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Abstract: Glyphosate is a component of commonly used herbicides for controlling weeds in crops,
gardens and municipal parks. There is increasing awareness that glyphosate-based herbicides, in
addition to acting on plants, may also exert toxicity in wildlife and humans. In this study, male
and female adult zebrafish were exposed to 700 µg/L of glyphosate (GLY), for 28 days. We used
the metabolomic approach and UHPLC-ESI-MS to analyze liver samples to investigate the adverse
effects of glyphosate on hepatic metabolism. The impact of GLY was found to be sex-specific. In
female, GLY exposure affected purine metabolism by decreasing the levels of AMP, GMP and inosinic
acid, consequently increasing uric acid levels with respect to the control (CTRL). Exposure to GLY
also caused a decrease of UMP levels in the pyrimidine metabolism pathway. In male, GLY exposure
decreased the aminoadipic acid within the lysine degradation pathway. Transcript analysis of genes
involved in stress response, oxidative stress and the immune system were also performed. Results
demonstrated an increased stress response in both sexes, as suggested by higher nr3c1 expression.
However, the hsp70.2 transcript level was increased in female but decreased in male. The results
demonstrated reduced sod1, sod2, and gpx1a in male following exposure to GLY, indicating an
impaired oxidative stress response. At the same time, an increase in the cat transcript level in female
was observed. mRNA levels of the pro-inflammatory interleukins litaf and cxcl8b.1 were increased
in female. Taken together, the results provide evidence of disrupted nucleotide hepatic metabolism,
increased stress inflammatory response in female and disruption of oxidative stress response in male.

Keywords: Danio rerio; metabolomic; liver; glyphosate; Roundup®; purine metabolism; oxidative stress

1. Introduction

In both plants and microorganisms, the mechanism of action of the non-selective her-
bicide glyphosate (GLY), which is an amino phosphonic analogue of the amino acid glycine,
relies on the inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EP-
SPS) activity, leading to reduced aromatic amino acid synthesis [1]. To improve absorption,
glyphosate isopropylamine salt is used in combination with polyethoxylated tallow amine
(POEA) which is the most utilized form of coadjutants. These formulations are sold under
the trade name of Roundup®, in which the active ingredient is indicated as glyphosate acid
equivalent (a.e.) and could be present at different concentrations. Currently, this herbicide
is used extensively to eliminate weeds in conjunction with the use of genetically modified
GLY-resistant plants. These formulations are also found in municipal parks as well as
public and private gardens. There is evidence that this compound can reach surface waters
via direct applications and runoffs. Limits for the presence of GLY in drinking water range
from the highest levels in Australia (1000 µg/L) and USA (700 µg/L) to lower levels in
Canada (280 µg/L) and Europe (0.1 µg/L) [2]. Despite the claim that GLY-based herbicides
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only target plant-specific enzymatic pathway, various studies demonstrated adverse effects
of this contaminant in both vertebrate and invertebrates [3–5], as well as in wildlife and
aquatic species [6–10], where this contaminant, alone or in formulation, induced oxidative
stress and DNA damage. These observations are raising concern about public health since
GLY can be detected in the urine of humans [11]. Thus we used a metabolomic- and
transcriptomic-based approach to investigate the toxicity of GLY alone and the equivalent
concentration of GLY in combination with coadjutants present in Roundup® in zebrafish.

2. Results
2.1. Metabolomic Characterization of the Liver

A metabolomic approach was used to analyze GLY-induced changes of hepatic
metabolism. Data generated from ultra-high-performance liquid chromatography coupled
with high-resolution full-scan mass spectroscopy (UHPLC-MS) were visualized on MAVEN
software as peaks with intensity corresponding to the concentration of metabolites in the
samples. MAVEN, together with a standard library of mass to charge (m/z) and retention
times of metabolites, allowed the identification of 71 metabolites in zebrafish liver extracts,
with levels differing between CTRL and GLY groups. The metabolic profile was studied
by means of multivariate analysis and visualization techniques, including principal com-
ponent analysis (PCA) and partial-least squares-discriminant analysis (PLS-DA). Seven
extracted pools of female livers and four extracted pools of male livers were used to perform
PCA with the quality control group (QC, n = 4), to investigate the presence of outliers and
assess the dataset reliability. In this regard, the PCA scatter plot demonstrated a strong
cluster formation for the QC group (Figure 1a,b) in females and males, despite lacking a
clear separation between the groups.
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the built models, were estimated for the analysis by the SIMCA program. Since the good 

