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degli Studi di Brescia, Dipartimento di Ingegneria Meccanica e Industriale, Italy

(October 2015)

In this work the capabilities of a high-order Discontinuous Galerkin (DG) method applied to the compu-
tation of turbomachinery flows are investigated. The Reynolds averaged Navier-Stokes equations coupled
with the two equations k-ω turbulence model are solved to predict the flow features, either in a fixed or
rotating reference frame, to simulate the fluid flow around bodies that operate under an imposed steady
rotation. To ensure, by design, the positivity of all thermodynamic variables at a discrete level, a set of
primitive variables based on pressure and temperature logarithms is used. The flow fields through the
MTU T106A low-pressure turbine cascade and the NASA Rotor 37 axial compressor have been computed
up to fourth-order of accuracy and compared to the experimental and numerical data available in the
literature.

Keywords: Discontinuous Galerkin method, rotating reference frame, complex turbomachinery
turbulent flows, low-pressure MTU T106A turbine blade, axial compressor rotor NASA Rotor 37

1. Introduction

Computational Fluid Dynamics (CFD) has become a tool commonly adopted by the industry for
the analysis and the design, being considered complementary to experimental investigations. In
this context, the ever increasing available computational power, and the need for better accuracy,
strengthen the belief that high-order methods will become an essential tool to achieve the accuracy
expected by the design offices worldwide.

Discontinuous Galerkin (DG) methods emerged as one of the most promising approaches to
high-fidelity fluid dynamic computations in many technical areas such as aeronautics, aeroacous-
tics and turbomachinery. DG methods are particularly attractive for the following features: i) a
great geometrical flexibility without spoiling the high-order accuracy, see Bassi et al. (2012b); Luo,
Baum, and Lohner (2008); Bassi et al. (2010), ii) a straightforward implementation of h/p adaptive
techniques, see Hartmann et al. (2010); Wang and Mavriplis (2009), iii) a compact stencil, suited
to exploit massively parallel computers platform. The higher accuracy comes at an increased com-
putational cost with respect to standard finite volume (FV) methods, see Sørensen et al. (2015),
preventing a widespread application in industry, even if a considerable research effort has been
recently devoted to devise more efficient computational strategies, see Bassi et al. (2013); Ghidoni
et al. (2014); Crivellini and Bassi (2011); Wallraff, Leicht, and Lange-Hegermann (2013); Wallraff,
Hartmann, and Leicht (2015).

The objective of this work is to assess the ability of high-order DG methods to simulate complex
3D turbulent turbomachinery flows characterized by the mixing of main and secondary flows, leak-

∗Corresponding author. Email: alessandro.colombo@unibg.it

1



May 14, 2022 post-print TurboDGIJCFDProofs

age and blockage phenomena and the possible presence of shock waves and transitional boundary
layers. The influence on the solution accuracy of coarse grids and of the degree of the polynomial
approximation will be investigated by comparing the results with experimental and numerical data
available in the literature.

In this work the turbulent flow is modelled by means of the Reynolds averaged Navier-Stokes
(RANS) equations closed by the k-ω turbulence model, implemented as proposed in Bassi et al.
(2005), i.e. using ω̃ = log (ω) in place of ω. To control the numerical oscillations that affect high-
order discretizations when flow discontinuities occur inside mesh elements, a directional shock-
capturing term, based on element-wise numerical diffusion, is added to the governing equations,
see Bassi et al. (2010). To ensure, by design, the positivity of the thermodynamic unknowns at a
discrete level, thus adding robustness to high-order simulations of transonic flows, we rely on a set
of primitive variables based on pressure and temperature logarithms, as proposed in Bassi et al.
(2015b,c).

The test cases here considered are two typical turbomachinery configurations, namely a low
pressure 3D turbine cascade (MTU T106A) and a transonic axial compressor rotor (NASA Rotor
37).

The paper is organized as follows. Section 2 describes the RANS governing equations and the
turbulence model employed, showing the modified form of the equations used for rotating bodies. In
Section 3 the DG space discretization, the change of variables, the time integration and the shock-
capturing approach are briefly reported. Section 4 is dedicated to the discussion of the numerical
results. Finally, Section 5 gives concluding remarks.

2. Governing Equations

When simulating flow around bodies that operate under an imposed steady rotation, e.g. turbo-
machinery and propellers, it can be advantageous to rewrite the governing equations in a reference
frame that rotates with the body. This approach allows to solve in a steady manner a flow field
that is unsteady in the inertial frame and to avoid the need of grid motion, thus enhancing the
solver efficiency. When equations are solved in a non-inertial reference frame, the momentum con-
servation equation is augmented by an additional term depending on the centripetal and Coriolis
accelerations. According to whether the relative or absolute velocity is considered, the governing
equations in the moving frame can be written in two different ways.

Let us consider a reference frame that rotates with a steady angular velocity, ω = [ω1, ω2, ω3]T ,
around a fixed rotation center, xc = [xc,1, xc,2, xc,3]T . The fluid velocities can be transformed from
the stationary to the moving frame by using the relation

ur = ua − ω × rc, (1)

where ur and ua are the relative and the absolute velocity, respectively, and rc = [x − xc,1, y −
xc,2, z − xc,3]T is the position vector pointing from the rotation center to any point [x, y, z]T .

