed and widely adopted model by battery

manufacturers using parameters as internal resistance (R0), open-circuit voltage (Voc),

and voltage measured (V );

• the 1st order electrical model that, in addition to the parameters already considered in

the previous model, evaluates also polarization parameters (i.e. polarization capacity

(Cp) and polarization resistance (Rp)).

First order model takes into account the batteryŠs internal electrochemical phenomena,

thus resulting in a more detailed simulation. However, the polarization parameters cannot

be measured directly, but they must be estimated and thus a considerable availability of

historical data is required; as a consequence, only few manufacturers can provide these

estimations. Even though higher order models enable the assessment of more details, they

also introduce more complexity, and thus they are barely applied due to the more efforts

required. Circuital models are detailed in section 2.2.1. Another critical phenomena widely

recognised in energy planning sector is that Li-ion batteries present relevant self-discharge

phenomena that strongly limit their long-term storage capabilities, due to crossover reactions

and material degradation [27].

Petkov et al. [28] studied the deployment of Power-to-Hydrogen (PtH2) as a solution for

long-term energy storage by taking into account several aspects such as the energy storage

technologies, their size, and CO2 emissions avoided. To perform this study, besides the

hydrogen storage, also the Thermal Energy Storage (TES) and Li-ion batteries have been

considered: from the literature, the self-discharge rate of the Li-ion battery technology was

the lowest (0.00054 hr−1) compared to the TES one (0.075 hr−1). Bartolini et al. [18]

adopted a self-discharge parameter of 0.1% in terms of the storage capacity per each day

to assess the role of the BESS in a Local Energy Community (LEC). In another study,

Zimmerman [29] measured the discharge capacity of BESSs, concluding that it can vary

within the range of 2 − 7% throughout a month depending on the voltage of the battery.

More importantly, a central factor that characterises planning and usage of BESSs is the

aging aspect, that consists in the reduction of the overall storable energy is deĄnitely one of

the main key aspects to be assessed since it affects both charging/discharging behaviours

of a battery and its state of health (SOH) as well. Several approaches have been studied
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by a microscopic point of view far to analyse the batteryŠs degradation due to the aging

phenomena, namely X-ray techniques, the Scanning Electron Microscopy (SEM), and the

Electrochemical Impedance Spectroscopy (EIS) [30]. For real application, building models

relying on battery characteristics obtained by these techniques do not represent a viable

solution because the retrieval of that kind of data is challenging in a real time and large

scale application by technological point of view; with some extent, scientiĄc literature is

studying how to implement EIS procedure to characterise battery impendance and other

important parameters. Conventional EIS measurements include of sinusoidal perturbation

in either potentiostatic or galvanostatic modes, make them unfeasible for real application.

Furthermore, they rely on an accurate measurement over a wide frequency range, often not

feasible for commercial scope due to problem related to data acquisition, storage and technical

requirements on equipment required for the acquisition. As last, the overall procedure requires

more investigation and interpretation to be used in real application purpose because of its

early stage of development in the research Ąeld [31]. Other studies speciĄcally addressed the

aging aspect: among them, Eduardo et al. [32] analysed the discharge behaviour through

experimental tests, showing that the loss was about 3% of the initial stored energy throughout

a month of operation. The aging phenomena becomes even more important since Li-ion

batteries could be considered for second life purposes, for example when a battery involved

in automotive context has reached its end of life and, instead of being dismissed, can be

employed with a new startup by utilities/power sector [33]. In transportation context indeed

the battery end-life it is usually deĄned when its Ąnal capacity is almost the 20% of the

original one [34], when electric vehicle autonomy is not adequately guaranteed anymore;

therefore, modeling, identifying the causes and predicting degradation is highly relevant as

well as developing techniques those aims to reduce degradation rate to the lowest level.

1.2 Electric vehicles

The automotive Ąeld has been heavily involved in electriĄcation, with a resulting deep

investigation and development of methodologies to improve energy efficiency, powered also

by the massive production of Hybrid Electric Vehicles (HEVs) and pure Electric Vehicles

(EVs) in last decades. These cars are featured by higher efficiency and energy economy with

respect to Internal Combustion Engine (ICE) vehicles, achieved by recent advances in Energy

Management Systems (EMSs) [35], accounting for a promising solution in transportation

future perspective.

Modern EMSs are designed according to optimization-based techniques, aimed to manage

the vehicle power Ćow according to an optimal approach driving the powertrain to operate

in the best operating point of its characteristics. Common optimization-based EMSs are

developed according to PontryaginŠs Minimum Principle (PMP), Equivalent Consumption

Minimization Strategy (ECMS), and its Adaptive version termed A-ECMS [36]. Furthermore,

model-based techniques have been recently studied and applied to both hybrid and electric

vehicles. In particular, Model Predictive Control (MPC) paradigm [37] have been recently

considered, due to its capability to evaluate the H/EV performance over a certain future

horizon [38, 39] and directly taking into account physical and logical constraints featuring the

controlled plant [40, 41]. Mentioned EMSs are driven by the driver action, that is mapped

on the demanded torque control, and the use of predicted driver control signal is considered

a standard approach aimed to increase H/EV performances. Driving cycles pattern, vehicle

velocity and torque demand have been considered as the main factors to be studied and
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analyzed to optimize of H/EV powertrains with the resulting reduction of SOH degradation.

Thus, development of model to predict these quantities is crucial for an increasing integration

of these technologies in energy planning scenario. Driving cycle patterns contain aggregated

information about next route characteristics, such as average speed and acceleration, time at

rest, distance covered and so on. Vehicle velocity and torque demand reĆect more directly

and real-time driverŠs will and driving style, enabling a more accurate control action by

EMSs.

1.3 Vehicle-to-grid

Nowadays a great part of power demand is still inĆexible, causing a higher cost to the overall

system. Power supply system has in fact to be ever more Ćexible to afford an increase of

several and variable renewable energy production and to manage such load demand. Several

techniques have been investigated in literature to face with these issues those constitute the

most important barrier to green transition.

An increased Ćexibility level can be achieved for example by sector coupling, in the form

of electriĄcation of the mobility (electric vehicles) and the heating sectors (power to heat), or

via smart appliances. The integration of electric vehicles in the electricity grid can provide

Ćexibility due to the daily cycles of charging of their batteries. Another viable technique

is the coupling of the heating and electricity sectors, which can provide Ćexible short-term

demand by using heat pumps, heat storage and electric cooling loads. Finally, demand-side

Ćexibility (DSF) can be obtained through aggregated residential demand-side management in

smart homes [42]. Thus, harnessing of implicit and explicit demand side Ćexibility approaches

represent a feasible solution to achieve this and to adjust (i.e. reduce, increase or shift) the

electricity demand [43]. In this context BESSs hold a fundamental role and their analysis is

crucial in order to guarantee an optimal use and efficiency.

As mentioned, Electric Vehicles (EVs) are characterised by an ongoing growth in the

market due to their potential and innovative impact into electricity grid for new application

as reported in recent forecasts of their penetration rate [44]. Vehicle-to-grid (V2G) scenario

is one of the most promising technologies that may lead to a signiĄcant advancement on

power system management operation [45]. EVs batteries could be used to exchange energy

between the vehicles and the grid when cars are parked in a charging station and that energy

isnŠt required by driverŠs route to home or work, thus creating an economic beneĄt for both

owner and grid [46]. Moreover, the EV is no longer only a means of transportation, rather

it becomes an important tool to communicate with power grid to deliver electricity into

it and simultaneously control charging rate for EVs, becoming de facto a mobile battery

electrical energy system [47]. Several services can be offered to the grid itself, such as

power grid regulation, spinning reserves, peak load shaving, load leveling and reactive power

compensation.

The V2G innovation will thus open up a new business scenario, namely the energy exchange

manager between the power utilities and the EV drivers [48]. The V2G operation can indeed

lead to two important applications. Firstly, since main issue related to renewable power

generation is the natural intermittence, the use of standby generators to store this variable

and unpredictable power production is expensive and inefficient while V2G operations can

solve this issue [49]. Secondly, in a DSF scenario, a V2G approach allows to use the EV

batteries to absorb (or buy) electrical energy from the grid during the off-peak period (load

levelling), or generate (or sell) electrical energy to the grid during peak period (load shaving)
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[50]. Moreover, batteries charging and discharging processes are performed more rapidly than

the shutoff and startup processes of standby generators, which usually requires to respond to

a black-start activation procedure and the required energisation of transformers.

An individual vehicle operating in a V2G scenario (also known as Vehicle-to-Building or

V2B when dealing with home charging stations) can afford a small amount of kWh trade [51]

due to its relatively limited maximum capacity, thus it may represent an inconvenient and

ineffective solution in most cases. Therefore, an aggregation procedure [52] can be introduced

to combine and properly control a number of EVs to ensure a smart charging and discharging

management.

In the actual context, V2G has to deal with different challenges, in terms of normative

regulation as well as from a technological point of view. V2G techniques indeed increase the

number of charging/discharging cycles of EVs, affecting batteries SOH and remaining useful

life (RUL), they require the knowledge of driversŠ route and parking patterns, they strongly

depend on the actual and forecasted EVs market penetration, on the geographical area, the

availability of charging stations and so on. Although several possible scenarios emerge from

these complex variables, engineers and grid operators have to deal with these issues without

an availability of any large scale datasets. Thus, development of tools that could assist energy

planning operation and allow to deploy and test energy management strategies is necessary

to deal with such a complex, but equally promising and innovative, scenario.

1.4 Thesis aims and objectives

As widely discussed, BESS technological development and employment will characterise

future innovative scenarios due to the important role that storage systems can hold in such

energy context. This transition, over than requiring solution to assist and improve energy

planning, present several technological issues those have to be tackled. Thus, an extensive

study regarding BESS aging analysis and BESS application is conducted in this thesis. A

particular attention is devoted to aging problem and its effects with the purpose of promoting

green transition, improving the understanding of degradation dynamics, optimising BESS

usage and implementation.

Focus of chapter 2 is centred on aging that is introduced and addressed. Several method-

ologies presented in scientiĄc literature for SOH estimation are revised, comprising both

data-driven and model-based techniques. Then, two main contributions are reported speciĄ-

cally regarding aging investigation. Firstly, a sensitivity analysis is conducted on real data

to evaluate robustness of parametric aging models presented in literature. This study aims

to analyse models proposed to assess their response to different input from which they are

trained on, evaluating thereby its capability to deal with unexpected variation of input

variables as usually occurs in real scenario; this measures also its feasibility and adaptability

to be used in real application, leading to which model select based on requirements of speciĄc

case. Secondly, an algorithm for online SOH estimation is studied and developed. it is an

automatic approach based on a data-driven model fusion approach and aims to evaluate

aging progress on BESS without a prior knowledge as concerns storage operating modality,

i.e. power or energy intensive.

In chapter 3 SOH degradation in EVs is addressed, analysing and comparing different

methodologies for future torque demand prediction because it directly affects vehicle efficiency

and economy. Performance of Energy Management Systems (EMSs) are strictly related to EV

battery usage intensity, resulting in a more pronounced effect on battery aging. Accordingly,
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to an improved prediction of torque requested by driver corresponds an optimised SOH

management and reduced degradation. Several machine learning models are trained off-line

for an on-line forecast of required torque sequence. The methodology proposed includes an

online updating procedure that allows to improve results obtained at a low computational

costs.

As last, development of a tool to encourage BESS integration in V2G scenario and to assist

energy planning management is proposed in chapter 4. The simulation software deployed

aims to Ąll the gap by developing a conĄgurable EVs district platform to assist DSF strategies,

prepare optimization procedures, manage grid load and move from a V2B perspective to

an aggregated V2G scale. The simulator allows to easily obtain charging, discharging and

parking proĄles related to a district. Moreover, aging models are integrated in the tool in

order to integrate vehicleŠs life and relative performance to V2G scenario. Thus, users can

simulate and test algorithms, supervisors and aggregators to provide Ćexibility.
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Chapter 2

Li-ion Storage: State of Health

2.1 Overview

2.1.1 Li-ion technological overview

Li-ion battery cells are composed of four elements those mainly determine the power and

energy capability of batteries: a cathode and an anode immersed in an electrolyte and divided

by a separator, as shown in Ągure 2.1 [53].

Figure 2.1: Cell internal structure. The Ągure is taken from [53].

The cathode represents the negative terminal and itŠs usually connected through an

aluminium collector. Chemical structure has not been standardised and itŠs continuously

studied, cause of its importance in determining principal operating mechanisms. Recent

studies [54] report that oxide and phosphate-based materials are commonly employed, with

LiFePO4 and LiMO2, that is a mixture of transition metal such as Ni, Mn and C, being the

most promising technologies [55]. Moreover, sulfur and potassium doping, external coating

treatments and speciĄc material composition have enhanced Li-ion diffusivity, conductivity

and ionic mobility ensuring high performance for high power application. Cathode element

indeed gives the name to the battery itself.
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Conversely, the anode represents the battery positive terminal and itŠs usually connected

by means of a copper collector. Generally, the materials those typically compose the anode

are carbon based element, which graphite is the most common choice, metallic lithium, tin

or titanium-based alloys and silicon-based materials [54].

The electrolyte is usually an electrical conductive liquid or gel substance that facilitates

movements of ions and stabilises cathode and anode, thus improving electrical performance.

An interesting future perspective are inorganic solid electrolytes, which improve safety and

represent a candidates for next-generation energy storage. ScientiĄc community is achieving

important advances in this direction [56], still itŠs not a widespread commercial solution.

The separator is a permeable membrane that allows ionic charge passage keeping the two

electrodes separated.

2.1.2 Microscopical aging mechanisms

The main microscopic aging mechanisms occurring inside a cell are characterised by two

factors [57]:

• loss of active material at both cathode and anode

• loss of available lithium ions

For the cathode lithium ions insertion and extraction cause a huge mechanical fatigue

leading to structural disordering and cracks. Moreover, another factor affecting the aging is

the metal dissolution from the cathode material causing a deposition on the anode. In the

anode indeed, increasing formation of solid electrolyte interface (SEI) and the mechanical

stress generated by diffusion on carbon particles cause the reduction of recyclable lithium

ions. Studies have revealed that the SEI, formed between electrolyte and electrodes, and the

deposition of metallic lithium in the anode promote the Li-ion loss [58]. Moreover, at the

interface between both electrode elements and the electrolyte, an additional SEI could appear

due to electrochemical decomposition reactions. The formation of SEI and passive Ąlm layers

at the anode are due to the cyclable consumption of the Li-ions (charging/discharging cycles

of batteries), which promotes to the formation/rupture of a thin thickness layer around

it and thus being the main responsible of the Li-ion cell aging [59]. As an effect of these

factors, battery performances are reduced due to capacity fading and an increase of electrical

resistance. The Ągure 2.2 summarises all these aging phenomena.

To sum up, the microscopical effects those cause the aging behaviour of a Li-ion battery

are mainly associated to three factors, namely the (i) Li-ions loss, the (ii) loss of the active

resources at the anode area, and the (iii) loss of the active resources at the cathode area.

2.1.3 Aging characterisation

The microscopic aging mechanisms described above are strictly related to the conditions at

which the battery is exposed and thus occur in both storage and utilisation modes. These

last determine the aging type affecting the storage that can be characterised as calendar and

cycle aging. Both aging modes effectively coexist during battery life, nevertheless the study

of the combined effect is not trivial and the scientiĄc community mainly deals with them as

separated entities, as table 2.1 reports.

