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Abstract

The growing demand to both utilise and preserve our coastal zones causes the need to
better understand the coastal dynamics and to improve the capability to model these
processes. In the study of wave propagation towards the shore, it is necessary to take
into account the presence of coastal structures that strongly modify the wave field.
Along the Italian coast, submerged and emerged breakwaters are the main coastal
structures used to protect beaches from erosion processes. Their efficiency in terms
of coastal defence is subject to adequate knowledge of the non-linear processes due to
the wave-structure interaction. This knowledge is required for the correct design of
new structures but it is also important for the adaptation of existing structures that
may be necessary especially in view of the future expected climate changes. The 2021
Special Report of IPCC (Masson-Delmotte et al., 2021) shows different scenarios of
Sea Level Rise (SLR) depending on the mean increase of global temperatures and on
the assumed environmental policies. The sea level could rise up to 1.01cm in 2100
if no climate change mitigation policy will be adopted, while the minimum attended
increase is 28cm with the most stringent mitigation scenario. As a consequence, the
actual structures could become less effective and they need to be adapted, according
to the change in environmental conditions.
The objective of this thesis is to increase the knowledge and the physical insight
on the mechanisms of non-linear interaction between waves and coastal structures.
A better understanding of the physical processes can be implemented in numerical
models to improve their predictive capabilities.
Laboratory experiments have been carried out to study the transformations of both
monochromatic and random waves during the propagation over a submerged ob-
stacle. The submerged bar had a longer berm width with respect to those typical
of a submerged breakwater in order to analyse, over longer distances, the energy
exchange that occurs between the various harmonic components of waves. At first,
the monochromatic waves have been studied because they are easier to analyse and
they provide quite valuable information about the generation of super-harmonics.
Monochromatic waves are useful to simulate narrow-banded spectra, which are typi-
cal of sea swell conditions. Their study is also the starting point to better understand
the more complex mechanisms related to the propagation of random waves.
The free surface measurements have been elaborated by means of spectral and bis-
pectral analyses and the influence of different wave parameters on the non-linear
wave interactions has been evaluated, in particular the effects of the wave period and
the wave breaking. It has been observed that the increase in the wave period causes
a greater transfer of energy at high frequencies and, in some cases, the secondary
harmonic components become prevalent. The wave breaking acts by mainly reducing
the energy of the primary component and it involves a redistribution of energy over a
wider high-frequency range, with less pronounced peaks at the secondary harmonics.
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For breaking waves, more energy is also shifted towards low frequencies due to the
mechanism of generation of infragravity waves proposed by Symonds et al. (1982).
This mechanism is referred to as the breakpoint mechanism and it is attributed to
the time-varying displacement of the breakpoint location in presence of wave spectra
or wave groups.
The bispectral analysis is used to examine the spatial variation in intensity of the
non-linear couplings between harmonic components in a wave field propagating over
and beyond the bar. The observed spatial variations of the nonlinearity parameters
(such as bicoherence, skewness and asymmetry) indicate strong phase couplings be-
tween the primary component and its harmonics over the bar due to the non-linear
triad interactions. In the deepening region beyond the bar, a different behaviour
for random and monochromatic waves is observed. For random waves the bound
harmonics are released and the wave field can still be described as a superposition
of statistically independent waves, without memory of the phase locks which existed
over the bar. Unlike irregular waves, the harmonic components of monochromatic
waves continue to interact in the protected area and the asymmetry parameters vary
significantly as a result of the varying phase lags between the freely propagating
component waves.
The evolution of the biphase has been found to be consistent with visual observation
that waves evolve from a slightly peaked, nearly sinusoidal shape offshore of the
structure (with biphase equal to zero) to a shape characterized by a steep front face
over the berm of the structure (with biphase equal to −π/2).
The evolution of the wave spectrum behind submerged obstacles also affects the
run-up on the beach. A second experimental campaign has been carried out to
evaluate the wave run-up over a 1:20 impermeable slope in presence of the submerged
bar. The observed run-up is better correlated to the incident wave characteristics for
regular monochromatic waves and to the characteristics of the transmitted spectra
for random waves. In fact, for random waves the non-linear interactions induced by
the submerged bar also generate long waves that affect the infragravity band swash.
This does not happen for regular monochromatic waves where the first harmonic
remains the main forcing of the run-up.

La crescente necessità di utilizzare e preservare le aree costiere richiede una più
approfondita conoscenza delle dinamiche costiere e una migliore capacità di modellare
questi processi. Nello studio della propagazione delle onde verso riva occorre consid-
erare la presenza di eventuali strutture di difesa della costa che modificano fortemente
il campo di moto. Lungo le coste italiane, le scogliere sommerse ed emerse rappresen-
tano le principali opere utilizzate per proteggere le spiagge dai processi di erosione. La
loro efficacia in termini di difesa costiera è subordinata ad un’adeguata conoscenza
dei processi non lineari dovuti all’interazione onda-struttura. Questa conoscenza è
necessaria per la corretta progettazione di nuove strutture ma è importante anche per
l’adeguamento delle strutture esistenti che potrebbe rendersi necessario soprattutto in
vista dei futuri cambiamenti climatici. Il Report 2021 dell’IPCC (Masson-Delmotte
et al., 2021) mostra diversi scenari di aumento del livello del mare (SLR) a seconda
dell’aumento medio delle temperature del pianeta e delle politiche ambientali adottate
dai vari Paesi. Il livello del mare potrebbe salire fino a 1.01cm nel 2100, se non verrà
adottata alcuna politica di mitigazione del cambiamento climatico, mentre l’aumento
minimo atteso è di 28cm con lo scenario di mitigazione più rigoroso. Di conseguenza,
le strutture attuali possono diventare meno efficaci e necessitano di essere adattate,
per far fronte alle nuove condizioni meteo-marine. Questa tesi ha l’obiettivo di ap-
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profondire la conoscenza dei meccanismi fisici di interazione non lineare tra onde e
strutture costiere. Una migliore comprensione dei processi fisici può essere implemen-
tata nei modelli numerici al fine di aumentare le loro capacità predittive. A tal fine
sono stati condotti esperimenti di laboratorio per studiare la trasformazione sia di
onde monocromatiche che di onde random nella propagazione su un ostacolo som-
merso. La struttura sommersa in oggetto è stata realizzata con una lunghezza della
berma maggiore rispetto a quella tipica di una scogliera sommersa per analizzare, su
distanze maggiori, gli scambi di energia tra le varie componenti armoniche del moto
ondoso. Sono state dapprima studiate le onde monocromatiche che risultano più
semplici da analizzare e forniscono informazioni interessanti sulla generazione delle
super-armoniche. Le onde monocromatiche sono utili per studiare il comportamento
di spettri a banda stretta, tipici delle condizioni di swell. Il loro studio è anche il punto
di partenza per comprendere meglio i meccanismi più complessi che sono alla base
della propagazione delle onde irregolari. Le registrazioni della superficie libera sono
state elaborate mediante analisi spettrali e bispettrali ed è stata valutata l’influenza
di diversi parametri sulle interazioni non lineari delle onde, in particolare gli effetti
del periodo ondoso e del frangimento. È stato osservato che l’aumento del periodo
d’onda provoca un maggior trasferimento di energia alle alte frequenze e, in alcuni
casi, le componenti armoniche secondarie diventano prevalenti. Il frangimento agisce
principalmente riducendo l’energia della componente primaria e comporta una ridis-
tribuzione dell’energia alle alte frequenze su un range più ampio, con picchi di energia
meno pronunciati. Per le onde frangenti, è stato osservato anche un maggiore trasfer-
imento di energia verso le basse frequenze, a causa del meccanismo di generazione
delle onde lunghe proposto da Symonds et al. (1982). Secondo tale meccanismo, noto
come breakpoint mechanism, la generazione di onde lunghe è dovuta allo spostamento
del punto di frangimento in presenza di spettri ondosi o gruppi di onde. L’analisi
bispettrale è stata utilizzata per esaminare la variazione spaziale dell’intensità degli
accoppiamenti non lineari tra componenti armoniche nel campo d’onda che si propaga
sopra e oltre la barra. Le variazioni spaziali dei parametri di non linearità (come la
bicoerenza, la skewness e l’asymmetry) indicano forti accoppiamenti di fase tra la
componente primaria e le sue armoniche al di sopra della barra a causa delle inter-
azioni non lineari tra le triplette. Con l’aumento della profondità oltre la barra, si
osserva un comportamento diverso per onde random e monocromatiche. Per le onde
random le armoniche legate vengono rilasciate e il campo d’onda può ancora essere
descritto come sovrapposizione di onde statisticamente indipendenti, senza memoria
degli accoppiamenti di fase che esistevano sulla barra. A differenza delle onde irre-
golari, le componenti armoniche delle onde monocromatiche continuano ad interagire
nell’area protetta e i parametri di asimmetria variano in modo significativo a causa
delle differenze di fase variabili tra le onde componenti che si propagano liberamente.
L’evoluzione della bifase è risultata coerente con l’osservazione visiva che le onde
evolvono da una forma quasi sinusoidale, con creste leggermente appuntite, al largo
della struttura (con bifase uguale a zero) a una forma caratterizzata da fronti ripidi
sulla berma della struttura (con bifase uguale a −π/2).
L’evoluzione spettrale delle onde dietro ostacoli sommersi influisce anche sulla risalita
ondosa in corrispondenza della spiaggia. Una seconda campagna sperimentale è stata
condotta per valutare il run-up su una pendenza impermeabile 1:20 in presenza
della struttura sommersa. Il run-up osservato si correla meglio alle caratteristiche
dell’onda incidente per le onde monocromatiche regolari e alle caratteristiche degli
spettri trasmessi per le onde irregolari. Infatti, per le onde random le interazioni non
lineari indotte dalla barra sommersa generano anche onde lunghe che influenzano la
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componente infragravitativa dello swash. Questo non accade per le onde monocro-
matiche regolari dove la prima armonica rimane la principale forzante del run-up.
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Vorrei esprimere la mia più sincera gratitudine al mio supervisore, il Professor Alessan-
dro Mancinelli, per le sue straordinarie conoscenze, i suoi consigli, la sua guida e, non
per ultimo, per la sua incredibile umanità.
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Chapter 1

Introduction

As surface gravity waves propagate from deep-water (where kh >> 1, with k the
wave number and h the water depth) toward the shore, non-linear processes become
relevant in the nearshore zone (kh << 1). The non-linear processes act by altering
the wave profile shape. Symmetric wave profiles and oscillatory velocities in deep
waters become asymmetric and skewed when they are close to wave-breaking. The
linear wave theory predicts well the refraction and the shoaling of the wave field in
intermediate water depth (kh = O(1)). The spectral representation of the wave field,
widely used in the design of coastal structures, shows the non-linear transformations
during the propagation toward the shore as changes in the initial spectral shape, with
energy transfers to both higher and lower frequencies. The transformation of the wave
profile and of the wave spectra is mainly due to the energy transfer between harmonic
components of the wave field in a process called non-linear triad interaction (Phillips,
1960). Two harmonic components with frequencies f1 e f2 (for examples close to the
peak frequency fp ≈ f1 ≈ f2) transfer energy both to the sum frequency (f1+f2 = f3)
and to lower frequencies due to difference interactions (f1 − f2 = f3). In deep wa-
ter (kh >> 1) until the limit of intermediate depths (kh = O(1)) the nonlinearities
generate secondary waves (bound waves) which remain small in amplitude, the inter-
actions among triads of waves do not occur due to the form of the dispersion relation
(Phillips, 1960; Hasselmann, 1962) and, if the wave steepness remains small, waves
can be described by Stokes-type theory. For Longuet-Higgins and Stewart (1962) the
wave components in a wave group can interact with each other through difference
interactions to create bound long waves. This is known as the bound wave mechanism
(BWM). These bound infragravity waves travel with the speed of the wave group
and they are recognized to be responsible of the phenomenon of surfbeat. Bound
IG waves are already generated in deep water, and, although they are small (on the
order of 1 cm), they undergo a significant transformation and growth in height when
propagating from deep water to the shoreline. Another mechanism for the generation
of long waves is proposed by Symonds et al. (1982). It is referred to as the break-
point mechanism (BKM) and it is attributed to the time-varying displacement of the
breakpoint location in presence of waves with different heights as for wave spectra or
wave groups. In this case a dynamic set-up is generated that propagates both offshore
and onshore from the breakpoint. Both seaward and shoreward long waves generated
by the BKM propagate with their own celerity given by the dispersion relationship
and therefore can be considered free. These waves can be reflected by the coast and
they could become edge waves or they could propagate offshore. A third mechanism
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of generation of infragravity waves, proposed by Bertin et al. (2018), consists in the
union of waves of the type bore and it is associated with amplitude dispersion in the
inner surf zone. In shallow water depths (kh << 1), triad interactions are nearly
resonant and the energy transfer process becomes more relevant. The finite ampli-
tude wave models can only be applied when the Ursell number (Ur = H/(2(k2h3))
where H is the wave height) is small (Ur = O(1)) and, therefore, it is necessary to use
wave models based on Boussinesq equations (Peregrine, 1967) in which both the wave
nonlinearity (a/h, a = H/2) and the dispersion ((kh)2) are small and of the same
order. Elgar and Guza (1985b) performed on field experiments in Santa Barbara
(California). The authors verified the importance of non-linear phenomena on the
shoaling process over a natural beach without bars or submerged obstacles. Narrow
band spectra usually generates secondary peaks with respect to the main wave fre-
quency. In broad band spectra, the energy is distributed over a wider frequency range
larger than the peak frequency. In addition to the component amplitude evolution,
the phases of the frequency components varies with a velocity which is different with
respect to the velocity calculated by finite depth linear wave models. Therefore, the
variation of the wave shape profile leads to a dispersion in wave amplitude. Waves
in deep water depths are characterized by a symmetric profile. At smaller depths,
the wave profile becomes steeper with more peaked crests and wider troughs. Such
evolution to more asymmetric shapes is also highlighted by the evolution of the skew-
ness of η (free surface elevation). Non-linear Boussinesq models are better able to
describe wave propagation with respect to linear models. However, some doubts still
remain, especially regarding the generation and the propagation of waves at lower
frequencies. In Elgar and Guza (1986) non-linear wave evolution from offshore to
the shoreline is studied by means of higher order spectral analysis (e.g. bispectrum).
The bicoherence obtained from the water level η increases toward the coast as a
consequence of large non-linear interactions between Fourier components. Biphase,
skewness and asymmetry with respect to the vertical axis changes substantially with
the wave profile evolution that changes from the quasi-sinusoidal offshore shape to
the sawtooth shape in breaking conditions and peaked shape after the breaking oc-
curs. Elgar et al. (1997) performed field measurements (Duck 94, North Carolina)
to study the evolution of a gravity wave spectrum that propagates over a natural
beach profile with sandy bars. Waves that pass over a submerged obstacle, bar or
breakwater, are partially reflected and partially transmitted in the inshore side. The
transmission process is very complicated because it depends both from the obstacle
shape parameters (slopes, submergence, width) and from the hydrodynamic charac-
teristics of the wave trains (wave height, period, frequency distribution). Non-linear
processes are activated in the shoaling area at the outer slope of the bar. They are
responsible for the behaviour of the transmitted waves that show a space and time
varying free surface profile. Linear wave models usually neglect, or parametrize with
empirical equations, non-linear terms, reflection and dissipation contribution from the
wave action balance equations. Non-linear interactions causes energy transfers among
triads with frequencies f1, f2 and f3 with f1 ± f2 = f3. For this evaluations, higher
order statistical tools are needed, such as bispectral analysis. For intense wave sea
stats, both the breaking and non-linear interactions influence the spectral evolution
of waves over a bar/obstacle. It is still not clear the role of breaking in such pro-
cess. According to Mase and Kirby (1993) the dissipation, normalized by the spectral
density, increases with the frequency. On the contrary, Beji and Battjes (1993, 1994)
studied by both laboratory experiments and numerical simulations, the wave propa-
gation process over a submerged bar. They found that relative dissipation does not
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depend on the frequency. The differences between the Boussinesq model and the ob-
servations are given by the breaking dissipation that was not correctly reproduced in
the numerical model. With regards to non-linear interactions, the authors observed
a large energy transfers from the peak frequency to its first harmonics in the case of
very narrow band spectra (swell) during the wave evolution from offshore to the bar.
In particular, over the horizontal crest of the bar the peak frequency and its super-
harmonics are characterized by similar energies. As a consequence, over the bar twice
the wave crests are observed, in agreement also with Byrne (1969). Such drift of en-
ergy to higher frequency is not so evident when the wave propagates over a monotonic
beach profile. Elgar et al. (1997) studied the spectral evolution over a natural barred
beach profile. They obtained that the skewness and asymmetry increases from the
offshore value of 0 (symmetric waves) to values of about 0.5 over the bar. In the hor-
izontal part the skewness keeps constant while asymmetry goes to 0. The employed
Boussinesq models describe in a fairly good manner the spectral evolution but they
under estimate wave breaking over the bar crests and the reflection. For more intense
sea state conditions (Hs > 1m) wave reflection can be neglected and the propagation
only depends on dissipation and non-linear interactions. Close to the crest, the ratio
D(f)/E(f) (D(f) is the dissipation and E(f) is the spectral density energy) increases
proportionally with the frequency according to f2. Local variations of spectral levels
due to non-linear interactions are of the same order of those given by the dissipation
process. Non-linear energy transfers are able to double the wave crests number close
to the shoreline as it also happens to a narrow band spectrum that propagates over a
constant slope profile. Low frequency and low energy sea states are reflected by the
beach and they give a partially stationary wave field without leading to resonance
processes. Goda et al. (1999) studied the effects of an abrupt bathymetry change,
given by a submerged reef or a horizontal shelf with a steep offshore slope, on the
propagation of third order Stokes’ waves. The authors find out that the shape of the
transmitted waves becomes complicated, the crests are given by multiple peaks and
the η varies in space and time. Secondary, tertiary and higher order harmonics are
hence generated over the obstacles and their amplitudes are not constant.
In the present thesis, the sea wave propagation over a submerged obstacle has been
studied by means of experimental tests performed in the wave flume of the Laboratorio
di Idraulica e Costruzioni Marittime of DICEA Department of Università Politecnica
delle Marche and by means of numerical analysis performed with the XBeach solver.
The submerged obstacle is similar in size to the experiments of Beji and Battjes
(1993) and Liberatore and Petti (1992). Here, a wide range of regular and random
wave characteristics and two different values of submergence are studied. The main
aim of this study is to better understand spectral evolution due to non-linear interac-
tion by means of bispectral analysis. The energy transfer of the incident spectrum to
higher frequencies and the presence of long waves (free and bound) strongly modify
the free surface evolution in the inner zone and, therefore, the run-up process on the
protected beach. Run-up measurements over the beach highlight some aspects of the
phenomenon which is of great relevance for engineering purposes because it influences
the beach flooding for extreme wave conditions or sea level rise. Several experimental
campaigns have been carried out over natural beaches without sandbars. The main
empirical formulas (Stockdon et al., 2006; Vousdoukas et al., 2011) use the Iribarren
parameter (ξ0 = tan(β)/(H0/L0)

0.5 where tan(β) is the slope of the beach in the final
part of the swash zone, H0 and L0 are the offshore wave height and wave length)
and two asymptotic values are found for ξ0 < 0.3 (saturated beaches) and ξ0 > 1.25
(reflective beaches). Such approach is not easy to be applied for barred beaches or
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beaches protected by breakwaters that highly influence both H0 and L0. A deeper
understanding of the hydrodynamics induced by the obstacle is hence necessary. In
the experimental tests of the present thesis, the effect of spectral period variation and
the influence of infragravity waves on the run-up is evaluated. In addition, the role
of breaking on wave propagation is further studied to clarify some aspects that were
not highlighted in the previous experimental works.
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Chapter 2

Review and Theory

The experimental campaign of this study allowed to shed light to different phenomena
that act during the wave propagation towards the shore. First of all, the non-linear
transformations of wave profiles and spectra over a submerged bar were studied. The
evolution of waves over an obstacle gives rise to the generation of higher and lower
harmonic components of the waves. Since a spectral analysis is not sufficient to tell
if these frequency components are bound or free, the application of a higher order
spectrum (bispectrum) is more suitable to examine wave non-linearity. Finally, after
the wave propagated behind the bar, the effect of the bar on the wave run-up was also
studied. Each of these individual phenomena are widely studied in the literature, so
in this chapter a brief overview on the main theories and on the state of the art about
these topics is reported. The arrangement of this chapter is as follows. In Section 2.1
the harmonic generation in waves propagating over submerged obstacles is described.
Section 2.2 describes the application of the bispectral analysis to investigate some
aspects of the non-linear dynamics of waves propagating in shallow water. In Section
2.3 the main studies and formulations for the evaluation of the wave run-up are
reported.

2.1 Harmonic generation past a submerged bar

In this chapter, the main topic of this research is addressed, namely the interaction
between waves and submerged bars. It is known that submerged structures, in ad-
dition of reducing the incident wave energy, strongly modify the transmitted wave
field, both in breaking and non-breaking conditions, leading to the generation of sec-
ondary waves that interfere, in the protected area, with the primary wave component.

2.1.1 Literature review

The generation of higher and lower frequency waves, due to non-linearity in a wave
field propagating over a shallow region, has long been known both experimentally and
theoretically.

From a theoretical point of view the problem was first addressed by Massel (1983)
and Goda et al. (1999), who studied the propagation of Stokes waves over a sub-
merged rectangular and impermeable step with second order and third order theories,
respectively. They addressed the topic as an extension of the propagation problem

5



in which the wave field presents strong discontinuities, represented in this case by
a sudden variation in the bottom topography due to the presence of the bar. By
following a perturbative approach to solve the system of equations of motion, they
proposed solutions of fundamental importance to understand the complex mechanism
of wave-structure interaction from a qualitative point of view. In the presence of the
submerged obstacle, the wave motion is partly reflected and partly transmitted behind
the obstacle. The presence of the discontinuity in the wave field due to the submerged
bar causes the decomposition of the incident primary wave (with frequency f) into
different harmonics of multiple frequencies with respect to the main one. A part of
these super-harmonics is linked to the fundamental (bound waves) while the other
part travels as free oscillations with frequency 2f and celerity independent from the
previous ones (free waves). In the offshore area (Region 1 of Figure 2.1) the wave field
results from the superimposition of the incident wave and the reflected wave. Both
waves have first order components and, depending on the relative depth, bounded
second order components. The reflected one will have a free component of the sec-
ond order. Above the crest of the structure (Region 2), the wave motion will result
from the superposition of transmitted waves, with first and higher order harmonic
components, the latter ones are both bound and free. Behind the barrier (Region 3),
there will be a transmitted wave motion with higher order harmonics of the free type
and of the bound type, where the latter ones are more or less large depending on the
relative depth.