The complete set of RANS and k-ω̃ turbulence model equations can be written in the stationary
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and moving frame as

∂ρ

∂t
+

∂

∂xj
(ρur,j) = 0, (2)

∂

∂t
(ρui) +

∂

∂xj
(ρur,jui) = − ∂p

∂xi
− ρsr,i +

∂τ̂ji
∂xj

, (3)

∂

∂t
(ρE) +

∂

∂xj
(ρur,jH) =

∂

∂xj
[uiτ̂ij − q̂j ]− τij

∂ui
∂xj

+ β∗ρkeω̃r , (4)

∂

∂t
(ρk) +

∂

∂xj
(ρur,jk) =

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
+ τij

∂ui
∂xj
− β∗ρkeω̃r , (5)

∂

∂t
(ρω̃) +

∂

∂xj
(ρur,jω̃) =

∂

∂xj

[
(µ+ σµt)

∂ω̃

∂xj

]
+
α

k
τij
∂ui
∂xj
− βρeω̃r + (µ+ σµt)

∂ω̃

∂xk

∂ω̃

∂xk
, (6)

where ui can be the absolute (ua,i) or the relative (ur,i) velocity, depending on whether the unknown
variables are considered in the absolute or relative frame. The source term components, sr,i, are
the sum of the Coriolis and centripetal accelerations, and are defined as ,

sr =

ω2û3 − ω3û2

ω3û1 − ω1û3

ω1û2 − ω2û1

 , (7)

where û = ur + fr (ω × rc). The parameter fr can be set to 0 or 1, depending on whether the
unknown variables are considered in the absolute or relative frame, respectively.

The total energy, the total enthalpy, the pressure, the turbulent and total stress tensors, the heat
flux vector, the eddy viscosity and the limited value of turbulent kinetic energy are given by

E = ê+ ukuk/2− fr(εijkωirc,j)(εijkωirc,j)/2, (8)

H = h+ ukuk/2− fr(εijkωirc,j)(εijkωirc,j)/2, (9)

p = (γ − 1)ρ (E − ukuk/2 + fr(εijkωirc,j)(εijkωirc,j)/2) , (10)

τij = 2µt

[
Sij −

1

3

∂uk
∂xk

δij

]
− 2

3
ρkδij , (11)

τ̂ij = 2µ

[
Sij −

1

3

∂uk
∂xk

δij

]
+ τij , (12)

q̂j = −
(
µ

Pr
+
µt
Pr t

)
∂h

∂xj
, (13)

µt = α∗ρke−ω̃r , k = max (0, k) , (14)

where ê is the internal energy, h the enthalpy, εijk the Levi-Civita tensor, γ the ratio of gas specific
heats, Pr and Prt are the molecular and turbulent Prandtl numbers and

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the mean strain-rate tensor. The closure parameters α, α∗, β, β∗, σ, σ∗ are those of the high-
Reynolds number version of the k-ω model of Wilcox (2006).

The distinctive features of the implementation for RANS and k-ω equations proposed in Bassi
et al. (2005) can be summarized as follows: i) to guarantee the positivity of ω together with a better
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behavior near solid walls, the variable ω̃ = log(ω) is used in place of ω; ii) to deal with possibly
negative values of the turbulent kinetic energy the limited value k is used to compute quantities
such as the eddy viscosity; iii) a suitably defined value ω̃r, fulfilling the “realizability” conditions
for the turbulent stresses, is used to compute the eddy viscosity, the production term of the energy
equation and the destruction term of the k and ω̃ equations.

Note that the fourth term on the rhs of Eq. (6), which has the form of a source term, is produced
by the transformation from ω to ω̃ in the diffusive flux. In fact, even for a linear, purely diffusive
equation, the transformation from the original variable to its logarithm would result in a non-linear
equation with a source term analogous to that in Eq. (6).

At solid walls finite values of ω̃ are prescribed using a modified version of the “slightly-rough-
wall” boundary condition of Wilcox (2006), which allows to take into account also the polynomial
degree k of the numerical solution. As proposed in Bassi et al. (2011), at the wall the value ω̃w is
defined by the first k terms of the Taylor series expansion of the analytical near-wall solution of ω̃
(with ω̃w →∞) around a distance h, i.e.,

ω̃kw = log

 6νw

β
(
he−

∑k
n=1

1

n

)2

 , (15)

where νw is the kinematic viscosity at the wall and h is the distance from the wall of the first cell
centroid.

3. DG approximation of the RANS and k-ω̃ equations

RANS and turbulence model equations can be written in compact form as

P(w)
∂w

∂t
+∇ · Fc(w) +∇ · Fv(w,∇w) + s(w,∇w) = 0, (16)

where w ∈ Rm is the unknown solution vector of them variables, the tensors Fc ∈ Rm⊗Rd and Fv ∈
Rm⊗Rd are the convective and viscous flux functions, s ∈ Rm is the vector of source terms, and d
the number of dimensions. The set of the m = 4+d conservative variables wc = [ρ, ρui, ρE, ρk, ρω̃]T

is commonly employed for compressible flows, in this case the matrix P (w) ∈ Rm ⊗ Rm does not
depend on w and reduces to the identity P = I. The set of primitive variables (p,u, T ) can be also
considered to treat low Mach number flows, Choi and Merkle (1993), and to simplify the implicit
implementation of a method. In particular, the contributions to the Jacobian matrix of viscous
terms discretization, including the implicit treatment of boundary conditions, are easier to derive.

In this work, as proposed in Bassi et al. (2015b,c), we substitute (p,T ) with (ep̃,eT̃ ) in the
governing equations, and use the polynomial approximation of the working variables p̃ = log(p)

and T̃ = log(T ) instead of p and T directly. Although in authors’ experience this approach proved
to increase the robustness of high-order simulations of transonic flows, it has not to be considered
as a substitute for a shock-capturing technique, e.g. Bassi et al. (2010). Some confidence that

using polynomial approximations for p̃ and T̃ in place of p and T does not impair the ability of
predicting physically correct solutions has been provided by the numerical experiments presented
in Bassi et al. (2015c).