Figure 1. PCA score plot of CTRL and GLY metabolic profile in female and male livers. PCA score
scatter plot of CTRL (red) vs. GLY (green) and QC (blue) in (a) female and (b) male livers. The
abscissa axis shows the PC1 while the ordinate axis shows the PC2; the percentage of total variance
for each PC is shown in parentheses. All samples are comprised within the 95% confidence interval
of their respective group showing the absence of outliers. QC samples show strong cluster formation.

PLS-DA analysis was then performed to investigate differences between treatment
groups in both male and female fish. The quality parameters (R2 and Q2) and p-values
for the built models, were estimated for the analysis by the SIMCA program. Since the
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good quality of a built model is set for R2 and Q2 > 0.5, it can be assumed that a good and
significant separation was observed between the CTRL and GLY-exposed groups in females
(p < 0.003; R2 = 0.915, Q2 = 0.791) (Figure 2a,c). However, in males, the cluster separation
was not significantly different between the CTRL and GLY-exposed groups (p < 0.572;
R2 = 0.91, Q2 = 0.578) despite the good quality of the model (Figure 2b,d). Hierarchical
analysis revealed separation of treatment groups in both sexes (Figure 2e,f).
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Figure 2. PLS-DA score plot and hierarchical analysis in CTRL and GLY females and males. PLS-DA
score scatter plot of CTRL (green) vs. GLY (blue) in (a) females and (b) males. (c,d) Quality param-
eters (R2 and Q2) and p-value of the two PLS-DA-built models in females and males, respectively.
Hierarchical analysis of CTRL (green) vs. GLY (blue) in (e) females and (f) males.

The variable importance in projection (VIP) score was used to determine the impor-
tance of metabolites in the built models. A VIP score ≥ 1 is usually considered as threshold
for the selection of individual metabolites used for the SIMCA PLS-DA model building
and are then used for further analysis (Table 1a,b).
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Table 1. VIP score of metabolites found with PLS-DA analysis.

(a) (b)

Metabolites VIP (12) Metabolites VIP (25)

N-Acetyl-L-methionine 1.3711 Hippuric acid 1.98682

Docosahexaenoic acid 1.29572 Aminoadipic acid 1.86273

Sucrose 1.26731 Docosahexaenoic acid 1.68523

L-Homoserine 1.25124 N-Acetylleucine 1.66798

Azelaic acid 1.23396 Cytidine monophosphate 1.65299

Hypotaurine 1.23293 Uracil 1.64123

Adenosine monophosphate 1.13408 N-Acetyl-L-alanine 1.63765

Uridine 5′-monophosphate 1.07566 Uridine 5′-monophosphate 1.61569

Guanosine monophosphate 1.038 Hypoxanthine 1.58986

Uric acid 1.02329 Sucrose 1.57968

L-Histidine 1.02007 Acetoacetic acid 1.57219

Inosinic acid 1.00379 L-Alanine 1.44502

Betaine 1.32999

Pyrrolidonecarboxylic acid 1.29793

N-Acetyl-L-methionine 1.21579

Pyridoxal 1.15716

Azelaic acid 1.11747

Uridine
diphosphate-N-acetylglucosamine 1.09991

L-Asparagine 1.06611

Inosinic acid 1.04028

Ophthalmic acid 1.03219

Guanosine monophosphate 1.03092

O-Phosphoethanolamine 1.01278

L-Homoserine 1.01177

Fumaric acid 1.00205
VIPs > 1 found in PLS-DA-built models of CTRL vs. GLY comparison in (a) females and (b) males.