Figure 2.1: Sketch of the spatial domain and of the harmonic components of waves
for the cases of an infinite step and a finite one. Adapted from Goda et al. (1999).

The solution proposed by Goda et al. (1999) is developed to the third order of
approximation and it includes also the effect of the third order due to the non-linear
interaction between the primary wave and the free harmonic of the second order. The
interaction between the two free harmonics (f and 2f) gives rise to two further inter-
ference waves of the third order with frequency equal, respectively, to the difference
(f) and the sum (3f) of the two frequencies of the free harmonics. The mechanism
of the interaction between triplets (known as triad interaction) was first addressed
by Phillips (1960). More details about this mechanism are described in Section 2.1.2.
It should be remembered that the free waves of the second order travel with lower
celerity than the Stokes wave of the second order; this fact produces a spatial varia-
tion of the wave profile giving rise to a non-permanent wave field. Furthermore, the
interaction between bound waves and free waves generates a spatial oscillation of the
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total harmonic with frequency 2f .

The problem of frequency generation over a submerged obstacle was also studied
experimentally by many researchers. The experiments of Beji and Battjes (1993) and
Liberatore and Petti (1992) are particularly significant for the study objected of this
thesis. They both examined the transformation of waves passing over a submerged
trapezoidal bar with offshore slope 1:20, inshore slope 1:10 and top width of 2m,
built on a horizontal bottom. Liberatore and Petti (1992) studied the propagation
of random waves for two offshore water depths of 40cm and 50cm, so water depth
above the bar was 10cm and 20cm respectively. Waves were measured at thirteen
measuring stations in the flume using eight parallel wire resistance wave gauges in
two shifts (Figure 2.2).

Figure 2.2: Experimental set-up and location of wave gauges for the experimental
investigation of Liberatore and Petti (1992). Adapted from Liberatore and Petti
(1992).

In Figure 2.2 squared numbers correspond to group 1 (8 gauges, first shift) and
circled numbers and letters to group 2 (second shift). For each water depth, three
different random wave trains were generated. Both short and long waves were anal-
ysed by filtering the signal and, considering the frequencies respectively higher and
lower than 0.5fp (where fp is the peak frequency of the wave spectra), reconstructing
the time domain signal using the Inverse Fourier Transforms. This allowed in par-
ticular investigation of transformations of long waves passing over the bar. A second
order analytical method was also applied to the data in order to calculate first and
second-order contributions from measured spectra. Beji and Battjes (1993) found
that the dominant physical mechanism was the amplification of bound harmonics in
the shoaling region and their release in the deeper region, resulting in the decompo-
sition of the wave field. They found that the phenomenon of harmonic decoupling,
which takes place as the waves propagate in the deepening water, resulting from the
de-shoaling, plays a major role in the wave decomposition and thus determining the
final spectral shape. They also concluded that the generation of high frequency en-
ergy and its transfer among nearly harmonic wave components, due to the non-linear
interactions taking place during the passage over the bar, was hardly influenced by
wave breaking which acts as a secondary effect by simply reducing the wave energy
spectrum through energy dissipation. The practical implication of this observation
was the apparent possibility of combining a weakly non-linear non-dissipative model,
such as a Boussinesq model, to simulate the harmonics generation and release in
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breaking waves with a semi-empirical model for the dissipation of the total energy
due to breaking. The feasibility of Boussinesq modelling for the non-breaking wave
condition was demonstrated by Beji and Battjes (1994).
Grue (1992) investigated the characteristics of the wave field propagating over a sub-
merged circular cylinder and a rectangular shelf, both experimentally and theoreti-
cally. He tried to describe the generation of super-harmonics in detail and he proposed
a non-linear method to separate the harmonic components of the transmitted wave
field. The graphs in Figure 2.3 show the results of the tests performed in the pres-
ence of the rectangular barrier with two levels of submergence and for two slightly
different periods of the fundamental harmonic. Grue (1992) observed that the gen-
eration of the higher-harmonic waves was more powerful for the rectangular obstacle
than for the cylinder and a pronounced third-harmonic wave was also present. From
both graphs it is evident that the generation of the higher-harmonic waves at the
lee side of the obstacle becomes more and more powerful with increasing incoming
wave amplitude, up to the occurrence of breaking at the obstacle. At the breaking
limit the amplitudes of the second and third-harmonic waves attain maximum values
compared to the incoming wave amplitude and, in some cases, they are found to be
of the same order of magnitude of the first-harmonic transmitted waves. For the
lower submergence (Rc=3.75cm, left panel) Grue (1992) found that the second and
third-harmonic wave amplitudes are about 60% of the incoming wave amplitude in
the vicinity of the spilling limit.

Figure 2.3: First (a
(1)
FT ), second (a

(2)
FT ) and third (a

(3)
FT ) harmonic free wave amplitudes

at the lee side of the rectangular shelf with respect to the incoming amplitude a. Rc=-

3.75cm and T=1.05s (left panel); Rc=-5.0cm and T=0.952s (right panel). (□) a
(1)
FT /a;

(△) a
(2)
FT /a; (⋄) a

(3)
FT /a. The arrows denote respectively spilling (S) and plunging (P)

limits. Adapted from Grue (1992).

The effect due to the permeability of a submerged structure on the process of
generation of super-harmonics was investigated in laboratory by Losada et al. (1997).
The authors carried out experiments in a wave flume to study the difference between
harmonic evolution of monochromatic waves as they propagate over a submerged im-
permeable or porous step under non-breaking conditions. All breakwaters had similar
dimensions with a length of 0.80m, height 0.385m and width 1.0m. A constant water
depth, h=0.475m, was kept in the flume for all tests so the water depth reduced over
the obstacle to 9.0cm. Three models were tested; the first was an impermeable ply-
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wood structure sealed to the bottom of the flume, while the two permeable structures
were formed using an external structure of steel wires filled with permeable materials
of varying sizes. The least permeable structure (fine permeable) had a porosity of
p=0.521 and was made by gravel with D50=2.09cm, the more permeable structure
(coarse permeable) was constructed of concrete blocks of 30x30x30mm and it had
a porosity of p=0.62. Seven resistance-wire wave gauges were used in the testing.
The gauges were positioned in two separate ways: firstly, four stationary gauges were
placed at specified positions along the flume and the reflection and transmission coef-
ficient were calculated from the data gathered by these gauges (R/T runs). The other
three gauges were positioned on a moving cart and they were used to record the water
surface profiles at varying positions along the flume (MC runs). This second set of
data allowed to examine the growth of harmonics above each structure. Figure 2.4
shows the reflection (Kr) and transmission (Kt) coefficients for the three structures
as a function of the relative water depth kh (k is the wave number).

Figure 2.4: Reflection (Kr) and transmission (Kt) coefficients measured by Losada
et al. (1997). Adapted from Losada et al. (1997).

The reflection from the structures was determined by applying both the Mansard
and Funke (1980) and the Goda and Suzuki (1976) algorithms to the records of the
three upwave gauges. From the figure it is evident that the reflection is maximum
for the impermeable step and it decreases slightly with increasing porosity. Maxi-
mum transmission is also achieved for the impermeable case while, for the porous
structures, transmission increases with increasing porosity. For a given material and
geometry, transmission is little affected by the relative depth. The moving cart runs
were carried out to examine the generation of harmonics when a wave train propagates
over structures with different porosity. For each run the cart was moved giving a total
of eighteen measuring points, with a spacing of 8cm above the step and a spacing of
24cm downwave of it. The generation and growth of harmonics over the structure
and their progression leewards were obtained by analysing all the gauge records for all
the moving cart positions, both in the time and in the frequency domains. Figure 2.5
presents time series plots and amplitude spectra for some gauge locations for the case
with wave height H=4.29cm and wave period T=1.8s for the impermeable structure.
The positions of Figure 2.5 are relative to the offshore edge of the structure that is
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considered to be located at x=0m. Figure 2.6 shows the same results for the coarse
permeable structure.

Figure 2.5: Evolution of waveform and corresponding amplitudes at different positions
along the flume for the impermeable structure. Adapted from Losada et al. (1997).

Figure 2.6: Evolution of waveform and corresponding amplitudes at different positions
along the flume for the coarse permeable structure. Adapted from Losada et al. (1997).

The incident wave upstream of the step propagates at a single frequency. As pro-
gression onto the step is observed, a strongly non-linear waveform develops, with a
transference of energy to the higher harmonics. In the case of the impermeable struc-
ture, where there are no dissipative effects due to friction with the porous material,
the varying harmonic modes are observed to have larger amplitudes than the case
with the permeable structures, where dissipation occurs. This includes a considerable
growth of the first harmonic over the first portion of the structure, which is in turn
transferred to the higher frequency components as the wave continues over the step.
For the permeable cases (Figure 2.6), the evolution of the wave profile is similar but
there is a continuous loss of energy carried at the first harmonic, unlike what happens
for the impermeable structure. These trends can be better observed from Figures 2.7
and 2.8, where the spatial evolution of the amplitudes of the first four harmonics are
plotted for the impermeable and the coarse permeable structures, respectively.
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Figure 2.7: Spatial evolution of amplitude of the first four harmonics for the imper-
meable structure. Adapted from Losada et al. (1997).

Figure 2.8: Spatial evolution of amplitude of the first four harmonics for the coarse
permeable structure. Adapted from Losada et al. (1997).

The permeability of the structure reduces the amplitude of all the harmonic modes
considerably. However, this effect is greater on the energy transmitted at the first and
the second harmonic amplitudes than at the higher harmonics. An examination of the
harmonics leeward of the structure indicates that the permeable structures, not only
greatly dissipate the first harmonic, but also reduce the variation in the amplitude of
the secondary harmonics. An interesting aspect of the work of Losada et al. (1997) is
the definition of the effective water depth, hef , as a useful parameter to quantify the
influence of structure permeability on the potential harmonic generation. In fact, it is
well known that the relative wave height, H/h, and the relative water depth, kh, are
two important dimensionless parameter that affect the potential harmonic generation
when waves propagate over a submerged structure. For a wave propagating over a
porous step, the variation of the wavelength is affected by the depth variation as
well as by the permeable characteristics of the structure and both aspects have to
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be considered. So Losada et al. (1997) proposed a method to evaluate hef which
substitutes h when calculating the relative water depth and the relative wave height
in order to take into account the effects of structure porosity. In Figure 2.9 the
effective water depth is plotted versus the friction coefficient λ, for h=10m, T=10s,
structure height a=4m and varying porosities p. For an extremely porous structure
(λ=0 and p=1), hef is 10m. Conversely, for high values of λ and porosity close to
0, the step is almost impermeable and the wave ’feels’ an effective water depth of
hef=6m.

Figure 2.9: Effective depth hef versus friction coefficient λ for different porosities,
h=10m, T=10s, a=4m . Adapted from Losada et al. (1997).

Therefore, for a given period and step height, increasing porosity and reducing
friction, increases khef . The Authors concluded that the porous medium tends to
reduce the chance of harmonic generation due to the reduction in the relative wave
height H/hef and to the increase in khef .

2.1.2 Phenomenological description of harmonic generation

Harmonic generation in shallow water is described in this section from a phenomeno-
logical point of view. As surface gravity waves propagate toward the shore in shoaling
waters, they are strongly modified with respect to their deep-water state. In shal-
low water, linear and non-linear dynamical processes act simultaneously to change
the characteristics of the wave field. Refraction, shoaling, non-linear interactions and
breaking are the typical phenomena which cause spatial variations in the wave ampli-
tudes and directions. Although linear theory predicts the observed increasing wave
amplitude and narrowing directional distributions of sea waves in a qualitative sense,
non-linear effects become important in shallow water and they can not be neglected.
Non-linear evolution alter the directional spectra (frequencies and directions) of the
wave field as well as the wave profiles. The waves evolve from a nearly sinusoidal shape
with oscillatory velocities in deep water to a shape characterized by sharp crests, flat
troughs and steep shoreward faces. In addition, phase speeds substantially differ from
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those predicted by the linear dispersion relationship. As waves travel from deep to
shallow water, the mechanism of the non-linear wave interactions is strongly influ-
enced by the dispersion characteristics of the wave field. Three regions of different
dispersion characteristics can be distinguished:

� In deep water (relative depth kh ≫ O(1)), the wave field undergoes strong fre-
quency dispersion. Strong frequency dispersion is the dependency of the phase
speed c on the frequency f (for deep water waves c = g/ω where g is the gravi-
tational acceleration and ω = 2πf is the radian frequency). In this region, the
dispersion characteristics permit resonant interactions among quartets of waves
to occur, resulting in slow cross-spectral energy transfers. Although energy ex-
changes due to these nonlinearities are very small on wavelength scales, the wave
spectrum is substantially modified over hundreds of wavelengths (Hasselmann
(1962)).

� In very shallow water (kh ≪ 1, within the surf zone for example), waves are
almost nondispersive (c =

√
gh, that is, the phase speed is independent of

the frequency). Near-resonant interactions among triads of waves are possible,
resulting in rapid spectral evolution.

� In intermediate depths (kh = O(1)), between the deep-water region with
strongly dispersive waves and the shallow-water region with nondispersive
waves, waves are weakly dispersive (c = (g/ω) tanh kh) and undergo substan-
tial changes caused by the off-resonant energetic triad interactions. Triad
interactions drive rapid spectral evolution over several wavelengths.

2.1.3 Non-linear triad wave interactions

In the shoaling region, the short evolution distance and moderate dispersion sug-
gest that second-order nonlinearities involiving triad of waves are important. Triad
interactions occur among waves with frequencies and wavenumbers such that:

f1 ± f2 = f3 (2.1)

and
k1 ± k2 = k3 (2.2)

where f and k are the scalar frequency and vector wavenumber, respectively. The
wave components (f1,k1) and (f2,k2) each satisfy the linear dispersion relation:

ω2 = gk tanh(kh) (2.3)

in which k is the wavenumber magnitude. The physical meaning of (2.1) and (2.2) is
that the sum (or difference) interaction between wave components 1 and 2 forces mo-
tions with the scalar-sum (or difference) frequency and the vector-sum (or difference)
wavenumber. If component 3 satisfies the linear dispersion relation (2.3) then the in-
teraction is resonant (Armstrong et al., 1962) implying a continued one-way transfer
of energy to component 3. Note that for gravity surface waves this is only possible in
very shallow water where the waves are nondispersive. If component 3 does not satisfy
the linear dispersion relation (2.3) then the interaction is non-resonant (in interme-
diate depths were waves are weakly dispersive) and the transfer is back-and-forth
because of the mismatch in the phase speed. The intensity of the triad interactions
is mainly controlled by the phase mismatch. The difference between the so-called
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bound wavenumber given by |k1 ± k2| and the free wavenumber obtained from the
linear dispersion relation |k(f3)| represents the wavenumber mismatch:

∆k = |k1 ± k2| − |k(f3)| (2.4)

The normalized wavenumber mismatch

δk = ∆k/|k(f3)| (2.5)

is a measure of the departure from exact resonance (Freilich and Guza, 1984). Its mag-
nitude determines the intensity of energy exchanges between the interacting waves.
Zero mismatch (non dispersive shallow-water waves) represents the limiting case in
the interaction process, in which the interacting waves remain intact and in phase
(resonant interaction) during evolution. Thus, the magnitude of energy transfer is
maximum and a continued one-way transfer takes place to the harmonics over rel-
atively short evolution distance. When the mismatch is small (δk ≪ 1, in weakly
dispersive shoaling waves), phase relations between the interacting waves vary only
slightly over a wavelength. Consequently the magnitudes and the sign of energy
transfers between the interacting waves allowing significant net energy transfers over
several wavelengths. Large values of the mismatch (strongly dispersive deep-water
waves), imply that phase relations between interacting waves vary rapidly over a
wavelength, not allowing for significant energy transfer. It is common practice to
distinguish between the sum and the difference interactions. In shallow water, the
sum interactions between the primary waves at the energetic part of the spectrum
(with peak frequency fp) lead to the generation of harmonics around a frequency 2f
(first harmonic of the primary). Eventually, the sum interactions between the pri-
mary waves near fp and the first harmonics at 2fp give rise to harmonics near 3fp.
The difference interactions between primary waves within the energetic part of the
spectrum lead to the generation of bound long waves.
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2.2 Bispectral Analysis of shallow water waves

2.2.1 The bispectrum

The bispectrum was introduced by Hasselmann et al. (1963) to examine wave non-
linearity in intermediate water depths. Since its introduction, bispectral analysis has
been used by many investigators to study nonlinear phenomena in a wide variety of
fields. Elgar and Guza (1985a) used the bispectral analysis to examine the skewness
and asymmetry of shoaling nonbreaking surface gravity waves. The sea surface ele-
vation can be represented using spatially varying Fourier components, in which the
time variation can be factored out (assuming time periodicity) as follows:

η(x, t) =

∞∑︂
p=−∞

Cp(x)exp[−i(ωpt)] (2.6)

where ω is the radian frequency (= 2πf), p is the rank of the harmonic, Cp is the
complex Fourier amplitude varying with position x. For a Gaussian sea, the sea
surface can be represented as a superposition of statistically independent waves in
which the phases are random. Consequently the sea surface can be fully described
by the continuous energy spectrum, which is defined as the Fourier transform of the
second-order correlation function R(τ) of the time series,

E(ω) =
1

2π

∫︂ +∞

−∞
R(τ)exp(−iωτ)dτ (2.7)

where R(τ) is given by
R(τ) =< η(t)η(t+ τ) > (2.8)

in which τ is a time lag and < . > denotes the expected-value, or average, operator.
For discretely sampled data, the discrete energy spectrum Ep can be represented in
terms of Fourier amplitudes,

Ep =< CpC
∗
p > (2.9)

Here C∗
p is the complex conjugate amplitude of Cp. The discrete energy spectrum

Ep is related to the continuous one by Ep = E(ω)∆ω for ω ∼= ωp, in which ∆ω =
2π∆f is the angular frequency-band. The energy spectrum (2.9) is independent of
the phases. If the phases of Fourier components are not random and statistically
correlated, the sea surface is not Gaussian (Hasselmann et al., 1963). Departure from
a Gaussian form cannot be detected by the energy spectrum. Higher-order spectra
such as the bispectrum can be used to investigate nonlinearity in shallow-water waves.
It is a complex quantity, formally defined as the Fourier transform of the third-order
correlation function of the time series:

B(ω1, ω2) = (
1

2π
)2

∫︂ +∞

−∞

∫︂
R(τ1, τ2)exp[−i(ω1τ1 + ω2τ2)]dτ1dτ2 (2.10)

in which
R(τ1, τ2) =< η(t)η(t+ τ1)η(t+ τ2) > (2.11)

The digital (discrete) bispectrum, for discretely sampled data, is

Bl,m =< ClCmC∗
l+m > (2.12)
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in which l and m are the frequency indices. The digital bispectrum for discretely
sampled data can be estimated from (2.12) by ensemble averaging. It relates to a
triad of waves with frequency indices l, m and l +m. The bispectrum Bl,m vanishes
if:

1. There is no energy present at frequencies l or m or l + m (i.e., zero Fourier
amplitude of any component participating in the triad interactions);

2. There is no phase relation (coherence) between the waves forming the triad (i.e.,
statistically independent free waves).

On the other hand, if the wave at n = l + m is generated through the interaction
between l and m, then a phase coherence will exist and the expected value of the bis-
pectrum will be nonzero. The bispectrum can be efficiently computed using symmetry
properties, in which it can be uniquely described by its values in a bi-frequency oc-
tant. For a digital time series with Nyquist frequency fN , the bispectrum is uniquely
defined within a triangle in (f1, f2)-space (bi-frequency plan) with vertices at (l = 0,
m = 0), (l = fN , m = 0), and (l = fN/2, m = fN/2). The relation between the
continuous bispectrum B(ω1, ω2) and the discrete Bl,m is

B(ω1, ω2) = (
1

∆ω
)2Bl,m (2.13)

in which ∆ω is the frequency-band, ω1 = l∆ω and ω2 = m∆ω.
The bispectrum can be used to identify coupled modes, however it does not give a

qualitative measure of the intensity of non-linear interactions cince its value depends
on the amplitudes of the three waves involved in the interaction. So, it is conve-
nient to cast the bispectrum into its normalized magnitude and phase, the so-called
bicoherence and biphase, given respectively by (Kim and Powers, 1979):

b2l,m =
|Bl,m|2

< |ClCm|2 >< |Cl+m|2 >
(2.14)

βl,m = arctan(
Im{Bl,m}
Re{Bl,m}

) (2.15)

In a random wave field with statistically independent components, the phases are
randomly distributed between −π and π, and thus the biphase-values tende to be
scattered between −π and π. The bicoherence is independent of the wave amplitude,
unlike the bispectrum. For the bicoherence normalization given by (2.14), the bico-
herence value is bounded by zero and 1 (0 ≤ b2 ≤ 1). Zero-value of the bicoherence
indicates statistically uncorrelated waves. On the other hand, the maximum value of
the bicoherence is unity, implying fully coupled waves. For a three-wave system, Kim
and Powers (1979) showed that b2(l,m) represents the fraction of the total energy at
the sum-frequency (n = l +m) due to the non-linear interaction.