For the sake of completeness the transformation matrix P (w) related to the use of the vari-

ables w =
[
p̃, u1, u2, u3, T̃ , k, ω̃

]T
is reported in Appendix A. We remark that while the use of ω̃

introduces a transformation of the ω equation, see Bassi et al. (2005), the use of p̃ and T̃ does not
modify the governing equations.

4
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To discretize the governing equations in space the system (16) is firstly multiplied by an arbitrary
smooth test function v = {v1, . . . , vm} and then integrated by parts, thus obtaining its weak form.
The solution w and the test function v are then replaced with a finite element approximation wh

and a discrete test function vh both belonging to Vh
def
= [Pkd(Th)]m, where

Pkd(Th)
def
=
{
vh ∈ L2(Ω) | vh|K ∈ Pkd(K), ∀K ∈ Th

}
(17)

is the discrete polynomial space in physical coordinates. Pkd(K) denotes the restriction of the
polynomial functions of d variables and total degree ≤ k to the element K belonging to the
triangulation Th = {K}, consisting of a set of non-overlapping arbitrarily shaped and possibly
curved elements, built on an approximation Ωh of the domain Ω. We also define as Fh the set of

the mesh faces Fh
def
= F ih ∪ Fbh, where Fbh collects the faces located on the boundary of Ωh and for

any F ∈ F ih there exist two elements K+,K− ∈ Th such that F ∈ ∂K+ ∩ ∂K−. Moreover, for all
F ∈ F bh, nF is the unit outward normal to Ωh, whereas, for all F ∈ F ih, n−F and n+

F are the unit
outward normals pointing to K+ and K−, respectively. To deal with discontinuous functions over
the internal faces F ∈ F ih we introduce the jump [[·]] and average {·} trace operators, that is

[[vh]]
def
= vh|K+n+

F + vh|K−n
−
F , {vh}

def
=

vh|K+ + vh|K−

2
. (18)

When applied to vector functions these operators act componentwise.
A set {φ} of NK

dof hierarchical and orthonormal basis functions for the space Pkd(K) is computed

following the approach of Bassi et al. (2012a), where the Modified Gram-Schmidt (MGS) algorithm
is applied to a set of monomials. This procedure was optimized for highly stretched (possibly curved)
elements of general shape where, to account for element anisotropy, the monomials are defined in a
local frame whose origin coincides with the barycenter and axes are rotated according to principal
axes of inertia of K. We recall that in past years orthonormal basis functions, in the context of
DG methods based on discrete polynomial spaces in physical coordinates, have been considered by
several authors, with different levels of generality. Among others, we mention Remacle, Flaherty,
and Shephard (2003); Doleǰśı (2006); Gassner et al. (2009).

Each component wh,j , j = 1, . . . ,m, of the numerical solution wh ∈ Vh can be expressed, in
terms of the elements of the global vector W of unknown degrees of freedom, as wh,j = φlWj,l,
l = 1, . . . , NK

dof , ∀K ∈ Th.
Accounting for these aspects, the DG discretization of the RANS and turbulence model equations

consists in seeking, for j = 1, . . . ,m, the elements of W such that

∑
K∈Th

∫
K
φiPj,k (wh)φl

dWk,l

dt
dx−

∑
K∈Th

∫
K

∂φi
∂xn

Fj,n (wh,∇hwh + r ([[wh]])) dx

+
∑
F∈Fh

∫
F

[[φi]]n F̂j,n
(
w±h , (∇hwh + ηF rF ([[wh]]))±

)
dσ

+
∑
K∈Th

∫
K
φisj (wh,∇hwh + r ([[wh]])) dx = 0, (19)

for i = 1, . . . , NK
dof and where repeated indices imply summation over the ranges k = 1, . . . ,m,

l = 1, . . . , NK
dof and n = 1, . . . , d.

In Eq. (19) F denotes the sum of the convective and viscous flux functions, and F̂ the sum of
their numerical counterparts. In fact, being the functional approximation discontinuous, the flux is
not uniquely defined over the mesh faces, and thus a numerical flux vector is suitably defined both

5
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for the convective and viscous part of the equations. In this work, the former relies on the solution
of local Riemann problems by means of the exact Riemann solver of Gottlieb and Groth (1988),
or, alternatively, on the van Leer flux vector splitting method as modified by Hänel, Schwane, and
Seider (1987). The latter employs the BR2 scheme, proposed in Bassi et al. (1997) and theoretically
analyzed in Brezzi et al. (2000), which can be written as

F̂v
(
w±h , (∇hwh + ηF rF ([[wh]]))±

) def
= {Fv (wh,∇hwh + ηF rF ([[wh]]))} , (20)

where ηF is a stability parameter defined according to Arnold et al. (2002). This discretization
relies on the definition of the lifting operators rF and r. For all F ∈ Fh, the local lifting operator

rF :
[
L2(F )

]d → [Pkd(Th)]d is defined such that, for all v ∈
[
L2 (F )

]d
,

∫
Ω
rF (v) · τ hdx = −

∫
F
{τ h} · vdF ∀τ h ∈ [Pkd(Th)]d. (21)

The global lifting operator r is related to rF by the equation

r (v)
def
=
∑
F∈Fh

rF (v) . (22)

A weak enforcement of boundary conditions can be easily obtained within the DG discretization,
see, e.g., Bassi et al. (1997, 2015c). In fact, properly defined boundary states, together with the
internal states, allow to compute the numerical fluxes and the lifting operators for all F ∈ Fbh.