The calendar aging consists in mechanism that occurs when battery is at rest, stocked at

Ąxed conditions. Thus, it is directly dependent to storage temperature, state of charge (SOC)
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Figure 2.2: Microscopic phenomena characterising the aging of a battery cell. The Ągure is
taken from [60].

level to which battery is maintained and the overall rest time. The cycle aging conversely

is characterised by the cycling operating condition of batteries, whose main factors are

temperature (ambient, pack or cell), depth of discharge (DOD), charge or discharge current

and number of cycles [61].

It has been proved that batteries maintained at high temperature (T ≥ 40řC) or at high

level of SOC suffer the fast advancement of the calendar aging [62]. It is worth noting that

the only load applied to batteries in these studies include a capacity test and a hybrid pulse

power characterisation (HPPC) to measure battery degradation every 4 weeks, thus the

overall cycle aging effects have been considered negligible.

For the cycle aging, which is the degradation of the battery due to its normal use, there

are several critical factors that increase its rate of decay [63, 64]:

• High and low operating temperature (T ≥ 40◦C and T ≤ 10◦C)

• High charging/discharging current

• High amplitude of charging/discharging

• Charging/discharging capacity, in terms of the amount of current that is totally

extracted or injected to the battery

The Ągure 2.3 outlines these relations between storage and operating conditions and aging

effect.

2.1.4 SOH deĄnition

Both aging types, even with different causes, have the same effects: they increase the internal

resistance of the battery, which worsen the power performance, but also decrease the available

storage capacity [65].

The internal resistance, usually stated as R0, determines the energy dissipated as heat due

to the Joule effect. It cannot be measured directly, nevertheless its nominal value is usually

reported in manufacturerŠs datasheet. The internal resistance signiĄcantly differs from the
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Figure 2.3: Relation between storage and operating conditions with capacity fading and
increase of resistance

resistance that can be estimated from electrical model according to the amount of current

injected in the battery. This will be discussed in detail later. In addition to aging dependence,

battery resistance generally relies on temperature and SOC level. Resistance indeed drops

instantaneously when temperature raises and conversely increase when temperature decreases

[66]. Thus, even if working at high temperature could seem convenient, it represent a terrible

choice because it will induce a huge effect on degradation. The effect of SOC level on internal

resistance is instead considered marginal with respect to resistance variation generated by

aging and temperature for li-ion batteries [67].

The maximum capacity of a battery or residual capacity (C or Cres) indicates the maximum

amount of charge that the system is able to store and release in charge and discharge cycles.

It cannot be measured directly and should be estimated through battery management system

(BMS), since it computes the amount of charge that is extracted or introduced into the system.

Residual capacity estimation is a challenging task and may be updated more precisely with

deeper operating cycles whereas it presents several issues in case of brief charge and discharge

cycles. Such quantity, similarly to internal resistance, depends on operating temperature

and aging [68].

Since thereŠs a strong relation between the internal resistance and residual capacity with

aging, they are considered the main parameters to deĄne SOH of a battery. Typically, state

of health of batteries is deĄned as the ratio between the residual capacity Cres and nominal

capacity C0:

SOH(t) =
Cres(t)

C0

(2.1)
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Less frequently, it has been computed as the ratio between the difference of actual and

nominal resistance with that one at the end of life (EOL) of the battery:

SOH(t) =
REOL − R(t)

REOL − R0

(2.2)

In both cases, battery at its nominal conditions is deĄned with a SOH value of 1 or 100%,

whereas it decreases until 0% when it becomes unusable. Value of SOH equal to 0% is not a

useful indicator to determine an acceptable condition for usage. It indeed strongly depends

on the Ąeld of application. Thus, EOL is speciĄcally deĄned for each application according

to minimum operative conditions required to the storage system. For instance, EOL for

automotive application is usually set at 80% since the residual capacity reĆects the vehicle

range.

Another parameter to indicate the state of health of a battery is the remaining useful life

(RUL), i.e. the number of cycles (or the time) needed to reach a speciĄc EOL condition.

The RUL is important in predictive maintenance and simulation scenario to determine, for

instance, speciĄc operative planning or to take corrective steps if premature aging occurs.

2.2 State of the art

State of health estimation is a topic widely studied and still remains a challenging task

in international scientiĄc research, but more speciĄcally for real application. Several ap-

proaches developed in literature are presented, comprising both model-based and data-driven

methodologies. Mainly aims, starting from training a model, build relation that can describe

degradation dynamics from main characteristics passed as input. Unfortunately, many

studies have explored and validated methodologies based on experimental laboratory setup

rather than real application dataset; this gap has to be covered. In aging context, circuital

models, those are usually employed to estimate BESS operating characteristics, are explored

to provide addition information for state of health estimation. Therefore, circuital model

and a review of several methodologies described in literature aiming to SOH estimation are

presented in this section.

2.2.1 Electrical circuit model

Circuital models are physical models those aim to describe electrical behaviour of storage

system and take into account the principal macroscopic characteristics those affect battery

operating condition. Three different kind of models have been widely studied in scientiĄc

literature: zero-order, Ąrst-order and, although with less extent, second-order models. These

representations are deĄned by parameters which are affected from battery state of health

or that allow to estimate actual SOH. The most interesting ones are indeed the internal

resistance (R0) and open-circuit voltage (OCV or VOC). R0 depends on storage temperature

(T ) and SOC, whereas the VOC is related only with the state of charge as described in

equation 2.3.

V (t) = VOC(SOC) + R0(SOC, T ) · I(t) (2.3)

The zero-order model contains all quantities those are usually contained in manufacturer

datasheet[69], thus, although the approximation of the charging and discharging battery

dynamics, it represents most direct and feasible model for practical application.
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Figure 2.4: Zero-order electrical circuit model

Circuital model of the Ąrst-order allows to describe with greater accuracy battery dy-

namics. It indeed considers additional parameters, such as the polarisation resistance Rp

and polarisation capacity Cp. They both constitute the polarisation impedance Zp and

describe electrochemical phenomena those occur inside battery cells, such as the lithium ions

diffusion, intercalation and redox reactions which inĆuence electrical battery behaviour. As

disadvantage however, these polarisation quantities donŠt reĆect real components, thus they

are not measurable and must be estimated, adding complexity to the model and reĆecting

the necessity of enough experimental or real data for estimation. Only few manufacturer

provide this estimates. Despite of these disadvantages, Ąrst-order models are widely used in

literature [70, 71, 72].

Figure 2.5: First-order electrical circuit model

In literature, higher order model are described, which are representations characterised by

n additional RC components arranged in series, where n indicates the respective order of the

model. These models enable a more accurate description of battery dynamics, although an

addition of parameters increase the effort in parameters identiĄcation that makes them an

unfeasible solution for most real application, due to the too low sampling frequency often

used to acquire data and a risk of over Ątting. However, though less extensively, second order

models are implemented and investigated in several studies [73, 74].

2.2.2 State of health estimation

As regards SOH estimation, several models have been extensively investigated and developed

by other researchers. Several parameter-based approaches have been proposed with the aim

to identify relation between equation and degradation dynamics, ranging from Ąrst-principal

based model to mathematical functions. In [75], the authors proposed a numerical model for

the SOH estimation of grid-connected BESS relied on the efficiency index that is estimated
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by two test protocols based on standard equipment and just on charge/discharge tests. In

[76], a SimPowerSystems block is presented to model the charge and the discharge dynamics

of the battery and the simulate aging effects due to cycling as well. The model is validated

experimentally with four batteries types. A similar model developed in SimPowerSystems is

proposed in [77]. The aging is estimated in function of number of charge-discharge cycles

that the cell has undergone. In [78], the effects of temperature and SOH variations are

integrated in the battery model. The aging model depends on the battery temperature

and voltage or SOC. Reduction of the battery energy storage capability is considered by

a methodology considering both a calendar and a cycle aging model. The model is based

on the battery state of energy [79]. In [80], the authors developed an adaptive partial

differential equation observer for battery state-of-health estimation. In [81], the investigation

of the behavior of lithium-ion batteries, in particular for C/LFP batteries during calendar

life at different storage conditions, is addressed. An overview of available methods and

algorithms for on-board capacity estimation of lithium-ion batteries is proposed in [82]. The

maximum energy storage capability estimation acts as an indicator for battery SOH and

remaining useful lifetime estimation. Battery SOH monitoring is thereby a topical issue

and its estimation methodologies are reviewed in [83] as well. In [84], the authors presents

a overview of the different proposed battery, thermal and aging models classiĄed in three

categories: mathematical models, physical models, and circuit models. In [85], the authors

investigates the degradation of the internal resistance of a lithium-ion battery based on

extended laboratory calendar aging tests. Starting from the model described in [64], a generic

model applied to estimate the cycling fade at each time step is proposed in [86] for the

application in automotive sector. Li et al. introduce the application of rain-Ćow algorithm

for cycle counting and a battery aging index based on DOD and Crate [87]. Omar et al.

propose univariate models and least-square Ątting method for cycle aging [63]. Wang et

al. [64] developed a life cycle model for C/LFP batteries. The model has been developed

based on statistical experimental results, whereby the proposed battery has been cycled at

different operating conditions for ambient temperature, current rates, and depth of discharge.

Zabala et al. [88] a combined calendar and cycle aging is investigated with dynamic and

realistic complex operation proĄle. Baghdadi et al. [89] study the effect of calendar and

power cycling aging under different aging conditions for two different battery technologies.

They propose a battery aging rate index that depends on current, temperature, battery SOC

in one expression.

Another part of the scientiĄc research Ąeld has focused its effort on studying data-driven

approaches in order to estimate the battery SOH. In [90], the authors investigate the

nonlinear frequency response analysis tool for data-driven SOH identiĄcation of Lithium-ion

batteries. Pan et al. propose a joint model-based and ELM-oriented framework for online

SOH estimation [91] and Fang et al. propose a joint estimator using double extended Kalman

Ąlter for SOH estimation [92]. A similar approach based on Kalman Ąlter and support vector

regression is described in [93]. In [94], the features are extracted from voltage data and they

are scored based on prognostic metrics to select diagnostic features which can conveniently

identify battery degradation. Afterwards, an ensemble learning model is developed to capture

the correlation of diagnostic features and batterys SOH. In [95], the authors propose a novel

ensemble learning framework to estimate the battery SOH and a self-adaptive differential

evolution algorithm to effectively integrate the weak learners, avoiding the trial and error

procedure on choosing the trial vector generation strategy and the related parameters in the

traditional differential evolution. In [96], the authors extract several features that describe
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the aging process of batteries and use them to build a XGBoost model for SOH estimation

of lithium-ion battery. Then, the estimation value is corrected by Markov chain. A state-

of-the-art of data-driven appoaches for the SOH estimation is reported in [97]. Finally, a

battery degradation model has been investigated using an electro-chemicalthermal model

built in Comsol Multiphysic [98].

To sum up the review analysis, Table 2.1 lists the references described so far. The table

shows also some indexes to group the different references: calendar aging and cycle aging

indicate what the references propose among calendar or cycle aging models, completeness

deĄnes whether the model proposed includes all the main variables those affect degradation

(SOC, DOD, Crate, BESS temperature), review indicates that the reference presents a

literature review related to the battery aging, not validate means that the BESS aging model

is not validated with real experiments and Ąnally, model-based speciĄes whether the proposed

solution is based on parametric model, considering both mathematical and Ąrst-principle

based model, or otherwise it is data-driven.

Table 2.1: Aging model: state of the art

Reference Calendar aging Cycle aging Completeness Review Not validated Model-based

Tremblay et al. [76]
√ √

Huria et al. [77]
√ √

Barrera et al. [78]
√ √

Guenther et al. [79]
√ √ √ √

Moura et al. [80]
√ √ √

Omar et al. [81]
√ √

Farmann et al. [82]
√ √

Berecibar et al. [83]
√ √

Barcellona et al. [84]
√ √

Stroe et al. [85]
√ √ √

Yuksel et al. [86]
√ √ √ √

Li et al. [87]
√ √

Wang et al. [64]
√ √ √

Omar et al. [63]
√ √ √

Baghdadi et al. [89]
√ √ √ √

Zabala et al. [88]
√ √ √ √

Ragone et al. [98]
√ √

Rancilio et al. [75]
√

Harting et al. [90]
√

Pan et al. [91]
√

Fang et al. [92]
√

Khaleghi et al. [94]
√

Meng et al. [95]
√

Song et al. [96]
√

Vidal et al. [97]
√

Andre at al. [93]
√
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2.3 Sensitivity analysis

The development and the training of an aging model feasible for real application is a challeng-

ing task. Training phase should produce a model that is able to represent appropriately the

degradation behaviour contained in a speciĄc dataset, but more importantly the model has

to be robust when itŠs used with different input values from those used in training step. For

real application particularly, because usage condition cannot be controlled as in experimental

laboratory context and operating conditions can present several proĄles, a solution that is not

able to generalise over different data or that varies hugely when subject to small variation,

affected then by model overĄtting, has to be avoided. In real cases, dataset often acquired

are usually referred to one or some speciĄc operating conditions, not covering a wide range of

intensities and type of usage, weather conditions or other parameters those could be related

for example to geographical position or to driving proĄles in the case of an EV.

Thus, sensitivity analysis, i.e. the study of how a model deal with an unexpected variation

in input variables with respect to training dataset, is conducted to evaluate the applicability

of a model in real context. For this study, three models described in literature [63, 64, 89]

are selected. The main selection criterion considered is the completeness of the model, in

terms of inclusion of the principal macroscopic quantities affecting aging such as temperature,

charge/discharge current, DOD and SOC. In [63] four mathematical equations are employed

to describe separately real acquisition based on variation of the principal quantities affecting

aging. Since input variables are treated individually, these models can be easily trained.

Wang et al. [64] used an exponential model that is widely employed when dealing with

cumulative degradation dynamics in scientiĄc literature [99] since its robustness and easy

parameters identiĄcation procedure. Finally, in [89] both calendar and cycle aging dynamics

are implemented using only one model, improving its feasibility in several conditions to the

detriment of an increase of complexity in terms of number of parameters. Selected models

are further detailed in section 2.3.2.

2.3.1 Material and methods

Sensitivity to variation of temperature and current are considered, since they represent the

principal cycling factors those impact on battery life [100]. Simulated data of a 160 Ah BESS

are used for the whole analysis. Data are built changing one at a time both temperature and

current keeping the other Ąxed. Current values are varied among ¶0.1, 0.25, 0.5, 0.75, 1♦C

whereas temperature values considered are ¶20, 25, 30, 35♦◦C. For each value, a residual

capacity curve is generated as shown in Ągure 2.6 and Ągure 2.7. Then models are trained on

curve associated to 0.1 C and 1 C for current sensitivity analysis and to 20◦C and 35◦C for

temperature one. Particle Swarm Optimisation (PSO) algorithm [101] is employed to obtain

optimum model parameters because of its effectiveness to deal with non linear function. In

the end, each model previously trained is tested to the excluded values, i.e. 0.25 C, 0.5 C

and 0.75 C and 25◦C and 30◦C for current and temperature respectively. Therefore, values

selected for testing represent quantities on which model have not previously been trained.

The metrics used to compare models effectiveness is the mean average percentage error

(MAPE), as described in equation 2.4. This constitutes a coherent comparison metric for

Baghdadi and Wang models because outputs computed by these models are the same (i.e.

capacity), while representing an indication of error for all Omar models those return outputs

in terms of number of cycles, so at a different scale.
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Figure 2.6: Dataset used for current sensitivity analysis. Battery residual capacity of battery
is plotted in function of the number of cycles. Current values are ranged from 0.1
C to 1 C.
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The other cycling quantities those affect an aging degradation are Ąxed as reported in table

2.2:

Table 2.2: Other cycling parameters used for data simulation

Fixed input Values Notes

DOD 85% depth of discharge of each cycle

SOCaverage 50% mean SOC level in each cycle

Crate 0.1 C current (Ąxed during temperature analysis)

T 20◦C temperature (Ąxed during current analysis)

2.3.2 Model selected

In this section, the aging models selected for sensitivity study are summarised.