2.2.2 Skewness and asymmetry

The so-called skewness and asymmetry of the sea surface are two important coeffi-
cients for the evaluation of the wave nonlinearity. They are a measure of the profile
distortions caused by the presence of bound harmonics due to non-linear interactions.
In particular, the skewness is the lack of symmetry with respect to the horizontal
axis. Skewed profiles of gravity waves are those of the Stokes-type waves character-
ized by sharp crests and flat troughs, in which the harmonics are phase-locked and in
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phase with the primary. On the other hand, the asymmetry is the lack of symmetry
with respect to the vertical. Asymmetric profiles usually have steep forward fronts
and mild rear faces (the so called saw-toothed shape), in which the harmonics are
phase-locked and leading the primary.
The skewness of a random variable (x) is conventionally defined as its normalized
third central moment:

Sk =
< (x− x)3 >

σ3
x

(2.16)

where x and σx are the mean and the standard deviation of x. The skewness of the
free surface elevation can be written as:

Sk =
< (η − η)3 >

σ3
η

(2.17)

where < . > is the time-averaging operator, η and ση are the mean and the standard
deviation of the free surface elevation. The mean square, or the variance of the surface
elevation σ2

η, can be determined from the integral of the energy spectrum. In a discrete
form:

σ2
η =

∞∑︂
p=−∞

Ep (2.18)

Hasselmann et al. (1963) showed that the integral over the real part of the bispectrum
was equal to the mean cube, or third-order moment of the surface elevation

< (η − η)3 >=

∞∑︂
l=−∞

∞∑︂
m=−∞

Re{Bl,m} (2.19)

Using symmetry properties, the bispectrum can be uniquely defined by its values
in a bi-frequency octant. For a digital time series with Nyquist frequency fN , the
bispectrum is uniquely defined within a triangle in (f1, f2)-space with vertices at
(f1=0, f2=0), (f1=fN/2,f2=fN/2) and (f1=fN ,f2=0). The result that the mean
cube of the time series is related to the real part of the bispectrum (Eq. 2.19) can be
rewritten as (Elgar and Guza, 1985a):

< (η − η)3 >= 6

N/2∑︂
l=lmin

Re{Bl,l}+ 12

N/2∑︂
m=lmin

N−m∑︂
l=m+1

Re{Bl,m} (2.20)

where l > m and lmin corresponds to the index of the first discrete frequency in
the sea-swell range. The factors 6 and 12 arise from the fact that the previously
introduced bispectrum triangle covers 1/6 of the bispectrum diagonals and 1/12 of
the remaining bispectral area. The skewness or the non-dimensional mean cube of
the surface elevation can be obtained by normalizing (2.20) by the variance to the
power 3/2:

Sk =
6
∑︁N/2

l=lmin
Re{Bl,l}+ 12

∑︁N/2
m=lmin

∑︁N−m
l=m+1 Re{Bl,m}

(
∑︁N

l=lmin
2El)3/2

(2.21)

The factor 2 in the denominator arises from the fact that the double-sided variance
spectrum is only summed over the positive frequency range.
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The asymmetry can be defined as the skewness of the Hilbert transform of the time
series, according to Elgar and Guza (1985a):

As =
< H(η − η)3 >

σ3
η

(2.22)

where H is the imaginary part of the Hilbert transform. Similarly to the skewness,
the asymmetry of the surface elevation can be obtained from the bispectrum as the
integral over the imaginary part after normalization with the variance to the power
3/2:

As =

∑︁∞
l=−∞

∑︁∞
m=−∞ Im{Bl,m}

(
∑︁N

l=lmin
2El)3/2

(2.23)

The skewness and asymmetry represent overall measures of nonlinearity and indicate
the deviation of the wave profile statistics from the Gaussian distribution. These pa-
rameters are used in the analysis of the experimental data presented in the following
sections.
The transformation of wave skewness and asymmetry when waves propagate over a
smooth and a rubble mound low-crested breakwater (LCB) has been described by
Peng et al. (2009) based on measurements collected in the DELOS project. With the
presence of low-crested structures, Peng et al. (2009) observed that wave skewness
retains a positive sign on both sides of LCBs but asymmetry changes from negative
on the incident side to positive on the transmission side. To better understand the
transformation of wave asymmetries, Peng et al. (2009) applied bispectral analysis to
study the contributions to the wave skewness and asymmetry from the interactions
of different wave frequencies, as done Elgar and Guza (1985a). Bispectral analy-
sis showed that positive skewness and negative asymmetry arises from self–self and
sum interactions but positive asymmetry is due to difference interactions between
frequencies.
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2.3 Wave-induced run-up

The swash zone is a transition zone that separates the emerged and the submerged
beach. This zone is of particular interest because it includes the processes that result
in coastal inundation (Stockdon et al. (2006)). The still water level that would exist
in the absence of wind and wind-generated waves is the astronomical tide level. The
storm action that makes the sea level rise above the mean tide level is known as storm
surge and it is made of two main components: the wind setup, i.e., the water piling
up as a result of wind that blow in the onshore direction over the sea surface; and
the barometric setup, i.e., the water piling up induced by low atmospheric pressure
events. Wave setup is the super-elevation of the mean water surface (MWS) in the
surf zone due to the cross-shore radiation stress gradient produced by wave breaking
(Longuet-Higgins and Stewart, 1964). On natural beaches the setup level varies on
time scales of the order of 100s in response to wave groups and the resulting time-
varying breakpoint (Symonds et al., 1982). These contributions add to the oscillating
motion of waves along the beach face, the so called swash, which has the time scale of
individual wind waves and it is caused by the fact that waves still have energy when
reaching the shoreline.
The wave run-up is defined as the set of discrete water level elevation maxima, mea-
sured on the foreshore, with respect to the still water level SWL (the water level
that would occur in the absence of wind and waves). So the run-up can be divided
into two dynamically different processes: the maximum setup, η̄, the time-averaged
water-level elevation at the shoreline, and the swash, S, the time-varying, vertical
fluctuation about the mean (Stockdon et al., 2006), as shown in Figure 2.10.

Figure 2.10: Water level elevation at the shoreline, subdivided into setup and swash.
The water level elevation is in vertical direction, relative to NGVD. Adapted from
Stockdon et al. (2006).

In an idealised scenario with normally incident waves breaking on a smooth, imper-
meable and plane slope, the main parameters that influence the wave run-up are the
incident wave parameters (wave height and wave length) and the slope angle. These
parameters are often combined to form dimensionless parameters that are included
in theoretical and empirical design formulae attempting to predict wave run-up. This
section reviews previous formulae designed to predict run-up from breaking and non-
breaking waves on smooth-impermeable plane slopes, from both regular and irregular
wave trains.
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2.3.1 Regular wave run-up

Several parametric formulae have been proposed attempting to predict the wave run-
up on smooth-impermeable slopes from regular waves. One of the first attempts to
derive a theoretical run-up formula was shown by Miche (1944) and was aimed to
predict wave run-up from non-breaking waves. Miche’s equation was based on the
linear Lagrangian equation of motion for shallow water and was given as:

Ru

H
=

√︁
π/2α (2.24)

where Ru is the maximum run-up height above SWL, H is the wave height and α is the
slope angle. Hunt (1959) proposed practical formulae based on previous laboratory
experiments for smooth and rough plane and composite slopes. He proposed two
different formulae for breaking and non-breaking waves. For non-breaking (surging)
waves on plane, impermeable slopes he suggested that:

Ru

H
= 3 (2.25)

For breaking waves, he suggested that the non-dimensional run-up Ru/H was pro-
portional to the deep-water Iribarren number ξo:

Ru

H
= ξo (2.26)

The deep-water Iribarren number is defined as:

ξo =
tanα√︁
H/Lo

(2.27)

where Lo = gT 2/2π is the deep-water wavelength. Often the parameter ξo is cal-
culated using a finite-depth local wave height in the vicinity of the slope toe rather
than a true deep-water Ho. For example, in laboratory experiments, it is common
to specify H as the wave height measured over the flat-bottom portion of the wave
facility before significant wave transformation occurs due to shoaling. Archetti and
Brocchini (2002) showed a strong correlation between depth-integrated mass flux and
wave run-up. Based on their observations, Hughes (2004) presented a new approach
for predicting the run-up from non-breaking waves. He proposed a run-up formula
which was not based on ξo. Instead, his formula was given in terms of the wave mo-
mentum flux parameter (MF /ρgh

2). This parameter represents the maximum depth-
integrated wave momentum flux before reaching a slope. Hughes (2004) derived the
following equation:

Ru

h
= 3.84 tanα(

MF

ρgh2
)

1
2 (2.28)

2.3.2 Irregular wave run-up

Two main methods have been used to derive run-up formulae for irregular waves. The
first method is based on the theory of equivalence, which means considering irregular
wave run-up as the result of many, independent, regular waves. In this method, a
typical run-up level for irregular waves, for example the significant run-up, Rus, is
determined using a run-up formula for regular waves, and other run-up levels such as
the Ru2% are then estimated using a Rayleigh distribution of run-up levels. The Ru2%
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parameter is defined as the vertical run-up elevation exceeded by 2% of the incoming
waves at the toe of the structure. Ru2% is said to be a representative parameter of
the wave run-up distribution of irregular wave trains and has been commonly used in
existing formulae proposed to predict wave run-up.
However, formulae following this method might not be entirely realistic due to the
character of natural sea states. The random nature of the incoming waves causes each
wave to have a different run-up level. Unlike the case of regular waves that result in a
single value of maximum wave run-up, irregular waves produce a run-up distribution.
For this reason, a second method has been used to derive run-up formulae for irregular
waves. This method is based on the measurements and description of the probability
distribution of wave run-up under irregular or random wave conditions. This approach
consists of fitting standard probability distributions to measured random wave run-up
results.
One of the first formulae attempting to estimate irregular wave run-up was proposed
by Wassing (1957), which was valid for milder slopes (tanα ≤ 1/3), and was given
by:

Ru2% = 8H1/3 tanα (2.29)

where H1/3 is the significant wave height (average of the highest 1/3 waves) at the
toe of the structure slope. Battjes (1974) showed the applicability of the Hunt for-
mula (Equation 2.26) for irregular waves breaking as plungers and included reduction
factors to account for various rough slopes such as rock and concrete armour. After
this, most formulae proposed to predict wave run-up from irregular waves have also
been based on the Iribarren number ξo.
Ahrens (1981) analysed previous studies which had reported measurements of ir-
regular wave run-up on smooth-impermeable slopes with slope angles ranging from
tanα = 1/4 to tanα = 1/1. For breaking waves on a slope of tanα = 1/4 he suggested
that the elevation exceeded by 2% of the run-ups could be estimated by a slightly
modified Hunt formula:

Ru2%

Hm0
= 1.6ξop (2.30)

where

ξop =
tanα√︁
Hm0/Lop

(2.31)

where Hm0 is the energy-based zeroth-moment wave height and Lop is the deep-water
wavelength, which is calculated with the peak spectral wave period Tp. This formula
was valid for ξop ≤ 2.5. For steeper slopes and non-breaking waves, Ahrens (1981)
proposed to use the following formula:

Rx

Hm0
= C1 + C2

Hm0

gT 2
p

+ C3(
Hm0

gT 2
p

)2 (2.32)

where C1, C2, C3 are empirical coefficients and Rx is a place-holder for run-up excee-
dence levels (2%, significant and mean).
Hughes (2004) proposed empirical equations to estimate irregular waves based on
the momentum flux parameter. He proposed the following empirical equations: For
non-breaking waves with Hm0/Lp < 0.0225 and 1/4 ≤ tanα ≤ 1/1:

Ru2%

h
= 1.75(1− e−(1.3 cotα))(

MF

ρgh2
)2 (2.33)
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For breaking waves with Hm0/Lp > 0.0225 and 1/5 ≤ tanα ≤ 2/3:

Ru2%

h
= 4.4(tanα)0.7(

MF

ρgh2
)2 (2.34)

For breaking waves with any value of Hm0/Lp and 1/30 ≤ tanα ≤ 1/5:

Ru2%

h
= 4.4(tanα)0.7(

MF

ρgh2
)2 (2.35)

Experiments on natural beaches have confirmed the usefulness of the surf similarity
parameter for the scaling of run-up under different wave conditions and for a wide
range of natural beach types (Nielsen and Hanslow, 1991). Nielsen and Hanslow
(1991) showed that there was a proportionality between the run-up and the beach face
slope tanαf for steeper beaches (tanαf ≥ 1/10). For flatter beaches (tanαf ≤ 1/10)
the slope becomes largely unimportant. Thus, for dissipative beaches the run-up
scales directly with (HoLo)

0.5.
The wave run-up on beaches has also been studied using field measurements with
video techniques and several formulae have been proposed. The most recent formulas
are those suggested by Stockdon et al. (2006) and Vousdoukas et al. (2011). Stockdon
et al. (2006) obtained the following parametrization for the 2% exceedence value of
run-up peaks on all natural beaches:

Ru2% = 1.1

(︃
0.35 tanαf (HoLo)

1/2 +
[HoLo(0.563 tan

2 αf + 0.004)]1/2

2

)︃
(2.36)

tanαf is defined as the average slope over a region ±2ση around η̄, where ση is the
standard deviation of the continuous water level record, η(t). For Iribarren numbers
less than 0.3 Stockdon et al. (2006) found that the setup and the total swash were
best parametrized using only offshore wave height and wavelength. Therefore, under
extremely dissipative conditions (ξo < 0.3), estimates of Ru2% were improved using
the dissipative parametrization:

Ru2% = 0.043(HoLo)
1/2 (2.37)

Along the Italian coast, video monitoring systems have been applied by Archetti
and Zanuttigh (2010) for estimating run-up and flooding on the emerged beach. In
addition to provide run-up measurements, monitoring systems allows to evaluate the
beach evolution and the performance of coastal defences during storm events.
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Chapter 3

Experimental investigation
and Analysis

In this chapter laboratory experiments, which are the basis of this study, are described
in details. The experiments were carried out in the wave-flume of the Hydraulics and
Maritime Construction Laboratory of the Università Politecnica delle Marche (An-
cona, Italy). The general description of the flume and of the laboratory facilities, as
well as the tested wave conditions are reported in the following sections. Two different
experimental campaigns were performed to fully understand how the presence of a
submerged obstacle influences the hydro-dynamics induced by the wave action:

� the first experimental campaign consisted in a rigid bed model with a submerged
trapezoidal bar built over the horizontal bottom of the wave-flume. At the end of
the flume, at the opposite side to the wave generator, an absorbing mildly sloping
beach (with a 1:20 slope) made of coarse gravel was used to reduce the wave
reflection and to guarantee undisturbed flow conditions in the measuring area.
Measurements of the free surface elevations were recorded at fifteen different
locations along the flume using eight parallel wire resistance wave gauges in two
shifts. Both breaking and non-breaking wave conditions were tested and wave
data were analysed in order to elucidate the phenomenon of frequency energy
generation observed in the power spectra of waves passing over the bar.

� in the second experimental campaign the beach was covered with metal plates
in order to assure a smooth bottom (impermeable beach slope). The beach was
then equipped with a run-up gauge and the same wave conditions of the first
campaign were tested in order to have also measurements of the maximum wave
run-up in the presence of the submerged obstacle.

3.1 Experimental setup

The experiments were carried out in the wave-flume of the Hydraulics and Maritime
Construction Laboratory of the Università Politecnica delle Marche (Ancona, Italy).
The wave-flume (Figure 3.1) has an overall length of 50m, width 1.0m and height
1.3m. The wave motion was forced by a piston-type wave-maker that operates up
to a maximum run of 0.5m (semi-stroke) and a maximum velocity of 0.8m/s. The
control signal is provided via a dedicated personal computer, which is connected to
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a DA-AD converter that supplies the voltage input for the amplifier which in turns
sends the amplified signal to the driver. The time series signals used as input for
the wave-maker were generated by a software named WaveMaker developed by HR
Wallingford. The software can generate random-phase time series corresponding to
JONSWAP type spectra for different peak enhancement factors as well as monochro-
matic waves.

Figure 3.1: Global sketch of the wave-flume for the physical model realized in the
Hydraulics and Maritime Construction Laboratory of the Università Politecnica delle
Marche (Ancona, Italy).

The bottom profile selected for the experiments is shown in Figure 3.2. A smooth
submerged trapezoidal bar was constructed, consisting of upslope and downslope
ramps of 1:10 and a 3m horizontal crest. The height of the bar crest was 0.41m
above the bottom of the flume. Aluminium plates was used to realize the obstacle
and they were reinforced with longitudinal bars in order to minimize lifting and dis-
placement forces induced by the wave motion. For the first experimental campaign,
waves were measured at fifteen stations in the flume using eight HR Wallingford par-
allel wire resistance wave gauges in two shifts, as sketched in Figure 3.2. In Figure
3.2 stations 1 to 8 correspond to group 1 (8 gauges, first shift) while stations 9 to
15 to group 2. The first measuring point (station 1) was common to the two shifts,
enabling the repeatability of the two experiments to be checked. This gauge served
also as the reference gauge for the incident waves. Wave gauges 2 to 5 were set up
in the horizontal part of the flume so as to permit measurements of wave reflection
from the bar by applying the nonlinear method proposed by Lin and Huang (2004).
The other gauges were arranged symmetrically with respect to the bar at about 1m
intervals to evaluate the transformations of waves passing the obstacle. The gauge 15
at the last station was used as reference for the transmitted waves.

Figure 3.2: Experimental set-up and location of wave gauges for the first experimental
campaign.

The wave probe operates by measuring the current that flows between two stain-
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less steel wires that are immersed in the water. This current is converted to an output
voltage that is directly proportional to the immersed depth. The relationship between
the voltage and the immersed depth is linear and it is evaluated by means of the in-
strument calibration. The wave gauges were calibrated before each set of experimental
tests, on a daily basis, and every time there was some modification in the calibration
parameters for the different electric conductibility of water due to the environmental
conditions. The acquisition of the gauge signals was made by means of a home made
software named WaveLogger. In each run, data were recorded simultaneously from
8 separated channels at a sampling frequency of 35Hz. For the first experimental
campaign, at the end of the flume a beach with a 1:20 slope made of coarse gravel
served as a wave absorber. The wave reflection of the beach was estimated from pre-
vious experiments and it was lower than about 4-5%. For the second experimental
campaign, the gravel beach was covered with metal plates in order to assure a smooth
bottom with a 1:20 slope. The wave gauges 1 and 15 were left in the same locations
of the first experimental campaign while the other gauges were displaced over the
downslope of the submerged bar at 0.40m intervals. One wave gauge was replaced by
a 3m long wave gauge that was placed along the smooth beach in order to measure
the maximum wave run-up. The calibration of this wave gauge was made by varying
the water depth in the wave flume at three different water levels.

3.2 Experimental program

During this experimental investigation different wave conditions were tested. The
transformation of waves passing over the submerged structure was evaluated for both
regular and random waves. In order to evaluate also the effect of the sea level rise,
two offshore water depths h=0.51m and h=0.56m were considered and the submer-
gence of the bar was therefore 0.10 and 0.15cm respectively. For each water depth,
thirty-six monochromatic waves were generated by combining four different wave pe-
riods (T=1.0s, T=1.5s, T=2.0s and T=2.5s) and nine different wave heights from a
minimum value of 2cm to a maximum value of 15cm (Tables 3.1 and 3.2). In Tables
3.1 and 3.2 the wave length L has been evaluated from T by applying the linear wave
theory at the water depth h. In these cases the runs lasted 300s.
It is worthwhile to note that higher and longer waves show greater deviation from
the linear wave theory and they are generated with a second-order component. In
fact, most of the tested waves of these experiments are correctly described by the
second-order Stokes theory, according to the graph of Le Méhauté.
A number of papers have described how to avoid the unintentional release of spurious
free waves in connection with the reproduction of regular and irregular waves in phys-
ical wave flumes (Goda, 1967; Hansen et al., 1980 among others) and the following
three types of problems have been identified:

� Boundary conditions based on first order wave theory leads to the release of the
so-called parasitic free waves ;

� The moving boundary of the paddle generator will generate the so-called free
displacement waves ;

� The mismatch between the vertical distribution of the horizontal particle ve-
locity in progressive waves and the uniform profile imposed at the paddle will
generate the so-called local disturbance waves.
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However, as suggested by Goda (1967), the appearance of secondary free waves is
limited to the relatively shallow water waves with large wave heights. If a test is
carried out in a region where the relative water depth h/L is greater than 0.15,
no secondary wave are observed. Figure 3.3 shows the limit for the appearance of
secondary wave crests in a wave channel with the experimental data (white and black
dots) of Goda (1967). The theoretical curve in the figure was given by Miche (1944)
expressed in the form:

(H/L)critical =
1

3π
sinh2(2πh/L) tanh(2πh/L) (3.1)

For the experiments of this work, the generation of secondary waves is avoided for
waves with T=1.0s and T=1.5s because h/L > 0.15 (Tables 3.1 and 3.2). For the
longer waves, the appearance of secondary waves has been verified with the graph in
Figure 3.3, where the red dots are relative to the tested cases with T=2.0s and T=2.5s
and both the water depths h=0.51m and h=0.56m. From Figure 3.3, the formation
of secondary wave crests is mainly expected for three waves having T=2.5s, which
exceed or are close to the limit identified by Miche (1944). In particular the highest
two waves H=15.0cm and H=12.0cm for the lower water depth h=0.51m and the
wave with H=15.0cm for h=0.56m. For these waves, the travelling of secondary
wave crests was actually observed by comparing the time series of the first five wave
gauges located along the horizontal part of the wave flume. These three cases were
not considered for the study of the wave transformation over the bar.

Figure 3.3: Appearance limit of secondary wave crests in a test channel, adapted from
Goda (1967).
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Table 3.1: Characteristics of monochromatic waves for h=0.51m.

Name h (m) H (cm) T (s) f (Hz) L (m) H/h h/L
H2T10h51 0.51 2.0 1.0 1.0 1.52 0.04 0.34
H3T10h51 0.51 3.0 1.0 1.0 1.52 0.06 0.34
H4T10h51 0.51 4.0 1.0 1.0 1.52 0.08 0.34
H5T10h51 0.51 5.0 1.0 1.0 1.52 0.10 0.34
H6T10h51 0.51 6.0 1.0 1.0 1.52 0.12 0.34
H8T10h51 0.51 8.0 1.0 1.0 1.52 0.16 0.34
H10T10h51 0.51 10.0 1.0 1.0 1.52 0.20 0.34
H12T10h51 0.51 12.0 1.0 1.0 1.52 0.24 0.34
H15T10h51 0.51 15.0 1.0 1.0 1.52 0.29 0.34
H2T15h51 0.51 2.0 1.5 0.67 2.84 0.04 0.18
H3T15h51 0.51 3.0 1.5 0.67 2.84 0.06 0.18
H4T15h51 0.51 4.0 1.5 0.67 2.84 0.08 0.18
H5T15h51 0.51 5.0 1.5 0.67 2.84 0.10 0.18
H6T15h51 0.51 6.0 1.5 0.67 2.84 0.12 0.18
H8T15h51 0.51 8.0 1.5 0.67 2.84 0.16 0.18
H10T15h51 0.51 10.0 1.5 0.67 2.84 0.20 0.18
H12T15h51 0.51 12.0 1.5 0.67 2.84 0.24 0.18
H15T15h51 0.51 15.0 1.5 0.67 2.84 0.29 0.18
H2T20h51 0.51 2.0 2.0 0.5 4.09 0.04 0.13
H3T20h51 0.51 3.0 2.0 0.5 4.09 0.06 0.13
H4T20h51 0.51 4.0 2.0 0.5 4.09 0.08 0.13
H5T20h51 0.51 5.0 2.0 0.5 4.09 0.10 0.13
H6T20h51 0.51 6.0 2.0 0.5 4.09 0.12 0.13
H8T20h51 0.51 8.0 2.0 0.5 4.09 0.16 0.13
H10T20h51 0.51 10.0 2.0 0.5 4.09 0.20 0.13
H12T20h51 0.51 12.0 2.0 0.5 4.09 0.24 0.13
H15T20h51 0.51 15.0 2.0 0.5 4.09 0.29 0.13
H2T25h51 0.51 2.0 2.5 0.4 5.28 0.04 0.10
H3T25h51 0.51 3.0 2.5 0.4 5.28 0.06 0.10
H4T25h51 0.51 4.0 2.5 0.4 5.28 0.08 0.10
H5T25h51 0.51 5.0 2.5 0.4 5.28 0.10 0.10
H6T25h51 0.51 6.0 2.5 0.4 5.28 0.12 0.10
H8T25h51 0.51 8.0 2.5 0.4 5.28 0.16 0.10
H10T25h51 0.51 10.0 2.5 0.4 5.28 0.20 0.10
H12T25h51 0.51 12.0 2.5 0.4 5.28 0.24 0.10
H15T25h51 0.51 15.0 2.5 0.4 5.28 0.29 0.10
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Table 3.2: Characteristics of monochromatic waves for h=0.56m.