2.2. Univariate Analysis to Identify Metabolic Profiles

Those metabolites that following the PLS-DA model development, resulted were
significant were used to perform univariate analysis on the MetaboAnalyst 5.0 online plat-
form. In order to investigate changes at metabolite level (FDR < 0.05), multiple t-tests were
performed on CTRL and GLY-exposed groups using VIP > 1 metabolites (GLY female = 12;
GLY male = 25) in both male and female. To summarize the results, heatmaps were also
provided, as shown in Figure 3a,b.

In female, exposure to GLY significantly increased sucrose, hypotaurine, L-homoserine,
uric acid (UA), and docosahexaenoic acid (DHA), but decreased azelaic acid, adenosine
monophosphate (AMP), uridine-5′-monophosphate (UMP), L-histidine (His), guanosine
monophosphate (GMP), and inosinic acid (IMP) (Table 2a).
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Figure 3. Clustered heatmap of VIP > 1 in CTRL and GLY-exposed female and male livers. Heatmap
showing the VIP > 1 metabolites found in multivariate analysis (PLS-DA) of CTRL vs. GLY in
(a) females and (b) males. Euclidean distance was used to perform clustering analysis. The heatmaps
were constructed using Ward’s algorithm and samples are shown as group average. Increase and
decrease in metabolite concentration are indicated by red and blue shades, respectively; the more
intense is the color, the greater the increase or the decrease.

Table 2. Metabolites modulated by GLY exposure in female and male livers.

(a) (b)
Metabolite Name p-Value FDR Metabolite Name p-Value FDR

Sucrose 0.001231 0.008438 ↑ Aminoadipic acid 0.000236 0.0017 ↓
Azelaic acid 0.001406 0.008438 ↓
Hypotaurine 0.002545 0.01018 ↑

L-Homoserine 0.005126 0.012943 ↑
Uric acid 0.005954 0.012943 ↑

Adenosine monophosphate 0.006472 0.012943 ↓
Uridine 5′-monophosphate 0.010393 0.015703 ↓

L-Histidine 0.010824 0.015703 ↓
Docosahexaenoic acid 0.011778 0.015703 ↑

Guanosine monophosphate 0.018083 0.019942 ↓
Inosinic acid 0.01828 0.019942 ↓

Multiple t-test analysis results showing metabolites significantly upregulated (↑) or down-regulated (↓) in
CTRL vs. GLY comparison in (a) females and (b) males. p-value and FDR were reported; FDR < 0.05 was
considered significant.

Metabolomic pathway analysis (MetPA) is able to trace the involvment of metabolites
within metabolic pathways. The analysis was performed using MetaboAnalyst 5.0 starting
from the same dataset used for the multiple t-test. Sucrose was found to be involved in galac-
tose, starch, and sucrose metabolism pathways. The AMP, IMP, GMP, and UA were involved
in the purine metabolism pathway, while UMP was involved in the pyrimidine metabolism
pathway. Hypotaurine was found in taurine and hypotaurine metabolism, DHA was found
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in the biosynthesis of unsaturated fatty acids and His in histidine and β-alanine metabolism
as well as aminoacyl tRNA biosynthesis pathways (Table 3a and Figure 4a).

Table 3. Summary of the main altered metabolic pathways in fish liver exposed to GLY.

(a) (b)