3.1. Shock capturing

DG methods require some form of stabilization to control numerical oscillations when flow dis-
continuities occur inside elements. The shock-capturing technique employed in this work has been
developed during the European project ADIGMA (2015) and presented in Bassi et al. (2010).
According to this approach an artificial diffusion contribution is explicitly introduced within each
element K ∈ Th without using any shock sensor to detect the discontinuities locations. The shock-
capturing term is hence always and everywhere active but introduces numerical viscosity only where
unphysical oscillations occur. For the sake of completeness, the formulation of the shock-capturing
term is here reported employing as working variables the polynomial approximations of p̃ = log(p)

and T̃ = log(T ) in place of p and T . In the following, repeated indices imply summation over the
ranges k = 1, . . . ,m and n = 1, . . . , d.

The artificial diffusion contribution is added to Eq. (19) in the direction of the pressure gradient
by means of the following term

∑
K∈Th

∫
K
εp
(
w±h ,wh

)(∂φh
∂xn

bn

)(
∂wh,j
∂xn

bn

)
dx, (23)

where the artificial viscosity coefficient εp and the unit vector b are given by

εp(w
±
h ,wh) =Ch2

K

|sp(w±h ,wh)|+ |dp(wh)|
ep̃

fp(wh), b(wh) =
∇hp̃

|∇hp̃|+ ε
, (24)

and ε is a small value of the machine precision order. The geometrical factor hK defines the
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characteristic elemental dimension as

hK =
1√

1
(∆x)2 + 1

(∆y)2 + 1
(∆z)2

, (25)

where ∆x, ∆y and ∆z are the dimensions of the cube enclosingK, and C is a user-defined coefficient
which has been set to 0.2 for all the computations. The coefficient εp controls the amount of
numerical viscosity depending on the magnitude of the jump between the physical and numerical
convective fluxes

sp(w
±
h ,wh) = ep̃

∂p̃

∂wh,k
sk(w

±
h ), (26)

with the components sk of the function s, defined by the solution of the problem∫
Ωh

φisk(w
±
h )dx =

∫
F

[[φi]]n

(
F̂c k,n(w±h )− Fc k,n(wh)

)±
dσ, (27)

for i = 1, . . . , NK
dof . The amount of numerical viscosity also depends on the magnitude of the

divergence of the convective flux vector inside elements

dp(wh) = ep̃
∂p̃

∂wh,k

[
∂

∂xn
(Fc k,n (wh))

]
. (28)

Finally, the coefficient fp, defined as

fp(wh) = |∇hp̃|
(
hK
k

)
,

is used to obtain a more selective behavior of the shock-capturing and preserve the solution accuracy
within smooth flow field regions for different degrees k of the polynomial approximation and varying
mesh coarseness.

3.2. Time integration

By numerically computing the integrals in Eq. (19) using suitable Gauss quadrature rules, we
obtain the following system of nonlinear ODEs

MP (W)
dW

dt
+ R (W) = 0, (29)

where R (W) is the vector of residuals and MP (W) is the global block diagonal matrix arising
from the discretization of the first integral in Eq. (19). When using the conservative variables wc

together with an orthonormal set of basis functions, the MP matrix reduces to the identity. For
other sets of variables the transformation matrix P can couple the degrees of freedom of different
variables within each block of MP, thus resulting in a matrix which can not be diagonal even
using orthogonal basis functions. Implicit time integration of Eq. (29) to the steady state can be
efficiently performed by means of the linearized backward Euler scheme that can be written as(

MP

∆t
+ J− ∂MP

∂W
R̃ (W)

)n
∆W = −R (Wn) , (30)

7
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where

R̃ (W) = M−1
P R (W) , J =

∂R (W)

∂W
. (31)

The Jacobian matrix J of the DG space discretization has been derived analytically and fully
accounts for the dependence of the residuals on the unknown vector and its derivatives, including
the implicit treatment of the lifting operator and of boundary conditions. The linearization also
takes into account of the dependence of the transformation matrix MP from the unknown vector.

The matrix-based or the less memory-demanding matrix-free GMRES algorithm can be used
to solve Eq. (30) at each time step, see Crivellini and Bassi (2011) for a comparative assessment.
The GMRES convergence is enhanced by system preconditioning, here we rely on the block Jacobi
method with one block per process, each of which is solved with ILU(0), or the Additive Schwarz
Method (ASM). Linear solvers, distributed arrays and the communication among them are handled
through the PETSc library, see Balay et al. (2014).

A pseudo-transient continuation strategy is adopted to integrate Eq. (30) to the steady state
as proposed in Bassi et al. (2011). In particular, during the simulation, the CFL number evolves
on the basis of the L∞ and the L2 norms of the residuals. For very large time steps the temporal
discretization is equivalent to a Newton method, thus achieving a quadratic convergence to the
steady state. In this work the local time step is given by

∆tK = CFL
hK,CFL

cv + dv
,

where

cv = |u|+ a, dv = 2
µe + λe
hK,CFL

, hK,CFL = d
ΩK

SK
,

define convective and diffusive velocities and the reference dimension of the generic element K,
respectively. The value a is the speed of sound, µe and λe are the effective dynamic viscosity and
conductivity, ΩK and SK are the volume and the surface of K. In the above relations all the
quantities depending on wh are computed from its mean values.