Name h (m) H (cm) T (s) f (Hz) L (m) H/h h/L
H2T10h56 0.56 2.0 1.0 1.0 1.53 0.04 0.37
H3T10h56 0.56 3.0 1.0 1.0 1.53 0.05 0.37
H4T10h56 0.56 4.0 1.0 1.0 1.53 0.07 0.37
H5T10h56 0.56 5.0 1.0 1.0 1.53 0.09 0.37
H6T10h56 0.56 6.0 1.0 1.0 1.53 0.11 0.37
H8T10h56 0.56 8.0 1.0 1.0 1.53 0.14 0.37
H10T10h56 0.56 10.0 1.0 1.0 1.53 0.18 0.37
H12T10h56 0.56 12.0 1.0 1.0 1.53 0.21 0.37
H15T10h56 0.56 15.0 1.0 1.0 1.53 0.27 0.37
H2T15h56 0.56 2.0 1.5 0.67 2.93 0.04 0.19
H3T15h56 0.56 3.0 1.5 0.67 2.93 0.05 0.19
H4T15h56 0.56 3.0 1.5 0.67 2.93 0.07 0.19
H5T15h56 0.56 5.0 1.5 0.67 2.93 0.09 0.19
H6T15h56 0.56 6.0 1.5 0.67 2.93 0.11 0.19
H8T15h56 0.56 8.0 1.5 0.67 2.93 0.14 0.19
H10T15h56 0.56 10.0 1.5 0.67 2.93 0.18 0.19
H12T15h56 0.56 12.0 1.5 0.67 2.93 0.21 0.19
H15T15h56 0.56 15.0 1.5 0.67 2.93 0.27 0.19
H2T20h56 0.56 2.0 2.0 0.5 4.25 0.04 0.13
H3T20h56 0.56 3.0 2.0 0.5 4.25 0.05 0.13
H4T20h56 0.56 4.0 2.0 0.5 4.25 0.07 0.13
H5T20h56 0.56 5.0 2.0 0.5 4.25 0.09 0.13
H6T20h56 0.56 6.0 2.0 0.5 4.25 0.11 0.13
H8T20h56 0.56 8.0 2.0 0.5 4.25 0.14 0.13
H10T20h56 0.56 10.0 2.0 0.5 4.25 0.18 0.13
H12T20h56 0.56 12.0 2.0 0.5 4.25 0.21 0.13
H15T20h56 0.56 15.0 2.0 0.5 4.25 0.27 0.13
H2T25h56 0.56 2.0 2.5 0.4 5.51 0.04 0.10
H3T25h56 0.56 3.0 2.5 0.4 5.51 0.05 0.10
H4T25h56 0.56 4.0 2.5 0.4 5.51 0.07 0.10
H5T25h56 0.56 5.0 2.5 0.4 5.51 0.09 0.10
H6T25h56 0.56 6.0 2.5 0.4 5.51 0.11 0.10
H8T25h56 0.56 8.0 2.5 0.4 5.51 0.14 0.10
H10T25h56 0.56 10.0 2.5 0.4 5.51 0.18 0.10
H12T25h56 0.56 12.0 2.5 0.4 5.51 0.21 0.10
H15T25h56 0.56 15.0 2.5 0.4 5.51 0.27 0.10

Irregular waves were generated as JONSWAP spectra with a peak enhancement
factor equal to 3.3. The random seed number was left fixed for all the tests. For each
peak period (Tp=1.0s, Tp=1.5s, Tp=2.0s and Tp=2.5s) three significant wave heights
were selected in order to have different wave conditions: non-breaking waves, spilling
breakers and plunging breakers. For larger periods, the initial wave heights at the
paddle were smaller because it was attempted to keep the nonlinearity parameter,
ϵ=a/h (where a is the wave amplitude), nearly the same in the shallowest part of
the flume for the four cases. Such a constant parameter is particularly useful for the
comparison. The characteristics of the random waves are shown in Table 3.3. For
random waves, the duration of the experimental tests depends on the peak period to
ensure the generation of at least 500 waves during each test. So, the runs lasted 600s
for Tp=1.0s, 900s for Tp=1.5s, 1200s for Tp=2.0s and 1500s for Tp=2.5s.
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Table 3.3: Characteristics of random waves.

Name h (m) Hs (cm) Tp (s) fp (Hz)
SpH5T10h51 0.51 5.0 1.0 1.0
SpH8T10h51 0.51 8.0 1.0 1.0
SpH12T10h51 0.51 12.0 1.0 1.0
SpH4T15h51 0.51 4.0 1.5 0.67
SpH6T15h51 0.51 6.0 1.5 0.67
SpH10T15h51 0.51 10.0 1.5 0.67
SpH3T20h51 0.51 3.0 2.0 0.5
SpH5T20h51 0.51 5.0 2.0 0.5
SpH8T20h51 0.51 8.0 2.0 0.5
SpH3T25h51 0.51 3.0 2.5 0.4
SpH5T25h51 0.51 5.0 2.5 0.4
SpH8T25h51 0.51 8.0 2.5 0.4
SpH5T10h56 0.56 5.0 1.0 1.0
SpH8T10h56 0.56 8.0 1.0 1.0
SpH12T10h56 0.56 12.0 1.0 1.0
SpH4T15h56 0.56 4.0 1.5 0.67
SpH6T15h56 0.56 6.0 1.5 0.67
SpH10T15h56 0.56 10.0 1.5 0.67
SpH3T20h56 0.56 3.0 2.0 0.5
SpH5T20h56 0.56 5.0 2.0 0.5
SpH8T20h56 0.56 8.0 2.0 0.5
SpH3T25h56 0.56 3.0 2.5 0.4
SpH5T25h56 0.56 5.0 2.5 0.4
SpH8T25h56 0.56 8.0 2.5 0.4

3.3 Signal processing and analysis

The measurements recorded by the wave gauges have been processed and analysed
both in the time and in the frequency domains to obtain spectral and bispectral
estimates.
During the first experimental campaign, each test was repeated twice to measure the
free surface in 15 different locations. In the second experimental campaign, the same
wave conditions were generated again to measure the run-up over the impermeable
slope. The repeatability of the runs was checked by comparing the three recordings
of the wave gauge at station 1, that was left fixed.
The signals recorded by the second and the third configurations of wave gauges have
been synchronized with those recorded during the same tests carried out in the first
configuration. The synchronization has been done using the recordings of the first
wave gauge.
The time series of the wave gauges have been processed by removing the first part
of each signal, having a duration equal to the sum of the time it takes for the first
wave to reach the probe and of the ramping-up time, which was equal to 10s for all
the tests. The time average over the entire recording period was removed from each
signal to have zero average signals.
The spectral analysis of the collected data was carried out with the use of a standard
FFT package.
The signal was sampled at discrete intervals in the time domain (dt=1/35Hz=0.0286s),
so it can be described as a finite sequence of N equally-spaced samples xn =
{x0, x1, .., xN−1}. The harmonic components of the signal have been evaluated by
applying the Discrete Fourier Transform (DFT ), which is the equivalent of the con-
tinuos Fourier Transform for signals known only at N instants. The Discrete Fourier
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Transform transforms a sequence of N complex numbers xn into another sequence
of complex numbers, Xk = {X0, X1, .., XN−1}, which is defined by:

Xk =

N−1∑︂
n=0

xn · e− i2π
N kn (3.2)

The interval at which Xk are sampled is the reciprocal of the duration of the input
sequence.
The power spectra of the signals have been computed by applying the Welch’s method.
The Welch’s method is an improvement of the standard periodogram spectrum esti-
mating method, in that it reduces noise in the estimated power spectra in exchange for
reducing the frequency resolution. The method is based on the Bartlett’s approach,
which consists in a procedure to estimate the power spectrum by performing multiple
DFTs. It consists in the following steps:

1. The original N point data segment is split up into K overlapping segments,
each of length M .

2. After the data are split up into overlapping segments, the individual K data
segments are windowed in the time domain with a Hamming window to reduce
the effect of spectral leakage.

3. For each segment, the periodogram is calculated by computing the discrete
Fourier transform, and then computing the squared magnitude of the result.

4. The individual periodograms are then averaged for the K data segments, which
reduces the variance of the individual power measurements.

For monochromatic waves, data were recorded for 300s at a sampling frequency of
35Hz, for a total of 10500 data points per channel. Each record was divided into eight
50% overlapped parts, each part containing 2048 data points.
For random waves, data were recorded at a sampling frequency of 35Hz for different
durations depending on the peak period. This involved that signals had different
numbers of data. In order to maintain the same degree of freedom in the spectral
estimates, the number of segments into which to divide the original signals was left
fixed and equal to 24 for all the tests. The percentage of window overlapping was set
equal to 50%. The 24 segments allow to obtain smooth PSD estimates because the
random effects of noise is averaged out. However, by fixing the number of segments,
the window size depends on the entire length of the signal, so the spectral estimates
are obtained with different frequency resolutions.
The Welch’s method has been also applied to obtain the bispectral estimates. The
bispectra of monochromatic waves are computed by ensemble averaging over 8 50%
overlapped segments. For random waves, the ensemble averaging was computed over
24 50% overlapped segments.
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Chapter 4

Experimental Results

In the present chapter the main results of the two experimental campaigns are re-
ported. The results are arranged in the order that better explain the obtained achieve-
ments in relation with the objectives of the thesis. In Section 4.1 the results about
the transformation of waves passing over the submerged bar are presented. The anal-
ysis of the free surface data from the wave gauges has been carried out both in the
time domain and in the frequency domain. At first, the monochromatic waves have
been studied because they are easier to analyse and they provide quite valuable in-
formation about the generation of super-harmonics. Monochromatic waves are useful
to simulate narrow-banded spectra, which are typical of sea swell conditions. Their
study is also the starting point to better understand the more complex mechanisms
related to the propagation of random waves. Then, random waves have been consid-
ered, where the interactions between frequency components within the spectra cause
also the generation of sub-harmonics. Since the presence of the structure induces
non-linear interactions between waves, their phases are not statistically independent.
The deviation from a Gaussian distribution requires the application of higher order
spectra, such as the bispectrum. Therefore, in this Section bispectral analyses have
been also applied to the free surface records to better understand the exchange of
energy between frequency components.
Finally, in Section 4.3 the data recorded by the run-up wave gauge have been analysed
in order to understand how the submerged bar influences the run-up over the 1:20
impermeable slope.

4.1 Wave propagation over the submerged bar

4.1.1 Monochromatic waves

During the first experimental campaign 36 monochromatic waves were generated, by
combining 9 different wave heights and 4 different wave periods.
In order to distinguish the individual effects of conservative (non-dissipative) non-
linear wave interactions from those of wave breaking, it was essential to perform tests
for both breaking and non-breaking waves. For each wave period, the wide range
of wave heights allows to investigate three different conditions: non-breaking waves,
spilling breakers and plunging breakers. The criteria for the type of breaking are
to some extent subjective and based on visual observations. Generally, the type of
breaking is determined with the Iribarren parameter ξo = tanα√

Ho/Lo

, where tanα is the
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bottom slope and Ho/Lo the offshore wave steepness. Here, the distinction based on
ξo was found not valid because the slope of the submerged bar is not uniform but it
is composed by a first slope equal to 1:10 followed by a horizontal crest. Conversely
to what it would be expected from the Iribarren parameter, the spilling breaking
was associated to lower heights because it happened over the horizontal crest of the
bar. Higher waves broke along the 1:10 slope of the bar and plunging breakers were
observed.
The relative water depth (h/L) of the incident waves is another important parameter,
especially when the combined effects of nonlinearity and dispersion are considered.
To explore the different behaviours of shorter and longer waves, monochromatic
waves with 4 different periods were tested. For the water depth of 0.51m, the waves
with periods equal to 1.0s, 1.5s and 2.0s passed over the bar crest in condition of
intermediate water depth (0.05 ≤ h/L ≤ 0.5). Conditions of shallow water depth
(h/L < 0.05) were verified for the wave with period T=2.5s. For the increased water
level, h=0.56m, the longest waves (with T=2.5s) are close to the shallow water limit
(h/L ≈ 0.05), while the others verified the conditions of intermediate water depth.

In order to understand the influence of wave height and wave period on the har-
monic generation over the bar, six representative waves are selected from the entire
dataset: two extreme periods (T=1s and T=2.5s) and three wave heights for each
period. For the higher period, the chosen wave heights are lower because it was
attempted to keep the nonlinearity parameter ϵ nearly the same above the bar for
both cases. These six wave conditions are studied with both the tested water depths,
h=0.51m and h=0.56m, to take into account also the effect of the bar submergence.
The characteristics of the selected waves are reported in Table 4.1 for the water depth
h=0.51m and in Table 4.2 for h=0.56m. The wave parameters are evaluated at the
paddle and over the submerged bar (denoted in the Tables by ′). The values of H and
T are those imposed at the wave generator, while the wave lengths L and L′ derive
from the linear theory. In the shallower region characterised by the water depth h′,
the wave height has been evaluated as H ′ = HKs, where Ks is the shoaling coefficient
of the linear wave theory. The nonlinearity parameter has been estimated over the
bar crest as ϵ′ = a′/h′ (where a′ = H ′/2).

Table 4.1: Characteristics of the selected waves for h=0.51m.

Name h (m) H (cm) T (s) f (Hz) L (m) h′ (m) L′ (m) h′/L′ ϵ′

H5T10h51 0.51 5.0 1.0 1.0 1.52 0.10 0.92 0.11 0.25
H8T10h51 0.51 8.0 1.0 1.0 1.52 0.10 0.92 0.11 0.39
H12T10h51 0.51 12.0 1.0 1.0 1.52 0.10 0.92 0.11 0.39
H3T25h51 0.51 3.0 2.5 0.4 5.28 0.10 2.45 0.04 0.21
H5T25h51 0.51 5.0 2.5 0.4 5.28 0.10 2.45 0.04 0.36
H8T25h51 0.51 8.0 2.5 0.4 5.28 0.10 2.45 0.04 0.39

Table 4.2: Characteristics of the selected waves for h=0.56m.

Name h (m) H (cm) T (s) f (Hz) L (m) h′ (m) L′ (m) h′/L′ ϵ′

H5T10h56 0.56 5.0 1.0 1.0 1.53 0.15 1.09 0.14 0.16
H8T10h56 0.56 8.0 1.0 1.0 1.53 0.15 1.09 0.14 0.25
H12T10h56 0.56 12.0 1.0 1.0 1.53 0.15 1.09 0.14 0.37
H3T25h56 0.56 3.0 2.5 0.4 5.51 0.15 2.98 0.05 0.13
H5T25h56 0.56 5.0 2.5 0.4 5.51 0.15 2.98 0.05 0.22
H8T25h56 0.56 8.0 2.5 0.4 5.51 0.15 2.98 0.05 0.35
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First of all, it is interesting to show the quite different features of the selected
monochromatic waves in the time domain. For the water depth equal to 0.51m,
the shorter waves with T=1s (Figure 4.1) propagate over the bar in intermediate
water depth. Their crests become steeper and their troughs flatten out as they
travel upslope from station 1 to station 8, hence, they appear as higher order Stokes
waves. The harmonic components remain lock in phase because the shape of the wave
does not change significantly during the propagation over the obstacle. Waves with
H=8cm and H=12cm break over the crest, as a consequence, they become smaller at
station 10. Contrary to the shorter waves, the longer waves characterised by T=2.5s
(Figure 4.2) travel over the bar in shallow water conditions for h=0.51m and they
show strongly non-linear waveforms. During the propagation along the upslope, they
lose their vertical symmetry and assume a saw-toothed shape at station 8. This
behaviour becomes more evident for higher waves (H=5cm and H=8cm). Over the
horizontal extension, where the waves are in a rather non-dispersive medium, the
triplet resonance conditions are nearly satisfied (Phillips, 1960) and a very rapid flow
of energy moves from the primary component to the higher harmonics. This rapid
energy flow coupled with the effects of amplitude dispersion generates the so-called
dispersive tail waves travelling at nearly the same celerity as the primary waves
(Beji and Battjes, 1993). The dispersive tail waves appear in the wave profiles as
secondary peaks behind the higher peak of the first component (station 10). These
secondary peaks are bound to the primary waves but their celerity also depends on
their amplitude, due to the effects of the amplitude dispersion. This explains their
gradually increasing phase lag behind the primary component, that still has a larger
amplitude. As waves move into the deeper water (station 13), they decompose into
several smaller amplitude waves of nearly harmonic frequencies. It is evident in
Figures 4.1 and 4.2 that the wave breaking does not alter the characteristic waveform
drastically.
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Figure 4.1: Surface elevation records of monochromatic waves with h=0.51m and
T=1.0s; H=5cm (upper panels), H=8cm (middle panels), H=12cm (bottom panels).
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Figure 4.2: Surface elevation records of monochromatic waves with h=0.51m and
T=2.5s; H=3cm (upper panels), H=5cm (middle panels), H=8cm (bottom panels).
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The generation and growth of harmonics over the structure and their progression
leewards can be obtained by analysing all the gauge records in the frequency domain.
Amplitude spectra, spectral density of the gauge records and the associated spectral
parameters are calculated. The amplitude spectra are given by cn =

√︁
a2n + b2n, where

an and bn are the Fourier coefficients corresponding to each frequency, n. Figures 4.3
and 4.4 present time series plots and amplitude spectra for the gauge locations 1, 8,
10 and 13 for the selected non-breaking waves with ϵ ≈ 0.20 and h=0.51m. Figure 4.3
are relative to T=1s and Figure 4.4 to T=2.5s. In both cases, the growth of higher
harmonics is observed as waves propagate over the structure but this effect is more
evident for the longer wave (T=2.5s), where the amplitudes of the higher frequency
components become similar to that of the first harmonic. At station 10, for the wave
with T=1s some energy is transmitted from the first harmonic to the second one and
to a much lesser extent to the third one. At the same station, the energy of the wave
with T=2.5s is distributed between a greater number of frequencies up to the fifth
harmonic and all frequency components have similar amplitudes. At station 13, the
third harmonic becomes dominant.
The amplitudes of the five recorded harmonics may also be traced over the structure
and leewards by an examination of the spatial amplitude modulation from gauges 1
to 15. Figures 4.5 and 4.6 show the amplitudes of the individual harmonics against
distance for the waves H=5cm and T=1s and H=3cm and T=2.5s, respectively. The
evolution of the harmonic amplitude shows clearly how the wave period affects the
generation of higher order components. During the propagation of the shorter wave
(Figure 4.5), the first component remains prevalent and its amplitude is slightly re-
duced behind the structure. The dominant secondary component that carries energy
is the second harmonic. It increases on the upslope and it reaches a maximum over
the horizontal crest, where some energy is transmitted to the third and to the fourth
harmonics. The wave with T=2.5s (Figure 4.6) shows a considerable growth of the
first harmonic at station 8, due to the stronger effect of shoaling for longer waves.
On the horizontal crest the energy carried at the first harmonic decreases because an
increasing amount of energy is transmitted to the higher harmonics. In the deepen-
ing water (downslope) the amplitudes of the first, second and fourth harmonics are
similar while the amplitude of the third component is almost double.
The behaviour of the breaking waves is similar to the previous ones for the same pe-
riods, with some differences due to the dissipation induced by wave breaking. Figures
4.7 and 4.9 are relative to the wave period T=1s while Figures 4.8 and 4.10 show the
results for T=2.5s. On the upslope the non-linear interactions increase the ampli-
tudes of the higher harmonics, especially that of the second harmonic. Then, since
wave breaking acts by reducing proportionally the energy carried by each harmonic,
it has a lesser effect on the amplitudes of the higher harmonics than on those of the
first and second harmonics. This implies that the energy of the first and the second
harmonics is more strongly reduced by wave breaking, hence less energy can be in
turn transferred to higher frequency components as the wave continues over the bar.
For the case with T=1s the result is that only the first and the second harmonics are
still present leeward of the structure while the third component is negligible. Instead,
for the longer waves (T=2.5s), wave breaking results in a much closer banding of
energy between the varying harmonics.
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Figure 4.3: Evolution of the waveform and the corresponding amplitudes at stations
1, 8, 10 and 13; h=0.51m, H=5cm, T=1.0s.
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Figure 4.4: Evolution of the waveform and the corresponding amplitudes at stations
1, 8, 10 and 13;, h=0.51m, H=3cm, T=2.5s.
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Figure 4.5: Spatial evolution of the amplitude of the first fifth harmonics; h=0.51m.
H=5cm, T=1.0s.
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Figure 4.6: Spatial evolution of the amplitude of the first fifth harmonics; h=0.51m.
H=3cm, T=2.5s.
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Figure 4.7: Spatial evolution of the amplitude of the first fifth harmonics; h=0.51m.
H=8cm, T=1.0s.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

H
a

rm
o

n
ic

 A
m

p
lit

u
d

e
 (

c
m

)

1st harmonic

2nd harmonic

3rd harmonic

4th harmonic

5th harmonic

0 2 4 6 8 10 12 14 16 18 20

x (m)

-0.6

-0.4

-0.2

0

z
 (

m
)