Pathway Name FDR Impact Pathway Name FDR Impact

Galactose metabolism 0.005414 0.04029 Lysine
degradation 0.0051841 0

Starch and sucrose
metabolism 0.005414 0.01534

Taurine and hypotaurine
metabolism 0.0076346 0.4

Purine metabolism 0.011778 0.23384

Pyrimidine metabolism 0.011778 0.09066

Histidine metabolism 0.011778 0.2381

Nitrogen metabolism 0.011778 0

Aminoacyl-tRNA
biosynthesis 0.011778 0

Biosynthesis of
unsaturated fatty acids 0.011778 0

MetPA table showing main altered metabolic pathways found in CTRL vs. GLY comparison in (a) female and (b)
male livers. FDR values < 0.05 were considered statistically significantly altered and are shown. Impact is a value
which refers to altered metabolite centrality in the changed pathways found.
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metabolic pathways found in CTRL vs. GLY comparison in (a) females and (b) males. The color of
the dot (from white to red) reflects the significance (FDR < 0.05) of the pathway. The dimension of the
dots reflects the impact of the metabolites in that pathway, the bigger the dot, the greater the impact
of the metabolites in the pathway. The names of the pathways that were statistically significantly
altered (FDR < 0.05) are reported.

According to univariate analysis, only aminoadipic acid was significantly decreased
in the GLY-exposed males (Table 2b), with MetPA identifying this metabolite inside the
lysine degradation pathway (Table 3b and Figure 4b) which was the only pathway signifi-
cantly affected.
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2.3. Liver Transcript Analysis

Based on transcript analysis, GLY exposure induced a different phenotype in females
and males, while UA was upregulated in female livers. Considering that UA is able
to induce oxidative stress when chronically elevated, genes involved in oxidative stress
response were evaluated. Results clearly supported this hypothesis since GLY exposure
significantly increased cat mRNA level in females, while in males, sod1, sod2, and gpx1a
were reduced (Figure 5).
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Figure 5. Gene expression profiles of hepatic oxidative stress response biomarkers. cat (a,b) sod1 (c,d),
sod2 (e,f), and gpx1a (g,h) mRNA levels in female and male livers, respectively, normalized against
rplp0 and rplp13 in CTRL and GLY-exposed zebrafish. Data are shown as mean ± SD (n = 5) and
were analyzed by the t-test. Asterisks above each column denote significant differences between the
experimental groups (* p < 0.05).
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Furthermore, GLY exposure increased nr3c1 levels in both sexes, while hsp70.2 tran-
script level was increased in females and decreased in males (Figure 6). These two genes, as
stress response genes, were reliable biomarkers of GLY exposure and their levels provided
information on the organism’s oxidative-stress and immune-system responses.
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Since immune system and oxidative stress are related processes, a set of genes involved
in the immune system response was evaluated. In males, no significant changes were
found regarding those genes involved in immune response, while in females, levels of
pro-inflammatory gene transcripts, interleukins litaf and cxcl8b.1, were increased (Figure 7).

Esr1 mRNA levels were further analyzed in female and male livers to compare differ-
ences in mRNA abundance between sexes. In females, esr1 mRNA levels were significantly
higher than in male fish. Treatment did not affect basal mRNA levels in either males or
females (Figure 8).
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and il10 (g,h) mRNA levels in female and male livers, respectively, normalized against rplp0 and
rplp13 in CTRL and GLY-exposed zebrafish. Data are shown as mean ± SD (n = 5) and were analyzed
by the t-test. Asterisks above each column denote significant differences between the experimental
groups (* p < 0.05).
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3. Discussion

A metabolomic- and a transcriptomic-based approach was conducted on female and
male zebrafish livers to investigate hepatic metabolic changes after chronic exposure to
glyphosate. The initial experimental design also included one more group exposed to one
dose of the commercial formulation Roundup®, containing an equivalent concentration of
glyphosate (700 µg/L). However, all fish died one hour after the addition of the Roundup.
Likely, GLY alone did not cause mortality, and other compounds in the Roundup® made
the mixture very toxic. Indeed, as previously demonstrated [12], the adverse effects of this
herbicide on the aquatic ecosystem are attributable to the co-adjuvants.

Multivariate analysis of liver metabolism in females showed a significant shift in the
GLY-treated fish compared to the CTRL fish. The univariate analysis revealed sex-specific
differences in the GLY response, with females showing greater susceptibility to deleterious
effects of the contaminant. In females, we observed disruption of purine metabolism,
highlighted by reduction of purine intermediates AMP, IMP, and GMP, together with a
decrease of the pyrimidine intermediate, UMP. Decrease of these metabolites could result
from depletion of their precursor molecule, phosphoribosyl pyrophosphate (PRPP) [13].
The utilization of AMP, IMP, and GMP could lead to an increased level of UA which is
the final product of the purine metabolism pathway, associated with increased oxidative
stress [14]. Similar results were previously observed in goldfish, Carassius auratus, exposed
to Nongteshi® [15] which is an herbicide containing 30% (w/v) GLY, leading to decreased
inosine and GTP.