Baghdadi [89]

kcal(T, SOC) = exp(k1

SOC

R
) · exp(

k2

R
) · exp(− k3

RT
) (2.5)

a(T ) = exp(
k4

RT
+ k5) (2.6)
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Figure 2.7: Dataset used for temperature sensitivity analysis. Battery residual capacity of
battery is plotted in function of the number of cycles. Temperature values are
ranged from 20◦C to 35◦C.

kcyc = exp(a(T ) · I

I0

) (2.7)

ktot = kcal · kcyc (2.8)

C(t) = C0 exp(−ktott
k6) (2.9)

The model proposed is the most comprehensive among the selected ones, though it is the

more complex resulting in a potential higher risk of overĄtting. It returns maximum capacity

available at a deĄned time instant and considers both cycle and calendar aging phenomena;

itŠs based on the computation of two parameters, namely kcyc and kcal those are related to

cycle and calendar aging respectively, leading to a description and possible application in

different real context simultaneously. The model approach aims to reproduce a chemical rate

approach, based on a DakinŠs degradation.

Application: Energy- and power-intensive.

Input: SOC, temperature, time, current.

Parameters: ki, i = 1, . . . , 6.

Coefficients: I0, reference current at 1A; C0, nominal capacity; R, universal gas constant.

Outputs: C(t), which is the capacity at a speciĄc time.

Storage size: validated with 5.3 Ah with 4.2 V , and 7 Ah with 4 V , scalable to other sizes.

Pro: Both calendar and cycle aging are considered.

Cons: The model validation proposed is performed keeping constant SOC and temperature;

furthermore, the analysis is focused on a single Li-ion cell, ignoring the internal resistance

variation.

Note: in our study, the calendar contribution computation is simpliĄed. Differently from the
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author, which computed the calendar factor as the average of kcal with respect to State of

Charge (SOC) interval, here itŠs evaluated using the average SOC of charge and discharge

cycles.

Wang [64]

Qloss = k1 · exp

⎤

k3 + 370 · Crate

RT

⎣

· (Ah)k2 (2.10)

This model evaluates the capacity loss as percentage in function of the current used and

gathered in the electric storage; the exponential modeling is widely used in literature.

Application: energy- and power-intensive context.

Inputs: temperature, total amount of capacity supplied and extracted to the battery, crate.

Parameters: k1, k2, k3.

Output: Qloss, capacity loss in percentage due to aging.

Storage size: validated with 2.2 Ah with 3.6 V , scalable to other sizes of storage.

Pro: Computational efficiency and robustness due to the single exponential equation, inputs

data always noted.

Cons: A single exponential model doesnŠt adequately describe the high variation of the

quantities. Different training are needed based on the operating conditions.

Note: k3 is an additional parameter included to improve model performance instead of using

a constant value as in the original study.

Omar [63]

CL(T ) = k1T 2 + k2T + k3 (2.11)

CL(Id) = k1 exp(k2Id) + k3 exp(k4Id) (2.12)

These models allow degradation description in terms of cycle life, i.e. RUL to achieve 80% of

residual capacity, due to the effect of cycle aging. Each model is univariate, i.e. it evaluates

aging effect according to the variation of a single input while all the others are kept Ąxed.

Since the interest of this study is restricted to current and temperature analysis, only the

models including them are reported.

Application Ąeld: The model can be applied in both energy- and power-intensive Ąelds.

Inputs: current and temperature.

Parameters: ki, i = 1, . . . , 5.

Outputs: RUL of the battery expressed in cycles.

Storage size: 2.3 Ah with 3.3 V . It is scalable to other dimensions.

Pros: It allows to study multiple parameters regarding the aging. It has been also experi-

mentally tested and validated.

Cons: The variables that are not evaluated through equations are considered as constant

parameters.

Note: in this study polynomial equation 2.11 is reduced of one degree with respect to the

model proposed in literature. The simpliĄcation, since the coefficient relative to the third

degree term is evaluated to be close to zero, is introduced to avoid overĄtting and simplify

training phase. Since these models estimate the number of cycles executed to reach a speciĄc

capacity threshold, many set of parameters are trained, each for a different residual capacity

value, such that the capacity degradation curve could be modeled. As last, for temperature

modeling, k1 is forced to be lower than zero according to data shown in paper.
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2.3.3 Results

In this study, effect on several aging models of variation of temperature and current with

respect to the values on which models are trained, is investigated in order to evaluate which

model presents a more robust behaviour. Data of 160 Ah BESS are simulated for this study

varying both temperature and current singularly, maintaining the other Ąxed. In the case of

current, models are trained on 0.1 C and 1 C and tested on 0.25 C, 0.5 C and 0.75 C; for

temperature, 20◦C and 35◦C curves are used for training while 25◦C and 30◦C for testing.

Parameters computed and MAPE are reported. Results of temperature and current are

presented separately.

Temperature

Trained parameters for temperature sensitivity are reported in tables 2.3, 2.4 and 2.5. Each

model is characterised by a different number of parameters according to the mathematical

equations described in section 2.3.2.

For Baghdadi model, the six parameters characterising the equations are reported presenting

relatively large numbers, highlighting the risk of being sensible to variation due to the presence

of nested exponential functions in the model.

Table 2.3: Trained Baghdadi model parameters for temperature

k1 k2 k3 k4 k5 k6

4565.029 -2298.808 4999.728 1.331 -1874.153 -2389.017

The three Wang parameters as described in model equation are computed returning a very

low k1 parameter value in modulus.

Table 2.4: Trained Wang model parameters for temperature

k1 k2 k3

6.362 × 10−6 1.228 -799.922

Since Omar model equation describes degradation in terms of number of cycles necessary

to reach a speciĄc levels of residual capacity, a set of three parameters is computed for each

value of capacity threshold, as reported in the Ąrst column of table 2.5. Thus, model is

trained on seven level of residual capacity, returning the same number of set of parameters

which are then used to compute error from simulated curves in terms of number of cycles.

By means of the parameters computed, all the models are tested on capacity curves related

to 25◦C and 30◦C. Figure 2.8 shows Baghdadi (red and blue lines) results obtained at 25◦C

and 30◦C. The model reasonably follows the decreasing trend of simulated data plotted as

green and yellow curves on which it wasnŠt trained, reaching a maximum error of 8.04Ah,

a mean absolute error (MAE) of 1.82Ah and a root mean square error (RMSE) of 2.52Ah.

However, reproduced curves are sensibly close, underlying a lack of the model on generalising

among these temperature values.

Similar results are reported for Wang but reporting a slight increase in error computed,

reaching a maximum error of 9.1Ah, a MAE of 2.09Ah and a RMSE of 2.9Ah. Figure 2.9

shows Wang model tested at 25◦C and 30◦C with red and blue lines. Anyway it reasonably

follows the behaviour described by yellow and green simulated curves on which it wasnŠt
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Table 2.5: Trained Omar model parameters for temperature. Each parameters row is related
to residual capacity threshold of the Ąrst column.

Cres[%] k1 k2 k3

100 -0.261 14.332 -82.402

99.375 -0.595 26.041 17.054

98.125 -0.981 40.631 79.844

96.875 -1.259 55.916 -14.692

93.75 -1.978 88.767 -84.313

91.25 -2.345 102.314 -8.235

86.875 -3.060 134.971 -75.395

Figure 2.8: Baghdadi model tested at 25◦C (blue line) and 30◦C (red line). It reasonably
follows simulated data, reaching a maximum error of 8.04Ah, a MAE of 1.82Ah
and RMSE of 2.52Ah
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trained.

Figure 2.9: Wang model tested at 25◦C (blue line) and 30◦C (red line). It reasonably follows
simulated data on which it wasnŠt trained, reaching a maximum error of 9.1Ah,
a MAE of 2.09Ah and a RMSE of 2.9Ah.

Finally, differently from Baghdadi and Wang models, the seven outputs indicating the

number of cycles necessary to reach a particular related to the respective set of parameters

are computed for Omar model. Figure 2.10 depicts modeling results at 25◦C and 30◦C. It

slightly overestimates simulated data on which it wasnŠt trained, reaching a maximum error

of 180 cycles, a MAE of 50 cycles and a RMSE of 75 cycles for the seven modeled values.

MAPE computed for temperature to compare models performances is reported in Table 2.6.

The most robust model to temperature variation is Baghdadi for both 25◦C and 30◦C, though

marginally with respect to Wang. The worst performance is obtained by Omar, particularly

for the 30◦C curve. Moreover, since Omar modeling does not consider any other quantities

and involves a more complex training phase because it requires to compute a set of parameter

for each residual capacity value desired, it does not represent a feasible solution with respect

to the others. Although both Baghdadi and Wang cannot signiĄcantly discriminate aging

evaluation among the two values of temperature, Baghdadi is slightly more robust and

represent the best choice when considering temperature variation. However, experimental

data reported in Omar et al. [63] indicate that 20◦C is the optimal temperature condition

which ensures a greater RUL, whereas a decrease of life cycles is expected for temperature

lower and greater than 20◦C. Conversely to Wang model which describe each residual capacity

point at different temperatures with a concave downward parabola, Baghdadi and Wang are

not able to reproduce that behaviour unless a training curve with temperature lower than

20◦C is used.

Current

Trained parameters, according to the mathematical models described in section 2.3.2,
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Figure 2.10: Omar model tested at 25◦C (blue line) and 30◦C (red line). It slightly overesti-
mates test data, reaching a maximum error of 180 cycles, a MAE of 50 cycles
and a RMSE of 75 cycles.

Table 2.6: MAPE computed for temperature sensitivity

Temperature Wang Baghdadi Omar

25◦C 1.19 % 1.05 % 3 %

30◦C 1.79 % 1.54 % 13.09 %
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for current sensitivity are reported in tables 2.7, 2.8 and 2.9. For Baghdadi model, the six

parameters characterising the equations are reported resulting in large numbers with respect

to current variation passed as input, highlighting the risk of being sensible to variation due

to the presence of nested exponential functions in the model.

Table 2.7: Trained Baghdadi model parameters for current

k1 k2 k3 k4 k5 k6

2661.486 -1361.219 -318.699 1.319 -1096.049 1.713

The three Wang parameters as described in model equation are computed returning a very

low k1 parameter value in modulus.

Table 2.8: Trained Wang model parameters for current

k1 k2 k3

9.81 × 10−6 1.25 -635.860

Similar to above for temperature, for Omar model a set of four parameters is computed for

each value of capacity threshold, as reported in the Ąrst column of table 2.9. Thus, model is

trained on sixteen level of residual capacity, returning the same number of set of parameters

which are then used to compute error from simulated curves in terms of number of cycles.

Table 2.9: Trained Omar model parameters for current. Each parameters row is related to
residual capacity threshold of the Ąrst column.

Cres[%] k1 k2 k3 k4

100 13.69 -989.066 -20.44 -993.074

99.375 274.123 -675.799 84.245 -0.770

98.75 116 4.257 × 10−17 667.176 -479.812

98.125 155 2.606 × 10−9 219.112 -202.168

97.5 194 −1.449 × 10−14 -229.219 -321.364

96.25 275.588 -0.168 231.643 -686.973

95.625 314.666 -0.149 160.136 -391.729

93.75 392.599 -0.118 -296.494 -498.801

93.125 430.445 -0.104 -464.388 -538.636

91.25 508.53 -0.089 197.177 -987.357

90 590.251 -0.158 181.206 -302.273

88.125 83.219 -109.698 668.287 -0.14

87.5 707.251 -0.132 173.989 -699.821

86.25 745.093 -0.123 -273.609 -385.423

84.375 823.162 -0.112 -270.926 -775.372

83.125 -302.86 -274.405 904.916 -0.155

By means of the parameters computed, all the models are tested on capacity curves related
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to 0.25C, 0.5C and 0.75C. Figure 2.11 shows Baghdadi model (red, blue and green lines)

tested at 0.25C, 0.5C and 0.75C. It overestimates simulated data (orange, yellow and aqua

green curves) on which it wasnŠt trained, reaching a maximum error of 14.17Ah, a MAE of

5.72Ah and a RMSE of 7.02Ah, although the model moderately follows the decreasing trend.

Figure 2.11: Baghdadi model tested at 0.25C (green line), 0.5C (blue line) and 0.75C (red
line). It overestimates simulated data, reaching a maximum error of 14.17Ah,
MAE of 5.72Ah and a RMSE of 7.02Ah.

Figure 2.12 depicts Wang model performance when tested at 0.25C, 0.5C and 0.75C. It

successfully follows simulated data on which it wasnŠt trained, highlighting a high robustness

to variation of Crate. The numerical results report a maximum error of 0.57Ah, a MAE of

0.17Ah and a RMSE of 0.22Ah, supporting the graphical outcome.

Along with Wang results, Omar model signiĄcantly represent simulated data on which it

wasnŠt trained underlying its robustness as well. Figure 2.13 shows Omar model tested at

0.25C, 0.5C and 0.75C, representing the sixteen number of cycles values computed by the

model. It reaches a maximum error of 95 cycles, a MAE of 25 cycles and a RMSE of 34

cycles.

MAPE computed for current to compare models performances is reported in table 2.10.

The most robust model to current variation is Wang for all Crate values.

The worst performance is obtained by Omar, particularly for the 0.25 C curve. Moreover,

since Omar modeling does not consider any other quantities and involves a more complex

training phase obtaining a set of parameter for each capacity value, it does not represent a

feasible solution with respect to the others. Baghdadi performs slightly better than Omar

but itŠs not comparable with results obtained by Wang model, with a MAE of 5.72 Ah. Thus,

Wang is the most robust and represent the best choice when considering current variation.
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Figure 2.12: Wang model tested at 0.25C (green line), 0.5C (blue line) and 0.75C (red line).
It successfully follows simulated data, reaching a maximum error of 0.57Ah, a
MAE of 0.17Ah and a RMSE of 0.22Ah.

Figure 2.13: Omar model tested at 0.25C (green line), 0.5C (blue line) and 0.75C (red line).
It reasonably follows simulated data, reaching a maximum error of 95 cycles, a
MAE of 25 cycles and a RMSE of 34 cycles.
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Table 2.10: MAPE computed for current sensitivity

Crate Wang Baghdadi Omar

0.25 C 0.12 % 4.4 % 12.03 %

0.5 C 0.11 % 4.62 % 7.62 %

0.75 C 0.12 % 3.09 % 3.63 %
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2.4 Data driven approach

Since the wide diffusion and the ongoing growth of BESS in several technological applications,

the capability to model aging behaviour among different operating condition is an increasingly

crucial challenge. Furthermore, the implementation of a methodology able to run online and

estimate battery degradation with regardless of working condition of BESS is important as

well, since in stationary application context BESS could be used either for delivering huge

amount of power in a brief period to manage frequency Ćuctuation or to store energy to

assist grid Ćexibility demand. Thus, the development of an algorithm able to estimate online

SOH in real application scenarios, without a priori knowledge about its operating condition

is studied and developed to achieve company requirements as a part of an R&D project.

Data used to test proposed methodology have been acquired in utilities context, where

BESS operates as both energy and power intensive storage. Power intensive behaviour is

characterised by a high power delivered in limited time, ensuring security and inertia to

power system; conversely, energy intensive is mainly composed of cycles able to deliver or

accumulate a great amount of energy for prolonged period, leading to load balance and

shifting and decreasing grid congestion. The Ąrst are typical of auxiliary services, e.g. in

primary/secondary frequency regulation, the latter can handle the increasing Ćuctuation

due, for example, to the intermittence of renewable resources. Thus, contribution of energy

intensive services will increase its importance with the raise of renewable capacity, that

already overcomes the actual electricity demand in some hours during speciĄc days [102].