During the simulation, the CFL number evolves on the basis of the L∞ and the L2 norms of the
residuals, using the following rule

CFL =
CFLmin
xα

if x ≤ 1,

CFL = min

CFLexp + βe
α

CFLmin
β

(1−x)

,CFLmax

 if x > 1,
(32)

where CFLexp = min (1/(2k + 1),CFLmin) is the minimum value between the maximum CFL
number proper of an explicit scheme and a user-defined minimum value, CFLmin, and β =
CFLmin − CFLexp. The other two user-defined parameters α and CFLmax are the exponent gov-
erning the growth rate of the CFL number (usually < 1), and an upper bound on the computed
CFL value, respectively. The coefficient x is defined as{

x = min (xL2 , 1) if xL∞ ≤ 1,

x = xL∞ if xL∞ > 1,

where xL2 = max (|Ri|L2/|Ri0|L2) and xL∞ = max (|Ri|L∞/|Ri0|L∞) for i = 1, . . . ,m.
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Table 1. Geometrical parameters of the MTU T106A turbine cascade

α1,b inlet angle 37.7◦

α2,b outlet angle −30.7◦

c chord 0.1 m
s pitch 0.0799 m
h height 0.3 m

4. Numerical results

The purpose of this section is to investigate the potentialities offered by high-order polynomial
approximations of the solution in the computation of complex turbulent flows on very coarse grids.
Two test cases have been chosen, representative of typical turbomachinery flows, i.e. a subsonic
turbine cascade and a transonic axial compressor rotor. In this work the grids were obtained by
means of an in-house agglomeration tool starting from finer linear meshes. Although the resulting
grids can often seem nice enough, the uniform agglomeration coarsening can not guarantee the
generation of a mesh optimal for a DG method, preventing to control the grid density distribution,
the skewness of the elements, the height of the first cell adjacent to the wall and the accuracy of
the tip clearance discretization.

All the computations have been run in parallel, initializing the P0 solution from the uniform flow
at inflow conditions and the higher-order solutions from the lower-order ones. The results, when
possible, are compared with available numerical and experimental data.

4.1. MTU T106A

In this section the 3D subsonic turbulent flow through the MTU T106A turbine cascade is consid-
ered. This cascade, designed by MTU Aero Engines, has been extensively investigated in experi-
mental Hoheisel (1981) and computational studies, e.g. Lodefier and Dick (2005) (2D transitional,
Re = 160000 and Re = 260000) and Ghidoni et al. (2012) (2D fully turbulent, Re = 150000), and
is characterized by a complex transitional turbulent flow. The test case has been also considered
to compare the computational efficiency of different steady state time integrators in Bassi et al.
(2015a) and to preliminarily assess the influence of an EARSM model on the flow field in Bassi
et al. (2014) (3D fully turbulent, Re = 500000). The main geometrical parameters of the cascade
are given in Table 1.

When using DG space discretizations a curved approximation of the wall boundary is mandatory
to obtain accurate results as shown by Bassi and Rebay (1997). According to this requirement, a
high-order mesh composed of 43200 20-node hexahedral elements (quadratic edges) has been used.
Figure 1 shows the surface grid (left) and a mesh detail near the end-wall region (right). The size of
the elements adjacent to the solid walls corresponds to y+ ≈ 20, which is considerably greater than
values typically required by second-order accurate FV simulations (without wall functions) but can
be adopted with confidence for higher-order DG approximations. Although appropriate only for
high-order solutions, the y+ value was not changed for the lower-order computations because they
were only intended as an initialization of the higher-order simulation.

The computations were performed up to P3 polynomial approximation, by employing the
restarted GMRES algorithm preconditioned with ASM, setting the Krylov spaces and the maxi-
mum number of iterations to 240 and 480, respectively. The user-defined parameters for the CFL
evolution law of Eq. (32) were set to CFLmin = 0.8, CFLmax = 1020 and α = 0.8. Parallel compu-
tations were performed on 132 cores.

Blade walls, hub and shroud surfaces were considered adiabatic. At the inflow, the total temper-
ature, the total pressure, the flow angle α1 = 37.7◦ and the turbulence intensity Tu1 = 4.0% were
prescribed, while at the outflow the static pressure was set, resulting in a downstream isentropic
Mach number M2,is = 0.59. The Reynolds number based on the downstream isentropic conditions
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Figure 1. Surface mesh (left) and grid detail near the end-wall region (right)

Figure 2. Residual convergence history, P1→3 solutions

and on the blade chord is Re2,is = 500000.
Figure 2 displays the residuals convergence history of P0→3 solutions both in terms of New-

ton iterations and work units, which is a relative measure of CPU time established within EU
project IDIHOM (2015). Due to the stiff nature of the considered problem, and to a not optimal
law for the CFL number evolution, some spikes are observed during the residuals convergence. The
study of a strategy that would ensure a smooth convergence history is underway.

In Figure 3 the Mach number and pressure ratio p0/p0,1 contours at midspan for P1→3 solutions
are depicted, showing the effectiveness of high-order DG methods. In fact, as the polynomial degree
of the solution approximation is increased, the flow field at the leading and trailing edge, and in the
wake region is more resolved. The pressure coefficient distributions computed at midspan with P1→3

elements are reported in Figure 4 and compared with the available experimental results of Hoheisel
(1981). In this figure the discontinuous polynomial representation of the pressure coefficient within
each element is displayed. The average values of the pressure coefficient within cells are in a
reasonable agreement with the experimental profile already for the P1 solution, while the trends
of the polynomial approximations are incorrect and result in large discontinuities at elements
interfaces. Those discontinuities reduces and the solution local behaviour improves when increasing

10



May 14, 2022 post-print TurboDGIJCFDProofs

Figure 3. Mach number (left) and pressure ratio p0/p0,1 (right) contours at midspan, P1→3 solutions

Figure 4. Pressure coefficient distribution along the blade (left) and in the rear part of the suction side (right) at midspan,
P1→3 solutions

the accuracy. The slightly different behaviour between the numerical and experimental data near
the end of the suction side is due to the high-Reynolds number version of the turbulence model here
employed that fails to predict the small laminar separation bubble observed in the experiments.