In the present study, we observed depletion of His in the liver of GLY-exposed females.
There is evidence that the essential amino acid His has antioxidant, anti-inflammatory,
and metal-ion chelation properties when supplied through the diet [16]. The primary
source of His is the diet and protein turnover, and its metabolism leads to the production
of carnosine, homocarnosine, histidine-rich protein, histamine, and glutamic acid [16]. His
depletion observed in the female liver could be a contributing factor for oxidative stress
induced by the contaminant. Other studies in fish demonstrated that a low level of His
increases the tolerance to hypoxia [17], leading to stress conditions and the formation of
ROS. Furthermore, His supplementation was observed to possess protective effects against
liver injury caused by acetaminophen and ethanol in mice [18,19] and may contribute to
stress and anti-inflammatory response. Thus, the present study indicates that GLY-treated
female fish are more susceptible to oxidative stress and ROS effects.

Hypotaurine, a sulfinic acid intermediate in taurine biosynthesis, is another metabolite
possessing antioxidant capacity and acting as an osmolyte inside the cells [20,21]. The liver
of GLY-exposed females contained an increased level of hypotaurine within the taurine
and hypotaurine metabolism pathway. This is consistent with the reported increase level of
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taurine in Carassius auratus exposed to a GLY-based herbicide [15]. Furthermore, hepatic
increase of this metabolite was also found in diet-induced rats with non-alcoholic fatty
liver disease (NAFLD), a pathologic condition fostering inflammation and production of
oxidative stress [22]. Studies concerning humans with acute liver failure demonstrated
increased hypotaurine and decreased ATP together with lower levels of intermediates
involved in glycolysis and pentose phosphate pathways [23]. The latter study indicates that,
in case of liver abnormality, a hepatic shift from glycolysis to trans-sulfuration metabolism
may occur. Similar conditions appear to be present in the liver of GLY- exposed female
fish displaying a decrease in purine and pyrimidine intermediates and His levels which
are derived from PRPP and the pentose phosphate pathway, together with increased
hypotaurine levels. Furthermore, in GLY-exposed female fish, sucrose levels increased
in connection with the starch, sucrose, and galactose metabolic pathways, suggesting a
contaminant-induced reduction in the metabolism of sugars. Similar results were reported
in goldfish treated with Nongteshi® [15], leading to decreased pyruvate kinase activity, a
rate-limiting step glycolytic enzyme.

Exposure to GLY resulted in increased DHA in female fish, potentially impacting fatty
acid metabolism. There is evidence that DHA reduces inflammatory and oxidative stress
response [24] and liver fibrosis [25] in rats treated with the organophosphate chlorpyrifos
or carbon tetrachloride, respectively. The enhancement of DHA and cat production in the
liver of females exposed to GLY could be a possible mechanism to counteract GLY-induced
hepatotoxicity and inflammation mediated by lifaf, cxcl8b.1 and interleukins.

Exposure of females to GLY also increased transcript levels of the genes involved
in the stress response, including nr3c1 and hsp70.2, possibly mediated by glucocorticoid
receptors [26–28]. The observed increase in the level of hsp70.2, which codes for HSP70,
a heat shock protein chaperon of relevance in the fish cellular response to stress [29],
provides further evidence that female zebrafish were responding to GLY-induced stress.
In this context, hsp70.2 expression is a reliable biomarker of xenobiotic exposure since
it is upregulated by a different broad spectrum of pollutants [30–34]. Surprisingly, the
GLY-exposed male metabolic phenotype was not significantly different from CTRL in
the multivariate analysis. In this regard, only a decrease in aminoadipic acid levels in
connection with the lysine degradation pathway was found to be significant. Aminoadipic
acid is metabolized into glutaryl-CoA, which is then converted to acetyl-CoA and enters
the citrate cycle. A possible explanation for the observed decrease of this metabolite is its
enhanced catabolism to form intermediates used in energy production.