EVŠs BESS, due to the nature of vehicle usage, can be assumed to be energy intensive and

can be modeled as a storage that deliver or absorb power for relative prolonged time.

In this study, in order to address these different operating applications, several challenges

have been addressed:

• automatic deĄnition of modality of storage use, i.e. whether itŠs cycled through power

or energy intensive proĄles.

• obtaining from macroscopic and easy to measure quantities an aging modeling approach

able to describe degradation effect.

• deĄne similar operating conditions throughout the BESS life on which estimate SOH.

• not uniform sampling time among datasets.

Dataset obtained from each BESS containers includes sensor information about current,

voltage and temperature down to a single rack. Moreover, each BMS estimate SOC level of

the battery and itŠs included in this study. Since three BESSs case studies with different

acquisition protocols have been included in the study, sampling time is not uniform among

the three case studies ranging from 2 seconds to 1 min. Table 2.11 resumes the three BESS

size and operating characteristics.

Algorithm developed can be summarised in three main steps:

1. Usage Modality Recognition: BESS usage is detected among a power intensive, an

energy intensive or an undeĄned behaviour.

2. Similar Operating Condition DeĄnition: in order to obtain a more accurate esti-

mate SOH itŠs necessary to identify when BESS operating condition are comparable

throughout BESS life. In power intensive case, VOC is estimated.

3. SOH estimation based on different BESSs mode and operating conditions.
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Table 2.11: Li-ion batteries size and characteristics. Energy capacity, voltage range and
nominal current are reported.

Energy
Capacity [kWh]

Minimum
Voltage [V]

Maximum
Voltage [V]

Nominal
Current [A]

BESS1 70 620 780 90

BESS2 200 680 780 450

BESS3 45 930 1050 40

Figure 2.14 show the main steps of implemented algorithm.

VOC estimation 1- Current spike 
2- DTW 

Usage Modality
Recognition

Cycles and usage automatic
detection: energy or power

intensive 

Similar Operating
Condition Definition SOH estimation

Similar conditon identified to
compare BESS throughput 

Figure 2.14: Online data driven approach

2.4.1 Usage Modality Recognition

The Ąrst algorithm step is to determine charge and discharge cycles and automatically identify

whether the main BESS usage modality is energy intensive or power intensive.

DeĄning how the BESS is employed is crucial in order to implement a reliable SOH

estimation algorithm. Once usage similarity is ensured, itŠs possible to compare different

conditions over time according to the principal BESS operating conditions affecting aging.

If battery dynamics can be assumed to be comparable, differences estimated on maximum

storable energy reĆects aging effect and SOH.

Charge/discharge cycles are deĄned as proĄles where current continuously presents same

signs (positive or negative respectively) and battery present at least 5% of depth of discharge,

computed based on SOC data. In Ągures 2.15 - 2.18 charge and discharge cycles are

represented for two of the three case studies, speciĄcally an energy intensive and a power

intensive behaviour.

Once the charge/discharge cycles are identiĄed, the algorithm aims to deĄne which is

the principal usage modality. The problem is a multi-label classiĄcation with three output

classes: ŞMostly power intensiveŤ, ŞMostly energy intensiveŤ and ŞUndeĄnedŤ. A Fuzzy

Inference System (FIS) is employed to classify in which modality BESS is used.

Fuzzy Inference

A zero-order TakagiŰSugeno (TS) FIS [103] is implemented to obtain usage modality from the

input features. Membership functions are built with trapezoidal functions. The trapezoidal

fuzzy set S in the universe of discourse U ∈ R with the membership function µS is param-

eterized by four real scalar parameters: (a, b, c, d) where a < b < c < d. The trapezoidal
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Figure 2.15: Charge cycles for energy intensive BESS

Figure 2.16: Discharge cycles for energy intensive BESS
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Figure 2.17: Charge cycles for power intensive BESS

Figure 2.18: Discharge cycles for power intensive BESS
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membership function is described mathematically as follows:

µS(x) =

∏︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋁︂

⋃︂

0, x < a

x−a
b−a

, a < x < b

1, b < x < c

d−x
d−c

, c < x < d

0, x > d

(2.13)

When b = c, the triangular function is used and can be considered as a particular case of

the trapezoidal one. The fuzzy system proposed is composed of two inputs and one crisp

output (the class output). The values of the fuzzy sets are reported in Table 2.12.

Table 2.12: Fuzzy sets of the input and output variables for modality classiĄer: linguistic
terms and their corresponding trapezoidal fuzzy set parameters.

Input Variables Linguistic Terms Fuzzy Sets (a, b, c, d)

Number of cycles at P > 50% [%]
Few 0, 0, 20, 40
Many 20, 40, 100, 100

Number of cycles at SOC > 50% [%]
Few 0, 0, 30, 40
Many 30, 40, 100, 100

Output Variable Linguistic Terms Crispy Value

Modality
Mostly energy intensive 1
Mostly power intensive −1
UndeĄned 0

Output is computed through FIS rules described in table 2.13 and by means of weighted

average as defuzziĄcation method. Finally, the classiĄcation label is deĄned based on fuzzy

output value: if defuzziĄcation result is greater than 0 the BESS is associated to ŞMostly

energy intensiveŤ class, if result is lower than 0 it is considered ŞMostly power intensiveŤ and

ŞUndeĄnedŤ if equal to 0.

Table 2.13: Fuzzy system rules for usage modality classiĄcation.

Ncycles SOC > 50% Ncycles P > 50% Output

Few Many Mostly power intensive

Few Few UndeĄned

Many Few Mostly energy intensive

Many Many Mostly energy intensive

2.4.2 Energy intensive

If the BESS modality is considered energy intensive, then SOH is computed directly. When

batteries cycles are characterised by wide DOD range, transient dynamics can be assumed to

be negligible and large range of V are considered to reĆect similar operating characteristics

among usage time. Thus, Ąxed ∆V at 20% ad 85% of minimum and maximum voltage

respectively, capacity delivered or absorbed is computed in charge or discharge cycle proĄles
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in ∆V chosen as the amount of current injected or extracted. Capacity values are averaged

over 20 cycles in order to reduce outliers and noise effect and return a more realistic results.

SOH(t) at the time t is then estimated as the ratio of capacity at time t and the nominal

capacity at the same Ąxed ∆V as deĄned in equation 2.14.

SOH(t) =
C∆V (t)

C∆V 0

(2.14)

Voltage is prefered over the SOC as quantity on which Ąx interval in operating curves. It

is indeed directly measured and so itŠs supposed to be less noisy than SOC that is estimated

by BMS with varying method depending on manufacturer, thus it could accumulate large

error [104], not representing a suitable solution. Moreover, Voltage and SOC are related each

other, both reĆecting VOC.

Figure 2.19 shows the SOH progress estimated for the case study identiĄed as energy

intensive. The non linear behaviour of degradation reĆecting an increase of capacity is due

to conditioning issue, when the temperature is raised and temporarily leads to an apparent

boost in capacity absorbed in charge. However, capacity available to be supplied during

discharge in the same period is reduced and aging effects are more severe.

Figure 2.19: Capacity degradation in the case of energy intensive usage, each capacity point
is averaged over 20 cycles.

2.4.3 Power Intensive

Power intensive behaviour is typical of grid application and more speciĄcally of auxiliary

services and grid support (e.g. frequency regulation) application. Identifying similar operation

range within this context, where DOD intervals are limited, is more challenging, since battery

dynamics can be different between various SOC level and comparing energy stored or delivered
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in a speciĄc ∆V could be affected by noise due to transient dynamics that occur differently

according to various chemical reaction connected to the SOC level. Thus, if the storage is

considered to mainly cycle in power intensive mode, different analysis have been conducted to

achieve the detection of similar operating condition during BESS lifetime. Once two similar

conditions are detected, then capacity can be compared.

VOC is the battery characteristic that directly reĆects battery state without being affected

of transient electrochemical dynamics. Thus, VOC is the BESS quantity that algorithm aim

to estimate to deĄne similar operating conditions as described above. In Ągures 2.20 and

2.21 an example of two different power intensive proĄles is shown. Figure 2.20 depicts a

battery proĄle characterised by numerous spikes in current time series, while this behaviour

less frequently occurs in operating conditions shown in Ągure 2.21.

Figure 2.20: Example of BESS2 operating proĄles mostly characterised by a power intensive
behaviour. Numerous spikes can be observed in current time series leading to a
more accurate R0 estimation, as described in section 2.4.3.

VOC estimation

The algorithm estimates VOC by means of two possible approaches depending on the presence

of proĄles characterised by a fast and huge raise of current (current spikes). Both possible

methodologies are based on zero-order electrical circuit model, described previously by

equation 2.3 and Ągure 2.4.

Current spikes are deĄned as proĄle characterised by an absolute current rise at least at
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Figure 2.21: Example of BESS3 operating proĄles mostly characterised by a power intensive
behaviour. Current spike are not so frequent, rather current proĄles present a
similar step shape; thus, VOC is estimated using DTW, as described in section
2.4.3.
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50% of nominal one in a short time interval, arbitrarily chosen up to 10 seconds. Figure 2.20

depicts a BESS proĄle characterised by numerous current spikes so deĄned, corresponding

to a sudden increase of voltage and SOC. If such spikes are present, Ąrstly resistance is

estimated through equation 2.15 because VOC variation in such short time is considered

negligible.

R =
∆V

∆I
(2.15)

where ∆I is the spike current and ∆V is computed on related voltage values in the interval.

The value of resistance estimated is averaged over the last ten values and updated each

current spike. Figure 2.22 shows resistance estimated by this approach. ItŠs notable that

estimated resistance tends to increase throughout the battery cycling life, due to aging effect.

Figure 2.22: Resistance estimated (not averaged) on current spike. On x-axis current spikes
are ordered chronologically.

Once the resistance is estimated, for each value VOC is computed from zero-order model

as deĄned in equation 2.16.

VOC(t) = V (t) − Restimated(t)I(t) (2.16)

Finally, capacity at speciĄc instant is computed as amount of current in charge/discharge

proĄles in a Ąxed range of ∆VOC and averaged over 20 cycles, similarly to energy intensive

procedure. Thus, SOH(t) is deĄned as follows:

SOH(t) =
C∆VOC

(t)

C∆VOC 0

(2.17)

Figure 2.23 reports decreasing SOH due to aging for our case study using VOC estimation
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on current spikes.

Figure 2.23: Capacity degradation in the case of power intensive usage, each capacity point is
averaged over 20 cycles. Capacity is computed as current injected or extracted
at Ąxed bin of VOC .

Figure 2.21 shows power intensive proĄles, where current mostly presents behaviour similar

to a square wave with not so frequent sudden current peaks. Whether current spikes are

not present or not numerous VOC is estimated using zero order model on charge/discharge

proĄles of ∆SOC of about 4-5%. In this window, resistance is assessed as in equation 2.15

and then VOC is computed. After VOC estimation, operating proĄles are divided in bin of

open circuit voltage and dynamic time warping (DTW) [105] is applied to energy and power

proĄles group together similar curves and behaviour. It indeed aligns and computes distance

between two time series through non-linear distortion. Grouped of similar power and energy

curves are shown in Ągure 2.24.

In the most populated group of similar curves, SOH(t) is computed as described in

equation 2.17. Figure 2.25 reports decreasing SOH due to aging for the last case study using

VOC estimation and DTW on power and energy proĄles.
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Figure 2.24: Similar operating proĄles. Dynamic time warping is computed contemporane-
ously on both power and energy proĄles. For each bin of VOC DTW similarity
is computed for shape of energy released or absorbed and power supplied or
required.
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Figure 2.25: Capacity degradation in the case of power intensive usage, each capacity point is
averaged over 20 cycles. Capacity is computed as current injected or extracted
in group of similar proĄles deĄned by means of DTW.
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Chapter 3

Electric Vehicles

3.1 Overview

The performance of Energy Management Systems (EMSs) for Electric Vehicles (EVs) and

Hybrid Electric Vehicles (HEVs) are highly dependent on the forecast of future driver

torque/power request sequence that affects vehicle efficiency and economy. Since it is hard

to model/predict the behaviour of the driver by Ąrst-principles models, modern data-driven

Machine Learning (ML) and ArtiĄcial Intelligence (AI) algorithms would represent feasible

methods for approaching this problem in real-world automotive systems.

3.2 State of the art

Driving cycle pattern prediction consists in forecast of aggregated features of the whole

cycle segment, leading to an approximate knowledge of next route characteristics. In [106]

driving cycles have been clustered in six different groups by means of a k-Shape algorithm, a

technique that employs a shape-based distance as clustering metric. Then each driving series

has been divided into several shorter segments on which features such as maximum velocity,

average velocity, minimum acceleration, maximum acceleration and maximum deceleration

have been computed. All this information has been used as input of a convolutional neural

network (CNN) to predict the type of driving cycle. Niu et al. [107] have combined two

neural networks to predict both driving trends and standard driving cycle with a time horizon

of 1s. Driving trends have been grouped in a set of 5 possible types, whereas standard driving

cycles in a set of 11. Features used in both neural networks have been built on data related

to velocity, acceleration and time spent at speciĄc velocity. Authors aimed to develop a

fuzzy-based controller to manage energy consumption. Furthermore, the use of Learning

Vector Quantization neural network (LVQNN) has been exploited to recognise real-time

driving patterns and improve velocity prediction in [108].

Driving cycle pattern could be considered for EMS integration and optimization, but their

use within mentioned EMS frameworks would be limited due to the hard customization

required to exploit this information. On the other side, velocity predictors have been

widely studied due to the possibility to directly exploit vehicle speed prediction within

EMSs for achieving superior H/EV performance. Due to the stochastic nature of driving

proĄle variation many studies have employed bayesian network and markov process in

their predictive algorithm. Zhang et al. [109] developed an algorithm to predict velocity

based upon a Bayes Network model that uses information about driving characteristics of

succeeding vehicles, Geographic Information System (GIS) and Global Positioning System

(GPS) data. Several studies have employed Markov processes, another kind of stochastic

process, as in [108] mentioned before. In [110], a Discrete Markov process has been built
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on velocity and acceleration: similar values of velocity and acceleration compose a state

of transition matrix, representing similar driving conditions. Then, combining the Markov

chain and Monte Carlo theory, an adaptive-horizon prediction method has been proposed

and used to anticipate future moments. Furthermore, the combination of Markov process

with backpropagation neural network (BPNN) has been explored [111]. A vehicle speed

prediction has been advanced using both approaches to predict velocity in a horizon of 5s.

Acceleration and velocity based features have been used for prediction. Another study [112]

has involved velocity and acceleration data from highways and urban driving cycles and has

compared forecasting results obtained by a Markov chain predictor, by an exponential-based

predictive model and with outcomes from three types of neural networks (NNs): a BPNN, a

layer recurrent (LRNN) and a radial basis function (RBFNN) neural networks. Thus, NNs

based models have widely been employed to predict velocity are NNs, as reported before [111]

[112]. Moreover, Rezaei et al. [113] have employed an autoregressive model to predict the

desired drivers velocity at 10-seconds horizon. Data from three driving cycles have been used

and GPS and GIS data have been involved in the predictive model to improve forecasting

depending on upcoming events.