WG1 WG2 WG3 WG4 WG5
WG6

WG7
WG8 WG9 WG10 WG11

WG12
WG13

WG14 WG15

Figure 4.8: Spatial evolution of the amplitude of the first fifth harmonics; h=0.51m.
H=5cm, T=2.5s.
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Figure 4.9: Spatial evolution of the amplitude of the first fifth harmonics; h=0.51m.
H=12cm, T=1.0s.
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Figure 4.10: Spatial evolution of the amplitude of the first fifth harmonics; h=0.51m.
H=8cm, T=2.5s.
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It is noted that higher waves show greater deviation from the linear wave theory
and they are generated at the wave paddle with higher second order and third order
components. This effect is even more evident for the longer wave in Figure 4.10. The
amplitudes of the second and third order components, which are generated at the
wave paddle and develop along the first portion of the wave flume, are comparable
with those of the second and third order Stokes components.
The evolution of the harmonic amplitudes is also studied for the experimental tests
conducted with the increased water level. The results are reported in Figures 4.11 and
4.12 for the cases of shorter waves with H=5cm and H=12cm. For the non-breaking
wave (H=5cm), the increased water level reduces the potential of harmonic genera-
tion with respect to the case with h=0.51m, so that higher components have lower
harmonic amplitudes above the bar crest and leewards. The wave with H=12cm
propagates over the structure in breaking conditions even with the submergence of
15cm. As the submergence of the bar increases, the energy dissipation due to wave
breaking is less intense. By making a comparison with the case of lower submer-
gence, more energy is transferred above the bar from the first harmonic to the higher
components, but the first component remains prevalent. Figures 4.13 and 4.14 show
the results for the longer waves with H=3cm and H=8cm. In both cases, the wave
reflection from the structure produces an oscillation of the first component in front of
the bar, with a wave length which is approximately half of the incident wavelength.
The application of the Lin and Huang (2004) method for the evaluation of the inci-
dent and the reflected waves shows that the wave reflection increases by 9.50 times
for H=3cm and by 17 times for H=8cm, when the water depth passes from 0.51m
to 0.56m. For the non-breaking wave (Figure 4.13) less energy is transferred from
the first harmonic to the third, fourth and fifth components during the propagation
over the bar. The first and the second harmonics remain prevalent leewards. For the
breaking wave (Figure 4.14), the mechanism of the harmonic generation is mainly
governed by the dissipation due to wave breaking. The higher water depth reduces
the intensity of wave breaking and more energy is carried by the first harmonic over
the bar. The greater energy content of the first component favours the generation
of harmonics, so the amplitudes of the higher components increase with respect to
the previous configuration with h=0.51m. The mechanism of energy transfer between
harmonic components can be better explained by the application of the bispectral
analysis to the record of the free surface in Section 4.1.2.
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Figure 4.11: Spatial evolution of the amplitude of the first fifth harmonics; h=0.56m,
H=5cm, T=1.0s.
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Figure 4.12: Spatial evolution of the amplitude of the first fifth harmonics; h=0.56m,
H=12cm, T=1.0s.
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Figure 4.13: Spatial evolution of the amplitude of the first fifth harmonics; h=0.56m,
H=3cm, T=2.5s.
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Figure 4.14: Spatial evolution of the amplitude of the first fifth harmonics; h=0.56m,
H=8cm, T=2.5s.
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4.1.2 Bispectral evolution of monochromatic waves

The conventional viewpoint is that on the seaside, the harmonics, bound to the pri-
mary, are amplified because of the increasing nonlinearity in the shoaling region and
that they are released on the shoreside, at least partially, because of the decreas-
ing nonlinearity in the deepening region. However, even in the shoaling region free
components are generated as a result of the discontinuity in the bottom topography
(Massel, 1983; Goda et al., 1999), whereas conversely some degree of phase lock may
remain in the deepening region. If bound harmonic components are still present be-
hind the structure, then the wavefield beyond the bar is statistically inhomogeneous
and it cannot be fully described by the energy density spectrum without additional
information about the phases.
The experimental study of Ciardulli (2009) demonstrated that the interaction be-
tween monochromatic incident waves and a submerged structure results in spatially
periodic variations of the harmonic amplitudes in the protected area. This, in turn,
leads to a spatial variation of the transmission coefficient. In this work, the nonlinear
coupling between harmonic components is examined with the bispectral analysis as
the monochromatic waves evolve while passing over the submerged bar and in the
following deeper region.
Time series of surface elevation at various locations are analysed in the frequency
domain to determine the bispectrum, bicoherence, biphase, skewness and asymmetry.
The spatial variations of these nonlinearity indicators over and beyond the bar are of
special interest also for the design practice. In fact, the asymmetry coefficients are
directly related to the direction of fluid velocities and, as a consequence, with the
main direction of the cross-shore solid transport.

First of all, the measured surface elevations of the non-breaking wave with H=3cm
and T=2.5s are analysed to show the results of the evolution of the bispectrum during
the propagation of the wave over the obstacle. The amplitude spectra for this wave
(Figure 4.4) indicate significant transfers of energy from the first harmonic to higher
frequencies. The bispectra are computed according to equations 2.12 and 2.13, in
which the complex Fourier amplitudes Cp where determined from the time records
with a standard FFT-algorithm. The data were processed by dividing the record
into equal segments, each of 2048 data points resulting in a frequency resolution
for the raw data of 0.0185Hz. The bispectral estimates are obtained by ensemble
averaging over 8 segments, with an overlapping of 50%. Figures 4.15 and 4.16 show
the amplitude spectrum (a), the absolute values of the bispectrum (b), the value of
the bicoherence (c) and the imaginary part of the bispectrum (d) at four stations
along the wave flume. Only the positive quadrants (f1, f2 > 0) are shown. Note
that the bispectra are symmetric around the diagonal f1 = f2. The bicoherence is
computed from the records using equation 2.14. Noisy and spiky results have been
suppressed by limiting the calculations to those frequency pairs for which the abso-
lute value of the bispectral density exceeded 5% of the maximum value in the same
bispectrum. The bispectrum B(f1, f2) describes statistically the phase relationship
and energy exchange within the (f1, f2, f1 + f2) triad. The imaginary part of the
bispectrum is also computed because it can be used to determine the direction of
non-linear energy transfers between wave frequencies (Norheim, 1998; Herbers, 2000;
de Bakker et al., 2015). Different sign convention can be found in the literature
for the imaginary part of the bispectrum. In this thesis, the same representation of
Herbers (2000) and de Bakker et al. (2015) is used. If Im{B(f1, f2)} is positive, then
energy is transferred from the f1 and f2 components to the higher-frequency f1 + f2
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component. For negative Im{B(f1, f2)} the energy transfer reverses and the lower
frequency components f1 and f2 grow at the expense of the higher-frequency f1 + f2
component.
The amplitude spectrum of Figure 4.15a at station 5 shows that there is already
a second harmonic with frequency 0.8Hz. This harmonic is generated by the self-
interaction of the first harmonic f=0.4Hz, as shown by the corresponding value of the
bispectrum at B(0.4, 0.4). The spatial variation of the harmonic amplitudes of Figure
4.6 can be explained by the evolution of the bispectrum. At the end of the upslope
(station 8), the amplitude of the first harmonic increases due to the shoaling and
contemporary the self-interaction of the first harmonic continues to transfer energy to
the second component with frequency 0.8Hz (positive values of the imaginary part at
B(0.4, 0.4)). Here, the non-linear effects become significant due to the ratio of wave
height to water depth increasing and new interactions at B(0.8, 0.4) appear that shift
energy from 2f and f to 3f=1.2Hz. Here, the second harmonic is simultaneously
taking energy from the first component and releasing energy to the third harmonic.
The balance of energy is positive for the second harmonic because the absolute value
of the bispectrum |B|(0.4, 0.4)=15.44cm3/Hz is greater than the value of 7.84cm3/Hz
at B(0.8, 0.4) and in fact its amplitude increases in Figure 4.6 up to station 9. At
station 10 the self-interactions of the second harmonic release energy to the fourth
harmonic (positive values of the imaginary part of the bispectrum at B(0.8, 0.8)) and
its amplitude decreases because the values of the bispectrum at B(0.4, 0.4) are lower
than the sum of the values at B(0.8, 0.4) and B(0.8, 0.8). Over the horizontal crest
the wave propagates in shallow water so the triplet resonance conditions are nearly
satisfied and significant energy transfers take place to higher harmonics, 4f=1.6Hz
and 5f=2Hz. Starting from station 10 (Figure 4.16) difference interactions arise
between higher harmonics, as shown by the negative values of the imaginary part
at B(1.2, 0.8) and B(1.2, 1.2) and they transfer energy from the higher frequencies
2Hz and 2.4Hz back to 0.8Hz and 1.2Hz. In fact, higher harmonics propagate over
the bar in intermediate water depth and for those frequencies the transfer of energy
is back-and-forth because of the greater mismatch in the phase speed. At station
13 the wave decomposes into several waves and all frequency components return in
intermediate water conditions. The intensity of the non-linear interactions remains
strong on the leeside of the bar and sum and difference interactions alternate between
all frequency components as the wave propagates along the downslope from station
13 to station 15. The maximum bicoherence b2max increases from 0.83 at station 1 to
nearly 1 above the bar crest and it remains constant during the propagation behind
the bar (Figure 4.18). A value of bicoherence close to 1 implies almost complete
coupling between harmonic components.

45



30 35 40 45 50 55 60 65 70

t (s)

-0.05

0

0.05

 (
m

)

WG5

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

10

20

30

40

50

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

-10

-5

0

5

10

0.4 0.8 1.2 1.6 2

f (Hz)

0

0.5

1

1.5

2

H
a

rm
o
n

ic
 A

m
p
lit

u
d
e
 (

c
m

)

(b)

(d)

(a)

(c)

30 35 40 45 50 55 60 65 70

t (s)

-0.05

0

0.05

 (
m

)

WG8

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

10

20

30

40

50

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

-10

-5

0

5

10

0.4 0.8 1.2 1.6 2

f (Hz)

0

0.5

1

1.5

2

H
a
rm

o
n
ic

 A
m

p
lit

u
d
e
 (

c
m

)

(b)

(c)

(a)

(d)

Figure 4.15: Amplitude spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bi-
coherence (c) and Imaginary part of the bispectrum (x10−6) (d) at station 5 (upper
panels) and station 8 (bottom panels); h=0.51m, H=3cm, T=2.5s.
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Figure 4.16: Amplitude spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bi-
coherence (c) and Imaginary part of the bispectrum (x10−6) (d) at station 10 (upper
panels) and station 13 (bottom panels); h=0.51m, H=3cm, T=2.5s.
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The biphase has been computed from the bispectrum using equation 2.15 for se-
lected frequency pairs. These pairs represent the phase relationships of the interacting
wave components. The variations of the biphase values over the bar are plotted in
Figure 4.17 where (f, f) represents the self-interaction of the first harmonic, (f, 2f)
denotes the interaction between the first and the second harmonic, (f, 3f) and (2f, 2f)
are relative to the interactions between the first and the third harmonic and the self-
interactions of the second harmonic, respectively. Up to station 6, the biphase of only
the self-interaction (f, f) is shown; biphases of the other interactions are not plotted
because no energy exists at the higher harmonics. The near-zero values of the biphase
from station 1 to station 6 implies Stokes-type waves with sharp crest and flat troughs.
As the waves propagate over the upslope side of the bar, the biphases converge to
a value of −π/2 over the bar crest implying a wave pitched forward (saw-toothed
shape). Over the downslope of the bar the biphase-value of the (f, f) interaction
evolves to positive values. The biphases of the other harmonic interactions tend to
be randomly scattered beyond the bar, hence, higher harmonics are largely released
beyond the bar due to the decreasing nonlinearity.

The variation of the skewness and the asymmetry computed from the bispectra
over the upslope, the bar crest and the downslope is shown in Figure 4.18. As a check
on the bispectral calculation, the skewness and the asymmetry obtained directly from
the time series (Eq. 2.17 and 2.22) are also plotted. The agreement is quite good. The
variations of the non-linear parameters in Figure 4.18 are consistent with the evolution
of the wave profile shape. From station 2 to station 6, the skewness shows positive
values around 0.2, values that are representative of second order Stokes waves. Near-
zero values are computed for the asymmetry up to station 7, then a sudden decrease
is observed with a minimum over the bar crest, where the wave profile is characterised
by very steep forward fronts and the biphases of the interactions converge to −π/2.
The skewness increases over the horizontal part of the obstacle showing a maximum
at the end of the crest, a little forward with respect to the minimum value of the
asymmetry. On the downslope side of the bar, the skewness and asymmetry have rapid
fluctuations between values ±0.5. This means that the harmonics are not completely
independent and the exchange of energy among different wave components continues,
as demonstrated by the fact that the absolute bispectrum does not cancel out behind
the obstacle. On the other hand, the skewness and the asymmetry vary significantly
as a result of the varying phase lags between the freely propagating component waves.
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Figure 4.17: Biphase for selected frequency pairs; h=0.51m, H=3cm, T=2.5s.
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Figure 4.18: Spatial variation of indicators of nonlinearity in the physical wave flume;
h=0.51m, H=3cm, T=2.5s. Solid lines: skewness and asymmetry from time series;
dashed lines: skewness and asymmetry from bispectrum.

Now the results obtained for the previous monochromatic wave are compared to
the results of the wave with T=1s and H=5cm, in order to compare the bispectra of
waves with nearly the same height over the bar crest (similar nonlinear parameter ϵ′)
but different period. Here, the importance of the wave period over the generation and
development of super-harmonics is investigated with the use of the bispectral analysis
in order to give a more detailed description of the phenomena. As reported in Table
4.1 for h=0.51m, the wave with T=1s propagates over the bar in intermediate water
depth while for T=2.5s the wave travels in shallow water conditions. At the toe of
the structure (Figure 4.19) both waves present self-interactions of the first harmonic,
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as shown by the values of the relative bispectra at B(1, 1) and B(0.4, 0.4). At station
8 (Figure 4.20) significant interactions start at the frequency pair (f, 2f) and some
energy is transferred from the first and the second harmonics to the third harmonic.
The amplitude spectra of the two waves are still quite similar: the first harmonic
remains dominant and the remaining energy is distributed to the second and the
third harmonics. The situation totally changes in Figure 4.21 when waves travel over
the bar. The wave with T=1s shows additional non-linear interactions only at B(2, 2)
while for the longer wave the non-linear interactions involve a large number of higher
harmonics which now have amplitudes comparable with the amplitude of the first
harmonic. In fact, for T=2.5s the triplet resonance conditions are nearly satisfied and
more energy is transferred to super-harmonics. At station 13, the shorter wave shows
negative values of the imaginary part of the bispectrum and the energy is transferred
back to lower frequencies. The result is that the changes in the amplitude spectrum
are not as drastic with respect to the amplitude spectrum before the obstacle. For
the wave with T=2.5s the non-linear interactions are still intense and they continue
to involve numerous frequencies.
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Figure 4.19: Amplitude spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bico-
herence (c) and imaginary part of the bispectrum (x10−6) (d) at station 5 for H=5cm,
T=1s (upper panels) and H=3cm, T=2.5s (bottom panels); h=0.51m.
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Figure 4.20: Amplitude spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bico-
herence (c) and imaginary part of the bispectrum (x10−6) (d) at station 8 for H=5cm,
T=1s (upper panels) and H=3cm, T=2.5s (bottom panels); h=0.51m.
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Figure 4.21: Amplitude spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bi-
coherence (c) and imaginary part of the bispectrum (x10−6) (d) at station 10 for
H=5cm, T=1s (upper panels) and H=3cm, T=2.5s (bottom panels); h=0.51m.
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Figure 4.22: Amplitude spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bico-
herence (c) and imaginary part of the bispectrum (x10−6) (d) at station 13 forH=5cm
and T=1s (upper panels) and H=3cm and T=2.5s (bottom panels); h=0.51m.
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4.1.3 Random waves

The results of the spectral analysis applied to random waves are here presented. As
already indicated in Section 3.2, irregular waves were generated as JONSWAP spec-
tra with a peak enhancement factor equal to 3.3. 12 different random waves were
tested, with two water depths, h=0.51m and h=0.56m. For each peak period, three
significant wave heights were generated in order to have for h=0.51m non-breaking
waves, spilling waves and plunging waves. As for monochromatic waves, the break-
ing criterium is based on visual observations. Waves with higher peak periods have
smaller wave heights because the nonlinearity parameter ϵ is kept almost the same
over the bar for all peak periods.
The effect of the wave period on the non-linear evolution of waves over the bar is
evaluated by comparing the random waves with Tp=1s and Tp=2.5s. The influence of
wave height and wave breaking is investigated with the comparisons of the spectral
evolutions for the three different wave conditions for the same period. The character-
istics of the selected waves are reported in Table 4.3 for h=0.51m and in Table 4.4 for
h=0.56m. The values of Hs and Tp are those imposed at the wave generator, while
ϵ′ is the expected value of the nonlinearity parameter evaluated at the water depth
h′, over the bar crest, as ϵ′ = a′s/h

′ where a′ = H ′
s/2. The significant wave height H ′

s

over the bar has been estimated as H ′
s = HsKs, where Ks is the shoaling coefficient

for random waves computed as proposed by Goda (2010).

Table 4.3: Characteristics of the selected random waves for h=0.51m.

Name h (m) Hs (cm) Tp (s) fp (Hz) ϵ′

SpH5T10h51 0.51 5.0 1.0 1.0 0.25
SpH8T10h51 0.51 8.0 1.0 1.0 0.39
SpH12T10h51 0.51 12.0 1.0 1.0 0.39
SpH3T25h51 0.51 3.0 2.5 0.4 0.21
SpH5T25h51 0.51 5.0 2.5 0.4 0.36
SpH8T25h51 0.51 8.0 2.5 0.4 0.39

Table 4.4: Characteristics of the selected random waves for h=0.56m.

Name h (m) Hs (cm) Tp (s) fp (Hz) ϵ′

SpH5T10h56 0.56 5.0 1.0 1.0 0.16
SpH8T10h56 0.56 8.0 1.0 1.0 0.25
SpH12T10h56 0.56 12.0 1.0 1.0 0.37
SpH3T25h56 0.56 3.0 2.5 0.4 0.13
SpH5T25h56 0.56 5.0 2.5 0.4 0.22
SpH8T25h56 0.56 8.0 2.5 0.4 0.35

Figure 4.23 shows the power spectra for non-breaking (Hs=5cm), spilling (Hs=8cm)
and plunging waves (Hs=12cm) with Tp=1s at three selected stations for the test
configuration with h=0.51m. The measurements with the short waves (fp=1.0Hz)
reveal little spectral shape evolution over the obstacle. In fact, the spectral shape
remains almost unchanged during the propagation and only a relatively small amount
of high frequency energy is generated. The primary component of the wave train
at frequency fp remains prevalent during the propagation. At station 15 the energy
transferred to higher frequencies (f > 1.5fp) is about 15 − 17% of the total trans-
mitted wave energy. It is evident that the wave breaking acts by re-scaling the wave
spectrum and the dissipation increases as the incident wave height increases.
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The overall features of the spectral shape evolution do not differ substantially for
these three wave conditions. Further clarification is offered in Figure 4.24, where the
spatial variations of the normalized potential energy of the total, the primary and
the higher frequency components are plotted. The primary wave energy is computed
in the range of integration between 0.0Hz and 1.5Hz (fp + 0.5fp) while for the high-
frequency energy the range is between 1.5Hz and 2.5Hz. The energy is negligible for
frequencies higher than 2.5Hz. The total energy is obtained by adding the energy
of the primary and the higher frequencies. In each case the energies are normalized
with respect to the total energy measured at station 1. It can be seen that the
high-frequency potential energy, with respect to the primary frequency one, develops
independently of wave breaking. However, at station 15 the potential energy of higher
frequencies increases from 14.9% of the total energy for the non-breaking wave to
17.0% for the spilling wave. For the plunging wave the percentage decreases to 15.0%.
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Figure 4.23: Spectral evolution for non-breaking (left), spilling (middle) and plunging
(right) waves (JONSWAP incident spectrum, h=0.51m, fp=1.0Hz).
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Figure 4.24: Spatial variations of normalized potential energy for non-breaking (left),
spilling (middle) and plunging (right) waves (JONSWAP incident spectrum, h=0.51m,
fp=1.0Hz). (−) Total, (×) primary, (◦) higher frequencies. Distances are measured
from station 1.