Decreased transcript levels of genes involved in oxidative stress response, including
sod1, sod2, and gpx1a in GLY-exposed male fish, indicate a diminished capacity to counteract
ROS-induced stress. The GLY-induced oxidative stress response was previously reported in
rats [3,35] and fish [6,36]. In the male liver, the expression of stress response genes showed
an increased level of the glucocorticoid receptor with decreased hsp70.2 level indicating
that GLY exposure also affects the stress response, but in contrast to females, male fish may
not be able to counteract the stress response using a similar mechanism to females. Our
results are consistent with a previous study in Oreochromis niloticus chronically exposed to
GLY [6].

There is clear evidence that GLY acts as an endocrine disruptor compound (EDC) [37].
This compound interacts with nuclear hormone receptors, including the estrogen receptor
alpha (ERα). In this regard, GLY exposure enhanced ERα activation and stimulated its
transcriptional activation in human breast cancer cells [37]. Furthermore, in vivo studies
demonstrated the ability of GLY to alter hypothalamic gene expression, increase testos-
terone synthesis in the ovaries, and alter estradiol-sensitive genes in rats [37]. It is interest-
ing that estradiol stimulation was observed to enhance amidophosphoribosyltransferase
(PPAT) gene expression in breast cancer cells, which are involved in PRPP conversion to
5-phosphoribosyl-1-amine (PRA) for purine de novo synthesis [38]. By altering steroid
hormone levels, it is possible to speculate that the decreased levels of purine intermedi-
ates are due to an impairment of this conversion through altered hormone homeostasis.
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Therefore, a possible explanation of the sex-specific effects observed in our study could be
the capacity of GLY to interact with ER. In females, ERs are key receptors that maintain
ovarian granulosa cell differentiation and follicle and oocyte growth and development [39].
However, beyond the canonical role in reproductive functions, estrogens also play a role in
the regulation of other physiological functions such as immune response, growth, neuronal
function, and metabolism [40–42]. Thus, by targeting estrogen receptors which are more
abundant in females than in males, GLY could have different sex-related disruptive effects.

Overall, the present results provide evidence that chronic exposure to GLY dysreg-
ulates metabolism in zebrafish. We provide evidence that GLY exposure leads to stress
response in Danio rerio in a sex-dependent manner. Our study also highlights the acute
toxicity of GLY when formulated with coadjutants and surfactants such as commonly used
GLY-based herbicides. Thus, it would be hard to suggest a safe environmental level for
GLY as its toxicity changes significantly when combined with coadjutants. Further studies
are needed to provide more evidence on the toxicity of GLY combined with coadjutants to
better assess the risks associated with this type of herbicide.

4. Materials and Methods
4.1. Animal Treatment and Maintenance

In order to assess GLY toxicity, 90 adult zebrafish (D. rerio, AB wild-type strain)
were divided into four aquaria of 20 L each (20 fish/tank), in duplicate, under controlled
conditions (28.0 ± 0.5 ◦C) and with a 14/10 h light/dark cycle in oxygenated water. Fish
were fed twice a day with commercial food (TetraMin Granules; Tetra, Melle, Germany) in
the morning and Artemia salina in the afternoon, with a quantity of food ranging from 2.5%
to 3.0% of fish body weight. Water was changed every two days. Two experimental groups
were set up as follow:

Control (CTRL): fish fed twice a day with commercial food (TetraMin Granules; Tetra,
Melle, Germany) and Artemia salina.

Glyphosate (GLY): fish were fed commercial food and Artemia salina, and were exposed
to 700 µg/L of glyphosate (98% analytical purity, Sigma-Aldrich, Milano, Italy) via water
(GLY powder was dissolved in water before administration every two days.