The principal drawback of speed prediction models is that velocity does not exactly reĆect

the drivers guide style because it depends on torque demanded by driver, which instead

represents directly driverŠs reaction. Furthermore, desired velocity contains intrinsic delay in

its information about the driverŠs will, i.e. engine time response and time elapsed to reach

wanted velocity. The main approaches explored in literature for torque prediction have been

neural networks, stochastic processes, autoregressive modeling and support vector machine

(SVM). In [114] a three layer NN has been used to predict torque demand and vehicle velocity

at 2.5 s horizon. Six drive cycles data have been recorded from a vehicle driven by the same

driver at different days. Five driving cycles have been used for training and the other one

for testing. In the study conducted by Zeng et al. [115], a single-hidden layer feedforward

neural network (SLFN) has been presented to predict gasoline engine output torque with

high accuracy but using as input features computed on engine characteristics such as engine

speed, intake manifold pressure, barometric pressure, intake air rather than driving proĄles.

Also stochastic approaches have been employed to predict torque demand. Shi et al. [116]

have used a one-step markov chain model for a MPC model with a time horizon of 1 second.

Positive driving torque have been discretised between the maximum and minimum values

to create transition probability map based on two real drive cycles and CTBCDC (China

Transit Bus City Driving Cycle) proĄle. In [117], a Ąxed gain algorithm method has been

developed for an online, multi-step and real-time prediction for the demanding power of

an electro-mechanical transmission based on an autoregressive model with external inputs.

Both desired power demand of the vehicle and actual power demand have been used as input.

The prediction horizon has been set at 0.3 s. Meng et al.[118] have applied an autoregressive

model for torque demand prediction as well. Simulated data have been generated with

0.01s sampling interval and 10 steps has been set as horizon prediction; features have been

computed by means of torque and Vehicle-to-vehicle (V2V) information, such as distance,

speed and acceleration. In [119] a second order polynomial regression and second order

Volterra model have been compared for torque forecasting, using as input engine velocity

and accelerator pedal. Dataset used have been collected from 300 samples of real vehicle

data and prediction step has been set at 1. As last, a different approach has been proposed

by Vong et al. [120], using a Least Squares SVM (LS-SVM) based on engine characteristics.

200 different engine setups has been acquired from a Honda B16A DOHC to predict output
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torque.

3.3 Driver torque demand prediction

A comparative study of different strategies for torque prediction requested by the driver for

the optimal EMS of H/EVs is conducted. Exponentially varying torque predictor, linear

regression, shallow and deep NN and LS-SVM based strategies have been considered [121, 122].

The choice fell on the above classes since they allow developing multiple-input and multiple-

output (MIMO) models and direct models for accurate long-term prediction. MIMO and

direct models permit to obtain better results in terms of accuracy forecasting with respect to

iterative one-step-ahead models [123]. Mentioned predictors are systematically compared

in terms of prediction capability and computational cost. The considered methods belong

to the supervised learning class, as they use stored data for training off-line a data-driven

estimation policy to be used on-line for providing required torque sequence.

In this study, two additional original contributions are included with respect to the related

literature. First, extensively analysis of data-driven based torque demand predictors are

conducted, for the Ąrst time, for HEV energy management. Second, the LS-SVM based

torque predictor is investigated to fully explore its potential in the model adaptation when

the driving style changes over-time.

3.3.1 Exponential predictor

Exponential torque demand predictor assumes that power request increases/decreases expo-

nentially over the prediction horizon. In each prediction horizon, the exponentially varying

horizon torque is formulated as stated in equation 3.1:

Tk+n = Tk · (1 + ϵ)
n

, n = 1, 2, . . . , p (3.1)

where p is the prediction horizon, Tk is the initial torque at time step k and ϵ is the

exponential coefficient. Different ϵ values are considered to examine the sensitivity of model.

The model proposed in literature was considered for its ease of developing in a real-time

application [112].

3.3.2 Multivariate linear regression

Multivariate linear regression (MLR) considers the following model:

yk = W T xk + ek (3.2)

where k ∈ Z is the discrete time index, yk is the l-dimensional vector of responses, xk is a

design m-dimensional vector of predictor variables, W ∈ R
m×l is the matrix of regression

coefficients and ek ∼ N (0, Σ) is the l-dimensional vector of error terms, with multivariate

normal distribution. The prediction is performed as ŷk = W T xk The matrix W of regression

coefficients is found by the ECM algorithm [124]. The MLR model is considered for its ease

of developing in a real-time application and for its capability to learn models, one for each

horizon, from the time series.
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3.3.3 Cascade Neural Network

Cascade-forward neural network is a class of neural network similar to feed-forward networks,

but it includes a connection from the input and every previous layer to following layers. It

corresponds to the case where all previous hidden units are used as regressors in the next

layer, not only the ones from the previous layer. The advantage of this network is that it

accommodates the nonlinear relationship between input and output by not eliminating the

linear relationship between the two layers. In [125], the authors showed as a deep learning

model with six layers of cascaded-forward nets gives better results in the validation dataset

with respect to deeper LSTM models. The authors highlighted as the cascade-forward neural

network obtains models for the standard Silverbox benchmark case [126] that easily match the

best results obtained with other sophisticated solutions [127], so, lastly, the cascade-forward

neural network is considered in this work as regression model for driver torque demand

prediction. The Ągure 3.1 show the standard structure of a cascade-forward neural network.

Cascade neural network is considered for its capability to learn MIMO models and to obtain

Figure 3.1: Cascade neural network.

models that easily match the best results obtained with other sophisticated solutions in

different benchmarks [125].

3.3.4 Deep Neural Network

With the advancement of computational hardware resources and algorithms, deep learning

methods such as the long short-term memory (LSTM) model and sequence-to-sequence

(seq2seq) modeling have shown a good deal of promise in dealing with time series forecasting

by considering long-term dependencies and multiple outputs [128]. This study presents a

regression model based on LSTM and the seq2seq structure to predict the driver torque

demand. An LSTM network is a type of recurrent neural network (RNN) used in the Ąeld of
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deep learning that can learn long-term dependencies between time steps of sequence data

and it is used for different tasks such as anomaly detection, speech recognition, and in the

context of time series forecasting as well.

3.3.5 Least Square Support Vector Machine

LS-SVM is a variant of SVM that lead to solving linear Karush-Kuhn-Tucker (KKT) con-

ditions. LS-SVM method considers the regression problem as the following optimization

problem.

min
w;e;b

J(w; e) =
1

2
wT w +

1

2
γ

n
∑︂

i=1

e2
i (3.3)

subject to yi = wT φ(xi) + b + ei, i = 1, . . . , n (3.4)

where w, b ∈ R, γ is a regularization constant, φ(xi) is the feature map to the high dimensional

future space and ei denotes the prediction error term for the i-th data point. The Lagrangian

function is

L(w; b; e; α) = J(w; b) +
n
∑︂

i=1

αi

(︁

yi − wT φ(xi) − b − ei

)︁

(3.5)

where αi are the Lagrange multipliers. So by using Lagrange multipliers, the solution can be

obtained by considering the Karush-Kuhn-Tucker (KKT) conditions for optimality and solve

the dual problem.

∂L

∂w
= 0 → w =

n
∑︂

i=1

αiφ(xi) (3.6)

∂L

∂b
= 0 →

n
∑︂

i=1

αi = 0 (3.7)

∂L

∂ei

= 0 → ei =
αi

γ
(3.8)

∂L

∂αi

= 0 → yi = wT φ(xi) + b + ei (3.9)

So the standard framework for LS-SVM is based on a primal-dual formulation and the

solution in α, b is given by the following linear system

⎟

Ω + I/γ 1T
n

1n 0

⟨︂⎟

α

b

⟨︂

=

⎟

Y

0

⟨︂

, (3.10)

with Y = [y1, . . . , yn], α = [α1, . . . , αn], 1n = [1, . . . , 1], Ωij = φ(xi)
T φ(xj) = K(xi, xj) and

with K(xi, xj) a positive deĄnite kernel. The previous linear system can be rearranged as

Θnα̂n = Yn (3.11)

where α̂n = [α, b]T , Yn = [Y, 0]T and the Lagrangian multiplier can be estimated by inverting

the matrix Θn. According to MercerŠs theorem, the resulting LS-SVM model for function

estimation becomes ŷ(x) =
√︂n

i=1 αiK(x, xi) + b.

When working with large data sets it is important to emphasize that the use of the

entire training sample of size n to compute kernel matrix and the solution of (3.10) can be
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prohibitive. So in [129, 130], the authors proposed an explicit approximation for the feature

map φ when working in the primal space. The method is based on the Nyström method

[131] that determines an approximation of φ. This Ąnite dimensional approximation φ̂(x)

can be used in the primal problem to estimate w, b. In particular, the authors provided an

algorithm for making a good selection of the support vectors and a methodology to choose a

working set of Ąxed size m ≪ n. In order to make a more suitable selection of the support

vectors instead of a random selection, one can relate the Nyström method to kernel principal

component analysis, density estimation and entropy criteria. The m support vectors which

maximize the quadratic Rényis entropy that can be approximated by using

∫︂

p̂(x)2dx =
1

N2
1T

n Ω1n (3.12)

One chooses a Ąxed size m then and actively selects points from the pool of training data as

candidate support vectors. An algorithm that select the points from the training data set

that iteratively improves the entropy criterion was proposed in [129, 130] and considered in

this study. Fixed-size LS-SVM model is considered for its capability to handle large data

sets and to learn models, one for each horizon, from the time series [130].

3.4 Results

Results are compared between performance of baseline supervised learning approaches and

the proposed policy based on the model updating.

Popular certiĄcation cycles are the outdated New European Driving Cycle (NEDC) which

was replaced by the World-harmonized Light-duty Test Cycle (WLTC) and the World-

harmonized Light-duty Test Procedure (WLTP) for Europes certiĄcation test procedure

starting in 2017. Driving cycles considered in this study are the NEDC, the WLTP (class

1, 2, and 3 termed as WLTP1, WLTP2, WLTP3, respectively), the FTP-75 and the US06.

Three different WLTC have been deĄned, depending on vehicle class deĄned, i.e., class 1-

low power vehicles, class 2- medium power vehicles and class 3- high-power vehicles. The

EPA Federal Test Procedure is a series of tests deĄned by the US Environmental Protection

Agency. The current procedure has been updated in 2008 and includes four tests, in this

study the city driving test (FTP-75), and the aggressive driving test (US06) are considered.

Signals analyzed for the prediction of driver torque demand are torque, acceleration, velocity,

and engaged gear sequences. To generate such a signal, the Mathworks MATLAB/Simulink

HEV P3 Reference Application simulation model as been considered. This model permits

to simulate the behaviour of a realistic HEV featured by a hybrid powertrain with internal

combustion engine, transmission, electric motor and battery, an EMS based on PMP, and a

a nonlinear model of the driver computing the torque reference signal that permits to track

the vehicle speed reference signal deĄned according to the selected driving cycle.

By running this model over the set of selected driving cycles, required signals have been

collected. Algorithms evaluated in the following sections have been developed by considering

as input the last 10 samples of driver demanded torque signal, the last 5 samples of vehicle

speed and acceleration, and the last gear control signal sample. The size of such a input

signal represent the size of the buffer iteratively updated at each sampling time with the last

measured signalsŠ value. The size of each delay buffer represent the memory of the algorithm

and has been established empirically such that longer delays donŠt improve signiĄcantly the

obtained performances in this speciĄc experimentation. The sampling time Ts is 0.1 s and
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the prediction horizon is 20 steps ahead. The data was standardized in the range -1 to 1.

Achieved prediction results have been evaluated according to the Best Fit Rate (BFR)

index, adjusted RMSE (aRMSE) and adjusted MAE (aMAE), computed as

BFR = 100 × max

⎠

0, 1 − ∥y − ŷ∥2

∥y − 1
N

√︂N

k=1 y(k)∥2

⎜

, (3.13)

aRMSE =

⎞

1
N

√︂N

k=1 (y(k) − ŷ(k))
2
⎡0.5

max(y) − min(y)
, (3.14)

,

aMAE =
1
N

√︂N

k=1 (y(k) − ŷ(k))

max(y) − min(y)
. (3.15)

where y and ŷ are the real and the predicted torque, respectively, and y(k) is the real torque

at the time instance k.

The dataset has been divided in 50% for training and 50% for testing, a 10-fold strategy is

applied to the training dataset to set the hyperparameters by using the Bayesian optimization

algorithm. The procedure has been replicated 20 times and the results shown in this paragraph

are the average value and standard deviation of the repetitions.

3.4.1 Baseline Predictor

The considered baseline predictor maintains constant the measured torque value at instant k

to predict the value to the instants k + 1, . . . , k + p, where p is the prediction horizon. Figure

3.2 shows the indexes BFR, adjusted RMSE and adjusted MAE of the baseline, in which

the driver torque prediction is basically considered constant from k to k + p. The Ągures

3.2a, 3.2b and 3.2c show that the worst cases that is the WLTP1 considering BFR and the

US06 considering adjusted RMSE and adjusted MAE. The 1-step ahead prediction is quite

adequate whereas the performance becomes worst for long-term prediction for some type of

driving cycles.

3.4.2 Results of Exponential Predictor

The exponential predictor gives results very close to the baseline, as shown in Figure 3.3.

The Ągures 3.3a, 3.3b and 3.3c show the BFR, adjusted RMSE and adjusted MAE of the

exponential predictor. The parameter ϵ belongs to the set of values [−0.1, −0.09, . . . , 0.1].

The average BFR, RMSE and MAR reach their minimum for each driving cycle when

ϵ ∈ ¶−0.03, −0.02, −0.01, 0♦.

3.4.3 Multivariate Linear Regression based Predictor

Concerning multivariate linear regression, linear, second order and third order polynomial

models are trained. The Ągures 3.4, 3.5, 3.6 show the indexes BFR, adjusted RMSE and

adjusted MAE for the case MLR. In particular, the Ągures 3.4a, 3.4b, 3.4c show the indices for

the linear model, the Ągures 3.5a, 3.5b, 3.5c show the indices for the second order polynomial

model and as last the Ągures 3.6a, 3.6b, 3.6c show the indices for the third order polynomial
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Figure 3.2: Baseline predictor performance
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Figure 3.3: Exponential varying predictor performance
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model. The BFR is best for the third-order model (i.e., 43 predictors), but the improvement

with respect to the second-order (i.e., 64 predictors) is low despite a greater increase of the

computational burden for model training, then a second-order polynomial model is preferable.

3.4.4 Cascade Neural Network based Predictor

Concerning cascade neural network, the Ągures 3.7, 3.8 shows the indexes BFR, adjusted

RMSE and adjusted MAE. In particular, the Ągures 3.8a, 3.8b, 3.8c show the indices for the

cascade neural network trained with Scaled Conjugate Gradient (SCG) training algorithm

and the Ągures 3.7a, 3.7b, 3.7c show the indices for the cascade neural network trained with

Levenberg-Marquardt (LM) algorithm. These training algorithms have been chosen due to

their popularity and effectiveness for NNs [132]. After hyperparameters tuning, the optimal

neural network is composed of three hidden layer with 20, 10 and 20 neurons, respectively.

A regularization term of 0.01 is added to the training algorithm.

3.4.5 Sequence-to-Sequence Model based Predictor

Concerning deep neural network has been considered a structure composed of 6 layers in

particular, an input layer, a LSTM layer of 500 neurons, a fully connected layer of 100

neurons, a dropout layer with probability 0.5, a fully connected layer of 20 neurons and

a regression layer. The Ągure 3.9 shows the indexes BFR, adjusted RMSE and adjusted

MAE. In particular, the Ągures 3.9a, 3.9b, 3.9c show the indices for the sequence-to-sequence

regression model using LTSM model.

3.4.6 Fixed-Size LS-SVM based Predictor

Concerning least square support vector machine, standard and Ąxed size models are trained.