The spectral evolution of Figure 4.23 is now compared to the spectral evolution
of the random waves with Tp=2.5s, for the same water depth of 0.51m (Figure 4.25).
Even in this case the power spectra of non-breaking (Hs=3cm), spilling (Hs=5cm)
and plunging waves (Hs=8cm) are shown at three stations along the wave flume.
With respect to the previous case the spectral shape is completely modified by the
non-linear interactions among frequency components over the structure. The result
is that the initially narrow-banded spectra evolve in broader spectra leewards of the
bar and about 80% of the energy is distributed among higher frequencies (f > 1.5fp).
At station 14, the non-breaking wave shows a multi-modal spectrum, where it is still
evident the peak of the primary component at 0.4Hz but other peaks with comparable
spectral density can be identified around frequencies multiple of the primary. For
the breaking waves the peak at the primary frequency is strongly reduced by wave
breaking and the energy is more uniformly distributed among higher frequencies,
with less pronounced peaks.
The potential energy normalized with respect to the total potential energy at sta-
tion 1 is plotted against distance in Figure 4.26. In computing the primary wave
energy the range of integration is taken between 0.0Hz and 0.6Hz (1.5fp), while for
high-frequency energy it is between 0.6Hz and 2.5Hz. The spatial evolution of the
high-frequency potential energy changes for the three wave conditions. For each case
it starts to increase at about 10m from station 1 at the end of the upslope. The
non-breaking wave is characterized by a potential energy at the higher frequencies
that increases along the entire length of the submerged bar remaining almost constant
at the last four stations (left panel of Figure 4.26). For the spilling and plunging
waves, the growing trend is interrupted by wave breaking that occurs at the offshore
edge of the horizontal crest located at 11m from station 1. The high-frequency energy
of the spilling wave (middle panel of Figure 4.26) shows an almost constant stroke
after breaking, it increases again at the onshore edge of the bar (at the distance of
14m from station 1) and then it remains constant. The more intense breaking of the
plunging wave (right panel of Figure 4.26) leads to a drop also in the potential energy
of higher frequencies followed by a slight increase on the downslope. At station 15,
the potential energy of higher frequencies increases from 80.8% of the total energy
for the non-breaking wave to 82.8% for the spilling wave. For the plunging wave the
percentage decreases to 77.3%. As in the case of Tp=1.0s, the percentage of energy
transferred to higher frequencies reaches a maximum for the spilling wave and then
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it decreases for the plunging wave. This effect could be due to the fact that, in
breaking conditions, as the wave height increases, an increasing amount of energy is
also shifted toward lower frequencies, as shown below.
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Figure 4.25: Spectral evolution for non-breaking (left), spilling (middle) and plunging
(right) waves (JONSWAP incident spectrum, h=0.51m, fp=0.4Hz).
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Figure 4.26: Spatial variations of normalized potential energy for non-breaking (left),
spilling (middle) and plunging (right) waves (JONSWAP incident spectrum, h=0.51m,
fp=0.4Hz). (−) Total, (×) primary, (◦) higher frequencies. Distances are measured
from station 1.
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In order to make direct comparisons of spectral evolutions for different wave con-
ditions, spectral estimates obtained at stations 7, 9, 11 and 14 for non-breaking and
plunging breakers are normalized and plotted together. The normalization is such
that the total area under the spectrum for every case is unitary. The results are
shown in Figures 4.27, 4.28, 4.29 and 4.30 for the peak period Tp=1.0s. The spa-
tial evolution of the spectral shape is similar for the non-breaking and the breaking
waves. The normalized spectral density of both waves remains concentrated around
the incident peak frequency fp=1.0Hz but, after the occurrence of wave breaking for
Hs=12cm, the spectral peak of the plunging wave is lower than that of the non-
breaking wave over the bar crest and on the downslope side of the bar (at stations
9, 11 and 14). Furthermore, for the breaking wave more energy is transferred at fre-
quencies lower that 0.5fp. This could be explained with the two main mechanisms of
generation of infragravity waves (IGW). It is widely accepted that the generation of
energy at IGW frequencies is caused by nonlinear interactions between wave triads
composed by two closely spaced short wave (SW) frequencies and one IGW frequency.
This is known as the bound wave mechanism (BWM) proposed by Longuet-Higgins
and Stewart (1962) since it generates a forced IGW that propagates with the group
velocity of the SW group. For breaking waves there is also another mechanism of
generation of infragravity waves, the breakpoint mechanism (BKM). It is attributed
to the time-varying displacement of the breakpoint location which induces a dynamic
setup propagating both offshore and onshore from the breakpoint (Symonds et al.,
1982). The IGW generated by the BKM propagate with their own celerity given by
the dispersion relationship and therefore they can be considered free IGW. So, for the
studied plunging wave both mechanisms act to generate infragravity waves and this
in turn implies more energy at lower frequencies. This difference in the propagation of
non-breaking and breaking waves is also observed for the other tested random waves
with Tp=1.5s, Tp=2.0s and Tp=2.5s. As expected, it becomes less pronounced in the
configuration with h=0.56m as the severity of wave breaking decreases.
Figures 4.31, 4.32, 4.33 and 4.34 show the comparisons between the spectra of the
longest waves (Tp=2.5s). The shape of the normalized spectra is very similar for the
non-breaking and the plunging waves during propagation over the upslope and at the
beginning of the horizontal crest (stations 7 and 9), even if the wave breaking reduces
the spectral peak of the primary component (station 9 in Figure 4.32) and it involves
a greater amount of energy transferred at low frequencies, as previously observed for
the shorter waves. At stations 11 and 14 the spectrum of the plunging wave differs
from that of the non-breaking wave, because it has lower peaks at higher frequencies
and the energy is distributed over a wider range of frequencies.
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Figure 4.27: Comparisons of normalized spectra for non-breaking and plunging waves
at station 7 (h=0.51m, fp=1.0Hz).
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Figure 4.28: Comparisons of normalized spectra for non-breaking and plunging waves
at station 9 (h=0.51m, fp=1.0Hz)
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Figure 4.29: Comparisons of normalized spectra for non-breaking and plunging waves
at station 11 (h=0.51m, fp=1.0Hz)
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Figure 4.30: Comparisons of normalized spectra for non-breaking and plunging waves
at station 14 (h=0.51m, fp=1.0Hz)
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Figure 4.31: Comparisons of normalized spectra for non-breaking and plunging waves
at station 7 (h=0.51m, fp=0.4Hz).
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Figure 4.32: Comparisons of normalized spectra for non-breaking and plunging waves
at station 9 (h=0.51m, fp=0.4Hz)
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Figure 4.33: Comparisons of normalized spectra for non-breaking and plunging waves
at station 11 (h=0.51m, fp=0.4Hz)
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Figure 4.34: Comparisons of normalized spectra for non-breaking and plunging waves
at station 14 (h=0.51m, fp=0.4Hz)
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4.1.4 Bispectral evolution of random waves

In this section the bispectral analysis is applied to random waves to determine the
significant interactions that lead to harmonic generation and the influence of wave
breaking on the intensity of the nonlinear couplings.
First of all, the evolution of the bispectra are shown for a specific case, the random
wave withHs=3.0cm, Tp=2.5s and h=0.51m. The bispectra are computed by dividing
the record into equal segments, each of 4096 data resulting in a frequency resolution
for the raw data of 0.0136Hz. The bispectral estimates are obtained by ensemble
averaging over 24 segments. Figures 4.35 and 4.36 show the energy spectrum (a),
the absolute values of the bispectrum (b), the values of the bicoherence (c) and the
imaginary part of the bispectrum (d) at four stations along the wave flume. Noisy
and spiky results from the bicoherence estimates have been suppressed by limiting
the calculations to those frequency pairs for which the absolute value of the bispectral
density exceeded 5% of the maximum value in the same bispectrum. The minimum
bicoherence contour level is 0.1 with additional contours every 0.1.
The bispectrum at the toe of the structure (station 5) is shown in the upper (b) panel
of Figure 4.35, in which a bispectral peak already exists at (0.4Hz, 0.4Hz). This peak
indicates the self-interaction of the primary component at 0.4Hz with itself leading
to the generation of the first super-harmonic at 0.8Hz. In fact, positive values of the
imaginary part of the bispectrum (d) at B(0.4, 0.4) indicate a transfer from 0.4Hz to
0.8Hz. After propagation over the upslope of the bar (station 8), the bispectrum in
the bottom (b) panel of Figure 4.35 shows amplification of the self-interaction peak
of the primary. A less pronounced bispectral peak exists at (0.4Hz, 0.05Hz) which in-
dicates phase-coupling between the primary and the low-frequency waves. This peak
is attributed to the interactions between neighbouring primary waves. The resultant
wave group forces a long wave at the difference frequency that is phase coupled to the
group (Longuet-Higgins and Stewart, 1962). After propagation of an additional 2m
over the horizontal crest (upper panels of Figure 4.36) other two bispectral peaks start
to develop at (0.8Hz, 0.4Hz) and (1.2Hz, 0.4Hz), indicating interactions between the
primary and its first and second super-harmonics resulting in energy transfer to the
second and the third super-harmonics, respectively. At station 13 the bispectral peak
at (0.4Hz, 0.4Hz) is reduced in intensity and the interaction involving infragravity
frequencies (0.4Hz, 0.05Hz) disappears almost entirely. Difference interactions start
to involve the second super-harmonic of the primary generating a new infragravity
wave with frequency 0.07Hz. The interaction at (0.8Hz, 0.4Hz) becomes a negative
interaction that transfers back energy from the sum frequency 1.2Hz to 0.8Hz and
0.4Hz. A similar behaviour was observed by Norheim (1998). They reported that
simulations of waves propagating over a bar into deeper water showed a reversal
in nonlinear energy transfers on the downslope section of the bar, with difference
triad interactions transferring high-frequency energy back toward lower frequencies.
Leewards of the structure the interactions slowly become weaker.
The values of the maximum bicoherence over the structure are shown in Figure 4.38.
They vary from 0.51 at station 1, through a maximum of 0.97 at station 9, to 0.78
at station 15. The biphase has been computed from the bispectrum according to
equation 2.15 for selected frequency pairs. These pairs represent the self-interactions
of the primary denoted as (fp, fp), the interaction between the primary and the first
and second super-harmonics denoted respectively as (fp, 2fp) and (fp, 3fp) and the
self-interactions of the first super-harmonic (2fp, 2fp). The variations of the biphases
over the bar are plotted in Figure 4.37 when the corresponding absolute value of the
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bispectrum exceeds 5% of the maximum value in the same bispectrum. At the first
six stations the biphase of only the (fp, fp) interaction is shown; biphases of the other
interactions are not plotted because little energy exists at the higher harmonics. The
values of the biphase from station 1 to station 6 are close to zero and they imply
Stokes-type waves with sharp crest and flat troughs. As the waves propagate over
the bar, the biphases approach a value of −π/2 at station 9 implying a wave with a
saw-toothed shape. Over the downslope of the bar the biphase-value of the (fp, fp)
interaction gradually evolves to positive values. The biphases of the other harmonic
interactions tend to be randomly scattered beyond the bar, so higher harmonics
are largely released beyond the bar due to the decreasing nonlinearity. The overall
nonlinearity parameters, skewness and asymmetry, have been calculated along the
wave flume using both the time series (Equations 2.17 and 2.22) and the bispectrum
(Equations 2.21 and 2.23). Their spatial variations in Figure 4.38 indicate that the
absolute values of skewness and asymmetry increase significantly over the horizontal
crest to a maximum. On the lee side of the bar, they decrease to near-zero values,
comparable to those on the exposed side of the bar. This in turn means reduction of
the nonlinear interactions on the down-wave side of the bar, unlike what happens for
monochromatic waves.
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Figure 4.35: Energy spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bico-
herence (c) and imaginary part of the bispectrum (×10−6) (d) at station 5 (upper
panels) and station 8 (bottom panels); h=0.51m, Hs=3cm, Tp=2.5s. Black dashed
lines indicate the cutoff between infragravity and short-wave frequencies fIG.
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Figure 4.36: Energy spectrum (a), absolute bispectrum |B| in cm3/Hz2 (b), bico-
herence (c) and imaginary part of the bispectrum (×10−6) (d) at station 10 (upper
panels) and station 13 (bottom panels); h=0.51m, Hs=3cm, Tp=2.5s. Black dashed
lines indicate the cutoff between infragravity and short-wave frequencies fIG.
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Figure 4.37: Biphase for selected frequency pairs in random wave propagating over
the submerged bar; h=0.51m, Hs=3cm, Tp=2.5s.
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Figure 4.38: Spatial variation of indicators of nonlinearity in the physical wave flume;
h=0.51m, Hs=3cm, Tp=2.5s. Solid lines: skewness and asymmetry from time series;
dashed lines: skewness and asymmetry from bispectrum.

The previous analysis is relative to the case of a non-breaking wave. For spilling
and plunging waves, wave breaking takes place as the wave field propagates into shal-
lower water, leading to energy dissipation. The spectral and bispectral evolution of the
plunging wave with Hs=8cm and Tp=2.5s is given in Figure 4.39 for the water depth
h=0.51m. The absolute values of the bispectra show significant self-interactions of
the primary waves near the spectral peak and interactions between these components
and their harmonics, with intensity increasing on the upslope to a maximum at the
offshore edge of the horizontal crest (station 8) and decreasing to low values in deep
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water beyond the bar (stations 10 and 13). At station 5 and 8, the bispectral peaks
at (0.4 Hz, 0.4Hz) and (0.4Hz, 0.05Hz) are higher than those computed for the non-
breaking wave (Figure 4.35) and the nonlinear couplings at station 8 involve a greater
number of multiple frequencies as a consequence of the increasing non-linearity related
to the higher wave. The energy dissipation due to wave breaking strongly reduces
the spectral energy at station 10 as well as the energy transfers between harmonic
components. Over the bar all the bispectral peaks are significantly damped, partic-
ularly the peak generated by the self-interaction of the primary component at (0.4
Hz, 0.4Hz). Unlike the non-breaking wave for which the nonlinear interactions persist
even on the leeside of the bar, for the plunging wave most of the bispectral regions
show substantial reduction in their intensity and the nonlinear interactions almost
disappear at station 13.
Since the bispectrum depends on the wave amplitude, conclusions about the influence
of wave breaking on the nonlinear couplings require a measure of the nonlinear cou-
pling that is independent of the wave amplitude. These considerations can be made
using the normalized bispectrum, i.e. the bicoherence. The effect of wave break-
ing has been shown in Section 4.1.3 in terms of spectral analysis. Beji and Battjes
(1993) concluded that for single-peaked incident wave spectra, the generation of high
frequency energy and its transfer among wave components during the propagation
across a shallow bar is hardly affected by wave breaking which acts as a secondary
effect by simply re-scaling the wave spectrum. In accordance to Beji and Battjes
(1993), the results of Section 4.1.3 confirm that the spectral shape keeps similar for
non-breaking and plunging waves, even if wave breaking has been found to favour
the generation of long waves and to redistribute energy over a wider range of higher
frequencies. The evolution of the normalized energy spectra for the non-breaking
and the plunging waves is plotted in Figure 4.40, together with the corresponding
bicoherence values. The bicoherence has been calculated only for the frequency pairs
for which the absolute value of the bispectral density exceeds 5% of the maximum
value in the same bispectrum. Before wave breaking (station 7) and a little forward
of the breaking point (station 9), the bispectral regions with significant values of the
bicoherence are similar for the non-breaking (middle panels) and the breaking wave
(right panels). At stations 11 and 14, the triad interactions of the plunging wave
have lower bicoherence levels. They are also less concentrated around the frequen-
cies multiple of the primary (which is more affected by the energy dissipation due to
breaking) and they appear to be distributed over wider frequency ranges. Thus wave
breaking reduces the intensity of the bispectral levels and it weakens the strength of
the nonlinear couplings but it also involves a greater number of harmonic components
in the interactions.
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Figure 4.39: Energy spectrum (left panels) and absolute bispectrum |B| in cm3/Hz2

(right panels) at station 5, 8, 10 and 13; h=0.51m, Hs=8cm, Tp=2.5s. Black dashed
lines indicate the cutoff between infragravity and short-wave frequencies fIG.

70



0.4 0.8 1.2 1.6 2

f (Hz)

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 s

p
e
c
tr

a
l 
d
e
n

s
it
y

Station 7

0.4 0.8 1.2 1.6 2

f (Hz)

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 s

p
e

c
tr

a
l 
d

e
n

s
it
y

Station 9

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2 1.6 2

f (Hz)

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 s

p
e

c
tr

a
l 
d

e
n

s
it
y

Station 11

0.4 0.8 1.2 1.6 2

f (Hz)

0

2

4

6

8

10

N
o

rm
a

liz
e

d
 s

p
e

c
tr

a
l 
d

e
n

s
it
y

Station 14

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2

f
1
 (Hz)

0.4

0.8

1.2

f 2
 (

H
z
)

0

0.2

0.4

0.6

0.8

1

Figure 4.40: Comparisons of normalized energy spectra (left panels) for the non-
breaking wave with Hs=3cm (green line) and the plunging wave with Hs=8cm (red
line) at stations 7, 9, 11 and 14. Bicoherence for the non-breaking wave (middle pan-
els) and for the plunging wave (right panels); JONSWAP incident spectrum, h=0.51m,
Tp=2.5s.

The propagation of random waves over the submerged bar has been studied also
by changing the test configuration with a grater water depth, in order to simulate the
effect of a sea level rise. The influence of the increased water level on the phenomenon
of harmonic generation has been evaluated by comparing the results of the spectral
and bispectral analyses with the water depth h=0.56m and the results obtained in
the previous configuration with h=0.51m. Figure 4.41 shows this comparison for the
non-breaking wave with Hs=3cm and Tp=2.5s while Figure 4.42 is relative to the
plunging wave with Hs=8cm and Tp=2.5s. By comparing waves with same height
and period propagating over different water depths, it is possible to understand how
the submergence of the bar affects the nonlinear couplings and thus the spectral evo-
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lution. For the same wave, the increased submergence leads to a greater amount of
transmitted energy leewards of the bar because the wave is less affected by the bottom
friction. The wave with Tp=2.5s passes over the bar in shallow water conditions for
h=0.51m and the interactions among triads become near-resonant. For h=0.56m the
relative water depth reaches the limit of intermediate waters (h/L ≈ 0.05) and the
interaction process moves away from exact resonance. Figure 4.41 shows that for the
non-breaking wave the departure from the resonant condition due to the increased
water level leads to a reduction in the number of multiple frequencies involved in the
interactions. This implies that the spectral peak of the primary component decreases
less in terms of spectral density and smaller energy is shifted to higher frequencies at
station 11 and 14. The plunging wave (Figure 4.42) breaks over the bar also with the
higher water level but the intensity of wave breaking is reduced. This implies that
more energy is available for the nonlinear interactions between harmonic components.
Even if the wave train moves away from the resonance conditions for h=0.56m, bi-
coherence levels at multiple frequencies are higher at station 11 and 14 because the
dissipation of the primary component due to breaking is less intense and it enhances
strong coupling between specific frequencies.
By increasing the submergence for the breaking wave, the spectral peaks at higher
frequencies result emphasized in the transmitted energy spectrum (station 14) and
the maximum frequency with non-negligible spectral density is smaller. The submer-
gence of the bar also influences the generation of low frequency waves in the energy
spectra. The smallest water depth (green line) leads to more severe wave break-
ing which favours the development of infragravity waves according to the breakpoint
mechanism.
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Figure 4.41: Comparisons of normalized energy spectra (left panels) for the random
wave with Hs=3cm and Tp=2.5s in the configuration with water depth h=0.51m
(green line) and in the configuration with h=0.56m (red line) at stations 7, 9, 11 and
14. Bicoherence for the random wave with the lower water level h=0.51m (middle
panels) and with the higher water level h=0.56m (right panels).
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Figure 4.42: Comparisons of normalized energy spectra (left panels) for the random
wave with Hs=8cm and Tp=2.5s in the configuration with water depth h=0.51m
(green line) and in the configuration with h=0.56m (red line) at stations 7, 9, 11 and
14. Bicoherence for the random wave with the lower water level h=0.51m (middle
panels) and with the higher water level h=0.56m (right panels).
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4.2 Wave transmission of the submerged bar

In the previous section the spectral and bispectral analyses have been applied to in-
vestigate the effect of the nonlinear triad interactions that occur when waves pass
over a submerged obstacle. In this section the wave transformation is studied in more
general terms, by establishing the wave transmission coefficient, the ratio between
transmitted and incident wave height. As seen in the previous section, the energy
spectra undergo important changes due to the nonlinear wave-structure interaction
which causes a transfer of wave energy from primary harmonics to higher harmonics of
the wave spectrum. At first, the wave transmission has been evaluated for monochro-
matic and random waves by following a classical linear approach. A non-linear method
for the evaluation of the transmission coefficients related to higher-order components
of monochromatic waves is then proposed. For random waves, the energy content of
the transmitted spectra has been evaluated for different frequency ranges, in order to
verify if the transmitted wave spectrum can be predicted based only on the incident
wave conditions and the structure geometry.

4.2.1 Monochromatic waves

The transmission process behind submerged structures is generally studied my means
of a transmission coefficient, Kt. This parameter represents the wave energy transmit-
ted behind the structure with respect to the incident energy and it can be evaluated
as:

Kt =

√︃
m0t

m0i
(4.1)

where m0t is the zero-order moment of the wave spectra in the protected area (trans-
mitted) and m0i is the zero-order moment of the incident wave spectra.
As a first attempt, the transmission coefficient of monochromatic waves has been eval-
uated from the zero-order moment of the wave spectra at station 15, m0(15), and that
at station 1, m0(1). The results are shown in Figure 4.43 for all the tested monochro-
matic waves and both the water depths. In Figure 4.43 Kt is given as a function of
the relative crest height Rc/Hm0(1), where Rc is the structure freeboard (negative for
submerged structures) and Hm0(1) is the spectral wave height at station 1, calculated
as Hm0(1) = 4

√
m0(1). The transmission coefficient linearly increases as Rc/Hm0(1)

decreases up to a maximum value of about 0.90 for Rc/Hm0(1) ≈ −2.2. It remains
almost constant for values Rc/Hm0(1) < −2.2. Four Kt values have been removed
from the graph because they are greater than unity. Kt values greater than 1 corre-
spond to the highest non-breaking waves with longer periods (T=2.0s and T=2.5s),
for which the wave reflection from the 1:20 beach is not entirely negligible.
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Figure 4.43: Transmission coefficient for monochromatic waves as a function of the
ratio Rc/Hm0(1).

Since the waves generated by the wave maker are partially reflected by the sub-
merged structure, the method of Lin and Huang (2004) has been used to separate
incident and reflected components for monochromatic waves. The method allows to
isolate both the free and the locked modes in the higher harmonics. Therefore, the
transmission coefficient has been also evaluated with the incident wave estimated by
the method of Lin and Huang (2004). From the theory of signals, the variance of the
signal m0 can be evaluated as the half sum of the squares of the Fourier amplitudes
Cn:

m0 = σ2 =
1

2

∑︂
n

C2
n (4.2)

The incident and the transmitted energy has been computed with Equation 4.2, from
the sum of the first five harmonic amplitudes, reconstructed with Lin and Huang
(2004) on the sea side of the structure and separated from the transmitted signal
at station 15. In Figure 4.44 the results of the transmission coefficient evaluated
from Equation 4.2 are plotted against the ratio Rc/Hi, where Hi is the incident wave
from the application of the Lin and Huang (2004)’s method. As in Figure 4.43, the
transmission coefficient linearly increases for decreasing values of Rc/Hi and it reaches
a maximum value of about 0.90 for Rc/Hi ≈ −3, then it remains almost constant for
values Rc/Hi < −3. It is noted that the absolute values of Rc/Hi are higher than the
absolute values of Rc/Hm0(1) because Hi is obviously smaller than the spectral wave
height Hm0(1) computed from the time series of the free surface at station 1. Also in
Figure 4.44, four Kt values related to the longest and the highest non-breaking waves
have been discarded because they are greater than 1.
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Figure 4.44: Transmission coefficient for monochromatic waves as a function of the
ratio Rc/Hi.

The comparison between the transmission coefficient computed with the incident
wave (Figure 4.44) and the transmission coefficient derived from the spectra at sta-
tion 1 and station 15 (Figure 4.43) is shown in Figure 4.45. The values computed
with the incident wave (Kt(Hi)) are comparable with the values computed from the
spectra (Kt(Hm0(1))) with a squared correlation r2=0.97 and a root mean squared
error rmse=0.05. The difference between the two values increases for the test config-
uration with h=0.51m (r2=0.96 and rmse=0.06). The small difference is due to the
fact that the wave reflection from the submerged bar is small.

Figure 4.45: Comparison between the transmission coefficient evaluated from the
incident wave Kt(Hi) and the transmission coefficient evaluated from the spectra
computed at station 1 and station 15 Kt(Hm0(1)).