All groups were sampled after 4 weeks of treatment. Fish were euthanized with
500 mg/L MS-222 (3-aminobenzoic acid ethyl ester, Sigma Aldrich) buffered to pH 7.4.
For metabolomic analysis livers were pooled (three livers per pool), while for transcript
analysis five livers were sampled. All samples were stored at −80 ◦C until processed
for analysis. Procedures involving animals were conducted following the University of
Calgary animal care protocol (AC16-0160) for care and use of experimental animals, all
efforts were made to minimize suffering.

4.2. Metabolite Extraction and UHPLC-ESI-MS Analysis

Liver metabolite extraction, separation, and identification were performed on seven
pools of female livers and four pools of male livers for each investigated group, as well as
the quality control group (QC; n = 4) generated by pooling random samples as described
previously [43]. The number of pools analyzed was determined on the basis of the fish
sex ratio while sampling. Effort was made to analyze the same number of pools between
CTRL and GLY females or males. Liver samples (20 mg) were homogenized using a bead-
beating homogenizer (TissueLyser II, QIAGEN) and extracted with methanol (ratio of 1:20
sample (mg): methanol (µL)). After 20 min of centrifugation at 13,500 rpm, the supernatant
was collected and stored at −80 ◦C until further analysis. The quality control group
(QC) was generated by pooling 20 mg from five random samples, extracted following the
same protocol and analyzed in four statistical replicates. Metabolites were analyzed using
ultra-high-performance liquid chromatography (UHPLC) mass spectrometry (MS), with a
hydrophilic-interaction liquid chromatography column (Syncronis HILIC, Thermo Fisher,
stationary phase) to separate the metabolites. High-resolution full-scan MS data were
acquired on a Thermo Fisher Scientific Q-Exactive HF mass spectrometer using negative-
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mode electrospray ionization. MAVEN freeware and an m/z and retention time standard
were used for targeted profiling of the MS spectra and identification of the metabolites.
Peak intensity was measured as area top, representing the average intensity of the top three
points of the peak [43].

4.3. RNA Extraction and cDNA Synthesis

Extraction of total RNA was performed from five female and five male livers for
CTRL and GLY experimental groups, using the RNAeasy® Minikit (Qiagen, Milano, Italy)
following the manufacturer’s instructions, and eluted in RNase-free water at a final vol-
ume of 50 µL. RNA quality evaluation and cDNA synthesis were assessed as previously
described [44] and are here briefly reported. RNA concentration was determined us-
ing a NanophotometerTMP-Class (Implen GmbH, Munich, Germany), and 28S and 18S
ribosomal RNA was stained using ethidium bromide on 1% agarose gel to determine
RNA integrity.

DNase treatment (10 IU at 37 ◦C for 10 min, MBI Fermentas, Milano, Italy) was per-
formed on total RNA to digest genomic DNA, and 1 µg RNA was used for cDNA synthesis
performed using the iScript cDNA Synthesis Kit (Bio-Rad, Milano, Italy) according to the
manufacturer’s instructions.

4.4. Real-Time PCR

In order to perform qRT-PCRs, a CFX thermal cycler was used with SYBR green, as
described in [44], and ribosomal protein 13 (rpl13) and ribosomal protein 0 (rplp0) mRNAs
were used as internal standards in each sample to standardize the results and eliminate
variation in mRNA and cDNA quantity and quality. Table 4 reports primer sequences,
GenBank accession numbers, and primer efficiency of the examined genes.

Table 4. Primer list.