The Ągures 3.10, 3.11, 3.12 show the indexes BFR, adjusted RMSE and adjusted MAE for

the case LS-SVM. In particular, the Ągures 3.10a, 3.10b, 3.10c show the indices for the Ąxed

size model with m=200 samples, the Ągures 3.11a, 3.11b, 3.11c show the indices for the Ąxed

size model with m=500 samples and as last the Ągures 3.12a, 3.12b, 3.12c show the indices

for the standard LS-SVM model.

3.4.7 Torque Demand Prediction Comparison

The Table 3.1 shows the results considering the mean and standard deviation of all simulations

varying the driving cycle and a prediction horizon from 1 to 20 steps ahead. In the Table

3.1 is reported only the cascade neural network trained with Levenberg-Marquardt because

the scaled conjugate gradient training algorithm gives worst results. The table showed as

the exponential predictor gives results very close to the baseline. As can be seen from Table

3.1, the maximum average BFR and the minimum average RMSE and MAE are reached

considering the Fixed-Size LS-SVM (m=500 samples). Cascade neural network showed similar

average results to Fixed-Size LS-SVM but the standard deviations are higher. Multivariate

linear regression showed worst results with respect to Fixed-Size LS-SVM and cascade neural

network but the standard deviations are low. Finally, the sequence-to-sequence model based

on LSTM showed the best outcomes among the machine learning based predictors.

Simulation was performed on a personal computer with an Intel Core i7-7700HQ CPU at

2.8 GHz CPU. Computational times required by each prediction algorithm are reported in

Table 3.1 showing how Sequence-to-Sequence predictor is computationally heavier than CNN,
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Figure 3.4: Multivariate linear regression: 1st order polynomial model.
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Figure 3.5: Multivariate linear regression: 2nd order polynomial model.
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Figure 3.6: Multivariate linear regression: 3rd order polynomial model.
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Figure 3.7: Cascade neural network: cascade NN trained with LM training algorithm.
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Figure 3.8: Cascade neural network: cascade NN trained with SCG training algorithm.
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Figure 3.9: Sequence-to-sequence regression using deep learning.
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0 2 4 6 8 10 12 14 16 18 20

Prediction step

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

A
d

ju
s
te

d
 R

M
S

E

Fixed size LS-SVM

WLTP1 WLTP2 WLTP3 NEDC FTP75 US06

(b) Fixed-size LS-SVM, m=200, adjusted RMSE
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Figure 3.10: LS-SVM: Ąxed size model, m=200.
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(b) Fixed-size LS-SVM, m=500, adjusted RMSE
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Figure 3.11: LS-SVM: Ąxed size model, m=500.
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Figure 3.12: LS-SVM: full model.
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AVG
BFR

STD
BFR

AVG
adjRMSE

STD
adjRMSE

AVG
adjMAE

STD
adjMAE

Tcomputation
(microseconds)

BASELINE 32.2 20.42 0.0680 0.0330 0.0313 0.0200
EXPONENTIAL

PREDICTOR
35.9 18.24 0.0641 0.0299 0.0308 0.0194 0.0027

FIXED-SIZE LS-SVM
m=500

69.4 0.29 0.0519 0.0006 0.0240 0.0002 1.1516

FIXED-SIZE LS-SVM
m=200

67.0 0.47 0.0555 0.0008 0.0263 0.0003 0.3423

CASCADE
NEURAL NETWORK

(Levenberg-Marquardt)
67.7 1.03 0.0556 0.0013 0.0268 0.0005 0.2853

MVN
(1st order)

53.6 0.26 0.0778 0.0004 0.0405 0.0003 0.0019

MVN
(2nd order)

59.5 0.39 0.0679 0.0006 0.0343 0.0002 0.0148

MVN
(3rd order)

60.2 0.56 0.0668 0.0010 0.0345 0.0003 0.0734

Sequence-to-Sequence
(LSTM)

49.2 1.57 0.0929 0.0026 0.0440 0.0004 3.4254

Table 3.1: Predictors Results

MVN, and exponential based predictors, whereas Ąxed-size LS-SVM requires a computational

burden proportional to the sample number m.

3.5 Online Updating Procedure

In this section the online updating procedure for Ąxed-size LS-SVM predictor is described.

In the literature, a incremental procedure for standard LS-SVM has been described in [133]

and proposed for application in the automotive context in [134, 135]. In [136], the authors

proposed a online learning algorithm based on incremental chunk for LS-SVM. Differently

from the literature, in this work, starting by a Ąxed-size LS-SVM model, the entropy value is

adopted to evaluate the novelty between a new sample and the existing sample in the training

dataset DN which is composed of predictor variables. The incremental algorithm updates

the trained LS-SVM whenever the entropy of a new sample (xn+1, yn+1) is over a threshold

Ąxed used by training dataset thus the new sample can be considered to improve the base of

knowledge because this new sample can enhance the generalization of the LS-SVM model or

reboost the model accuracy.

To develop the online update procedure in the dual form, since the solution is given by

the set of linear equations Θnα̂n = Yn, the next new model is given by

Θn+1α̂n+1 = Yn+1 (3.16)

where Yn+1 is the vector of samples [Yn, yn+1, 0]. In order to efficiently update Θn+1 whenever

a new sample is added without explicit computation of the matrix inverse, the matrix inverse

Θn+1 can be computed from Θn with the bordering method as in the following

Θn+1 =

⎟

Θn u

uT a

⟨︂

(3.17)
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Θ−1
n+1 =

⎟

Θ−1
n +

Θ−1

n
uuT Θ−1

n

q
− Θ−1

n
u

q

− uT Θ−1

n

q
1
q

⟨︂

(3.18)

where q = a−uT Θ−1
n u, and u = [K(xn+1, x1), . . . , K(xn+1, xn), 1], a = γ−1+K(xn+1, xn+1).

The above incremental procedure can update, reboost and improve the built LS-SVM model

continually. At the next sample, the training dataset and the data vectors are incremented

as follows

Dn → Dn+1 (3.19)

xtrain = [xtrain, xn+1]
T

(3.20)

Ytrain = [Ytrain, yn+1]
T

(3.21)

and the Lagrangian multiplier becomes

α̂ = Θ−1
n+1Ytrain (3.22)

However, the incremental procedure continually increases the memory length that enlarges

the model complexity and reduces the computational speed, thus a First-In First-Output

(FIFO) decremental procedure is therefore employed after every incremental procedure

by removing the earliest trained data in the training dataset. Similar to the case of the

incremental procedure, in order to avoid the computation of the matrix inverse, Θn must be

updated from Θn+1, where Θn+1 is the matrix without the Ąrst row and the Ąrst column.

Following the decremental procedure, the decremented matrix is obtained as shown in Eq.

(3.23)

Θn(i − 1, j − 1) = Θn+1(i, j) − Θn+1(i, 1)Θn+1(1, j)

Θn+1(1, 1)
(3.23)

where i, j = 2, . . . , n + 1 and the training dataset and the data vectors are decremented as

follows:

Dn+1 → Dn (3.24)

xtrain(1) → ∅ (3.25)

Ytrain(1) → ∅ (3.26)

To test the proposed online updating procedure, the Fixed-Size LS-SVM model is trained

with the driving cycle FTP75 and the driving cycle US06 is concatenated with FTP74 for

testing. The Ągure 3.13 show the results in terms of normalized real torque and normalized

torque prediction at 0.5-seconds horizon (5 steps ahead). The Ągures 3.13a and 3.13b show

the cases with and without online updating procedure and the coefficient of determination,

R2, is reported as well. The online updating procedure permits to improve the results, in

particular, the adjusted RMSE decrease from 0.183 for the case without online updating

procedure to 0.0943 in the opposite case.
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(a) Without updating

(b) With updating

Figure 3.13: LS-SVM torque predictor: R2 plot.
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The Ągure 3.14 shows the US06 driving cycle and the prediction at 0.5-seconds horizon with

and without online updating procedure. The Ągure shows as the online updating procedure

permits improving online the model in the case of driving style changes.
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Figure 3.14: US06 driving cycle.

Thus, results show that Ąxed-size LS-SVM-based predictor is able to provide the best

performance while tested over a range of well-known and certiĄed driving cycles. Furthermore,

the Ąxed-size LS-SVM-based torque predictor is investigated to evaluate capabilities given

by the presented on-line updating policy used to adapt the data-driven algorithm to changes

on the off-line evaluated driving style.

The study summarizes several results and related analysis providing a better understanding

of available torque prediction policies suitable for H/EV EMS integration, contributing to

the deĄnition of a real-time approach that could improve EMS control in EVs and resulting

in a reduced SOH rate degradation.

EMS are designed in order to lead powertrain in the best operating conditions by means of

optimization-based technique. The MPC allows to control H/EV over a certain future horizon

based on vehicle operating characteristics conducted by driver actions. In literature, studies

have been conducted to analyse the effect of torque prediction and SOH trend. In [137],

a battery wear model is included for powertrain optimal control problem, highlighting the

effectiveness of a control strategy on reducing aging degradation and improve maintenance

and costs management as well. Moreover, also Ebbesen et al. [138] proposed a formulation

optimal control problem including a dynamic state-of-health model for a Li-ion battery. Then,

a causal energy management strategy is derived applying a PontryaginŠs minimum principal.

The implemented solution results in minimisation of fuel consumption while maximizing

battery life.
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Chapter 4

V2G: Vehicle-To-Grid

4.1 Overview

The recent growth of EVs share into the transportation industry and their impact on the

electricity grid open a new set of applications at different scales. The study of V2G paradigm

strategies has become an important focus in both the electric mobility and distribution grid

research areas. Each EV indeed can be seen as a mobile distributed BESS, thus giving to

each consumer a potential active role in the energy distribution scenario.

In a residential scenario V2G, also referred as Vehicle-to-Building (V2B), is one of the

most promising technologies which may have a signiĄcant impact on energy Ćexibility due

to its capability to manage the load demand and to accommodate shares of intermittent

renewable energy production. However, there is still a lack of large scale data (often location

dependant) to test and deploy energy management strategies for vehicle-to-grid services.

In this context, tools able to simulate the behavior of an EV can be crucial to design, develop

and test different DSF algorithms and scenarios. The proposed tool provides individual and

aggregated charge, discharge and plug-in/-out events data of a custom geographically deĄned

population of EVs, considering both home and public charging stations. The population is

generated on the basis of statistical data (which can be obtained by data driven approaches or

a priori assumptions) including commuting distances, vehicles models, traffic, social behavior

of the owners and driving style of the consumer. It is designed as a web simulator as well

as a Matlab/Simulink block, in order to facilitate its integration in different projects and

applications. During the last years, several simulation approaches have been proposed in the

literature but, to the best of our knowledge, none of them integrates a realistic modeling

of the aging process of the battery. Indeed, the modeling of BESSs aging is necessary to

simulate the real behavior of an EV and properly analyze the effects of DSF algorithms on

the vehicles life.

4.2 State of the art

In last decade, many predictive models of different EVs scenarios and their possible interaction

with electrical grid have been developed due to the ongoing increase of electriĄcation of the

transportation market and the absence of signiĄcant datasets.

In 2009, Karnouskos and De Holanda [139] developed a simulator built on an agent-based

tool, modeling the discrete heterogeneous devices that consume and/or produce energy, that

are able to act autonomously and community in a smart city context, including EVs and

smart homes. Their simulation approach consider that objects, such as house appliances or

EVs, change their behaviour and the energy capable to exchange following possible event

that could casually occur during simulation (e.g. the unplugging of a device) or modeled by
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a probability distribution, such as the chance of unexpected traffic jams or other adverse

conditions.

In 2010, Pillai and Bak-Jensen [140] proposed a study that aims to model the EVs power

load onto a Danish distribution grid, considering different EVs population ranging from 0%

to 50% of the total numbers of cars in the district. These EVs are characterised by two

particular type of recharging modes: a 40% of EVs follow a Şsmart rechargingŤ procedure,

taking into account Ąxed amount of charging time and loads shifted towards hours of low

electricity prices; a 10% of the total vehicles were EVs characterised by a Şdump rechargingŤ

with no time constraints. Unfortunately, neither geographical or traffic information, nor a

costumer proĄling or a consumer population based on a statistical distribution or model

have been included in this case study.

In the following years, the focus of scientiĄc study has been shifted toward the study

of model for recharging stations and EVs at circuital level, aiming for the development of

novel fast-recharging modalities and V2G oriented bidirectional AC/DC, DC/DC converters

[141, 142].

In the years between 2014 and 2019, several studies have proposed both custom and

commercial simulators, modeling and combine hourly-distributed energy consumption proĄles

in a wide grid scenarios, in order to develop and test strategies that deals with energy

investments, scheduling issues, optimal topological arrangement of charging station as well

power loss minimisation [143, 144, 145, 146, 147, 148]. Of particular interest is the study of

Bedogni et al. [145], that improves several pre-existing simulators (Omnet++, SUMO and

VEINS) those model event-based recharging operations, by means of traffic conditions and

geographic information. The signiĄcant effort of this work is the focus on public recharging

stations and a simulator, which offered recharging spot reservation. On the other hand, for

consumer proĄling only distance constraint and Ąxed time are considered and home-recharging

events arenŠt treated.

Novosel et al. [144], featuring the MATSim and EnergyPLAN tools, proposed a model

of the energy exchange and impact on Croatia, similarly to the work of Pillai et al. Here,

consumer activities proĄling and commuting distances are modeled based on parametric

probability distribution drawing a distance vs traveling time realistic scenario. Moreover,

more accurate model of energy production, import and export is developed, but at the

expense of an accurate EV modeling.

In [147], Rigas et al. proposed a custom Java-based simulator named of EVLibSim. A

thorough comparison with other existing tools is presented, confronting them in terms of

V2G EVs and charging station modeling, electricity prices and scheduling. The simulator

developed is based on an event-based approach to manage EV activities at charging station

level, focusing on the model and the customisation of the latter. Although behavioural

aspects of the district population are not considered, thus leaving out commuting distances,

EV models and home recharge capabilities, a detailed model of charging station leads to an

accurate simulation of charges, discharges and queues.

As last, the study of Canizes et al. [148] provided a tool to analyse the effect of the variation

of electricity costs on the behavior of EV consumers. Not only an extensive comparison

with current available tools is reported, rather a simulator is presented, improving consumer

behaviour proĄling, traffic conditions and home and public charging station customization.

An optimisation model is integrated in the tool in order to determine the variable charging

price. In conclusion, the study demonstrates that the variable-rate of electricity prices

is a more advantageous solution for consumers, allowing to reduce charging costs while
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contributing to the required grid Ćexibility, rather than modeling recharging events based on

consumersŠ behaviour and electrical grid load.

None of the studies previously presented have considered the aging problem related to EVs

batteries, which is particularly enhanced in a scenario where charging and discharge cycles

are increased.

The Table 4.1 summarises every tool presented by scientiĄc literature.