As seen in the previous sections, the presence of the structure causes non-linear
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interactions between harmonics and the generation of higher-order components. A
non-linear method for the evaluation of the transmission coefficients related to higher-
order components is proposed. These transmission coefficients are computed as:

Ktn =

√︃
m0tn

m0i
(4.3)

where m0tn is the variance of the transmitted signal related to the harmonic ampli-
tudes of order equal and higher than n, computed as:

m0tn =
1

2

∑︂
j≥n

C2
jt (4.4)

where Cjt is the transmitted harmonic amplitude of order j. From Equation 4.3 it
derives that Kt1 coincides with the global Kt. In Figure 4.46 the values of Kt (or
Kt1) are plotted as a function of Rc/Hi for different values of T and it results that
the values of Kt do not depend from the wave period. Figures 4.47, 4.48, 4.49 and
4.50 show the transmission coefficients of higher-order components. The higher-order
values of Ktn depends on the wave period and they increase for longer waves because
the generation of super-harmonics is enhanced by larger wave periods. Furthermore,
the higher-order transmission coefficients do not show a linear trend with the relative
submergence, as instead shown by the global Kt. The values of Ktn increase as the
incident wave height increases (or with increasing Rc), approximately until the wave
breaking conditions are reached. The maximum values of Ktn correspond to different
Rc/Hi, according to the wave period. Once the breaking has occurred, the transfer
of energy to high-frequency harmonics is reduced (Ktn decreases) for higher Rc/Hi,
suggesting a phenomenon of saturation of the amplitudes of these harmonics. This
trend is more evident for Kt2 (Figure 4.47) and Kt3 (Figure 4.48). For Kt4 (Figure
4.49) and Kt5 (Figure 4.50), the longest waves (with T=2.0s and T=2.5s) still exhibit
this behaviour, while waves with T=1.0s and T=1.5s have values of Ktn close to 0,
because the shortest waves have a lower potential to generate fourth and fifth-order
harmonics.

Figure 4.46: Transmission coefficient Kt1 as a function of the ratio Rc/Hi for different
wave periods.
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Figure 4.47: Transmission coefficient Kt2 as a function of the ratio Rc/Hi for different
wave periods.

Figure 4.48: Transmission coefficient Kt3 as a function of the ratio Rc/Hi for different
wave periods.
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Figure 4.49: Transmission coefficient Kt4 as a function of the ratio Rc/Hi for different
wave periods.

Figure 4.50: Transmission coefficient Kt5 as a function of the ratio Rc/Hi for different
wave periods.
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4.2.2 Random waves

The transmission coefficient of random waves is evaluated from the ratio between the
zero-order moments of the wave spectra at station 15 and at station 1. For random
waves, wave record from gauge 1 is assumed to be an incident wave (indicated with
the subscript i) and wave record from gauge 15 a transmitted one (with the subscript
t). The values are plotted in Figure 4.51 against the ratio Rc/Hm0i, for both the water
depths. For h=0.51m a value of Kt=1.02 is found related to the wave with Hs=3cm
and Tp=2.5s and it has been removed from the graph. The trend observed in Figure
4.51 is similar to that obtained for monochromatic waves: Kt linearly increases as
Rc/Hm0i decreases and it reaches a maximum value of about 0.9 at Rc/Hm0i ≈-3.
For lesser values of Rc/Hm0i the transmission coefficient remains almost constant.

Figure 4.51: Transmission coefficient for random waves as a function of the ratio
Rc/Hm0i.

For the laboratory tests of irregular waves, the measured parameters of the incident
and the transmitted waves are summarized in Tables 4.5 and 4.6. The Tables also
indicate the incident and the transmitted values of the mean spectral period Tm and
of the peak period Tp. The mean spectral period is defined as Tm =

√︁
m0/m2 based

on the spectral moments m0 and m2, where mn =
∫︁∞
0

fnS(f)df .
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Table 4.5: Incident and transmitted wave parameters for random wave tests with
Rc=-0.10m.

Rc=-0.10m
Name Incident Transmitted

Hm0i (cm) T02i (s) Tpi (s) Hm0t (cm) T02t (s) Tpt (s)
SpH5T10h51 3.8 0.9 1.0 3.1 0.8 1.0
SpH8T10h51 6.0 0.9 1.0 3.9 0.8 1.1
SpH12T10h51 8.5 0.9 1.0 4.2 0.8 1.1
SpH4T15h51 3.0 1.3 1.5 2.7 0.9 1.6
SpH6T15h51 4.5 1.3 1.5 3.5 0.9 0.9
SpH10T15h51 7.6 1.3 1.5 4.1 0.8 0.9
SpH3T20h51 2.4 1.5 2.0 2.3 1.0 1.0
SpH5T20h51 4.0 1.5 2.0 3.3 0.9 1.1
SpH8T20h51 6.4 1.5 2.0 3.9 0.8 1.0
SpH3T25h51 2.3 1.8 2.4 2.3 0.9 0.8
SpH5T25h51 3.9 1.8 2.5 3.3 0.8 0.8
SpH8T25h51 6.3 1.8 2.5 3.9 0.8 2.7

Table 4.6: Incident and transmitted wave parameters for random wave tests with
Rc=-0.15m.

Rc=-0.15m
Name Incident Transmitted

Hm0i (cm) T02i (s) Tpi (s) Hm0t (cm) T02t (s) Tpt (s)
SpH5T10h56 3.9 0.9 1.0 3.3 0.9 1.0
SpH8T10h56 6.1 0.9 1.0 4.9 0.9 1.0
SpH12T10h56 8.6 0.9 1.0 5.2 0.9 1.1
SpH4T15h56 3.1 1.2 1.5 2.7 1.2 1.5
SpH6T15h56 4.6 1.3 1.5 4.0 1.1 1.6
SpH10T15h56 7.7 1.3 1.5 5.6 1.0 1.6
SpH3T20h56 2.4 1.4 2.0 2.1 1.1 2.0
SpH5T20h56 4.1 1.5 2.0 3.7 1.1 2.0
SpH8T20h56 6.6 1.6 2.0 5.3 1.0 1.1
SpH3T25h56 2.4 1.6 2.6 2.1 1.2 2.5
SpH5T25h56 4.0 1.9 2.6 3.8 1.1 2.5
SpH8T25h56 6.5 1.9 2.6 5.3 1.0 0.9

As seen in Section 4.1.3, the energy spectra tend to undergo important changes
due to the non-linear wave-structure interaction which tends to shift the energy con-
tent toward higher and lower frequencies.
The model for the calculation of spectral changes was first studied by van der Meer
et al. (2000) on emerged low-crested structures. Based on measurements, they devel-
oped a simple model for calculating transmitted energy spectra where it is assumed
that 40% of all transferred energy is positioned at higher frequencies (between 1.5fp
and 3.5fp) and 60% of spectrum energy at lower frequencies (< 1.5fp). In the work
of van der Meer et al. (2005) this model was experimentally confirmed on emerged
and submerged structures and much wider ranges of spectral change parameters were
given. It was therefore suggested that the energy at higher frequencies can vary
between 30 and 60% and the range of higher frequencies is between 1.5fp and 2.9-
5.6fp. The assumption of this model is that energy transfer to higher harmonics is
independent of incident wave parameters and breakwater geometry. Carevic et al.
(2013) proposed an improvement of the van der Meer et al. (2000) model based on
the conclusion that the energy fraction transferred to high frequencies is variable with
the structure submergence and reaches the value of 40% when the breakwater crest
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is around the water level. The process of wave transmission and spectral change
over a permeable low-crested breakwater is also described in Lamberti et al. (2007)
and Zanuttigh and Martinelli (2008). The authors developed an analytical model for
emerged low-crested breakwaters able to predict transmitted wave spectrum based
only on incident wave conditions and structure geometry.
For all the tested random waves, the energy content of the transmitted spectra is cal-
culated at different frequency ranges in terms of the area of the spectrum m0t. The
frequency ranges are: f ≤ 0.5fp, f ≥ 1.5fp, 1.5 − 2.5fp, 2.5 − 3.5fp and f ≥ 3.5fp.
Table 4.7 shows the energy m0t for each frequency range with respect to the total
energy of the transmitted spectrum. The submergence of the structure crest and the
peak period of the incident wave are the parameters with the greatest influence on the
spectral change. If the submergence increases, the energy transfer toward lower and
higher frequency decreases for the same wave period and height. For similar values
of the nonlinear parameter ϵ measured at station 8 (indicated in Tables as ϵ′), the
transfer of energy at higher frequencies tends to increase with the peak period, while
for the same peak period the energy at higher frequencies does not show a growing
trend with the wave height. Instead, the amount of energy transferred to frequencies
lower than 0.5fp is mainly influenced by the wave height and it increases for higher
waves for the same peak period.

Table 4.7: Energy content of the transmitted spectra at different frequency ranges.

Rc=-0.10m
Hs Tp ϵ′ m0t (%) m0t (%) m0t (%) m0t (%) m0t (%)
(cm) (s) (0− 0.5fp) (f ≥ 1.5fp) (1.5− 2.5fp) (2.5− 3.5fp) f ≥ 3.5fp
5.0 1.0 0.18 2.00 15.83 15.12 0.46 0.24
8.0 1.0 0.27 3.70 17.27 16.49 0.62 0.16
12.0 1.0 0.34 4.97 15.68 14.80 0.69 0.19
4.0 1.5 0.17 1.60 45.93 39.25 6.24 0.44
6.0 1.5 0.25 2.05 53.04 44.07 8.21 0.76
10.0 1.5 0.37 3.90 59.48 48.99 9.11 1.38
3.0 2.0 0.14 0.97 71.00 54.30 13.98 2.72
5.0 2.0 0.23 1.46 77.27 48.70 23.35 5.22
8.0 2.0 0.35 3.45 78.32 39.32 29.79 9.21
3.0 2.5 0.14 0.88 79.94 24.59 39.99 15.36
5.0 2.5 0.24 1.57 82.74 21.59 36.38 24.77
8.0 2.5 0.37 4.74 77.16 17.92 29.50 29.74

Rc=-0.15m
Hs Tp ϵ′ m0t (%) m0t (%) m0t (%) m0t (%) m0t (%)
(cm) (s) (0− 0.5fp) (f ≥ 1.5fp) (1.5− 2.5fp) (2.5− 3.5fp) f ≥ 3.5fp
5.0 1.0 0.12 0.80 8.92 8.43 0.29 0.21
8.0 1.0 0.18 1.93 7.47 6.96 0.33 0.18
12.0 1.0 0.24 2.77 6.53 6.09 0.32 0.12
4.0 1.5 0.11 1.10 19.42 18.36 0.83 0.24
6.0 1.5 0.16 1.83 23.90 22.29 1.31 0.31
10.0 1.5 0.26 2.81 34.37 31.03 2.88 0.46
3.0 2.0 0.09 0.68 44.64 41.10 3.16 0.38
5.0 2.0 0.15 1.19 58.30 51.18 6.48 0.64
8.0 2.0 0.24 1.90 64.50 51.66 10.99 1.86
3.0 2.5 0.08 0.73 53.93 34.18 18.06 1.68
5.0 2.5 0.15 1.08 72.63 37.64 30.64 4.35
8.0 2.5 0.24 1.93 77.69 34.97 34.43 8.28

Figure 4.52 presents the amount of energy shifted toward higher frequencies in
the transmitted spectrum, expressed by the parameter m0t1.5/m0t, as a function of
the relative freeboard Rc/Hm0i. The ratio m0t1.5/m0t represents how much energy
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is positioned on frequencies f > 1.5fp with respect to the total transmitted energy.
For emerged low-crested structure van der Meer et al. (2000) showed that a constant
ratio m0t1.5/m0t of 0.4 is found for transmission coefficients Kt > 0.15. For the
submerged structure of this experimental campaign, it is clear that m0t1.5/m0t varies
from about 0.1 to 0.8 and it is correlated with Rc/Hm0i. The colours of Figure 4.52
are associated to different values of the nonlinear parameter ϵ′. The relation between
m0t1.5/m0t and Rc/Hm0i is approximated as linear for the same value of ϵ′ with
a lower limit at m0t1.5/m0t=0.076, which corresponds to the average value of the
three lowest positioned dots. The interpretation of Figure 4.52 is not so immediate
because the value of ϵ′ in turn depends on the ratio Rc/Hm0i. For a fixed Rc and
decreasing values of Hm0i, the ratio Rc/Hm0i decreases and the energy shifted to
higher frequencies increases for the same ϵ′. In fact, even if the incident wave height
is smaller, the increase in the wave period to maintain the same value of ϵ′ causes a
greater energy transfer to higher frequencies. Therefore, the parameter ϵ′ measured
over the bar has a great influence on the spectral change because it indirectly depends
on the incident peak period. The ratio m0t1.5/m0t varies in the range 0.1-0.8 but this
variation is obtained within a smaller range of Rc/Hm0i for increasing values of ϵ′.
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Figure 4.52: Ratio between the transmitted energy for frequencies f > 1.5fp and
the total transmitted energy plotted versus the relative submergence Rc/Hm0i for
different values of the nonlinear parameter ϵ′.

In order to determine where the transfer of energy to higher frequencies starts, the
parameter named energy distribution parameter (e.d.p.) defined by Briganti et al.
(2004) is used:

e.d.p. =

[︃(︃
m0t1.5

m0t

)︃
−
(︃
m0i1.5

m0i

)︃]︃
/

(︃
m0i1.5

m0i

)︃
(4.5)

where m0i1.5/m0i is the incident spectral energy for frequencies larger than 1.5fp with
respect to the total incident energy.
The e.d.p. describes the variation of the amount of energy associated to f > 1.5fp
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between the incident and the transmitted spectra. The e.d.p. is positive if energy
is transferred towards f > 1.5fp and zero if no energy transmission occurs. Figure
4.53 shows the relation of the e.d.p. and the parameter Rc/Hm0i. The lowest three
dots represent the waves from Table 4.7 with the smallest peak period (Tp = 1s)
and Rc=-0.15m. These three values are around zero and it can be assumed that
the energy transfer for these three tests does not arise. In this way the lower limit
of parameter m0t1.5/m0t=0.076, that has been obtained by averaging the three cor-
responding values of m0t1.5/m0t in Figure 4.52, can be interpreted as the threshold
value where transfer of energy starts/ends for all the tested waves. A similar value of
m0t1.5/m0t=0.071 was obtained in the study of Carevic et al. (2013), where laboratory
tests were carried out in presence of a smooth submerged breakwater.
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Figure 4.53: Correlation between e.d.p. and Rc/Hm0i for the measured data.

In Figure 4.52 the dependence on the parameter ϵ′ is identified because the waves
to be tested have been selected with the attempt to keep the nonlinearity parameter
ϵ nearly the same over the bar crest. A linear relationship between m0t1.5/m0t and
Rc/Hm0i was also found in Carevic et al. (2013), depending on the deepwater wave
steepness sop = 2πHm0i/gT

2
p . The same results of Figure 4.52 are shown in Figure

4.54 where the dots are now coloured with the values of sop, as in Carevic et al. (2013).
The energy shifted to higher frequencies increases by keeping constant Rc/Hm0i and
decreasing sop, as expected.
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Figure 4.54: Ratio between the transmitted energy for frequencies f > 1.5fp and
the total transmitted energy plotted versus the relative submergence Rc/Hm0i for
different values of sop.

From the previous analyses it is highlighted that the structure submergence and
the peak period are the main parameters which influence the transfer of energy to
higher frequencies. On the other hand, the incident wave height is found to have a
smaller effect on the redistribution of high frequency energy. In Figure 4.55 m0t1.5/m0t

is plotted against the ratio Rc/Lp, where Lp is the wave length calculated with the
peak period Tp at the water depth h. The dots are coloured for different ranges
of Hm0i/h, in order to verify also the effect of Hm0i. Figure 4.55 shows that there
is a clear trend of m0t1.5/m0t with the parameter Rc/Lp: for small values of Rc/Lp

(higher submergence and shorter waves) the values of m0t1.5/m0t asymptotically tends
to the lower limit m0t1.5/m0t=0.076 while it increases to values of 0.8 for higher Rc/Lp

(lower submergence and longer waves). The increase of Hm0i/h causes a greater high-
frequency energy transfer for −0.051 ≤ Rc/Lp ≤ −0.024, while it has a small influence
for values of Rc/Lp outside this range. In Figure 4.56 the ratio m0t1.5/m0t is plot-
ted as a function of a non-dimensional parameter, defined as (Rc/Lp)

2(h/Hm0i)
1/3,

which provides the best-fit to the data (with a squared-correlation r2=0.98). The
non-dimensional parameter is also well correlated with the transmitted energy at
frequencies f > 2.5fp and f > 3.5fp, as can be observed in Figure 4.57. For the sub-
merged structure tested during this experimental campaign, Figure 4.57 also shows
that the energy at frequencies higher than 3.5fp is far from negligible for various tested
waves and it reaches the maximum value of approximately 30% for the longest and
highest wave (Hs=8cm and Tp=2.5s) with the smallest submergence (Rc=-0.10m).
An increase of the energy at higher frequencies in the transmitted spectrum causes a
reduction of the mean period. Figure 4.58 shows that also the mean spectral period
Tm can be represented as a function of the parameter (Rc/Lp)

2(h/Hm0i)
1/3.
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Figure 4.55: Ratio between the transmitted energy for frequencies f > 1.5fp and the
total transmitted energy plotted versus Rc/Hm0i for different values of Hm0i/h.
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4.3 Wave run-up over a beach

The transformation of the wave spectrum behind submerged obstacles also affects the
run-up on the beach. The second experimental campaign has been carried out to
evaluate the wave run-up over a 1:20 impermeable slope in presence of the submerged
bar, for both monochromatic and random waves.
For each test, the run-up is evaluated by identifying the individual maxima Ru of the
water level time series recorded by the run-up wave gauge. The 2% exceedence value
of run-up Ru2% is calculated from the cumulative probability density function of the
discrete measures of Ru (Figure 4.59).

300 320 340 360 380 400 420 440 460 480 500 520

t (s)

0

0.5

1

1.5

2

2.5

3

3.5

 (
c
m

)

1 1.5 2 2.5 3

R
u
 (cm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(x

)

data

gaussian

2% exceedence

Figure 4.59: Water level time series (left panel) recorded by the run-up wave gauge
indicating individual run-up maxima Ru and the setup at the beach slope η̄. The
cumulative PDF of the discrete measures of Ru compared with the Gaussian distri-
bution (right panel); random wave Hs=8cm, Tp=2.5s and h=0.56m.

The value of the run-up is also computed by merging contributions from setup
and swash:

Ru2% = η̄ +
S

2
(4.6)

The significant swash height S can be subdivided into the significant incident-band
Sinc (f >0.05Hz) and the infragravity-band Sig (f ≤0.05Hz):

S =
√︂
(Sinc)2 + (Sig)2 (4.7)

where Sinc and Sig are calculated from the spectra of the continuous water level time
series:

Sinc = 4

√︄∫︂ ∞

0.05

Eη(f)df (4.8)

Sig = 4

√︄∫︂ 0.05

0

Eη(f)df (4.9)

where Eη(f) is the variance density of the shoreline motion. The assumption that
the 2% exceedence level for run-up approximately equals η̄ + S/2 (Equation 4.6) is
first tested. The squared-correlation r2 between the measured values of η̄ + S/2 and
Ru2% is 0.99 for monochromatic waves and 0.96 for random waves. The slope of
the regression is around 1.1 as found by Stockdon et al. (2006), reflecting the slight
deviation from the Gaussian distribution of the natural swash. To account for this
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deviation, the slope of the regression of Figures 4.60 and 4.61 is included in Equation
4.6, resulting in the following definition of run-up:

Ru2% = 1.1

[︃
η̄ +

S

2

]︃
(4.10)

Figure 4.60: The 2% run-up elevation plotted against the sum of setup and half of the
swash excursion for monochromatic waves. The dotted line is a 1:1 line, the dashed
line is the best fit to the data (m=1.07, b=-0.02, r2=0.99).

Figure 4.61: The 2% run-up elevation plotted against the sum of setup and half of
the swash excursion for random waves. The dotted line is a 1:1 line, the dashed line
is the best fit to the data (m=1.12, b=0.23, r2=0.96).

The run-up value measured on the linear beach with a slope of 1:20 has been related
to the incident and the transmitted wave characteristics. The empirical parametriza-
tion of run-up is presented in dimensional space and the regression is forced through
the origin. The measured run-up of monochromatic waves is best parametrized as a
function of the incident wave height Hi from the method of Lin and Huang (2004),
the wavelength L at the wave paddle and the beach slope βf (Figure 4.62):

Ru2% = 0.66βf (HiL)
0.5 (4.11)
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The squared-correlation of the dimensional parametrization is r2=0.83 and the rms
error is equal to 0.30cm. Table 4.8 presents a summary of the regression coefficients
for the suggested parametrizations. In Table 4.8 also the parametrizations with the
transmitted wave (Hm0t and L−20t computed with T−20t) are reported.
For monochromatic waves it has been observed that about 82% of the run-up is
due to the contribution of the setup. This could explain the fact that the wave
run-up of monochromatic waves depends on the incident wave height. In fact, the
setup is generated by wave breaking and it increases for higher incident waves.
The propagation over the bar of monochromatic regular waves leads to the gener-
ation of higher frequencies. For the tested waves, the Iribarren number ξo is lower
than 1.25 (ξo = 0.18 ÷ 1.19) and, according to the classification of Stockdon et al.
(2006), the 1:20 beach represents dissipative (ξo < 0.3) to intermediate conditions
(0.3 < ξo < 1.25). Under these conditions, the higher frequency components tend
to be dissipated over the beach slope and the primary component remains the main
forcing of the run-up. As a consequence, the run-up results related to the wave
length L of the first harmonic. This effect could be not verified for reflective beaches
(ξo > 1.25) and it could be the subject of future investigation.

Figure 4.62: Run-up values for regular monochromatic waves as a function of the
incident wave characteristics.

For the random waves the better correlations of the run-up values are obtained
with the spectral characteristics of the transmitted waves measured at station 15. It
has been observed that most of the incident spectra become bi-modal spectra behind
the submerged bar and the nonlinear interactions also generate long waves which
affect the infragravity component of swash. Using the peak period for the evaluation
of the beach run-up generates fairly large scatter, due to the fact that bi-modal spectra
are present. In van Gent (1999) the performance of different spectral wave periods
for the evaluation of the run-up was analysed numerically and it was concluded that
the wave period T−10 is the optimal period for describing wave run-up and wave
overtopping for non uni-modal spectra. This conclusion was confirmed also in van
Gent (2001) where physical model tests were performed to study wave run-up on dikes
with shallow foreshores. In this work the wave run-up is related with both T−10 and
T−20 at station 15 because periods with negative moments give more weight to the
energy at the lower frequencies. In Figure 4.63 the run-up is best parametrized as:

Ru2% = 1.43βf (Hm0tL−10t)
0.5 (4.12)
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where Hm0t is the spectral height and L−10t the wavelength computed from T−10t.
The correlation 4.12 has a r2=0.63 and a rms error equal to 0.42cm. Figure 4.64
relates the run-up of the random waves with Hm0t and the wavelength L−20t derived
from T−20t, with the following best fit:

Ru2% = 0.92βf (Hm0tL−20t)
0.5 (4.13)

In this case the correlation improves to r2=0.79 and the rms error decreases to 0.31cm.
The same parametrizations are applied also to the single components of run-up, η̄,
Sinc and Sig and the summary of the regression coefficients, squared correlations and
rms errors is presented in Table 4.8.