The skin friction coefficient distributions at midspan have been reported in Figure 5 for the
different polynomial approximations of the solution. This quantity is more sensitive to the spatial
discretization than the pressure coefficient and clearly highlights both the mesh real coarseness and
the beneficial effect of using a higher polynomial degree approximation. In fact, the large oscillations
of the skin friction coefficient and its discontinuities across neighbour elements are clearly visible
and dramatically reduce when increasing the solution accuracy.

The 3D features of the flow generated by the presence of the end-walls are now investigated.
Figure 6 shows the main vortical structures predicted by a P3 solution near the end-wall zone. The
pressure side leg of the horse-shoe vortex, originated near the blade leading edge, is driven towards
the suction side of the neighbouring blade, where finally merges with the passage vortex. The effect
of higher-order solution can be observed in Figure 7, where the skin friction lines for P1 and P3

solutions are displayed. Notice that the vortical structures developing through the blade passage
are well resolved already at P1 but on the rear part of the suction side surface some differences can
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Figure 5. Skin friction coefficient distribution along the blade (left) and in the rear part of the blade (right) at midspan, P1→3

solutions

Figure 6. Streamtraces near the end-wall, P3 solution

be observed increasing the polynomial degree.
To further investigate the effectiveness of high-order DG computations the flow field behavior

near end-walls is also presented. Figure 8 shows the total pressure contours for solutions up to P3

at the junction between the suction side of the blade and the end-wall, on a plane normal to the
axial direction at x/cax = 0.9 and just downstream of the blade trailing edge at x/cax = 1.05. As
expected, the vortical structures ahead and inside the wake are significantly better captured by the
higher-order computations. The same effect can be observed in Figure 9, where the Mach number
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Figure 7. Skin friction lines at the blade-hub junction, P1 (left) and P3 (right) solutions

Table 2. Loss coefficient for the different polynomial approximations compared with the numerical results of Kožulović and

Lapworth (2009), the empirical correlation of Soderberg and the experimental data of Hoheisel (1981)

P0 P1 P2 P3 HYDRA-CFD Soderberg Exp.
2D 0.302 0.044 0.033 0.031 ≈ 0.03

0.0191
3D 0.307 0.053 0.042 0.041 0.044

isolines and flow streamtraces highlight the structure and intensity of the vortex on the planes at
x/cax = 0.9 and x/cax = 1.45.

Figure 10 shows the pressure ratio p0/p0,1 and the flow deviation angle δ at midspan on a
plane normal to the axial direction at different distances from the trailing edge for P1→3 solution.
Increasing the degree of the polynomial approximation clearly results in a better resolution of
the wake region. In fact, as the polynomial degree increases, the total pressure losses rise while
the wake thickness thins. Moving away from the trailing edge, the wake increases its thickness.
At the wake interface some non-physical oscillations occur, probably due to the total pressure
fluctuations generated at the leading edge for the low geometrical resolution of the blade and
convected downstream due to the low diffusion property of the DG method.

Finally, the predicting capabilities of the solver were investigated by comparing the computed
loss coefficient ζ with the numerical and experimental results available in the literature, and the
empirical correlation of Soderberg as reported in Hall and Dixon (2010). The loss coefficient is here
defined as

ζ =
p0,1 − p0,2

p0,1 − p2
, (33)

where p0,1 and p0,2 are the mass flow-weighted averaged total pressures at the inlet and outlet
section, respectively, and p2 is the mass flow-weighted averaged static pressure at the outlet section.
Table 2 summarizes the results. Our 3D solutions are compared with the value predicted by the
empirical correlation of Soderberg, showing a good agreement. To compare our results with the
2D fully turbulent simulations obtained with the HYDRA-CFD solver by Kožulović and Lapworth
(2009) and the experimental data of Hoheisel (1981), the loss coefficient is evaluated at the midspan
section and referred in Table 2 as 2D. The HYDRA-CFD is a well-established unstructured FV
solver used at Rolls-Royce for the simulation of inner turbomachinery components of jet engines,
see Moinier, Müller, and Giles (2002); Bertolli et al. (2013). The reported results of Kožulović
and Lapworth (2009) have been obtained by solving RANS equations closed by the one equation
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Figure 8. Total pressure contours at the junction between the end-wall and the suction side on a plane normal to the axial
direction, x/cax = 0.9 (top), x/cax = 1.05 (bottom), P1→3 solutions (from left to right)

turbulence model of Spalart and Allmaras (1992) with no transition model on a mesh consisting
of 37000 nodes and a wall-adjacent cells height of y+ ≈ 1. The values of our DG P2 and P3

computations are in very good agreement with those numerical results, while the discrepancy with
the experimental data is explained by the lack of a transition model.

4.2. NASA Rotor 37

In this section the transonic turbulent flow through the NASA Rotor 37 is considered. This test
case has been thoroughly investigated both numerically and experimentally, e.g. Dunham (1994);
Chima (2009); Denton (1997); Hah (2009); Cinnella and Michel (2014); Tartinville and Hirsch
(2006). The main geometrical parameters of the rotor are reported in Table 3.

Computations were performed up to P3 solution on a coarse grid of 20064 50-node hexahedral
elements (quartic edges) and up to P2 solution on a fine grid of 160512 20-node hexahedral elements
(quadratic edges). The height of elements adjacent to the solid wall corresponds to a y+ ≈ 15 and
y+ ≈ 7 for the coarse and fine mesh, respectively.