Table 4.1: Overview of the different simulation approaches in literature

Citation
Vehicle
Type

Vehicle
Modeling

Price Driven
Vehicle Choice

Plug-In/-Out
Scheduling

Consumer Daily
Routine Model

Daily Charge
Data Generation

Traffic/Trip
Simulation

Home
Recharging

Public Station
Recharging

Simulator
(Language)

ePopSimulator EV, Hybrid Yes Yes Yes Yes
Yes (1,10,15,30)

minutes resolution
Yes Yes Yes Custom (Python, Matlab)

[148] EV Partial No No Partial No No Yes Yes Custom (R - RStudio)
[147] EV Yes No No No No No No Yes EVLibSim (Java)

[146] EV, Hybrid
Yes (autonomy

estimation)
No No No No Yes No Yes Custom (Matlab/Simulink)

[145] EV Partial No Partial Partial Yes Yes No Yes
Omnet++,

SUMO, VEINS

[144] EV + CO2 No No No
Partial

(Statistical)
No Yes No No

MATSim,
EnergyPLAN

[143] EV No No No Partial Yes Yes Yes Yes DER-CAM

[142] EV
Yes

(Battery model)
No No No Partial No No Yes Custom (Matlab/Simulink)

[140] EV Yes No Yes Yes Yes No Yes No Custom
[139] EV Yes No No Yes Yes No Yes No JADE
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4.3 Simulator Architecture

The proposed simulator architecture is composed of a cloud-based component, a Simulink

and an aging simulator blocks. While the cloud-based simulator can work as a stand-alone

tool, the Simulink block, which can be added to any custom Simulink project, needs to be

initialized with the output data provided by the cloud-based simulator. The AgingSimulator

is integrated in the architecture processing charge and discharge cycle provided and computing

the consequent decrease of SOH.

An overview of the software architecture is shown in Ągure 4.1. The cloud-based frame,

as shown on the top of Ągure, represents cloud-accessible software to compute a simulation

without considering an aggregation approach. Simulated consumer habits and proĄling are

thus downloaded and provided to the offline Simulink block through the Initializer.m

script. The bottom frame represents the customisable offline Simulink-based simulator. The

Aggregator Online Assistant (AOA, in the orange box), explained in detail in the following

sections, manage the recharging procedures imposed by the custom aggregator logic (green

box), following the simulated habits and requirement constraints of the EV owners simulated

in the online block. The aging simulator, implemented as an external service, estimates,

based on charge and discharge proĄles imposed by AOA, the SOH of all the EVs batteries

simulated.

Figure 4.1: Software architecture scheme. The cloud-based frame is shown on the top.
The bottom frame represents the customisable offline Simulink-based simulator
composed of the AOA, which manage the recharging procedures controlled by
the custom aggregator. The aging simulator the SOH of all the EVs batteries
simulated.

In the following subsections, the detailed description of the model as well as its usage
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guide will be covered.

4.3.1 Cloud-Based Tool

As stated above, the web-based tool consists of a standalone simulator that can be conĄgured

to simulate the behavior and relative power load of a EVs district consumers. The main

simulation parameters, i.e., the number of consumers to be simulated, the number of days

and the sampling time of the simulator engine can be set through the form shown in Ągure

4.2, while a set of Advanced Options will be explained in the following section.

ConĄguration

Figure 4.2: Main conĄguration form of the web-based tool. The Advanced button allows the
user to access to more speciĄc conĄgurations.

The proposed model is structured in a bottom-up approach: itŠs based on the deĄnition of

the single consumer through the Consumer class and then the aggregated output is computed.

Each consumer is modeled by the means of the following class arguments:

• Commuting distance (km)

• Electric vehicle

Ű Car model

Ű Battery capacity (kWh)

Ű Declared vehicle autonomy (km)

Ű Average vehicle fuel consumption (kWh/km)

Ű Domestic charging point capacity (kW)

Commuting distances for a speciĄc consumer population can be assumed from statistical

distribution or computed through available data or surveys. The default value used by the
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simulator, as shown in Ągure 4.3 (blue bars), is obtained from an Italian Statistic Institute

survey, while users can vary the commuting values in the Advanced Options form (see Ągure

4.4) as shown by red bars. Figures 4.3a and 4.3c, corresponding to commuting distances and

car prices respectively, represent the consumers population parameters used by default (blue

bars) or deĄned by user (red bars). In Ągures 4.3b and 4.3d the distributions are generated

according to parameters set for 1000 consumers. Thus, an EVs district can be described by

means of on geographical and economical characteristics.

(a) Commuting distance conĄguration (b) Commuting distance distribution

(c) Car prices conĄguration (d) Car prices distribution

Figure 4.3: Different consumer population based on commuting distances and budget distri-
butions. Blue bars represent simulator default values while red bars indicate a
population with arbitrarily deĄned characteristics.

The EVs population is determined combining the distribution of prices paid by consumers

for EVs (customisable in Advanced Options) and a matching between speciĄc EV model
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Figure 4.4: Several parameters can be set for each subgroup, including commuting distance
distribution and budget distribution, as well as morning, lunch and evening
plugin/plugout time continuous distributions.
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and single consumerŠ commuting distances. The default price ranges are shown in Ągure 4.3.

EVs characteristics and technical speciĄcation (model, price, battery capacity, autonomy and

average fuel consumption) are obtained from the manufacturers web pages and automatically

updated quarterly. Each home charging point available power can be randomly assigned

or deĄned by a custom distribution among 3, 4.5 and 6 kW. The simulator core logic is an

event-based process where each event is determined by each consumerŠs daily routine, i.e.,

charge/discharge cycles, considering the overall conĄguration. These events are simulated

based on probability plugin/plugout functions, so that real variability of charge and discharge

cycles is efficaciously replicated. For example, evening plugin and morning plugout probability

density and cumulative distribution functions are reported in Ągure 4.5. Figure 4.5a depicts

plug-out distribution at morning, whereas evening plug-in events are modeled as shown

in Ągure 4.5b. The different curve colors indicate default values used by simulator (blue

distributions), while the red distributions reĆect an example of user deĄned parameters. The

user can customize these distributions in the Advanced Options form. Red bars represent

population deĄned arbitrarily using the Advanced Options window.

(a) Plug-out generated distribution

(b) Plug-in generated distribution

Figure 4.5: Morning and evening distribution density and cumulative functions relative to
plugin events and plugout events.

Furthermore, these conĄguration settings can be applied to four different subgroups of

consumers. Each subgroup is composed, as deĄned in the card of Ągure 4.6, of a percentage

of total consumers previously set in the form of Ągure 4.2. This additional feature allows the

user to simulate a more heterogeneous array of consumers with different habits, incomes and

commuting distances.

72



4.3 Simulator Architecture

Figure 4.6: All the conĄguration options described in the ConĄguration section, can be
applied to four different subgroups, expressed as percent values of the total
number of consumers to be simulated.
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Simulation Engine

A typical simulation run can be visualized in Ągure 4.7. Based on conĄguration parameters

set by the user, the simulator initialises consumers population and generates each daily

routine for the whole simulation execution time. Also statistical distributions Ątting functions

and pseudo-random variables behavior can be customised before the simulation run.

Figure 4.7: Graphical representation of the simulation engine.

Firstly, a daily routing is simulated for each consumer as depicted in Ągure 4.8. Each

simulation day cycle is composed of Ąve main events:

1. Night:

A consumer charges his/her EV until it reaches a SOC of 100% or until plugout time.

The domestic recharging device optimises, based on commuting distance and taking in

account a margin, the quantity of charge that would allow the consumer to afford the

expected driving route for the next day.

2. Morning:

The consumer travels from his/her dwelling to the workplace. The plugout time is

computed from the morning plugout probability distribution. Furthermore, traffic

conditions are considered to positively or negatively affect the actual energy consumption

as shown in (4.1) and (4.2):

deff = d + k · ∥v∥; with k ∈ ¶−1, 0, 1♦ (4.1)

Where d is the commuting distance traveled by the consumer, deff models how much

the traffic conditions affect the actual distance and time, v ∼ N(0, σ2) is a normal
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distribution with σ as the traffic variance parameter (expressed in km), and k is a

control parameter (σ and k can be changed in the Advanced Options form). When

k = 1, then deff ≥ d, and traffic conditions are set as adverse. When k = −1 then

deff ≤ d, hence traffic conditions are established to be favorable. When k = 0 then

deff = d and no variability is applied. When a user does not set the parameter k, the

formula becomes:

deff = d + v (4.2)

3. Lunchtime:

This event is randomly triggered if a consumer has a low commuting distance. In such

case, the model will compute a brief EV recharge during lunchtime, with an operation

analogous to the Night phase. After this time lapse, the consumer will return to the

workplace as in the Morning phase. At this point, a further computation of deff is

performed, since the consumer actively travels toward home and back again to the

workplace for the lunch break.

4. Afternoon: Even this phase is triggered pseudo-randomly; the consumer may decide

to recharge his/her EV in a public charging station for a variable time lapse before

returning to home from the workplace. This could affect the SOC of the vehicle for the

evening plugin.

5. Evening: The consumer travels home a distance equal to deff and plugs the vehicle

into the home charging station according to the evening plugin probability distribution.

Figure 4.8: ConsumerŠs daily routine.
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In this version, a differentiation between weekdays and weekends is not implemented. This

behaviour should be further introduced in order to improve simulation effectiveness.

Output Graphs

The software produces interactive plot for both single consumerŠs (see Ągure 4.9) and aggregate

(Ągure 4.10) behaviour for power demand and energy consumption. In Ągure 4.9, power and

energy supplied to the EV by the grid are represented by the blue and light-blue curves

for each time sample. The dotted curves represent the SOC and MINSOC (i.e., minimum

amount of energy to be charged in the EV) values of the EV for each time sample. The

light-blue frames represent the time epochs in which the EV is actually connected to the

grid.

Single consumer chart depicts for each time step the main variables simulated while the

EV is being recharged:

• energy charged into the EV from plug-in events (kWh, light blue line)

• charging power (kW, blue line)

• actual SOC of the EV (%, light green dotted line)

• MINSOC, which is the minimum amount of energy to be charged in the EV to travel

the expected mileage after plug-out (%, green dotted line)

Figure 4.9: Plot of a single consumerŠs simulation for a week of charge/discharge cycles.

Figure 4.10 presents the Ćexibility available for the grid from an aggregator of the EVs

charging stations. The Ąrst panel presents the supplied power and energy from the grid

to the EVs. The second panel shows the EVs Ćeet SOC and MINSOC in terms of energy

contained in the battery. The third panel depicts the energy available to the grid from the

EVs Ćeet (pink curve) and the energy that could be supplied to the EV Ćeet (red curve) for

each time sample. More speciĄcally, the beginning of the red curve corresponds to the total

residual energy of the whole Ćeet at the moment in which they plug-in. Consequently, the

availability to purchase electricity from the grid drops when the recharge is in-progress and

it becomes nil when the entire Ćeet is fully charged.

The overall charging events for each consumersŠ home recharging process, including plugin

and plugout time instants and car model/recharging device-related information, are available

in downloadable json or csv Ąles.
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Figure 4.10: Aggregate output for 100 consumers, 7 days and a sampling time of 30 minutes.
DeĄnition of Ćexibility available for the grid from an aggregator of the EVs
charging stations in terms of both energy to be supplied to the grid (V2G
strategy, pink curve) and energy that the grid could provide (G2V strategy, red
curve).
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Output Files

The user can download the online simulation outcomes by means of json or csv Ąles. All

downloadable data are available both for each single EV (Ągure 4.9) and as aggregated results

(Ągure 4.10). Here follows a detailed list of the data arrays available from the simulator:

• Power : Power supplied to the EV (or Ćeet of EVs) expressed in kW

• Energy: Energy supplied to the EV (or Ćeet of EVs) expressed in kWh

• SOC : State of charge of the EV (or Ćeet of EVs) expressed in kWh

• MINSOC : Represents the minimal amount of SOC that should be present in the EV

battery (or Ćeet of EV batteries) for each time instant, in order to ensure the user

required minimal SOC by the time of plugout. Expressed in kWh

• FLEXIBILITY UP: Amount of energy of the EV (or Ćeet of EVs) potentially available

to the grid for each time instant, expressed in kWh

• FLEXIBILITY DOWN : Amount of energy the grid can potentially supply to the EV

(or Ćeet of EVs) for each time instant, expressed in kWh

• PLUGIN/PLUGOUT : Plugin and plugout events for each EV in the Ćeet expressed in

simulator time index and date-time format

4.3.2 Simulink Online Block

This section describes the conĄguration step of the Simulink block, its inputs, outputs and

how to interact with it. Considered Ągure 4.1 presented previously, in the following the

overview of the Initializer.m and Aggregator Online Assistant will be provided.

ConĄguration

The Initializer.m block handles the dependency of the Simulink block from the cloud-

based tool described in the previous section. The initialization of the Simulink tool requires

the following steps:

1. Run a batch simulation on the cloud-based tool with the chosen parameters, sampling

time, number of vehicles and number of days and download the resulting json Ąles.

2. Run Initializer.m on MATLAB to populate the workspace with the Simulink depen-

dencies and variables.

Aggregator Online Assistant Core Logic

The Aggregator Online Assistant (AOA) comprises one input and two outputs. If the input

is not provided it can work as a standalone block and its core logic is the same as that

of the cloud-based simulator, leading each vehicle, when plugged in, to charge the battery

until SOC reaches 100% or until the plugout time is reached. The information about the

EV model, plugin/plugout instants, energy consumption and actual commuted distances is

retained from the cloud-based simulation, while the power setpoint for each EV charging

phase can be manually set. This implies that an external block (e.g., an aggregator, the

owner of the charging stations, a grid operator or a scheduler etc.) can simulate and manage
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Figure 4.11: Schematic of the offline simulator architecture. See Ągure 4.1 for a more detailed
representation.

real-time the charging and discharging power for each EV, while at the same time monitoring

their status (see Ągure 4.11).

The I/Os of the AOA block in Ągure 4.11 are explained in the section below.

AOA Inputs

• Power :

power values (kW) used as charging/discharging setpoints of the charging stations.

Each array element represents a particular EV.

Ű To positive power values corresponds a charging action for the given time instant

in a G2V strategy. ItŠs saturated to its maximum if the power overcomes the

capability of the given consumerŠs station.

Ű Negative values are treated as a discharge action for the given time instant in a

V2G strategy.

Ű Zeroes are treated as an Şhold onŤ command, thus the speciĄc EV will neither

discharge nor recharge for that time instant.

Ű NaNs (Not a Number) are treated as a Şmaximum powerŤ instruction. The given

EV will recharge at the maximum power allowed as well as in the cloud-based

tool.

AOA Outputs

• Power : As for the input, this is an array containing the actual charged/discharged

power for each EV at the given time instant.

• SOC : Ordered array of each EVŠs actual state of charge expressed in % value with

respect to the maximum available Battery Capacity.
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• Time Until Plugout: Ordered array where each value represents the remaining time

instants until the given EV will be plugged out. A value equal to zero means that the

corresponding EV is not plugged.

• Minimal SOC : Ordered array representing the minimum amount of SOC required

by each EV at the given time instant in order to satisfy the userŠs requirements at

the plugout time (Time Until Plugout). Zero values are returned if the EV is not

plugged at that time instant.

• Battery Capacity: Ordered array containing the actual maximum battery capacity for

each EV in terms of kWh. It considers aging models provided by AgingSimulator for

each EV in order to estimate the battery state of health degradation.

• Home Recharging Capability: Ordered array containing the maximum home charging

station power (kW). This array contains constant values for the whole simulation time.

AgingSimulator module

The AgingSimulator block acts as an external services and it is responsible to compute aging

effect due to both cycle and calendar aging, as described in section 2.1.3. This software

module can contains several aging model that could be related to speciĄc consumer or EVs

group, allowing to differentiate aging effect according to different vehicle or car manufacturer

and speciĄc battery characteristics obtainable from datasheet, such as battery size, chemistry,

maximum power deliverable and so on.

As input, the AgingSimulator block takes both cycling and rest consumersŠ data proĄles.