Figure 4.63: Run-up values for random waves as a function of the beach slope and
the characteristics of the transmitted wave, Hm0t and L−10t.

Figure 4.64: Run-up values for random waves as a function of the beach slope and
the characteristics of the transmitted wave, Hm0t and L−20t.
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Table 4.8: Regression parameters for components of run-up model.

Quantity modelled Model input Slope, m Intercept, b r2 rmse (cm)
Monochromatic Ru2% βf (HiL)

0.5 0.66 0 0.83 0.30
η̄ βf (HiL)

0.5 0.54 0 0.80 0.26
Sinc βf (HiL)

0.5 0.14 0 0.11 0.24
Sig βf (HiL)

0.5 0.07 0 0.48 0.09

Ru2% βf (Hm0tL−20t)0.5 0.76 0 0.66 0.41
η̄ βf (Hm0tL−20t)0.5 0.62 0 0.66 0.35

Sinc βf (Hm0tL−20t)0.5 0.16 0 0.00 0.25
Sig βf (Hm0tL−20t)0.5 0.08 0 0.41 0.09

Random Ru2% βf (Hm0tL−10t)0.5 1.43 0 0.63 0.42
η̄ βf (Hm0tL−10t)0.5 0.60 0 0.70 0.18

Sinc βf (Hm0tL−10t)0.5 0.94 0 0.41 0.37
Sig βf (Hm0tL−10t)0.5 0.55 0 0.62 0.23

Ru2% βf (Hm0tL−20t)0.5 0.92 0 0.79 0.31
η̄ βf (Hm0tL−20t)0.5 0.39 0 0.76 0.16

Sinc βf (Hm0tL−20t)0.5 0.61 0 0.64 0.29
Sig βf (Hm0tL−20t)0.5 0.35 0 0.72 0.20
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Chapter 5

Numerical Analysis with
XBeach

To better understand the hydrodynamic circulation induced by submerged break-
waters, numerical analyses have been carried out by means of XBeach, which is an
open-source numerical model developed to simulate hydrodynamic and morphody-
namic processes and impacts on sandy coasts. It includes the hydrodynamic processes
of short and long wave transformation, wave set-up and unsteady currents and the
morphodynamics due to bed load and suspended sediment transport. The numeri-
cal simulations have been performed through the non-hydrostatic model of XBeach,
which solves the phase of short waves and allows to model all processes of wave prop-
agation and decay, including run-up, overwashing and diffraction.
In this thesis the XBeach model is used to reproduce the physical model in order
to test the capabilities of the numerical tool to simulate the non-linear phenomena
which occurs during the propagation of waves over a submerged bar. So, the exper-
imental results of the physical model are compared to the results obtained with the
non-hydrostatic model of XBeach.
The advantage of the numerical model is that it allows to simulate a lot of different
configurations for coastal structures.

5.1 Model overview

XBeach is an open-source process-based numerical model which simulates hydrody-
namic and morphodynamic processes and impacts on sandy coasts (Roelvink et al.,
2009, 2010). Hydrodynamic processes such as incident wave transformation (refrac-
tion, shoaling and breaking) infragravity wave transformation (generation, propaga-
tion and dissipation) and wave-induced setup are included. The included morphody-
namic processes are not relevant for this research. The model can be used in 1D and
2D and is depth-averaged (1DH and 2DH).
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Figure 5.1: Principle sketch of the relevant wave processes in XBeach (Roelvink et al.,
2010).

XBeach non-hydrostatic solves the individual incident waves and is a phase-
resolving model (Roelvink et al., 2010). Both incident and infragravity waves are
solved with the non-linear shallow water equations including non-hydrostatic pres-
sure. The hydrostatic front approximation is used to improve the location of wave
breaking, where the pressure under breaking bores is assumed to be hydrostatic (Smit
et al., 2013).

5.2 Numerical model setup

The experimental setup has been reproduced in XBeach through a 2DH model with
a domain length of 40m in the flow direction (x-direction) and a transversal width of
1m in the y-direction. A constant grid size of 5.0cm is used in x and y directions for
all the length of the wave flume.
The offshore end of the numerical wave flume, where the wave generation boundary
condition is applied, corresponds to the position of the first wave gauge. The structure
toe is located at a distance of 7m from the offshore end of the model. Behind the
structure, the impermeable beach with slope 1:20 is also modelled starting at distance
of 19.50m from the seaward boundary. Figure 5.2 shows a sketch of the numerical
model domain.
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Figure 5.2: Sketch of the numerical domain in XBeach: positions of the wave gauges
and water surfaces computed for the test ”H8T25h51”.

The offshore flow boundary condition is set as nonh 1d to use the non-hydrostatic
solver of XBeach, lateral boundaries are set as wall and the landward boundary is set
as abs 2d that is an absorbing boundary condition.
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The time step of the numerical simulations is adapted by the model in order to keep
a maximum value of the Courant-Friedrichs-Lewy number CFL equal to 0.7.
Among all the experimental wave tests, twelve regular waves have been reproduced
by the numerical model for both the tested water depths. For each period three
different wave heights have been selected as representative of different hydrodynamic
conditions, non-breaking, spilling and plunging waves. All the random tested cases
with h=0.51m and h=0.56m have been reproduced with XBeach. The input wave
height of each simulation derives from the experimental measurements recorded by
the first wave gauge at station 1. The wave characteristics are summarized on Tables
5.1 and 5.2. For monochromatic waves a stat type wave generation condition is applied
which requires a Hrms wave height and a representative wave period Trep. In such
cases the numerical simulations last 300s.
Random wave simulations have a jons type wave generation condition to provide
a JONSWAP spectrum input. This condition requires an additional file where the
main parameters of the wave spectrum can be defined (Hm0, Tp, γ). The directional
spreading coefficient is set to 1000 in order to generate an unidirectional spectrum.
For random waves, the duration of the numerical simulations depends on the peak
period and it is set equal to 600s for Tp=1.0s, 900s for Tp=1.5s, 1200s for Tp=2.0s
and 1500s for Tp=2.5s.

Table 5.1: Characteristics of monochromatic waves used in the numerical simulations.

Name h (m) Hrms (cm) Trep (s)
H5T10h51 0.51 4.0 1.0
H8T10h51 0.51 6.5 1.0
H12T10h51 0.51 9.6 1.0
H4T15h51 0.51 3.6 1.5
H6T15h51 0.51 5.5 1.5
H10T15h51 0.51 9.1 1.5
H3T20h51 0.51 2.5 2.0
H5T20h51 0.51 4.1 2.0
H8T20h51 0.51 6.7 2.0
H3T25h51 0.51 2.5 2.5
H5T25h51 0.51 4.2 2.5
H8T25h51 0.51 6.8 2.5
H5T10h56 0.56 4.1 1.0
H8T10h56 0.56 6.4 1.0
H12T10h56 0.56 9.6 1.0
H4T15h56 0.56 3.5 1.5
H6T15h56 0.56 5.3 1.5
H10T15h56 0.56 8.8 1.5
H3T20h56 0.56 3.0 2.0
H5T20h56 0.56 4.8 2.0
H8T20h56 0.56 7.5 2.0
H3T25h56 0.56 2.6 2.5
H5T25h56 0.56 4.4 2.5
H8T25h56 0.56 7.1 2.5
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Table 5.2: Characteristics of random waves used in the numerical simulations.

Name h (m) Hm0 (cm) Tp (s)
SpH5T10h51 0.51 3.9 1.0
SpH8T10h51 0.51 6.0 1.0
SpH12T10h51 0.51 8.5 1.0
SpH4T15h51 0.51 3.0 1.5
SpH6T15h51 0.51 4.5 1.5
SpH10T15h51 0.51 7.6 1.5
SpH3T20h51 0.51 2.4 2.0
SpH5T20h51 0.51 4.0 2.0
SpH8T20h51 0.51 6.4 2.0
SpH3T25h51 0.51 2.3 2.5
SpH5T25h51 0.51 3.9 2.5
SpH8T25h51 0.51 6.3 2.5
SpH5T10h56 0.56 3.9 1.0
SpH8T10h56 0.56 6.1 1.0
SpH12T10h56 0.56 8.6 1.0
SpH4T15h56 0.56 3.1 1.5
SpH6T15h56 0.56 4.6 1.5
SpH10T15h56 0.56 7.8 1.5
SpH3T20h56 0.56 2.4 2.0
SpH5T20h56 0.56 4.1 2.0
SpH8T20h56 0.56 6.6 2.0
SpH3T25h56 0.56 2.4 2.5
SpH5T25h56 0.56 4.0 2.5
SpH8T25h56 0.56 6.5 2.5

Output of water levels are generated in 15 different positions along the domain, at
the locations of the wave gauges in the physical model. The positions of the output
points and the instantaneous free surface calculated for the test ”H8T25h51” are
shown in Figure 5.2. The interval time of the output is set according to the sample
frequency of the wave gauges (35Hz). The run-up over the impermeable slope is also
computed with the addition of an output run-up gauge location. The XBeach non-
hydrostatic model has been calibrated with sea bottom friction and run-up gauge
depth, the minimum depth which is used to determine the last wet point in the run-
up gauge (Roelvink et al., 2010). The calibration aims to get the better agreement
of both the wave height transformation over the bar and the run-up level over the
beach with the experimental data. Stockdon et al. (2014) showed that the XBeach
surfbeat model is sensitive to the choice of the run-up gauge depth. The water depth
threshold for the definition of the waterline in the model simulations is set to 0.001m
to correspond with the probable water depth identified as the leading run-up edge by
the run-up wave gauge. In the XBeach model different bottom friction formulations
are available, some of which are depth independent and some are depth dependent.
In the study of de Beer (2017) the XBeach non-h was used to simulate wave run-up
observed during the SandyDuck ’97 experiment on an intermediate-reflective sandy
beach. Three different bottom friction formulations were tested for the calibration
of the model of de Beer (2017). The formulation of Chezy was chosen because the
depth dependent formulations of Manning and White-Colebrook resulted in a lower
prediction of the significant swash.
Also in the present thesis, the formulation of Chezy has been chosen. It has been
found that the wave transformation over the obstacle is little affected by the bed
friction parameter, while the wave run-up is strongly influenced by this calibration
coefficient. The calibration led to the selection of a Chezy coefficient of C=20m1/2/s.
This value is low to be representative of a smooth surface but the Chezy formulation

97



is depth independent and it leads to a smaller friction in the shallow water of the
oscillating zone at the scale of the physical model.

5.3 Comparison with experimental data

The numerical results of XBeach non-hydrostatic model are compared to the exper-
imental measurements. For monochromatic waves the time series of the free sur-
face recorded at different stations are compared to those calculated by the numerical
model. The comparisons for random waves are carried out in terms of the spectral
evolution along the wave flume. Additional comparisons are carried on in terms of
the wave run-up over the beach slope.

5.3.1 Monochromatic waves

Time domain comparisons of the measured and computed surface displacements for
monochromatic waves of Table 5.1 are shown from Figure 5.3 to Figure 5.7 at six
different stations. Station 5 is located at the structure toe, at a distance of 7m
from the wave generation boundary condition. Stations 8 and 10 correspond to the
wave gauges at the end of the upslope and over the bar crest, respectively. The
other three stations show the results over the downslope and behind the bar, at
stations 12, 14 and 15. The numerical model reproduces the observed evolution and
decomposition of the wave field quite well. The initial nonlinear steepening on the
seaward slope (stations 5 and 8) is well represented for each wave condition even if the
numerical model under-predicts the wave heights for the cases with T=1.0s. Also the
subsequent enhancement of higher harmonics over the bar crest (station 10) and the
associated profile distortion are well calculated apart from the breaking waves with
T=2.5s in which the wave crests are overestimated. This effect could be improved
with the calibration of the breaking parameters. For these numerical simulations the
default values are used. The representation of the wave field shows more discrepancies
between measured and computed values in the de-shoaling region at station 12 and
14. This is particularly evident in the case of breaking waves with the higher period
(Figures 5.6 and 5.8), in which a phase shift is present and the amplitudes of the
higher order harmonics are not well reproduced. For the shortest breaking waves
this effect is less pronounced due to the smaller energy transfer to super-harmonics
(Figures 5.5 and 5.7). This effect is also evident behind the bar at station 15 and it is
enhanced for the highest tested waves, probably due to the influence of wave breaking.
Figure 5.9 shows the XBeach run-up predictions compared to the measured values for
the six tested waves. In most cases the model overestimates the values of the wave
run-up over the beach slope.
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Figure 5.3: Surface elevation at several stations for monochromatic incident waves
with H=5cm, T=1s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.

Figure 5.4: Surface elevation at several stations for monochromatic incident waves
with H=3cm, T=2.5s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.5: Surface elevation at several stations for monochromatic incident waves
with H=8cm, T=1s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.

Figure 5.6: Surface elevation at several stations for monochromatic incident waves
with H=5cm, T=2.5s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.7: Surface elevation at several stations for monochromatic incident waves
with H=12cm, T=1s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.

Figure 5.8: Surface elevation at several stations for monochromatic incident waves
with H=8cm, T=2.5s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.9: Observed and modelled Ru2% for the XBeach non-h model. Dashed lines
indicate the 1:1 and 20% error lines.

5.3.2 Random waves

Frequency domain comparisons of the measured and computed energy spectra for the
random waves of Table 5.2 with peak periods Tp=1s and Tp=2.5s are shown from
Figure 5.10 to Figure 5.15. The results are shown at the same six stations selected
for monochromatic waves. The spectral evolution over and behind the obstacle is well
reproduced by the model. More discrepancies are observed for the shortest random
waves which show similar behaviours for the three different wave heights (Figures
5.10, 5.12, 5.14). For such waves, the spectral energy density at the peak frequency is
underestimated along the upslope up to station 7 (not shown). From the horizontal
crest (station 8) the spectral peak is well estimated. However, the spectral energy at
higher frequencies is underestimated for any case. Better comparisons are obtained
for the longest waves (Figures 5.11, 5.13, 5.15). The numerical model is able to re-
produce the spectral evolution along the wave flume, both in terms of the spectral
peak and of the energy redistribution at higher frequencies. The differences in the en-
ergy spectra increase when the wave height and, thus, the wave nonlinearity increase.
However, the larger deviations are observed for frequencies higher than about 1.2Hz,
corresponding to 3fp.
In addition, the numerical model well reproduces the generation of long waves due to
the breaking mechanism and to the difference interactions between harmonic compo-
nents close to the peak frequency. As seen in section 4.3, the correct representation
of infragravity waves is particularly important for the reliability of the numerical
model in correctly estimating the wave run-up over beaches protected by submerged
structures.
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Figure 5.10: Energy spectra at several stations for random incident wave with
Hs=5cm, Tp=1.0s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.11: Energy spectra at several stations for random incident wave with
Hs=3cm, Tp=2.5s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.12: Energy spectra at several stations for random incident wave with
Hs=8cm, Tp=1.0s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.13: Energy spectra at several stations for random incident wave with
Hs=5cm, Tp=2.5s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.14: Energy spectra at several stations for random incident wave with
Hs=12cm, Tp=1.0s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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Figure 5.15: Energy spectra at several stations for random incident wave with
Hs=8cm, Tp=2.5s and h=0.51m. (−) Experimental values; (−−) values obtained
numerically with the XBeach non-h model.
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For random waves in addition to the 2%-exceedence run-up level (Ru2%), the setup
(η̄), the incident-band and the infragravity-band swash (Sinc and Sig) are computed
following Equations 4.8 and 4.9. From Figure 5.16 to Figure 5.21 the predicted swash
spectra obtained with XBeach are compared with the measured swash spectra. The
results show that the XBeach non-h model describes the shape of the swash spectrum
quite well for both the shortest and the longest tested waves. The comparisons for all
the tested waves are summarized in Figure 5.22 and Table 5.3 for the 2%-exceedence
run-up level and for the single contributions of run-up.
The error statistics used to define the performance of the model for predicting run-up
are the root mean squared error (rmse), bias and the coefficient of determination
(r2). With Y representing the model results and X representing the measured values,
the bias is defined as:

bias =
1

n

n∑︂
i=1

(Yi −Xi) (5.1)

The performance of XBeach non-h is better for setup and infragravity-band swash
predictions, while the model overestimates the incident-band swash (bias=0.42cm),
particularly for the case with the increased water level h=0.56m.

Table 5.3: Statistics describing the fit between observations and model results for
run-up.

rmse (cm) bias (cm) r2

η̄ 0.17 0.03 0.74
Sinc 0.33 0.42 0.59
Sig 0.17 -0.02 0.75
Ru2% 0.42 0.18 0.64
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Figure 5.16: Swash spectra for random incident wave with Hs=5cm, Tp=1.0s and
h=0.51m. (−) Experimental values; (−−) values obtained numerically with the
XBeach non-h model.
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Figure 5.17: Swash spectra for random incident wave with Hs=8cm, Tp=1.0s and
h=0.51m. (−) Experimental values; (−−) values obtained numerically with the
XBeach non-h model.
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Figure 5.18: Swash spectra for random incident wave with Hs=12cm, Tp=1.0s and
h=0.51m. (−) Experimental values; (−−) values obtained numerically with the
XBeach non-h model.
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Figure 5.19: Swash spectra for random incident wave with Hs=3cm, Tp=2.5s and
h=0.51m. (−) Experimental values; (−−) values obtained numerically with the
XBeach non-h model.

108



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

f (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
 (

c
m

2
/H

z
)

Experimental

Numerical

Figure 5.20: Swash spectra for random incident wave with Hs=5cm, Tp=2.5s and
h=0.51m. (−) Experimental values; (−−) values obtained numerically with the
XBeach non-h model.
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Figure 5.21: Swash spectra for random incident wave with Hs=8cm, Tp=2.5s and
h=0.51m. (−) Experimental values; (−−) values obtained numerically with the
XBeach non-h model.
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Figure 5.22: Observed and modelled η̄ (a), Sinc (b), Sig (c) and Ru2% (d) for the
XBeach non-h model. Dashed lines indicate the 1:1 and 20% error lines.
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Chapter 6

Conclusions

The objective of this thesis is to increase the knowledge of non-linear interaction
mechanisms induced by the passage of waves over submerged structures. Extensive
laboratory experiments have been carried out to study the transformations of both
monochromatic and random waves during the propagation over a submerged obstacle.
A better physical understanding of these processes can be incorporated in numeri-
cal models to improve their predictive capabilities. In order to better understand
the energy exchange between the different wave harmonics, the submerged obstacle
has been made as a bar with a larger berm width and gentler slopes with respect
to the typical geometries used for submerged breakwaters, in order to analyse the
non-linear interactions over a longer distance. At first, the monochromatic waves
have been studied because they are easier to analyse and they provide quite valuable
information about the generation of super-harmonics. Monochromatic waves are use-
ful to simulate narrow-banded spectra, which are typical of sea swell conditions. By
analysing the evolution of the harmonic amplitude over the structure it is found that
the the generation of higher order components is affected by the wave period: during
the propagation of the shorter wave, the first component remains the dominant one,
while the increase of the wave length provide a larger transferred energy to the third
and to the fourth harmonics. The free surface measurements have been also studied
by means of spectral and bispectral analyses and the influence of different wave pa-
rameters on the non-linear wave interactions has been evaluated. It has been observed
that the increase in the wave period causes a greater transfer of energy at high fre-
quencies and, in some cases, the secondary harmonic components become prevalent.
The wave breaking acts by mainly reducing the energy of the primary component
and it involves a redistribution of energy over a wider high-frequency range, with less
pronounced peaks at the secondary harmonics. For breaking waves, more energy is
also shifted towards low frequencies and it could be due to the breakpoint mechanism
of generation of infragravity waves. The bispectral analysis is used to examine the
spatial variation in intensity of nonlinear coupling in a wave field propagating over
and beyond the bar. The observed spatial variations of the nonlinearity parameters
(such as bicoherence, skewness and asymmetry) indicate strong phase couplings be-
tween the primary component and its harmonics over the bar due to the non-linear
triad interactions. The occurrence of energy transfer is confirmed by the bispectral
analysis. Indeed, when the wave propagates in shallow water conditions over the hori-
zontal crest, the triplet resonance conditions are nearly satisfied and significant energy
transfers take place to higher harmonics. After the generation of higher harmonics,
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such harmonics propagate over the bar in intermediate water depth conditions and,
consequently, for those frequencies the transfer of energy is back and forth because of
the greater mismatch in the phase speed.

The evolution of the biphase has been found to be consistent with visual obser-
vation that waves evolve from a slightly peaked, nearly sinusoidal shape offshore of
the structure (with biphase equal to zero) to a shape characterized by a steep front
face over the horizontal crest of the structure (with biphase equal to −π/2). Over the
downslope of the bar the biphase value of the main harmonic interaction with itself
evolves to positive values. The biphases of the other harmonic interactions tend to
be randomly scattered beyond the bar, hence, higher harmonics are largely released
beyond the bar due to the decreasing nonlinearity.

In the deepening region beyond the bar, a different behaviour for random and
monochromatic waves is observed. For random waves the bound harmonics are re-
leased and the wave field can still be described as a superposition of statistically
independent waves, without memory of the phase locks which existed over the bar.
Unlike irregular waves, the harmonic components of monochromatic waves continue
to interact in the protected area and the asymmetry parameters vary significantly as
a result of the varying phase lags between the freely propagating component waves.
The evolution of the wave spectrum behind submerged obstacles also affects the run-
up on the beach. A second experimental campaign has been carried out to evaluate
the wave run-up over a 1:20 impermeable slope in presence of the submerged bar.
The observed run-up is better correlated to the incident wave characteristics for reg-
ular monochromatic waves and to the characteristics of the transmitted spectra for
random waves. Indeed, for random waves the non-linear interactions induced by the
submerged bar also generate long waves that affect the infragravity band swash. This
does not occur for regular monochromatic waves where the first harmonic remains
the main forcing of the run-up.
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