The surface grid and the mesh details near the tip and the hub regions are depicted in Figures 11
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Figure 9. Mz isolines and streamtraces on a plane normal to the axial direction located at x/cax = 1.05 (top), x/cax = 1.45

(bottom), P1→3 solutions (from left to right)

Table 3. Geometrical parameters of the NASA Rotor 37

c chord 0.0568 m
DH/DT hub-tip diameter ratio 0.7
h/c aspect ratio 1.19
c/s tip solidity 1.288
τ tip clearance 3.56 · 10−4 m

and 12. Notice that, due to the impossibility of controlling the grid spacing during the coarsening
process needed for the high-order meshes generation, only four and eight elements are used to
discretize the tip clearance in the coarse and fine meshes, respectively.

For this test case the governing equations formulated in the non-inertial reference frame were
adopted and the rotational speed was set equal to ω = [1800rad/s, 0, 0]T . Adiabatic wall boundary
conditions were imposed on the blade, the hub and the tip surfaces. The total pressure and temper-
ature, the flow angle α1 = 0◦ and the turbulence intensity Tu1 = 3% were prescribed at the inlet,
while at the outlet the static pressure was prescribed at midspan and the pressure distribution
along the span was computed using a simplified radial equilibrium equation.
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Figure 10. Midspan pitch-wise total pressure distribution (left) and deviation angle δ (right) at x/cax = 1.2 (top), x/cax = 1.35
(middle) and x/cax = 1.45 (bottom), P1→3 solutions
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Figure 11. Surface mesh (left) and grid details of the hub and tip region (right) of coarse grid

Figure 12. Surface mesh (left) and grid details of the hub and tip region (right) of fine grid

The solutions were computed by employing the restarted GMRES algorithm preconditioned with
ASM, setting the Krylov spaces and the maximum number of iterations to 180 and 360, respectively.
The user-defined parameters for the CFL evolution law of Eq. (32) were set to CFLmin = 0.8,
CFLmax = 1020 and α = 0.8. Parallel computations were performed up to 480 and 192 cores for
the coarse and fine mesh, respectively.

As described in Dunham (1994), the main flow features can be found at midspan and near
the blade hub and tip. In Figures 13 and 14, the relative Mach number contours at midspan are
displayed for the coarse (left) and fine (right) mesh. A shock wave originating at a blade leading
edge crosses the passage and impinges on the near blade, inducing a flow separation. It can be
observed that, by increasing the polynomial degree, the quality of the shock wave representation
as well as the resolution of the wake region, improve significantly.

Despite the coarse discretization of the tip clearance the DG solutions predict a strong leakage
flow for both grids, see Figure 15, in agreement with the experimental data of Suder and Celestina
(1996). Downstream of the passage shock, the leakage flow interacts with the separated boundary
layer, which moves radially toward the tip wall creating a vortical structure, see Figure 15. A stall
region is observed on the suction side near the hub, which is larger on the coarse mesh. Figure 16
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Figure 13. Relative Mach number contours (left) and a detail (right) at midspan, P1→3 solutions on coarse grid

Figure 14. Relative Mach number contours (left) and a detail (right) at midspan, P1,2 solutions on fine grid

(left) shows the relative Mach number contours on a cross-section at 10% of the axial chord as
well as the position of the shock passage, and a detail of the strong supersonic expansion in the
tip region (right). The same flow pattern is observed for the coarse and fine meshes, resorting to a
P3 and P2 solution on the coarse (top) and fine (bottom) meshes, respectivelly.

Further details of the flow field are provided in Figure 17, where the skin friction lines on the
suction side are shown for the P3 and P2 solutions on the coarse and fine grids, respectively. In
particular the position where the passage shock interacts with the blade, the stall zone near the
hub, and the separated boundary layer moving radially toward the tip are observed. Also in this
case, the P2 solution on the fine mesh and the P3 solution on the coarse mesh are in reasonable
agreement, predicting the same shock location and a similar structure of the separated boundary
layer downstream of the shock.

In Figures 18 to 20 the radial distribution of the pitch-wise mass averaged p0,2/p0,1 and T0,2/T0,1,
as well as the resulting adiabatic efficiency ηad at 98% of the choked mass flow on the coarse (P1→3

solutions) and fine (P1,2 solutions) grids are compared with experimental data. Ranging from the
20% to about the 80% of the span a good agreement between the P3 solution (coarse mesh), P2 so-
lution (fine mesh) and the available data is observed for the pressure and temperature ratio profiles,
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Figure 15. Streamtraces showing a detail of the corner stall near the hub region at the suction side of P3 solution on coarse
grid (left) and P2 solution on fine grid (right)

Figure 16. Relative Mach number contours on a cross-section at 10% of the axial chord (left) and detail (green dashed box)
near the tip region (right), P3 solution on coarse grid (top) and P2 solution on fine grid (bottom)
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Figure 17. Skin friction lines on suction side, P3 solution on coarse grid (left) and P2 solution on fine grid (right)

Figure 18. Pitch-wise total pressure ratio p0,2/p0,1, P1→3 solutions (coarse grid, left) and P1,2 solutions (fine grid, right)

with errors about −1% and +1%. For the adiabatic efficiency the maximum error slightly increases,
being −4.5% and 2% for the P3 solution (coarse mesh) and P2 solution (fine mesh), respectively. At
hub and tip regions some discrepancies with respect to experimental measurements occur; however
similar behaviours are also observed for some numerical results reported in Tartinville and Hirsch
(2006) and Cinnella and Michel (2014). In general the P2 solution on the fine mesh guarantees a
better behaviour of the analysed quantities near the end-walls.

Figure 21 shows the performance maps, i.e. the total pressure ratio (top) and the adiabatic
efficiency (bottom) as a function of the normalized mass flow, for the P1→3 solutions on coarse
grid (left) and the P1,2 solutions on fine grid (right). While a good agreement with experimental
data is observed for the pressure ratio curve, especially for the P2 solution on the fine mesh, the
adiabatic efficiency curves quite differ from experiments. This discrepancy can be observed also
in other numerical results available in the literature (Tartinville and Hirsch (2006); Cinnella and
Michel (2014)).