It interfaces with the AOA that simulates how each vehicle discharges, is recharged and

the time it is maintained at rest. Then, based on usage proĄles simulated, the resulting

degradation is modeled and aging effects, in terms of state of health and residual capacity,

are returned for each EV. The process is presented in Ągure 4.12

Figure 4.12: Aging Simulator Block

Aging block, thus, ensures the evaluation aging effect in e-mobility enriching information

about BESS behaviour among the operating time and opens the way to tackle costs issue

related to battery substitution due to degradation phenomena and, by a planning management

point of view, to optimise maintenance costs. This simulator module can be furthermore

easily integrated with geographical information about route and consumption related to type

of route, such as if a highway, a hilly road or an urban path is traveled. Moreover, population
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of batteries at different SOH value can be simulated, thus increasing the accuracy by which a

district can be represented and improving the assistance that this tool provides to planning

strategies.
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4.4 Case Study

A real application is studied in order to evaluate the effectiveness of simulation software

proposed and to demonstrate its real feasibility in case of V2G approaches. Indeed, although

the simulator deals with both G2V and V2G strategies for an aggregate of EVs district, in

this section a real peak shaving case study is presented. SpeciĄcally, an upper threshold is

set for the global charging power absorbed from the grid whereas constraints related to the

commuting distances and minimum SOC for all the EVs are still effective. These restrains

require the design of a supervisor able to manage the charging scheduling of whole district.

A population of 100 EVs is created via the online tool and their charging/commuting

constraints are generated for the period of one month. The options used to run the simulation

can be found in Ągures 4.2 and 4.6. A fuzzy inference system is integrated in the Simulink

environment to implement a custom power regulator, detailed in the following, able to provide

a charging priority rank based on the following inputs:

• ChargeRequisite

• RechAvailability

• SOC

where ChargeRequisite and RechAvailability are computed as described in following

equations:

ChargeRequisite = MINSOC − SOC

RechAvailability =
tplugout · homepw

battcap

The priority rank is then used to pick the vehicles based on a deterministic descending

order until the power cap is reached.

4.4.1 Fuzzy Inference

A zero-order TS-FIS is implemented to obtain priorities from the input features. Trapezoidal

function are considered as membership functions. A brief description of FIS and its input

and output fuzzy set is presented in section 2.4.1.

The fuzzy system proposed is composed of three inputs and one crisp output (the priority

level) and a weighted average is used as the defuzziĄcation method. The values of the fuzzy

sets are reported in Table 4.2.

4.4.2 Results

Different scenarios varying the power maximum limit are considered. In particular the cap

is set to 70, 50, 23, 18, 14 and 10% of the maximum power required when all vehicles are

charging at the same time (equal to 450kW in our scenario). Performance indicators are

computed for each test set to assess the methodology effectiveness evaluating the difference

between the minimum SOC required to afford the distance that should be traveled after the

plugout and the SOC when it occurs.

buff = SOC − MINSOC (4.3)
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Table 4.2: Fuzzy sets of the input and output variables: linguistic terms and their corre-
sponding trapezoidal fuzzy set parameters.

Input Variables Linguistic Terms Fuzzy Sets (a, b, c, d)

ChargeRequisite [%]

Negative −100, −100, −20, 0
Zero −20, 0, 0, 10
Lightly positive 0, 10, 20, 30
Positive 10, 30, 100, 100

RechAvailability [%]
Low 0, 0, 30, 45
Medium 30, 45, 60, 75
High 60, 75, 100, 100

SOC [%]
Low 0, 0, 30, 40
Medium 30, 40, 60, 70
High 60, 70, 100, 100

Output Variable Linguistic Terms Fuzzy Sets (Value)

Priority

Null 0
Low 0.4
Medium 0.6
High 0.8
Absolute 1

Mean, median, standard deviation, minimum value and maximum value charging buffer

values, computed as in Equation (4.3), over the whole number of charge cycles and EVs are

reported in Table 4.3. Moreover, the buff-perc term indicates the percentage of EVs that

are above the MINSOC value at the end of each charge cycle. The last column of the table

indicates the maximum instant power provided by the grid supervisor. A one week plot

depicting the global instant power provided by the grid in the different power limit scenarios

is shown in Ągure 4.13.

Table 4.3: Descriptive statistics related to charging buffer values. Buff-perc term indicates
the portion of EVs which are above the MINSOC value.

% buff-mean (%) buff-median (%) buff-min (%) buff-max (%) buff-perc (%) PW-max (kW)

test

nolimit 66.8 66.2 9.8 97.9 100.0 435
limit70 66.8 66.2 5.2 97.9 100.0 297
limit50 61.4 54.3 4.9 97.9 100.0 198
limit23 30.2 17.8 −13.3 97.9 80.3 99
limit18 11.4 −4.9 −37.8 97.9 32.2 78
limit14 2.9 −9.3 −60.8 97.9 24.7 60
limit10 −9.2 −26.5 −85.2 97.9 23.4 33

The fuzzy-based system to determine charging priority ensures a positive mean buffer

down to a 14% of power limit. For limit values lower than 10% the mean buffer results are

negative, implying requirements are not satisĄed for a certain number of EVs at a speciĄc

plugout time (morning or post-lunch departure).

The buff-perc column shows the percentage of plugout events (among all EVs in the

entire simulation process) where the EV requirements are completely fulĄlled. Below the 23
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Figure 4.13: One week of global charging proĄles. The power limits depicted are 100% (i.e.,
no limit, blue line), 70% (cyan line), 50% (green line), 23% (yellow line), 18%
(yellow orange line), 14% (orange line) and 10% (red line).

% of power limit indeed, plugout events start to occur when the minimum SOC requirements

are not completely satisĄed for some EVs of the entire population. This means that for some

consumers the value computed by Equation (4.3) is negative in spite of the positive buffer

mean value. This determines a drop in the buff-perc column while maintaining positive

buff-mean values.

Finally, implemented logic working during a nighttime recharging session is shown in

Ągure 4.14 for a group of electric vehicles. The power maximum threshold is 10% and the

height of the SOC step varies depending on the capacity of the domestic charging station.

Four different heights of the steps are evident, corresponding with 3.3, 4.5, 6 and 11 kW of

available power respectively. Each curve begins at the plugin time of the EV; the end of

the series corresponds to the plugout. A 30 minutes sampling is used. When the SOC level

shows a plateau, the relative EV has reached a lower priority level than other vehicles, thus

recharging is temporarily stopped. From the individual recharging proĄle of each EV, itŠs

possible to underline some aspects:

Ű EV1: at the plugin time, the battery has an enough charge quantity level to afford the

next day route, implying as an output a very low priority. Thus, the vehicle starts to

charge later than the others.

Ű EV2: at the time of connection to the charging station, the SOC is quite low (20%)

but other EVs have higher priority because its MINSOC is lower than others and the

maximum power supply of the charging station is at 6 kW, higher than others.

Ű EV3: starts from a very low SOC although it has low priority due to its connection to

a charging station with high capacity (11 kW); furthermore, its recharge process begins

later because other vehicles have higher priority since it does not have to reach a high

SOC level and the estimated plugout time is sufficient to achieve the desired autonomy.

84



4.4 Case Study

Ű EV4: itŠs one of the Ąrst to be recharged among the others due to its low SOC level

and keeps a high priority for a long time; when its SOC level approaches own MINSOC,

it loses priority over other vehicles.

Ű EV5: itŠs recharged before entering the house and connects it despite of its charge at

100%; this EV may provide Ćexibility to the domestic microgrid or to the national

electricity grid in both V2B or V2G scenarios.

Ű EV6: this behaves like EV3 with a higher priority even if it has a lower MINSOC due

to its inferior SOC level at the plugin time.

Ű EV7: at the plugin time, the SOC of the battery is high enough, thus it has a lower

priority than the other EVs, even connected in subsequent instants; the power of its

charging station is low (3.3 kW).

Ű EV8: at the time of connection to the charging station, the SOC of the battery is the

lowest and it has a high MINSOC. At the Ąrst available instant the charge begins with

a very high priority compared to the other EVs; the priority decreases as the SOC

approaches the MINSOC.

Ű EV9: it behaves similarly to EV3 but itŠs characterised by a lower capacity charging

station (6 kW).

Ű EV10: has the same behavior as EV8.

Figure 4.14: Extract from a simulation depicting the behavior of EV1, EV2 and EV3 as they
are stopped until more urgent minimum requirements are met by other vehicles,
such as EV7.
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Aging effect

For this case study, Baghdadi model, as described in 2.3.2, is trained and implemented.

Two dataset of the same battery typology are used for training phase describing the aging

effect in a 50 kWh BESS at two different operating temperature proĄles, 20◦C and 40◦C as

depicted in Ągure 4.15. Green and blue lines represent the real curve used at two different

temperature, 20◦C and 40◦C respectively. The yellow and the red curves show the respective

model Ątting. For this study, a single aging model is used for the whole EVs Ćeet. Optimum

parameters obtained are shown in table 4.4.

Figure 4.15: Results of model training on curves obtained from a 50 kWh battery size. Green
and blue lines are the real curve whereas model Ątting is represented by the
yellow and the red ones.

Table 4.4: Parameters of trained model

k1 k2 k3 k4 k5 k6

-31.47 -55.1 52.12 1.65 -110.65 2.47

Temperature used as input for aging model is set based on the geographical region of

interest, ranging from 15◦C to 30◦C. As future perspective, Geographical Information System

(GIS) can be included to integrate real information about weather conditions and travelling

route, which both affect aging dynamics. Then simulation conducted takes in account aging

effect for each EVs: Ągures 4.16 and 4.17 depict the energy degradation of a single EV after 5

years of usage, resulting in an energy drop from 25.5 kWh to 23 kWh. A 10% of SOH loss is

indeed simulated at the same SOC level (i.e. 100%) at different time instant, thus indicating

a reduced amount of storable energy due to degradation phenomena related to aging.
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These evaluations of aging dynamics along the entire EVs Ćeet are crucial for energy

planning scenario, since it allows the prediction of maintenance and eventually substitution

scheduling, possible management of second life and optimise charging/discharging load

proĄles according to aging dynamics, in order to reduce technological costs and increase the

grid efficiency.

Figure 4.16: Simulation at beginning of life, nominal energy is 25.5 kWh at 100% SOC.

Figure 4.17: Simulation after Ąve years of usage. Energy has dropped to 23kWh at 100%
SOC.
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Chapter 5

Conclusion

The climate crisis have oriented scientiĄc community and companies toward green energy

transition and technological progress in order to reduce greenhouse gas emission and phase

out coal. On the other hand, electricity is increasingly holding a fundamental role for

consumers well-being and beneĄts. Technological development in renewable systems requires

the integration of BESS, those can decouple load demand and energy generation, assisting

to solve intermittence problem and contributing to improve grid Ćexibility. In this thesis,

BESSs are investigated and modeled in terms of aging and state of health and BESS-based

application are analysed and developed.

SOH modeling remains a challenging task although scientiĄc literature has widely inves-

tigated it. Unfortunately, the most of the studies do not present dataset acquired in real

application but in experimental and controlled laboratory setup. In chapter 2, aging modeling

is addressed and two contribution are proposed. Firstly, a sensitivity analysis is conducted

among several aging models presented in literature to assess robustness to variation of input

quantities, evaluating their capability to deal with unexpected variables as usually occurs

in real application. Three models are selected and sensitivity is analysed with respect to

change in current and temperature. Results report that models proposed by Baghdadi [89]

and by Wang [64] represent the most robust models to variation in temperature and current

respectively. Secondly, an algorithm for automatic online SOH estimation is studied and

developed for three real case studies. ItŠs based on a data-driven model fusion approach and

aims to evaluate BESS aging degradation without a prior knowledge as concerns storage

operating modality. Dataset have been acquired in utilities application, where BESS could

operate as both energy and power intensive storage. Algorithm developed can be summarised

in three main steps: BESS modality usage recognition, similar operating conditions detection

throughout battery life and, as last, SOH estimation.

In chapter 3, SOH degradation in EVs is faced, analysing and comparing different method-

ologies for future torque demand prediction. Forecast of torque requested by driver is used

in vehicles EMSs to optimise energy efficiency and adapting thereby battery usage intensity

to driver need; thus, SOH is directly affected by the effectiveness of this control strategy.

Several machine learning models employed in literature are included in this study, undergoing

to an off-line training for an on-line torque time series prediction. Moreover, a LS-SVM

based torque predictor with online update is included in the study as additional research

contribution. Models are compared in terms of prediction capability and computational cost.

Results show that LS-SVM based predictor provide the best forecast performance among

the other predictors while tested on well-known driving cycles. In addition, update policy

improves algorithm performance leading to a feasible online approach that could contribute

to reduce SOH degradation. This should be further investigated.

The increasing growth of EVs penetration into the transportation market and their possible
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impact on the electricity grid open a new set of applications at different scales. V2G scenario

represents a promising technology that may have signiĄcant impact on energy Ćexibility due

to its capability to manage load demand and to accommodate shares of intermittent renewable

energy production. In chapter 4, a simulator is proposed to promote BESS integration with

national grids and to assist energy planning management in DSF scenario. The proposed

tool provides charge, discharge and plug-in/out events data of a statistically-based EVs Ćeet,

considering both home and public charging stations, shifting the perspective from single

vehicle to the aggregated population. A case study of real peak shaving is presented and

analysed in order to evaluate its real feasibility in case of V2G approaches.

5.1 Future perspectives

Several further analysis and development could be conducted from the advancement achieved

in this thesis project.

As regards BESS aging, a more thorough analysis can be conducted to evaluate each

model sensitivity to other variations those can occur during real battery operating condition,

such as DOD, mixed or alternated variations. A multivariate analysis, i.e. the evaluation of

model response to variation in several inputs, should be Ąrstly performed. In this scenario,

Omar models [63] cannot be employed, since it computes number of residual life cycles using

only one operating characteristic. Furthermore, an exploratory data-driven model study,

such as the LS-SVM methodology previously presented in this thesis, should be carried out

in order to improve aging modeling. Another crucial sensitivity evaluation related to the

multivariate analysis comprises the study of how different operating cycles and how their

order affect aging model leading to a signiĄcant deviation from real values. Furthermore,

calendar model sensitivity should be evaluated, thereby considering how models proposed in

literature respond to variation of temperature and SOC at which battery is maintained at

rest. A model fusion approach should Ąnally be validated for speciĄc condition or application,

combining different aging models according to their robustness to certain operating quantities.

For instance, if the application of interest involves different operating temperatures such

as working in winter and summer, different models could be integrated to improve aging

degradation description. Concerning the developed algorithm for SOH online estimation in

real application scenario, some methodologies could be further studied in order to improve, for

example, VOC estimation which represent a critical aspect unless the battery is maintained

at rest for a certain amount of time, ranging up to some hours [149]. Several effort have

been made by scientiĄc community to improve battery characterisation, Kalman Ąlter has

been widely employed [150, 151, 152] and its capability to capture BESS dynamics should

be evaluated also in the case of sampling time of order of minutes that could occur in real

scenario.

An additional analysis to validate the effect of the improved torque prediction algorithm

proposed on battery aging should be conducted. A decrease in degradation rate is indeed

expected. Moreover, torque forecast could be improved involving additional input information

related to vehicleŠs route. For instance, a further study could include features obtained by

vision system or other sensors for obstacle detection or route parameters deĄnition (e.g.

traffic lights, traffic congestion) methodologies.

Finally, V2G simulator present several feasible development prospects in order to improve

modeling scenario reliability. Firstly, a differentiation between weekdays and weekends should

be introduced in simulation. Then, a vehicle model describing powertrain and engine modules
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can be included to properly simulate battery operating condition and relative consumption,

thus affecting the description of both charge/discharge rate and aging dynamics. EV batteries

can be statistically initialised at different SOH level in order to simulate a more realistic

scenario. Moreover, geographic information system (GIS) data integration could improve

charge and discharging modeling proĄles ensuring a more realistic simulation.
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