Name Forword Reverse Efficiency (Tm◦) Accession Number
cat CCAAGGTCTGGTCCCATAAA GCACATGGGTCCATCTCTC 60◦ NM_130912

sod1 GTCGTCTGGCTTGTGGAGTG TGTCAGCGGGCTAGTGCTT 60◦ NM_131294
sod2 CCGGACTATGTTAAGGCCATCT ACACTCGGTTGCTCTCTTTTCTCT 60◦ NM_199976

gpx1a ACCTGTCCGCGAAACTATTG TGACTGTTGTGCCTCAAAG 59◦ NM_001007281.2
nr3c1 CGCCTTTAATCATGGGAGAA AGACCTTGGTCCCCTTCACT 58◦ NM_001020711.3

hsp70.2 TGTTCAGTTCTCTGCCGTTG AAAGCACTGAGGGACGCTAA 58◦ NM_001362360.1
litaf TTGTGGTGGGGTTTGATG TTGGGGCATTTTATTTTGTAAG 53◦ NM_001002184.1
il 1b GTGGATTGGGGTTTGATGTG GCTGGGGATGTGGACTTC 54◦ NM_212844.2

cxcl8b.1 ACTCGGACTGAAGGTGACTC CCACGTCTCGGTAGGATTGAG 58◦ NM_001327985
il 10 GCCGTGGAGCAGGTGAAG GAAGATGTCAAACTCACTCATGGCT 58◦ NM_001020785
esr1 GGTCCAGTGTGGTGTCCTCT AGAAAGCTTTGCATCCCTCA 58◦ NM_152959.1

rpl13a TCTGGAGACTGTAAGAGGTATGC AGACGCACAATCTTGAGAGCAG 59◦ NM_198143
rplp0 CTGAACATCTCGCCCTTCTC TAGCCGATCTGCAGACACAC 60◦ NM_131580

Furthermore, the calculation of mRNA levels of target genes analyzed was performed
using the geometric mean of the two reference genes after demonstrating that they were
stably expressed by the geNorm algorithm, both applications implemented in the Bio-Rad
CFX Manager 3.1. software. Gene transcript expression alterations among experimental
groups are reported as relative mRNA abundance (arbitrary units). Primers were used at a
final concentration of 10 pmol/mL.

4.5. Statistical Analysis
4.5.1. Metabolomic Statistical Analysis

Normalization, transformation, and scaling (normalization by a median, log trans-
formation, and pareto scaling) were conducted prior to conducting multivariate analysis.
SIMCA software (Umetrics, Umeå, Sweden), was used for partial least squares-discriminant
analysis (PLS-DA) and hierarchical analysis model generation. Quality assessment of the
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models was indicated by R2 and Q2 > 0.5, and models with p < 0.05 were considered signif-
icant [43]. The MetaboAnalyst 5.0 online platform (University of Aberta, Alberta Canada)
was used to perform unsupervised principal component analysis (PCA) on all treatments
and QC to identify potential outliers and assess the LC-MS reliability. QC samples are
usually some random samples that are pooled and extracted together. This extract is then
aliquoted in different wells of the 96-well plate and analyzed before and after the samples
of interest as technical replicates, to confirm the reliability of the technique.

Hierarchical cluster analysis was performed in a “bottom-up” manner using the Ward
clustering algorithm. VIP (variable importance in projection) score > 1 was used as a
threshold for the identification of significant metabolites in each PLS-DA model. VIP > 1
was used for hierarchical clustering (Ward clustering, Euclidean distance), univariate
analysis t-test, and pathway analysis using Metaboanalyst 5.0 as described before [43]. A
significant threshold of p-value adjusted using false discovery rate (FDR) < 0.05 was used
to assess statistically significant differences among experimental groups.

4.5.2. Pathway Analysis

Metabolites with VIP score > 1 in each OPLS-DA model, were used to perform pathway
analysis (MetPA) using the Metaboanalyst 5.0 platform [43]. This technique considers the
concentration of each metabolite, using quantitative enrichment analysis (QEA) and the
position in the pathway, using topological analysis. For these two parameters, global test
and relative-betweenness centrality algorithms were selected, respectively, using the KEGG
pathway library of zebrafish (Danio rerio) as reference.

4.5.3. Gene Expression Statistical Analysis

T-test analysis was performed to analyze transcript expression. Statistical software
package Prism5 (GraphPad Software, Inc., San Diego, CA, USA) was used for statistical
analyses with p < 0.05 as threshold for statistical significance.
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