The relative errors against the number of degrees of freedom for the mass flow ṁ, the pressure
ratio β = p0,2/p0,1 and the adiabatic efficiency ηad at 98% of the chocked mass flow condition,
and for p0,2/p0,1 and ηad near the stall condition, are summarized in Table 4. To further assess the

20



May 14, 2022 post-print TurboDGIJCFDProofs

Figure 19. Pitch-wise total temperature ratio T0,2/T0,1, P1→3 solutions (coarse grid, left) and P1,2 solutions (fine grid, right)

Figure 20. Pitch-wise adiabatic efficiency ηad, P1→3 solutions (coarse grid, left) and P1,2 solutions (fine grid, right)

influence of the polynomial degree of the approximation on our NASA Rotor 37 computations, we
compare the P3 solution on the coarse mesh with the P1 computation on the fine mesh. Among the
available coarse and fine grid results, these computations have a comparable number of DoF, i.e.
≈ 400000 for the P3 solution and ≈ 640000 for the P1 solution. Table 4 shows that the P3 results
are in reasonable agreement with those of the P1 computation, and, in some cases, are even closer
to the relative error values of the P2 solution on the fine mesh (≈ 1600000 DoF). This confirms the
beneficial effect on the overall solution accuracy of a higher polynomial degree approximation.

5. Conclusions

A fully implicit high-order DG method for the solution of the compressible RANS equations coupled
with the k-ω̃ turbulence model was applied to the computation of typical turbomachinery configu-
rations. A set of primitive variables based on pressure and temperature logarithms was adopted to
guarantee, by design, the positivity of all the thermodynamic unknowns. Even though this tech-
nique is not intended as a substitute of the shock-capturing approach, here based on the addition
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Figure 21. Performance map: total pressure ratio p0,2/p0,1 (top) and adiabatic efficiency ηad (bottom) as a function of

normalized mass flow, P1→3 solutions (coarse grid, left), P1,2 solutions (fine grid, right) and experimental data

Table 4. Effect of the polynomial approximation on the relative error (q − qexp)/qexp (q and qexp are the computed quantity
and the corresponding experimental value) for ṁ, p0,2/p0,1, ηad at choke condition and for p0,2/p0,1, ηad near the stall condition

Choke Near stall
Pk NDoF ṁ p0,2/p0,1 ηad p0,2/p0,1 ηad
1 80265 2.40% 2.62% 9.08% 4.79% 7.44%
2 200640 1.50% 2.45% 6.83% 3.17% 4.87%Coarse
3 401280 0.87% 2.91% 5.64% 1.67% 4.77%
1 642048 0.77% 2.70% 6.19% 2.12% 3.49%

Fine
2 1605120 0.54% 3.10% 4.93% −0.90% 2.02%

of an artificial viscosity term to the governing equations, it certainly enhanced the robustness of
high-order simulations of transonic flows, e.g. the NASA Rotor 37 case.

Although using high-order meshes generated by a uniform agglomeration coarsening, and possi-
bly resulting in a non-optimal grid density distribution for a DG method, a high enough degree of
the polynomial approximation proved to be able to provide accurate results. The beneficial effect
of high-order approximations on the solution quality was demonstrated by comparing numerical
results for increasing orders of accuracy with the available numerical and experimental data and
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by showing the details of the computed flow field for different polynomial approximations. Ongoing
work is devoted to improve our predicting capabilities based on the RANS approach by implement-
ing a turbulence model able to deal with the laminar-turbulent transition, see Walters and Cokljat
(2008); Lorini et al. (2014, 2016). Moreover, the Implicit Large Eddy Simulation (ILES), which is
currently receiving much attention by the CFD community for the simulation of under-resolved
turbulent flows, see de Wiart, Hillewaert, and Geuzaine (2012); de Wiart et al. (2015); Bassi et al.
(2016), will be considered to avoid the modelling issues related to the transition.
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Appendix A. Trasformation matrix for logarithmic variables

The transformation matrix P (w) related to the use of the variables w =
[
p̃, u1, u2, u3, T̃ , k, ω̃

]T
is

reported in the following

P (w) =



ρp̃ 0 0 0 ρT̃ 0 0
ρp̃u1 ρ 0 0 ρT̃u1 0 0
ρp̃u2 0 ρ 0 ρT̃u2 0 0
ρp̃u3 0 0 ρ ρT̃u3 0 0

ρp̃H + ρhp̃ − ep̃ ρu1 ρu2 ρu3 ρT̃H + ρhT̃ 0 0
ρp̃k 0 0 0 ρT̃k ρ 0
ρp̃ω̃ 0 0 0 ρT̃ ω̃ 0 ρ


, (A1)

where

hp̃ =
∂h

∂p̃

∣∣∣∣
T̃

= êp̃ +
ep̃

ρ
−
ρp̃
ρ2
ep̃, hT̃ =

∂h

∂T̃

∣∣∣∣
p̃

= êT̃ −
ρT̃
ρ2
ep̃, (A2)

and assuming an ideal gas

ρ = e(p̃−T̃), ê =
eT̃

γ − 1
, (A3)

ρp̃ =
∂ρ

∂p̃

∣∣∣∣
T̃

= ρ, ρT̃ =
∂ρ

∂T̃

∣∣∣∣
p̃

= −ρ, (A4)

êp̃ =
∂ê

∂p̃

∣∣∣∣
T̃

= 0, êT̃ =
∂ê

∂T̃

∣∣∣∣
p̃

= ê, hp̃ = 0, hT̃ = êT̃ −
ep̃

ρ
. (A5)
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